panfrost/midgard: Add fround(_even), ftrunc, ffma
[mesa.git] / src / gallium / drivers / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "compiler/glsl/glsl_to_nir.h"
34 #include "compiler/nir_types.h"
35 #include "main/imports.h"
36 #include "compiler/nir/nir_builder.h"
37 #include "util/half_float.h"
38 #include "util/register_allocate.h"
39 #include "util/u_dynarray.h"
40 #include "util/list.h"
41 #include "main/mtypes.h"
42
43 #include "midgard.h"
44 #include "midgard_nir.h"
45 #include "midgard_compile.h"
46 #include "helpers.h"
47
48 #include "disassemble.h"
49
50 /* Instruction arguments represented as block-local SSA indices, rather than
51 * registers. Negative values mean unused. */
52
53 typedef struct {
54 int src0;
55 int src1;
56 int dest;
57
58 /* src1 is -not- SSA but instead a 16-bit inline constant to be smudged
59 * in. Only valid for ALU ops. */
60 bool inline_constant;
61 } ssa_args;
62
63 /* Forward declare so midgard_branch can reference */
64 struct midgard_block;
65
66 /* Target types. Defaults to TARGET_GOTO (the type corresponding directly to
67 * the hardware), hence why that must be zero. TARGET_DISCARD signals this
68 * instruction is actually a discard op. */
69
70 #define TARGET_GOTO 0
71 #define TARGET_BREAK 1
72 #define TARGET_CONTINUE 2
73 #define TARGET_DISCARD 3
74
75 typedef struct midgard_branch {
76 /* If conditional, the condition is specified in r31.w */
77 bool conditional;
78
79 /* For conditionals, if this is true, we branch on FALSE. If false, we branch on TRUE. */
80 bool invert_conditional;
81
82 /* Branch targets: the start of a block, the start of a loop (continue), the end of a loop (break). Value is one of TARGET_ */
83 unsigned target_type;
84
85 /* The actual target */
86 union {
87 int target_block;
88 int target_break;
89 int target_continue;
90 };
91 } midgard_branch;
92
93 /* Generic in-memory data type repesenting a single logical instruction, rather
94 * than a single instruction group. This is the preferred form for code gen.
95 * Multiple midgard_insturctions will later be combined during scheduling,
96 * though this is not represented in this structure. Its format bridges
97 * the low-level binary representation with the higher level semantic meaning.
98 *
99 * Notably, it allows registers to be specified as block local SSA, for code
100 * emitted before the register allocation pass.
101 */
102
103 typedef struct midgard_instruction {
104 /* Must be first for casting */
105 struct list_head link;
106
107 unsigned type; /* ALU, load/store, texture */
108
109 /* If the register allocator has not run yet... */
110 ssa_args ssa_args;
111
112 /* Special fields for an ALU instruction */
113 midgard_reg_info registers;
114
115 /* I.e. (1 << alu_bit) */
116 int unit;
117
118 bool has_constants;
119 float constants[4];
120 uint16_t inline_constant;
121 bool has_blend_constant;
122
123 bool compact_branch;
124 bool writeout;
125 bool prepacked_branch;
126
127 union {
128 midgard_load_store_word load_store;
129 midgard_vector_alu alu;
130 midgard_texture_word texture;
131 midgard_branch_extended branch_extended;
132 uint16_t br_compact;
133
134 /* General branch, rather than packed br_compact. Higher level
135 * than the other components */
136 midgard_branch branch;
137 };
138 } midgard_instruction;
139
140 typedef struct midgard_block {
141 /* Link to next block. Must be first for mir_get_block */
142 struct list_head link;
143
144 /* List of midgard_instructions emitted for the current block */
145 struct list_head instructions;
146
147 bool is_scheduled;
148
149 /* List of midgard_bundles emitted (after the scheduler has run) */
150 struct util_dynarray bundles;
151
152 /* Number of quadwords _actually_ emitted, as determined after scheduling */
153 unsigned quadword_count;
154
155 struct midgard_block *next_fallthrough;
156 } midgard_block;
157
158 /* Helpers to generate midgard_instruction's using macro magic, since every
159 * driver seems to do it that way */
160
161 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
162
163 #define M_LOAD_STORE(name, rname, uname) \
164 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
165 midgard_instruction i = { \
166 .type = TAG_LOAD_STORE_4, \
167 .ssa_args = { \
168 .rname = ssa, \
169 .uname = -1, \
170 .src1 = -1 \
171 }, \
172 .load_store = { \
173 .op = midgard_op_##name, \
174 .mask = 0xF, \
175 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W), \
176 .address = address \
177 } \
178 }; \
179 \
180 return i; \
181 }
182
183 #define M_LOAD(name) M_LOAD_STORE(name, dest, src0)
184 #define M_STORE(name) M_LOAD_STORE(name, src0, dest)
185
186 const midgard_vector_alu_src blank_alu_src = {
187 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
188 };
189
190 const midgard_scalar_alu_src blank_scalar_alu_src = {
191 .full = true
192 };
193
194 /* Used for encoding the unused source of 1-op instructions */
195 const midgard_vector_alu_src zero_alu_src = { 0 };
196
197 /* Coerce structs to integer */
198
199 static unsigned
200 vector_alu_srco_unsigned(midgard_vector_alu_src src)
201 {
202 unsigned u;
203 memcpy(&u, &src, sizeof(src));
204 return u;
205 }
206
207 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
208 * the corresponding Midgard source */
209
210 static midgard_vector_alu_src
211 vector_alu_modifiers(nir_alu_src *src)
212 {
213 if (!src) return blank_alu_src;
214
215 midgard_vector_alu_src alu_src = {
216 .abs = src->abs,
217 .negate = src->negate,
218 .rep_low = 0,
219 .rep_high = 0,
220 .half = 0, /* TODO */
221 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
222 };
223
224 return alu_src;
225 }
226
227 /* 'Intrinsic' move for misc aliasing uses independent of actual NIR ALU code */
228
229 static midgard_instruction
230 v_fmov(unsigned src, midgard_vector_alu_src mod, unsigned dest)
231 {
232 midgard_instruction ins = {
233 .type = TAG_ALU_4,
234 .ssa_args = {
235 .src0 = SSA_UNUSED_1,
236 .src1 = src,
237 .dest = dest,
238 },
239 .alu = {
240 .op = midgard_alu_op_fmov,
241 .reg_mode = midgard_reg_mode_full,
242 .dest_override = midgard_dest_override_none,
243 .mask = 0xFF,
244 .src1 = vector_alu_srco_unsigned(zero_alu_src),
245 .src2 = vector_alu_srco_unsigned(mod)
246 },
247 };
248
249 return ins;
250 }
251
252 /* load/store instructions have both 32-bit and 16-bit variants, depending on
253 * whether we are using vectors composed of highp or mediump. At the moment, we
254 * don't support half-floats -- this requires changes in other parts of the
255 * compiler -- therefore the 16-bit versions are commented out. */
256
257 //M_LOAD(load_attr_16);
258 M_LOAD(load_attr_32);
259 //M_LOAD(load_vary_16);
260 M_LOAD(load_vary_32);
261 //M_LOAD(load_uniform_16);
262 M_LOAD(load_uniform_32);
263 M_LOAD(load_color_buffer_8);
264 //M_STORE(store_vary_16);
265 M_STORE(store_vary_32);
266
267 static midgard_instruction
268 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
269 {
270 midgard_branch_cond branch = {
271 .op = op,
272 .dest_tag = tag,
273 .offset = offset,
274 .cond = cond
275 };
276
277 uint16_t compact;
278 memcpy(&compact, &branch, sizeof(branch));
279
280 midgard_instruction ins = {
281 .type = TAG_ALU_4,
282 .unit = ALU_ENAB_BR_COMPACT,
283 .prepacked_branch = true,
284 .compact_branch = true,
285 .br_compact = compact
286 };
287
288 if (op == midgard_jmp_writeout_op_writeout)
289 ins.writeout = true;
290
291 return ins;
292 }
293
294 static midgard_instruction
295 v_branch(bool conditional, bool invert)
296 {
297 midgard_instruction ins = {
298 .type = TAG_ALU_4,
299 .unit = ALU_ENAB_BRANCH,
300 .compact_branch = true,
301 .branch = {
302 .conditional = conditional,
303 .invert_conditional = invert
304 }
305 };
306
307 return ins;
308 }
309
310 static midgard_branch_extended
311 midgard_create_branch_extended( midgard_condition cond,
312 midgard_jmp_writeout_op op,
313 unsigned dest_tag,
314 signed quadword_offset)
315 {
316 /* For unclear reasons, the condition code is repeated 8 times */
317 uint16_t duplicated_cond =
318 (cond << 14) |
319 (cond << 12) |
320 (cond << 10) |
321 (cond << 8) |
322 (cond << 6) |
323 (cond << 4) |
324 (cond << 2) |
325 (cond << 0);
326
327 midgard_branch_extended branch = {
328 .op = op,
329 .dest_tag = dest_tag,
330 .offset = quadword_offset,
331 .cond = duplicated_cond
332 };
333
334 return branch;
335 }
336
337 typedef struct midgard_bundle {
338 /* Tag for the overall bundle */
339 int tag;
340
341 /* Instructions contained by the bundle */
342 int instruction_count;
343 midgard_instruction instructions[5];
344
345 /* Bundle-wide ALU configuration */
346 int padding;
347 int control;
348 bool has_embedded_constants;
349 float constants[4];
350 bool has_blend_constant;
351
352 uint16_t register_words[8];
353 int register_words_count;
354
355 uint64_t body_words[8];
356 size_t body_size[8];
357 int body_words_count;
358 } midgard_bundle;
359
360 typedef struct compiler_context {
361 nir_shader *nir;
362 gl_shader_stage stage;
363
364 /* Is internally a blend shader? Depends on stage == FRAGMENT */
365 bool is_blend;
366
367 /* Tracking for blend constant patching */
368 int blend_constant_number;
369 int blend_constant_offset;
370
371 /* Current NIR function */
372 nir_function *func;
373
374 /* Unordered list of midgard_blocks */
375 int block_count;
376 struct list_head blocks;
377
378 midgard_block *initial_block;
379 midgard_block *previous_source_block;
380 midgard_block *final_block;
381
382 /* List of midgard_instructions emitted for the current block */
383 midgard_block *current_block;
384
385 /* The index corresponding to the current loop, e.g. for breaks/contineus */
386 int current_loop;
387
388 /* Constants which have been loaded, for later inlining */
389 struct hash_table_u64 *ssa_constants;
390
391 /* SSA indices to be outputted to corresponding varying offset */
392 struct hash_table_u64 *ssa_varyings;
393
394 /* SSA values / registers which have been aliased. Naively, these
395 * demand a fmov output; instead, we alias them in a later pass to
396 * avoid the wasted op.
397 *
398 * A note on encoding: to avoid dynamic memory management here, rather
399 * than ampping to a pointer, we map to the source index; the key
400 * itself is just the destination index. */
401
402 struct hash_table_u64 *ssa_to_alias;
403 struct set *leftover_ssa_to_alias;
404
405 /* Actual SSA-to-register for RA */
406 struct hash_table_u64 *ssa_to_register;
407
408 /* Mapping of hashes computed from NIR indices to the sequential temp indices ultimately used in MIR */
409 struct hash_table_u64 *hash_to_temp;
410 int temp_count;
411 int max_hash;
412
413 /* Uniform IDs for mdg */
414 struct hash_table_u64 *uniform_nir_to_mdg;
415 int uniform_count;
416
417 struct hash_table_u64 *varying_nir_to_mdg;
418 int varying_count;
419
420 /* Just the count of the max register used. Higher count => higher
421 * register pressure */
422 int work_registers;
423
424 /* Used for cont/last hinting. Increase when a tex op is added.
425 * Decrease when a tex op is removed. */
426 int texture_op_count;
427
428 /* Mapping of texture register -> SSA index for unaliasing */
429 int texture_index[2];
430
431 /* Count of special uniforms (viewport, etc) in vec4 units */
432 int special_uniforms;
433
434 /* If any path hits a discard instruction */
435 bool can_discard;
436
437 /* The number of uniforms allowable for the fast path */
438 int uniform_cutoff;
439
440 /* Count of instructions emitted from NIR overall, across all blocks */
441 int instruction_count;
442
443 /* Alpha ref value passed in */
444 float alpha_ref;
445
446 /* The index corresponding to the fragment output */
447 unsigned fragment_output;
448 } compiler_context;
449
450 /* Append instruction to end of current block */
451
452 static midgard_instruction *
453 mir_upload_ins(struct midgard_instruction ins)
454 {
455 midgard_instruction *heap = malloc(sizeof(ins));
456 memcpy(heap, &ins, sizeof(ins));
457 return heap;
458 }
459
460 static void
461 emit_mir_instruction(struct compiler_context *ctx, struct midgard_instruction ins)
462 {
463 list_addtail(&(mir_upload_ins(ins))->link, &ctx->current_block->instructions);
464 }
465
466 static void
467 mir_insert_instruction_before(struct midgard_instruction *tag, struct midgard_instruction ins)
468 {
469 list_addtail(&(mir_upload_ins(ins))->link, &tag->link);
470 }
471
472 static void
473 mir_remove_instruction(struct midgard_instruction *ins)
474 {
475 list_del(&ins->link);
476 }
477
478 static midgard_instruction*
479 mir_prev_op(struct midgard_instruction *ins)
480 {
481 return list_last_entry(&(ins->link), midgard_instruction, link);
482 }
483
484 static midgard_instruction*
485 mir_next_op(struct midgard_instruction *ins)
486 {
487 return list_first_entry(&(ins->link), midgard_instruction, link);
488 }
489
490 static midgard_block *
491 mir_next_block(struct midgard_block *blk)
492 {
493 return list_first_entry(&(blk->link), midgard_block, link);
494 }
495
496
497 #define mir_foreach_block(ctx, v) list_for_each_entry(struct midgard_block, v, &ctx->blocks, link)
498 #define mir_foreach_block_from(ctx, from, v) list_for_each_entry_from(struct midgard_block, v, from, &ctx->blocks, link)
499
500 #define mir_foreach_instr(ctx, v) list_for_each_entry(struct midgard_instruction, v, &ctx->current_block->instructions, link)
501 #define mir_foreach_instr_safe(ctx, v) list_for_each_entry_safe(struct midgard_instruction, v, &ctx->current_block->instructions, link)
502 #define mir_foreach_instr_in_block(block, v) list_for_each_entry(struct midgard_instruction, v, &block->instructions, link)
503 #define mir_foreach_instr_in_block_safe(block, v) list_for_each_entry_safe(struct midgard_instruction, v, &block->instructions, link)
504 #define mir_foreach_instr_in_block_safe_rev(block, v) list_for_each_entry_safe_rev(struct midgard_instruction, v, &block->instructions, link)
505 #define mir_foreach_instr_in_block_from(block, v, from) list_for_each_entry_from(struct midgard_instruction, v, from, &block->instructions, link)
506
507
508 static midgard_instruction *
509 mir_last_in_block(struct midgard_block *block)
510 {
511 return list_last_entry(&block->instructions, struct midgard_instruction, link);
512 }
513
514 static midgard_block *
515 mir_get_block(compiler_context *ctx, int idx)
516 {
517 struct list_head *lst = &ctx->blocks;
518
519 while ((idx--) + 1)
520 lst = lst->next;
521
522 return (struct midgard_block *) lst;
523 }
524
525 /* Pretty printer for internal Midgard IR */
526
527 static void
528 print_mir_source(int source)
529 {
530 if (source >= SSA_FIXED_MINIMUM) {
531 /* Specific register */
532 int reg = SSA_REG_FROM_FIXED(source);
533
534 /* TODO: Moving threshold */
535 if (reg > 16 && reg < 24)
536 printf("u%d", 23 - reg);
537 else
538 printf("r%d", reg);
539 } else {
540 printf("%d", source);
541 }
542 }
543
544 static void
545 print_mir_instruction(midgard_instruction *ins)
546 {
547 printf("\t");
548
549 switch (ins->type) {
550 case TAG_ALU_4: {
551 midgard_alu_op op = ins->alu.op;
552 const char *name = alu_opcode_names[op];
553
554 if (ins->unit)
555 printf("%d.", ins->unit);
556
557 printf("%s", name ? name : "??");
558 break;
559 }
560
561 case TAG_LOAD_STORE_4: {
562 midgard_load_store_op op = ins->load_store.op;
563 const char *name = load_store_opcode_names[op];
564
565 assert(name);
566 printf("%s", name);
567 break;
568 }
569
570 case TAG_TEXTURE_4: {
571 printf("texture");
572 break;
573 }
574
575 default:
576 assert(0);
577 }
578
579 ssa_args *args = &ins->ssa_args;
580
581 printf(" %d, ", args->dest);
582
583 print_mir_source(args->src0);
584 printf(", ");
585
586 if (args->inline_constant)
587 printf("#%d", ins->inline_constant);
588 else
589 print_mir_source(args->src1);
590
591 if (ins->has_constants)
592 printf(" <%f, %f, %f, %f>", ins->constants[0], ins->constants[1], ins->constants[2], ins->constants[3]);
593
594 printf("\n");
595 }
596
597 static void
598 print_mir_block(midgard_block *block)
599 {
600 printf("{\n");
601
602 mir_foreach_instr_in_block(block, ins) {
603 print_mir_instruction(ins);
604 }
605
606 printf("}\n");
607 }
608
609
610
611 static void
612 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
613 {
614 ins->has_constants = true;
615 memcpy(&ins->constants, constants, 16);
616
617 /* If this is the special blend constant, mark this instruction */
618
619 if (ctx->is_blend && ctx->blend_constant_number == name)
620 ins->has_blend_constant = true;
621 }
622
623 static int
624 glsl_type_size(const struct glsl_type *type)
625 {
626 return glsl_count_attribute_slots(type, false);
627 }
628
629 /* Lower fdot2 to a vector multiplication followed by channel addition */
630 static void
631 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
632 {
633 if (alu->op != nir_op_fdot2)
634 return;
635
636 b->cursor = nir_before_instr(&alu->instr);
637
638 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
639 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
640
641 nir_ssa_def *product = nir_fmul(b, src0, src1);
642
643 nir_ssa_def *sum = nir_fadd(b,
644 nir_channel(b, product, 0),
645 nir_channel(b, product, 1));
646
647 /* Replace the fdot2 with this sum */
648 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
649 }
650
651 static bool
652 midgard_nir_lower_fdot2(nir_shader *shader)
653 {
654 bool progress = false;
655
656 nir_foreach_function(function, shader) {
657 if (!function->impl) continue;
658
659 nir_builder _b;
660 nir_builder *b = &_b;
661 nir_builder_init(b, function->impl);
662
663 nir_foreach_block(block, function->impl) {
664 nir_foreach_instr_safe(instr, block) {
665 if (instr->type != nir_instr_type_alu) continue;
666
667 nir_alu_instr *alu = nir_instr_as_alu(instr);
668 midgard_nir_lower_fdot2_body(b, alu);
669
670 progress |= true;
671 }
672 }
673
674 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
675
676 }
677
678 return progress;
679 }
680
681 static void
682 optimise_nir(nir_shader *nir)
683 {
684 bool progress;
685
686 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
687 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
688
689 nir_lower_tex_options lower_tex_options = {
690 .lower_rect = true
691 };
692
693 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
694
695 do {
696 progress = false;
697
698 NIR_PASS(progress, nir, midgard_nir_lower_algebraic);
699 NIR_PASS(progress, nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
700 NIR_PASS(progress, nir, nir_lower_var_copies);
701 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
702
703 NIR_PASS(progress, nir, nir_copy_prop);
704 NIR_PASS(progress, nir, nir_opt_dce);
705 NIR_PASS(progress, nir, nir_opt_dead_cf);
706 NIR_PASS(progress, nir, nir_opt_cse);
707 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
708 NIR_PASS(progress, nir, nir_opt_algebraic);
709 NIR_PASS(progress, nir, nir_opt_constant_folding);
710 NIR_PASS(progress, nir, nir_opt_undef);
711 NIR_PASS(progress, nir, nir_opt_loop_unroll,
712 nir_var_shader_in |
713 nir_var_shader_out |
714 nir_var_function_temp);
715
716 /* TODO: Enable vectorize when merged upstream */
717 // NIR_PASS(progress, nir, nir_opt_vectorize);
718 } while (progress);
719
720 /* Must be run at the end to prevent creation of fsin/fcos ops */
721 NIR_PASS(progress, nir, midgard_nir_scale_trig);
722
723 do {
724 progress = false;
725
726 NIR_PASS(progress, nir, nir_opt_dce);
727 NIR_PASS(progress, nir, nir_opt_algebraic);
728 NIR_PASS(progress, nir, nir_opt_constant_folding);
729 NIR_PASS(progress, nir, nir_copy_prop);
730 } while (progress);
731
732 NIR_PASS(progress, nir, nir_opt_algebraic_late);
733
734 /* Lower mods */
735 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_all_source_mods);
736 NIR_PASS(progress, nir, nir_copy_prop);
737 NIR_PASS(progress, nir, nir_opt_dce);
738
739 /* Take us out of SSA */
740 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
741 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
742
743 /* We are a vector architecture; write combine where possible */
744 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
745 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
746
747 NIR_PASS(progress, nir, nir_opt_dce);
748 }
749
750 /* Front-half of aliasing the SSA slots, merely by inserting the flag in the
751 * appropriate hash table. Intentional off-by-one to avoid confusing NULL with
752 * r0. See the comments in compiler_context */
753
754 static void
755 alias_ssa(compiler_context *ctx, int dest, int src)
756 {
757 _mesa_hash_table_u64_insert(ctx->ssa_to_alias, dest + 1, (void *) ((uintptr_t) src + 1));
758 _mesa_set_add(ctx->leftover_ssa_to_alias, (void *) (uintptr_t) (dest + 1));
759 }
760
761 /* ...or undo it, after which the original index will be used (dummy move should be emitted alongside this) */
762
763 static void
764 unalias_ssa(compiler_context *ctx, int dest)
765 {
766 _mesa_hash_table_u64_remove(ctx->ssa_to_alias, dest + 1);
767 /* TODO: Remove from leftover or no? */
768 }
769
770 static void
771 midgard_pin_output(compiler_context *ctx, int index, int reg)
772 {
773 _mesa_hash_table_u64_insert(ctx->ssa_to_register, index + 1, (void *) ((uintptr_t) reg + 1));
774 }
775
776 static bool
777 midgard_is_pinned(compiler_context *ctx, int index)
778 {
779 return _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1) != NULL;
780 }
781
782 /* Do not actually emit a load; instead, cache the constant for inlining */
783
784 static void
785 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
786 {
787 nir_ssa_def def = instr->def;
788
789 float *v = ralloc_array(NULL, float, 4);
790 memcpy(v, &instr->value.f32, 4 * sizeof(float));
791 _mesa_hash_table_u64_insert(ctx->ssa_constants, def.index + 1, v);
792 }
793
794 /* Duplicate bits to convert sane 4-bit writemask to obscure 8-bit format (or
795 * do the inverse) */
796
797 static unsigned
798 expand_writemask(unsigned mask)
799 {
800 unsigned o = 0;
801
802 for (int i = 0; i < 4; ++i)
803 if (mask & (1 << i))
804 o |= (3 << (2 * i));
805
806 return o;
807 }
808
809 static unsigned
810 squeeze_writemask(unsigned mask)
811 {
812 unsigned o = 0;
813
814 for (int i = 0; i < 4; ++i)
815 if (mask & (3 << (2 * i)))
816 o |= (1 << i);
817
818 return o;
819
820 }
821
822 /* Determines effective writemask, taking quirks and expansion into account */
823 static unsigned
824 effective_writemask(midgard_vector_alu *alu)
825 {
826 /* Channel count is off-by-one to fit in two-bits (0 channel makes no
827 * sense) */
828
829 unsigned channel_count = GET_CHANNEL_COUNT(alu_opcode_props[alu->op]);
830
831 /* If there is a fixed channel count, construct the appropriate mask */
832
833 if (channel_count)
834 return (1 << channel_count) - 1;
835
836 /* Otherwise, just squeeze the existing mask */
837 return squeeze_writemask(alu->mask);
838 }
839
840 static unsigned
841 find_or_allocate_temp(compiler_context *ctx, unsigned hash)
842 {
843 if ((hash < 0) || (hash >= SSA_FIXED_MINIMUM))
844 return hash;
845
846 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->hash_to_temp, hash + 1);
847
848 if (temp)
849 return temp - 1;
850
851 /* If no temp is find, allocate one */
852 temp = ctx->temp_count++;
853 ctx->max_hash = MAX2(ctx->max_hash, hash);
854
855 _mesa_hash_table_u64_insert(ctx->hash_to_temp, hash + 1, (void *) ((uintptr_t) temp + 1));
856
857 return temp;
858 }
859
860 static unsigned
861 nir_src_index(compiler_context *ctx, nir_src *src)
862 {
863 if (src->is_ssa)
864 return src->ssa->index;
865 else
866 return ctx->func->impl->ssa_alloc + src->reg.reg->index;
867 }
868
869 static unsigned
870 nir_dest_index(compiler_context *ctx, nir_dest *dst)
871 {
872 if (dst->is_ssa)
873 return dst->ssa.index;
874 else
875 return ctx->func->impl->ssa_alloc + dst->reg.reg->index;
876 }
877
878 static unsigned
879 nir_alu_src_index(compiler_context *ctx, nir_alu_src *src)
880 {
881 return nir_src_index(ctx, &src->src);
882 }
883
884 /* Midgard puts conditionals in r31.w; move an arbitrary source (the output of
885 * a conditional test) into that register */
886
887 static void
888 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch)
889 {
890 /* XXX: Force component correct */
891 int condition = nir_src_index(ctx, src);
892
893 const midgard_vector_alu_src alu_src = {
894 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_X, COMPONENT_X, COMPONENT_X),
895 };
896
897 /* There is no boolean move instruction. Instead, we simulate a move by
898 * ANDing the condition with itself to get it into r31.w */
899
900 midgard_instruction ins = {
901 .type = TAG_ALU_4,
902 .unit = for_branch ? UNIT_SMUL : UNIT_SADD, /* TODO: DEDUCE THIS */
903 .ssa_args = {
904 .src0 = condition,
905 .src1 = condition,
906 .dest = SSA_FIXED_REGISTER(31),
907 },
908 .alu = {
909 .op = midgard_alu_op_iand,
910 .reg_mode = midgard_reg_mode_full,
911 .dest_override = midgard_dest_override_none,
912 .mask = (0x3 << 6), /* w */
913 .src1 = vector_alu_srco_unsigned(alu_src),
914 .src2 = vector_alu_srco_unsigned(alu_src)
915 },
916 };
917
918 emit_mir_instruction(ctx, ins);
919 }
920
921 #define ALU_CASE(nir, _op) \
922 case nir_op_##nir: \
923 op = midgard_alu_op_##_op; \
924 break;
925
926 static void
927 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
928 {
929 bool is_ssa = instr->dest.dest.is_ssa;
930
931 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
932 unsigned nr_components = is_ssa ? instr->dest.dest.ssa.num_components : instr->dest.dest.reg.reg->num_components;
933 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
934
935 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
936 * supported. A few do not and are commented for now. Also, there are a
937 * number of NIR ops which Midgard does not support and need to be
938 * lowered, also TODO. This switch block emits the opcode and calling
939 * convention of the Midgard instruction; actual packing is done in
940 * emit_alu below */
941
942 unsigned op;
943
944 switch (instr->op) {
945 ALU_CASE(fadd, fadd);
946 ALU_CASE(fmul, fmul);
947 ALU_CASE(fmin, fmin);
948 ALU_CASE(fmax, fmax);
949 ALU_CASE(imin, imin);
950 ALU_CASE(imax, imax);
951 ALU_CASE(fmov, fmov);
952 ALU_CASE(ffloor, ffloor);
953 ALU_CASE(fround_even, froundeven);
954 ALU_CASE(ftrunc, ftrunc);
955 ALU_CASE(fceil, fceil);
956 ALU_CASE(fdot3, fdot3);
957 ALU_CASE(fdot4, fdot4);
958 ALU_CASE(iadd, iadd);
959 ALU_CASE(isub, isub);
960 ALU_CASE(imul, imul);
961
962 /* XXX: Use fmov, not imov, since imov was causing major
963 * issues with texture precision? XXX research */
964 ALU_CASE(imov, fmov);
965
966 ALU_CASE(feq, feq);
967 ALU_CASE(fne, fne);
968 ALU_CASE(flt, flt);
969 ALU_CASE(ieq, ieq);
970 ALU_CASE(ine, ine);
971 ALU_CASE(ilt, ilt);
972
973 ALU_CASE(frcp, frcp);
974 ALU_CASE(frsq, frsqrt);
975 ALU_CASE(fsqrt, fsqrt);
976 ALU_CASE(fexp2, fexp2);
977 ALU_CASE(flog2, flog2);
978
979 ALU_CASE(f2i32, f2i);
980 ALU_CASE(f2u32, f2u);
981 ALU_CASE(i2f32, i2f);
982 ALU_CASE(u2f32, u2f);
983
984 ALU_CASE(fsin, fsin);
985 ALU_CASE(fcos, fcos);
986
987 ALU_CASE(iand, iand);
988 ALU_CASE(ior, ior);
989 ALU_CASE(ixor, ixor);
990 ALU_CASE(inot, inot);
991 ALU_CASE(ishl, ishl);
992 ALU_CASE(ishr, iasr);
993 ALU_CASE(ushr, ilsr);
994
995 ALU_CASE(ball_fequal4, fball_eq);
996 ALU_CASE(bany_fnequal4, fbany_neq);
997 ALU_CASE(ball_iequal4, iball_eq);
998 ALU_CASE(bany_inequal4, ibany_neq);
999
1000 /* For greater-or-equal, we use less-or-equal and flip the
1001 * arguments */
1002
1003 case nir_op_ige: {
1004 op = midgard_alu_op_ile;
1005
1006 /* Swap via temporary */
1007 nir_alu_src temp = instr->src[1];
1008 instr->src[1] = instr->src[0];
1009 instr->src[0] = temp;
1010
1011 break;
1012 }
1013
1014 case nir_op_bcsel: {
1015 op = midgard_alu_op_fcsel;
1016
1017 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
1018 nr_inputs = 2;
1019
1020 emit_condition(ctx, &instr->src[0].src, false);
1021
1022 /* The condition is the first argument; move the other
1023 * arguments up one to be a binary instruction for
1024 * Midgard */
1025
1026 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
1027 break;
1028 }
1029
1030 /* We don't have a native b2f32 instruction. Instead, like many GPUs,
1031 * we exploit booleans as 0/~0 for false/true, and correspondingly AND
1032 * by 1.0 to do the type conversion. For the moment, prime us to emit:
1033 *
1034 * iand [whatever], #0
1035 *
1036 * At the end of emit_alu (as MIR), we'll fix-up the constant */
1037
1038 case nir_op_b2f32: {
1039 op = midgard_alu_op_iand;
1040 break;
1041 }
1042
1043 default:
1044 printf("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
1045 assert(0);
1046 return;
1047 }
1048
1049 /* Fetch unit, quirks, etc information */
1050 unsigned opcode_props = alu_opcode_props[op];
1051 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
1052
1053 /* Initialise fields common between scalar/vector instructions */
1054 midgard_outmod outmod = instr->dest.saturate ? midgard_outmod_sat : midgard_outmod_none;
1055
1056 /* src0 will always exist afaik, but src1 will not for 1-argument
1057 * instructions. The latter can only be fetched if the instruction
1058 * needs it, or else we may segfault. */
1059
1060 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
1061 unsigned src1 = nr_inputs == 2 ? nir_alu_src_index(ctx, &instr->src[1]) : SSA_UNUSED_0;
1062
1063 /* Rather than use the instruction generation helpers, we do it
1064 * ourselves here to avoid the mess */
1065
1066 midgard_instruction ins = {
1067 .type = TAG_ALU_4,
1068 .ssa_args = {
1069 .src0 = quirk_flipped_r24 ? SSA_UNUSED_1 : src0,
1070 .src1 = quirk_flipped_r24 ? src0 : src1,
1071 .dest = dest,
1072 .inline_constant = (nr_inputs == 1) && !quirk_flipped_r24
1073 }
1074 };
1075
1076 nir_alu_src *nirmods[2] = { NULL };
1077
1078 if (nr_inputs == 2) {
1079 nirmods[0] = &instr->src[0];
1080 nirmods[1] = &instr->src[1];
1081 } else if (nr_inputs == 1) {
1082 nirmods[quirk_flipped_r24] = &instr->src[0];
1083 } else {
1084 assert(0);
1085 }
1086
1087 midgard_vector_alu alu = {
1088 .op = op,
1089 .reg_mode = midgard_reg_mode_full,
1090 .dest_override = midgard_dest_override_none,
1091 .outmod = outmod,
1092
1093 /* Writemask only valid for non-SSA NIR */
1094 .mask = expand_writemask((1 << nr_components) - 1),
1095
1096 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0])),
1097 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1])),
1098 };
1099
1100 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1101
1102 if (!is_ssa)
1103 alu.mask &= expand_writemask(instr->dest.write_mask);
1104
1105 ins.alu = alu;
1106
1107 /* Late fixup for emulated instructions */
1108
1109 if (instr->op == nir_op_b2f32) {
1110 /* Presently, our second argument is an inline #0 constant.
1111 * Switch over to an embedded 1.0 constant (that can't fit
1112 * inline, since we're 32-bit, not 16-bit like the inline
1113 * constants) */
1114
1115 ins.ssa_args.inline_constant = false;
1116 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1117 ins.has_constants = true;
1118 ins.constants[0] = 1.0;
1119 }
1120
1121 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1122 /* To avoid duplicating the lookup tables (probably), true LUT
1123 * instructions can only operate as if they were scalars. Lower
1124 * them here by changing the component. */
1125
1126 uint8_t original_swizzle[4];
1127 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
1128
1129 for (int i = 0; i < nr_components; ++i) {
1130 ins.alu.mask = (0x3) << (2 * i); /* Mask the associated component */
1131
1132 for (int j = 0; j < 4; ++j)
1133 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1134
1135 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0]));
1136 emit_mir_instruction(ctx, ins);
1137 }
1138 } else {
1139 emit_mir_instruction(ctx, ins);
1140 }
1141 }
1142
1143 #undef ALU_CASE
1144
1145 static void
1146 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1147 {
1148 nir_const_value *const_offset;
1149 unsigned offset, reg;
1150
1151 switch (instr->intrinsic) {
1152 case nir_intrinsic_discard_if:
1153 emit_condition(ctx, &instr->src[0], true);
1154
1155 /* fallthrough */
1156
1157 case nir_intrinsic_discard: {
1158 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1159 struct midgard_instruction discard = v_branch(conditional, false);
1160 discard.branch.target_type = TARGET_DISCARD;
1161 emit_mir_instruction(ctx, discard);
1162
1163 ctx->can_discard = true;
1164 break;
1165 }
1166
1167 case nir_intrinsic_load_uniform:
1168 case nir_intrinsic_load_input:
1169 const_offset = nir_src_as_const_value(instr->src[0]);
1170 assert (const_offset && "no indirect inputs");
1171
1172 offset = nir_intrinsic_base(instr) + const_offset->u32[0];
1173
1174 reg = nir_dest_index(ctx, &instr->dest);
1175
1176 if (instr->intrinsic == nir_intrinsic_load_uniform && !ctx->is_blend) {
1177 /* TODO: half-floats */
1178
1179 int uniform_offset = 0;
1180
1181 if (offset >= SPECIAL_UNIFORM_BASE) {
1182 /* XXX: Resolve which uniform */
1183 uniform_offset = 0;
1184 } else {
1185 /* Offset away from the special
1186 * uniform block */
1187
1188 void *entry = _mesa_hash_table_u64_search(ctx->uniform_nir_to_mdg, offset + 1);
1189
1190 /* XXX */
1191 if (!entry) {
1192 printf("WARNING: Unknown uniform %d\n", offset);
1193 break;
1194 }
1195
1196 uniform_offset = (uintptr_t) (entry) - 1;
1197 uniform_offset += ctx->special_uniforms;
1198 }
1199
1200 if (uniform_offset < ctx->uniform_cutoff) {
1201 /* Fast path: For the first 16 uniform,
1202 * accesses are 0-cycle, since they're
1203 * just a register fetch in the usual
1204 * case. So, we alias the registers
1205 * while we're still in SSA-space */
1206
1207 int reg_slot = 23 - uniform_offset;
1208 alias_ssa(ctx, reg, SSA_FIXED_REGISTER(reg_slot));
1209 } else {
1210 /* Otherwise, read from the 'special'
1211 * UBO to access higher-indexed
1212 * uniforms, at a performance cost */
1213
1214 midgard_instruction ins = m_load_uniform_32(reg, uniform_offset);
1215
1216 /* TODO: Don't split */
1217 ins.load_store.varying_parameters = (uniform_offset & 7) << 7;
1218 ins.load_store.address = uniform_offset >> 3;
1219
1220 ins.load_store.unknown = 0x1E00; /* xxx: what is this? */
1221 emit_mir_instruction(ctx, ins);
1222 }
1223 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1224 /* XXX: Half-floats? */
1225 /* TODO: swizzle, mask */
1226
1227 midgard_instruction ins = m_load_vary_32(reg, offset);
1228
1229 midgard_varying_parameter p = {
1230 .is_varying = 1,
1231 .interpolation = midgard_interp_default,
1232 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1233 };
1234
1235 unsigned u;
1236 memcpy(&u, &p, sizeof(p));
1237 ins.load_store.varying_parameters = u;
1238
1239 ins.load_store.unknown = 0x1e9e; /* xxx: what is this? */
1240 emit_mir_instruction(ctx, ins);
1241 } else if (ctx->is_blend && instr->intrinsic == nir_intrinsic_load_uniform) {
1242 /* Constant encoded as a pinned constant */
1243
1244 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1245 ins.has_constants = true;
1246 ins.has_blend_constant = true;
1247 emit_mir_instruction(ctx, ins);
1248 } else if (ctx->is_blend) {
1249 /* For blend shaders, a load might be
1250 * translated various ways depending on what
1251 * we're loading. Figure out how this is used */
1252
1253 nir_variable *out = NULL;
1254
1255 nir_foreach_variable(var, &ctx->nir->inputs) {
1256 int drvloc = var->data.driver_location;
1257
1258 if (nir_intrinsic_base(instr) == drvloc) {
1259 out = var;
1260 break;
1261 }
1262 }
1263
1264 assert(out);
1265
1266 if (out->data.location == VARYING_SLOT_COL0) {
1267 /* Source color preloaded to r0 */
1268
1269 midgard_pin_output(ctx, reg, 0);
1270 } else if (out->data.location == VARYING_SLOT_COL1) {
1271 /* Destination color must be read from framebuffer */
1272
1273 midgard_instruction ins = m_load_color_buffer_8(reg, 0);
1274 ins.load_store.swizzle = 0; /* xxxx */
1275
1276 /* Read each component sequentially */
1277
1278 for (int c = 0; c < 4; ++c) {
1279 ins.load_store.mask = (1 << c);
1280 ins.load_store.unknown = c;
1281 emit_mir_instruction(ctx, ins);
1282 }
1283
1284 /* vadd.u2f hr2, abs(hr2), #0 */
1285
1286 midgard_vector_alu_src alu_src = blank_alu_src;
1287 alu_src.abs = true;
1288 alu_src.half = true;
1289
1290 midgard_instruction u2f = {
1291 .type = TAG_ALU_4,
1292 .ssa_args = {
1293 .src0 = reg,
1294 .src1 = SSA_UNUSED_0,
1295 .dest = reg,
1296 .inline_constant = true
1297 },
1298 .alu = {
1299 .op = midgard_alu_op_u2f,
1300 .reg_mode = midgard_reg_mode_half,
1301 .dest_override = midgard_dest_override_none,
1302 .mask = 0xF,
1303 .src1 = vector_alu_srco_unsigned(alu_src),
1304 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1305 }
1306 };
1307
1308 emit_mir_instruction(ctx, u2f);
1309
1310 /* vmul.fmul.sat r1, hr2, #0.00392151 */
1311
1312 alu_src.abs = false;
1313
1314 midgard_instruction fmul = {
1315 .type = TAG_ALU_4,
1316 .inline_constant = _mesa_float_to_half(1.0 / 255.0),
1317 .ssa_args = {
1318 .src0 = reg,
1319 .dest = reg,
1320 .src1 = SSA_UNUSED_0,
1321 .inline_constant = true
1322 },
1323 .alu = {
1324 .op = midgard_alu_op_fmul,
1325 .reg_mode = midgard_reg_mode_full,
1326 .dest_override = midgard_dest_override_none,
1327 .outmod = midgard_outmod_sat,
1328 .mask = 0xFF,
1329 .src1 = vector_alu_srco_unsigned(alu_src),
1330 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1331 }
1332 };
1333
1334 emit_mir_instruction(ctx, fmul);
1335 } else {
1336 printf("Unknown input in blend shader\n");
1337 assert(0);
1338 }
1339 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1340 midgard_instruction ins = m_load_attr_32(reg, offset);
1341 ins.load_store.unknown = 0x1E1E; /* XXX: What is this? */
1342 ins.load_store.mask = (1 << instr->num_components) - 1;
1343 emit_mir_instruction(ctx, ins);
1344 } else {
1345 printf("Unknown load\n");
1346 assert(0);
1347 }
1348
1349 break;
1350
1351 case nir_intrinsic_store_output:
1352 const_offset = nir_src_as_const_value(instr->src[1]);
1353 assert(const_offset && "no indirect outputs");
1354
1355 offset = nir_intrinsic_base(instr) + const_offset->u32[0];
1356
1357 reg = nir_src_index(ctx, &instr->src[0]);
1358
1359 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1360 /* gl_FragColor is not emitted with load/store
1361 * instructions. Instead, it gets plonked into
1362 * r0 at the end of the shader and we do the
1363 * framebuffer writeout dance. TODO: Defer
1364 * writes */
1365
1366 midgard_pin_output(ctx, reg, 0);
1367
1368 /* Save the index we're writing to for later reference
1369 * in the epilogue */
1370
1371 ctx->fragment_output = reg;
1372 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1373 /* Varyings are written into one of two special
1374 * varying register, r26 or r27. The register itself is selected as the register
1375 * in the st_vary instruction, minus the base of 26. E.g. write into r27 and then call st_vary(1)
1376 *
1377 * Normally emitting fmov's is frowned upon,
1378 * but due to unique constraints of
1379 * REGISTER_VARYING, fmov emission + a
1380 * dedicated cleanup pass is the only way to
1381 * guarantee correctness when considering some
1382 * (common) edge cases XXX: FIXME */
1383
1384 /* Look up how it was actually laid out */
1385
1386 void *entry = _mesa_hash_table_u64_search(ctx->varying_nir_to_mdg, offset + 1);
1387
1388 if (!entry) {
1389 printf("WARNING: skipping varying\n");
1390 break;
1391 }
1392
1393 offset = (uintptr_t) (entry) - 1;
1394
1395 /* If this varying corresponds to a constant (why?!),
1396 * emit that now since it won't get picked up by
1397 * hoisting (since there is no corresponding move
1398 * emitted otherwise) */
1399
1400 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, reg + 1);
1401
1402 if (constant_value) {
1403 /* Special case: emit the varying write
1404 * directly to r26 (looks funny in asm but it's
1405 * fine) and emit the store _now_. Possibly
1406 * slightly slower, but this is a really stupid
1407 * special case anyway (why on earth would you
1408 * have a constant varying? Your own fault for
1409 * slightly worse perf :P) */
1410
1411 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(26));
1412 attach_constants(ctx, &ins, constant_value, reg + 1);
1413 emit_mir_instruction(ctx, ins);
1414
1415 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(0), offset);
1416 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
1417 emit_mir_instruction(ctx, st);
1418 } else {
1419 /* Do not emit the varying yet -- instead, just mark down that we need to later */
1420
1421 _mesa_hash_table_u64_insert(ctx->ssa_varyings, reg + 1, (void *) ((uintptr_t) (offset + 1)));
1422 }
1423 } else {
1424 printf("Unknown store\n");
1425 assert(0);
1426 }
1427
1428 break;
1429
1430 case nir_intrinsic_load_alpha_ref_float:
1431 assert(instr->dest.is_ssa);
1432
1433 float ref_value = ctx->alpha_ref;
1434
1435 float *v = ralloc_array(NULL, float, 4);
1436 memcpy(v, &ref_value, sizeof(float));
1437 _mesa_hash_table_u64_insert(ctx->ssa_constants, instr->dest.ssa.index + 1, v);
1438 break;
1439
1440
1441 default:
1442 printf ("Unhandled intrinsic\n");
1443 assert(0);
1444 break;
1445 }
1446 }
1447
1448 static unsigned
1449 midgard_tex_format(enum glsl_sampler_dim dim)
1450 {
1451 switch (dim) {
1452 case GLSL_SAMPLER_DIM_2D:
1453 case GLSL_SAMPLER_DIM_EXTERNAL:
1454 return TEXTURE_2D;
1455
1456 case GLSL_SAMPLER_DIM_3D:
1457 return TEXTURE_3D;
1458
1459 case GLSL_SAMPLER_DIM_CUBE:
1460 return TEXTURE_CUBE;
1461
1462 default:
1463 printf("Unknown sampler dim type\n");
1464 assert(0);
1465 return 0;
1466 }
1467 }
1468
1469 static void
1470 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1471 {
1472 /* TODO */
1473 //assert (!instr->sampler);
1474 //assert (!instr->texture_array_size);
1475 assert (instr->op == nir_texop_tex);
1476
1477 /* Allocate registers via a round robin scheme to alternate between the two registers */
1478 int reg = ctx->texture_op_count & 1;
1479 int in_reg = reg, out_reg = reg;
1480
1481 /* Make room for the reg */
1482
1483 if (ctx->texture_index[reg] > -1)
1484 unalias_ssa(ctx, ctx->texture_index[reg]);
1485
1486 int texture_index = instr->texture_index;
1487 int sampler_index = texture_index;
1488
1489 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1490 switch (instr->src[i].src_type) {
1491 case nir_tex_src_coord: {
1492 int index = nir_src_index(ctx, &instr->src[i].src);
1493
1494 midgard_vector_alu_src alu_src = blank_alu_src;
1495 alu_src.swizzle = (COMPONENT_Y << 2);
1496
1497 midgard_instruction ins = v_fmov(index, alu_src, SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + in_reg));
1498 emit_mir_instruction(ctx, ins);
1499
1500 //midgard_pin_output(ctx, index, REGISTER_TEXTURE_BASE + in_reg);
1501
1502 break;
1503 }
1504
1505 default: {
1506 printf("Unknown source type\n");
1507 //assert(0);
1508 break;
1509 }
1510 }
1511 }
1512
1513 /* No helper to build texture words -- we do it all here */
1514 midgard_instruction ins = {
1515 .type = TAG_TEXTURE_4,
1516 .texture = {
1517 .op = TEXTURE_OP_NORMAL,
1518 .format = midgard_tex_format(instr->sampler_dim),
1519 .texture_handle = texture_index,
1520 .sampler_handle = sampler_index,
1521
1522 /* TODO: Don't force xyzw */
1523 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
1524 .mask = 0xF,
1525
1526 /* TODO: half */
1527 //.in_reg_full = 1,
1528 .out_full = 1,
1529
1530 .filter = 1,
1531
1532 /* Always 1 */
1533 .unknown7 = 1,
1534
1535 /* Assume we can continue; hint it out later */
1536 .cont = 1,
1537 }
1538 };
1539
1540 /* Set registers to read and write from the same place */
1541 ins.texture.in_reg_select = in_reg;
1542 ins.texture.out_reg_select = out_reg;
1543
1544 /* TODO: Dynamic swizzle input selection, half-swizzles? */
1545 if (instr->sampler_dim == GLSL_SAMPLER_DIM_3D) {
1546 ins.texture.in_reg_swizzle_right = COMPONENT_X;
1547 ins.texture.in_reg_swizzle_left = COMPONENT_Y;
1548 //ins.texture.in_reg_swizzle_third = COMPONENT_Z;
1549 } else {
1550 ins.texture.in_reg_swizzle_left = COMPONENT_X;
1551 ins.texture.in_reg_swizzle_right = COMPONENT_Y;
1552 //ins.texture.in_reg_swizzle_third = COMPONENT_X;
1553 }
1554
1555 emit_mir_instruction(ctx, ins);
1556
1557 /* Simultaneously alias the destination and emit a move for it. The move will be eliminated if possible */
1558
1559 int o_reg = REGISTER_TEXTURE_BASE + out_reg, o_index = nir_dest_index(ctx, &instr->dest);
1560 alias_ssa(ctx, o_index, SSA_FIXED_REGISTER(o_reg));
1561 ctx->texture_index[reg] = o_index;
1562
1563 midgard_instruction ins2 = v_fmov(SSA_FIXED_REGISTER(o_reg), blank_alu_src, o_index);
1564 emit_mir_instruction(ctx, ins2);
1565
1566 /* Used for .cont and .last hinting */
1567 ctx->texture_op_count++;
1568 }
1569
1570 static void
1571 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1572 {
1573 switch (instr->type) {
1574 case nir_jump_break: {
1575 /* Emit a branch out of the loop */
1576 struct midgard_instruction br = v_branch(false, false);
1577 br.branch.target_type = TARGET_BREAK;
1578 br.branch.target_break = ctx->current_loop;
1579 emit_mir_instruction(ctx, br);
1580
1581 printf("break..\n");
1582 break;
1583 }
1584
1585 default:
1586 printf("Unknown jump type %d\n", instr->type);
1587 break;
1588 }
1589 }
1590
1591 static void
1592 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1593 {
1594 switch (instr->type) {
1595 case nir_instr_type_load_const:
1596 emit_load_const(ctx, nir_instr_as_load_const(instr));
1597 break;
1598
1599 case nir_instr_type_intrinsic:
1600 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1601 break;
1602
1603 case nir_instr_type_alu:
1604 emit_alu(ctx, nir_instr_as_alu(instr));
1605 break;
1606
1607 case nir_instr_type_tex:
1608 emit_tex(ctx, nir_instr_as_tex(instr));
1609 break;
1610
1611 case nir_instr_type_jump:
1612 emit_jump(ctx, nir_instr_as_jump(instr));
1613 break;
1614
1615 case nir_instr_type_ssa_undef:
1616 /* Spurious */
1617 break;
1618
1619 default:
1620 printf("Unhandled instruction type\n");
1621 break;
1622 }
1623 }
1624
1625 /* Determine the actual hardware from the index based on the RA results or special values */
1626
1627 static int
1628 dealias_register(compiler_context *ctx, struct ra_graph *g, int reg, int maxreg)
1629 {
1630 if (reg >= SSA_FIXED_MINIMUM)
1631 return SSA_REG_FROM_FIXED(reg);
1632
1633 if (reg >= 0) {
1634 assert(reg < maxreg);
1635 int r = ra_get_node_reg(g, reg);
1636 ctx->work_registers = MAX2(ctx->work_registers, r);
1637 return r;
1638 }
1639
1640 switch (reg) {
1641 /* fmov style unused */
1642 case SSA_UNUSED_0:
1643 return REGISTER_UNUSED;
1644
1645 /* lut style unused */
1646 case SSA_UNUSED_1:
1647 return REGISTER_UNUSED;
1648
1649 default:
1650 printf("Unknown SSA register alias %d\n", reg);
1651 assert(0);
1652 return 31;
1653 }
1654 }
1655
1656 static unsigned int
1657 midgard_ra_select_callback(struct ra_graph *g, BITSET_WORD *regs, void *data)
1658 {
1659 /* Choose the first available register to minimise reported register pressure */
1660
1661 for (int i = 0; i < 16; ++i) {
1662 if (BITSET_TEST(regs, i)) {
1663 return i;
1664 }
1665 }
1666
1667 assert(0);
1668 return 0;
1669 }
1670
1671 static bool
1672 midgard_is_live_in_instr(midgard_instruction *ins, int src)
1673 {
1674 if (ins->ssa_args.src0 == src) return true;
1675 if (ins->ssa_args.src1 == src) return true;
1676
1677 return false;
1678 }
1679
1680 static bool
1681 is_live_after(compiler_context *ctx, midgard_block *block, midgard_instruction *start, int src)
1682 {
1683 /* Check the rest of the block for liveness */
1684 mir_foreach_instr_in_block_from(block, ins, mir_next_op(start)) {
1685 if (midgard_is_live_in_instr(ins, src))
1686 return true;
1687 }
1688
1689 /* Check the rest of the blocks for liveness */
1690 mir_foreach_block_from(ctx, mir_next_block(block), b) {
1691 mir_foreach_instr_in_block(b, ins) {
1692 if (midgard_is_live_in_instr(ins, src))
1693 return true;
1694 }
1695 }
1696
1697 /* TODO: How does control flow interact in complex shaders? */
1698
1699 return false;
1700 }
1701
1702 static void
1703 allocate_registers(compiler_context *ctx)
1704 {
1705 /* First, initialize the RA */
1706 struct ra_regs *regs = ra_alloc_reg_set(NULL, 32, true);
1707
1708 /* Create a primary (general purpose) class, as well as special purpose
1709 * pipeline register classes */
1710
1711 int primary_class = ra_alloc_reg_class(regs);
1712 int varying_class = ra_alloc_reg_class(regs);
1713
1714 /* Add the full set of work registers */
1715 int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0);
1716 for (int i = 0; i < work_count; ++i)
1717 ra_class_add_reg(regs, primary_class, i);
1718
1719 /* Add special registers */
1720 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE);
1721 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE + 1);
1722
1723 /* We're done setting up */
1724 ra_set_finalize(regs, NULL);
1725
1726 /* Transform the MIR into squeezed index form */
1727 mir_foreach_block(ctx, block) {
1728 mir_foreach_instr_in_block(block, ins) {
1729 if (ins->compact_branch) continue;
1730
1731 ins->ssa_args.src0 = find_or_allocate_temp(ctx, ins->ssa_args.src0);
1732 ins->ssa_args.src1 = find_or_allocate_temp(ctx, ins->ssa_args.src1);
1733 ins->ssa_args.dest = find_or_allocate_temp(ctx, ins->ssa_args.dest);
1734 }
1735
1736 print_mir_block(block);
1737 }
1738
1739 /* Let's actually do register allocation */
1740 int nodes = ctx->temp_count;
1741 struct ra_graph *g = ra_alloc_interference_graph(regs, nodes);
1742
1743 /* Set everything to the work register class, unless it has somewhere
1744 * special to go */
1745
1746 mir_foreach_block(ctx, block) {
1747 mir_foreach_instr_in_block(block, ins) {
1748 if (ins->compact_branch) continue;
1749
1750 if (ins->ssa_args.dest < 0) continue;
1751
1752 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
1753
1754 int class = primary_class;
1755
1756 ra_set_node_class(g, ins->ssa_args.dest, class);
1757 }
1758 }
1759
1760 for (int index = 0; index <= ctx->max_hash; ++index) {
1761 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1);
1762
1763 if (temp) {
1764 unsigned reg = temp - 1;
1765 int t = find_or_allocate_temp(ctx, index);
1766 ra_set_node_reg(g, t, reg);
1767 }
1768 }
1769
1770 /* Determine liveness */
1771
1772 int *live_start = malloc(nodes * sizeof(int));
1773 int *live_end = malloc(nodes * sizeof(int));
1774
1775 /* Initialize as non-existent */
1776
1777 for (int i = 0; i < nodes; ++i) {
1778 live_start[i] = live_end[i] = -1;
1779 }
1780
1781 int d = 0;
1782
1783 mir_foreach_block(ctx, block) {
1784 mir_foreach_instr_in_block(block, ins) {
1785 if (ins->compact_branch) continue;
1786
1787 if (ins->ssa_args.dest < SSA_FIXED_MINIMUM) {
1788 /* If this destination is not yet live, it is now since we just wrote it */
1789
1790 int dest = ins->ssa_args.dest;
1791
1792 if (live_start[dest] == -1)
1793 live_start[dest] = d;
1794 }
1795
1796 /* Since we just used a source, the source might be
1797 * dead now. Scan the rest of the block for
1798 * invocations, and if there are none, the source dies
1799 * */
1800
1801 int sources[2] = { ins->ssa_args.src0, ins->ssa_args.src1 };
1802
1803 for (int src = 0; src < 2; ++src) {
1804 int s = sources[src];
1805
1806 if (s < 0) continue;
1807
1808 if (s >= SSA_FIXED_MINIMUM) continue;
1809
1810 if (!is_live_after(ctx, block, ins, s)) {
1811 live_end[s] = d;
1812 }
1813 }
1814
1815 ++d;
1816 }
1817 }
1818
1819 /* If a node still hasn't been killed, kill it now */
1820
1821 for (int i = 0; i < nodes; ++i) {
1822 /* live_start == -1 most likely indicates a pinned output */
1823
1824 if (live_end[i] == -1)
1825 live_end[i] = d;
1826 }
1827
1828 /* Setup interference between nodes that are live at the same time */
1829
1830 for (int i = 0; i < nodes; ++i) {
1831 for (int j = i + 1; j < nodes; ++j) {
1832 if (!(live_start[i] >= live_end[j] || live_start[j] >= live_end[i]))
1833 ra_add_node_interference(g, i, j);
1834 }
1835 }
1836
1837 ra_set_select_reg_callback(g, midgard_ra_select_callback, NULL);
1838
1839 if (!ra_allocate(g)) {
1840 printf("Error allocating registers\n");
1841 assert(0);
1842 }
1843
1844 /* Cleanup */
1845 free(live_start);
1846 free(live_end);
1847
1848 mir_foreach_block(ctx, block) {
1849 mir_foreach_instr_in_block(block, ins) {
1850 if (ins->compact_branch) continue;
1851
1852 ssa_args args = ins->ssa_args;
1853
1854 switch (ins->type) {
1855 case TAG_ALU_4:
1856 ins->registers.src1_reg = dealias_register(ctx, g, args.src0, nodes);
1857
1858 ins->registers.src2_imm = args.inline_constant;
1859
1860 if (args.inline_constant) {
1861 /* Encode inline 16-bit constant as a vector by default */
1862
1863 ins->registers.src2_reg = ins->inline_constant >> 11;
1864
1865 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
1866
1867 uint16_t imm = ((lower_11 >> 8) & 0x7) | ((lower_11 & 0xFF) << 3);
1868 ins->alu.src2 = imm << 2;
1869 } else {
1870 ins->registers.src2_reg = dealias_register(ctx, g, args.src1, nodes);
1871 }
1872
1873 ins->registers.out_reg = dealias_register(ctx, g, args.dest, nodes);
1874
1875 break;
1876
1877 case TAG_LOAD_STORE_4: {
1878 if (OP_IS_STORE(ins->load_store.op)) {
1879 /* TODO: use ssa_args for store_vary */
1880 ins->load_store.reg = 0;
1881 } else {
1882 bool has_dest = args.dest >= 0;
1883 int ssa_arg = has_dest ? args.dest : args.src0;
1884
1885 ins->load_store.reg = dealias_register(ctx, g, ssa_arg, nodes);
1886 }
1887
1888 break;
1889 }
1890
1891 default:
1892 break;
1893 }
1894 }
1895 }
1896 }
1897
1898 /* Midgard IR only knows vector ALU types, but we sometimes need to actually
1899 * use scalar ALU instructions, for functional or performance reasons. To do
1900 * this, we just demote vector ALU payloads to scalar. */
1901
1902 static int
1903 component_from_mask(unsigned mask)
1904 {
1905 for (int c = 0; c < 4; ++c) {
1906 if (mask & (3 << (2 * c)))
1907 return c;
1908 }
1909
1910 assert(0);
1911 return 0;
1912 }
1913
1914 static bool
1915 is_single_component_mask(unsigned mask)
1916 {
1917 int components = 0;
1918
1919 for (int c = 0; c < 4; ++c)
1920 if (mask & (3 << (2 * c)))
1921 components++;
1922
1923 return components == 1;
1924 }
1925
1926 /* Create a mask of accessed components from a swizzle to figure out vector
1927 * dependencies */
1928
1929 static unsigned
1930 swizzle_to_access_mask(unsigned swizzle)
1931 {
1932 unsigned component_mask = 0;
1933
1934 for (int i = 0; i < 4; ++i) {
1935 unsigned c = (swizzle >> (2 * i)) & 3;
1936 component_mask |= (1 << c);
1937 }
1938
1939 return component_mask;
1940 }
1941
1942 static unsigned
1943 vector_to_scalar_source(unsigned u)
1944 {
1945 midgard_vector_alu_src v;
1946 memcpy(&v, &u, sizeof(v));
1947
1948 midgard_scalar_alu_src s = {
1949 .abs = v.abs,
1950 .negate = v.negate,
1951 .full = !v.half,
1952 .component = (v.swizzle & 3) << 1
1953 };
1954
1955 unsigned o;
1956 memcpy(&o, &s, sizeof(s));
1957
1958 return o & ((1 << 6) - 1);
1959 }
1960
1961 static midgard_scalar_alu
1962 vector_to_scalar_alu(midgard_vector_alu v, midgard_instruction *ins)
1963 {
1964 /* The output component is from the mask */
1965 midgard_scalar_alu s = {
1966 .op = v.op,
1967 .src1 = vector_to_scalar_source(v.src1),
1968 .src2 = vector_to_scalar_source(v.src2),
1969 .unknown = 0,
1970 .outmod = v.outmod,
1971 .output_full = 1, /* TODO: Half */
1972 .output_component = component_from_mask(v.mask) << 1,
1973 };
1974
1975 /* Inline constant is passed along rather than trying to extract it
1976 * from v */
1977
1978 if (ins->ssa_args.inline_constant) {
1979 uint16_t imm = 0;
1980 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
1981 imm |= (lower_11 >> 9) & 3;
1982 imm |= (lower_11 >> 6) & 4;
1983 imm |= (lower_11 >> 2) & 0x38;
1984 imm |= (lower_11 & 63) << 6;
1985
1986 s.src2 = imm;
1987 }
1988
1989 return s;
1990 }
1991
1992 /* Midgard prefetches instruction types, so during emission we need to
1993 * lookahead too. Unless this is the last instruction, in which we return 1. Or
1994 * if this is the second to last and the last is an ALU, then it's also 1... */
1995
1996 #define IS_ALU(tag) (tag == TAG_ALU_4 || tag == TAG_ALU_8 || \
1997 tag == TAG_ALU_12 || tag == TAG_ALU_16)
1998
1999 #define EMIT_AND_COUNT(type, val) util_dynarray_append(emission, type, val); \
2000 bytes_emitted += sizeof(type)
2001
2002 static void
2003 emit_binary_vector_instruction(midgard_instruction *ains,
2004 uint16_t *register_words, int *register_words_count,
2005 uint64_t *body_words, size_t *body_size, int *body_words_count,
2006 size_t *bytes_emitted)
2007 {
2008 memcpy(&register_words[(*register_words_count)++], &ains->registers, sizeof(ains->registers));
2009 *bytes_emitted += sizeof(midgard_reg_info);
2010
2011 body_size[*body_words_count] = sizeof(midgard_vector_alu);
2012 memcpy(&body_words[(*body_words_count)++], &ains->alu, sizeof(ains->alu));
2013 *bytes_emitted += sizeof(midgard_vector_alu);
2014 }
2015
2016 /* Checks for an SSA data hazard between two adjacent instructions, keeping in
2017 * mind that we are a vector architecture and we can write to different
2018 * components simultaneously */
2019
2020 static bool
2021 can_run_concurrent_ssa(midgard_instruction *first, midgard_instruction *second)
2022 {
2023 /* Each instruction reads some registers and writes to a register. See
2024 * where the first writes */
2025
2026 /* Figure out where exactly we wrote to */
2027 int source = first->ssa_args.dest;
2028 int source_mask = first->type == TAG_ALU_4 ? squeeze_writemask(first->alu.mask) : 0xF;
2029
2030 /* As long as the second doesn't read from the first, we're okay */
2031 if (second->ssa_args.src0 == source) {
2032 if (first->type == TAG_ALU_4) {
2033 /* Figure out which components we just read from */
2034
2035 int q = second->alu.src1;
2036 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2037
2038 /* Check if there are components in common, and fail if so */
2039 if (swizzle_to_access_mask(m->swizzle) & source_mask)
2040 return false;
2041 } else
2042 return false;
2043
2044 }
2045
2046 if (second->ssa_args.src1 == source)
2047 return false;
2048
2049 /* Otherwise, it's safe in that regard. Another data hazard is both
2050 * writing to the same place, of course */
2051
2052 if (second->ssa_args.dest == source) {
2053 /* ...but only if the components overlap */
2054 int dest_mask = second->type == TAG_ALU_4 ? squeeze_writemask(second->alu.mask) : 0xF;
2055
2056 if (dest_mask & source_mask)
2057 return false;
2058 }
2059
2060 /* ...That's it */
2061 return true;
2062 }
2063
2064 /* Schedules, but does not emit, a single basic block. After scheduling, the
2065 * final tag and size of the block are known, which are necessary for branching
2066 * */
2067
2068 static midgard_bundle
2069 schedule_bundle(compiler_context *ctx, midgard_block *block, midgard_instruction *ins, int *skip)
2070 {
2071 int instructions_emitted = 0, instructions_consumed = -1;
2072 midgard_bundle bundle = { 0 };
2073
2074 uint8_t tag = ins->type;
2075
2076 /* Default to the instruction's tag */
2077 bundle.tag = tag;
2078
2079 switch (ins->type) {
2080 case TAG_ALU_4: {
2081 uint32_t control = 0;
2082 size_t bytes_emitted = sizeof(control);
2083
2084 /* TODO: Constant combining */
2085 int index = 0, last_unit = 0;
2086
2087 /* Previous instructions, for the purpose of parallelism */
2088 midgard_instruction *segment[4] = {0};
2089 int segment_size = 0;
2090
2091 instructions_emitted = -1;
2092 midgard_instruction *pins = ins;
2093
2094 for (;;) {
2095 midgard_instruction *ains = pins;
2096
2097 /* Advance instruction pointer */
2098 if (index) {
2099 ains = mir_next_op(pins);
2100 pins = ains;
2101 }
2102
2103 /* Out-of-work condition */
2104 if ((struct list_head *) ains == &block->instructions)
2105 break;
2106
2107 /* Ensure that the chain can continue */
2108 if (ains->type != TAG_ALU_4) break;
2109
2110 /* According to the presentation "The ARM
2111 * Mali-T880 Mobile GPU" from HotChips 27,
2112 * there are two pipeline stages. Branching
2113 * position determined experimentally. Lines
2114 * are executed in parallel:
2115 *
2116 * [ VMUL ] [ SADD ]
2117 * [ VADD ] [ SMUL ] [ LUT ] [ BRANCH ]
2118 *
2119 * Verify that there are no ordering dependencies here.
2120 *
2121 * TODO: Allow for parallelism!!!
2122 */
2123
2124 /* Pick a unit for it if it doesn't force a particular unit */
2125
2126 int unit = ains->unit;
2127
2128 if (!unit) {
2129 int op = ains->alu.op;
2130 int units = alu_opcode_props[op];
2131
2132 /* TODO: Promotion of scalars to vectors */
2133 int vector = ((!is_single_component_mask(ains->alu.mask)) || ((units & UNITS_SCALAR) == 0)) && (units & UNITS_ANY_VECTOR);
2134
2135 if (!vector)
2136 assert(units & UNITS_SCALAR);
2137
2138 if (vector) {
2139 if (last_unit >= UNIT_VADD) {
2140 if (units & UNIT_VLUT)
2141 unit = UNIT_VLUT;
2142 else
2143 break;
2144 } else {
2145 if ((units & UNIT_VMUL) && !(control & UNIT_VMUL))
2146 unit = UNIT_VMUL;
2147 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2148 unit = UNIT_VADD;
2149 else if (units & UNIT_VLUT)
2150 unit = UNIT_VLUT;
2151 else
2152 break;
2153 }
2154 } else {
2155 if (last_unit >= UNIT_VADD) {
2156 if ((units & UNIT_SMUL) && !(control & UNIT_SMUL))
2157 unit = UNIT_SMUL;
2158 else if (units & UNIT_VLUT)
2159 unit = UNIT_VLUT;
2160 else
2161 break;
2162 } else {
2163 if ((units & UNIT_SADD) && !(control & UNIT_SADD))
2164 unit = UNIT_SADD;
2165 else if (units & UNIT_SMUL)
2166 unit = UNIT_SMUL;
2167 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2168 unit = UNIT_VADD;
2169 else
2170 break;
2171 }
2172 }
2173
2174 assert(unit & units);
2175 }
2176
2177 /* Late unit check, this time for encoding (not parallelism) */
2178 if (unit <= last_unit) break;
2179
2180 /* Clear the segment */
2181 if (last_unit < UNIT_VADD && unit >= UNIT_VADD)
2182 segment_size = 0;
2183
2184 /* Check for data hazards */
2185 int has_hazard = false;
2186
2187 for (int s = 0; s < segment_size; ++s)
2188 if (!can_run_concurrent_ssa(segment[s], ains))
2189 has_hazard = true;
2190
2191 if (has_hazard)
2192 break;
2193
2194 /* We're good to go -- emit the instruction */
2195 ains->unit = unit;
2196
2197 segment[segment_size++] = ains;
2198
2199 /* Only one set of embedded constants per
2200 * bundle possible; if we have more, we must
2201 * break the chain early, unfortunately */
2202
2203 if (ains->has_constants) {
2204 if (bundle.has_embedded_constants) {
2205 /* ...but if there are already
2206 * constants but these are the
2207 * *same* constants, we let it
2208 * through */
2209
2210 if (memcmp(bundle.constants, ains->constants, sizeof(bundle.constants)))
2211 break;
2212 } else {
2213 bundle.has_embedded_constants = true;
2214 memcpy(bundle.constants, ains->constants, sizeof(bundle.constants));
2215
2216 /* If this is a blend shader special constant, track it for patching */
2217 if (ains->has_blend_constant)
2218 bundle.has_blend_constant = true;
2219 }
2220 }
2221
2222 if (ains->unit & UNITS_ANY_VECTOR) {
2223 emit_binary_vector_instruction(ains, bundle.register_words,
2224 &bundle.register_words_count, bundle.body_words,
2225 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2226 } else if (ains->compact_branch) {
2227 /* All of r0 has to be written out
2228 * along with the branch writeout.
2229 * (slow!) */
2230
2231 if (ains->writeout) {
2232 if (index == 0) {
2233 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2234 ins.unit = UNIT_VMUL;
2235
2236 control |= ins.unit;
2237
2238 emit_binary_vector_instruction(&ins, bundle.register_words,
2239 &bundle.register_words_count, bundle.body_words,
2240 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2241 } else {
2242 /* Analyse the group to see if r0 is written in full, on-time, without hanging dependencies*/
2243 bool written_late = false;
2244 bool components[4] = { 0 };
2245 uint16_t register_dep_mask = 0;
2246 uint16_t written_mask = 0;
2247
2248 midgard_instruction *qins = ins;
2249 for (int t = 0; t < index; ++t) {
2250 if (qins->registers.out_reg != 0) {
2251 /* Mark down writes */
2252
2253 written_mask |= (1 << qins->registers.out_reg);
2254 } else {
2255 /* Mark down the register dependencies for errata check */
2256
2257 if (qins->registers.src1_reg < 16)
2258 register_dep_mask |= (1 << qins->registers.src1_reg);
2259
2260 if (qins->registers.src2_reg < 16)
2261 register_dep_mask |= (1 << qins->registers.src2_reg);
2262
2263 int mask = qins->alu.mask;
2264
2265 for (int c = 0; c < 4; ++c)
2266 if (mask & (0x3 << (2 * c)))
2267 components[c] = true;
2268
2269 /* ..but if the writeout is too late, we have to break up anyway... for some reason */
2270
2271 if (qins->unit == UNIT_VLUT)
2272 written_late = true;
2273 }
2274
2275 /* Advance instruction pointer */
2276 qins = mir_next_op(qins);
2277 }
2278
2279
2280 /* ERRATA (?): In a bundle ending in a fragment writeout, the register dependencies of r0 cannot be written within this bundle (discovered in -bshading:shading=phong) */
2281 if (register_dep_mask & written_mask) {
2282 printf("ERRATA WORKAROUND: Breakup for writeout dependency masks %X vs %X (common %X)\n", register_dep_mask, written_mask, register_dep_mask & written_mask);
2283 break;
2284 }
2285
2286 if (written_late)
2287 break;
2288
2289 /* If even a single component is not written, break it up (conservative check). */
2290 bool breakup = false;
2291
2292 for (int c = 0; c < 4; ++c)
2293 if (!components[c])
2294 breakup = true;
2295
2296 if (breakup)
2297 break;
2298
2299 /* Otherwise, we're free to proceed */
2300 }
2301 }
2302
2303 if (ains->unit == ALU_ENAB_BRANCH) {
2304 bundle.body_size[bundle.body_words_count] = sizeof(midgard_branch_extended);
2305 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->branch_extended, sizeof(midgard_branch_extended));
2306 bytes_emitted += sizeof(midgard_branch_extended);
2307 } else {
2308 bundle.body_size[bundle.body_words_count] = sizeof(ains->br_compact);
2309 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->br_compact, sizeof(ains->br_compact));
2310 bytes_emitted += sizeof(ains->br_compact);
2311 }
2312 } else {
2313 memcpy(&bundle.register_words[bundle.register_words_count++], &ains->registers, sizeof(ains->registers));
2314 bytes_emitted += sizeof(midgard_reg_info);
2315
2316 bundle.body_size[bundle.body_words_count] = sizeof(midgard_scalar_alu);
2317 bundle.body_words_count++;
2318 bytes_emitted += sizeof(midgard_scalar_alu);
2319 }
2320
2321 /* Defer marking until after writing to allow for break */
2322 control |= ains->unit;
2323 last_unit = ains->unit;
2324 ++instructions_emitted;
2325 ++index;
2326 }
2327
2328 /* Bubble up the number of instructions for skipping */
2329 instructions_consumed = index - 1;
2330
2331 int padding = 0;
2332
2333 /* Pad ALU op to nearest word */
2334
2335 if (bytes_emitted & 15) {
2336 padding = 16 - (bytes_emitted & 15);
2337 bytes_emitted += padding;
2338 }
2339
2340 /* Constants must always be quadwords */
2341 if (bundle.has_embedded_constants)
2342 bytes_emitted += 16;
2343
2344 /* Size ALU instruction for tag */
2345 bundle.tag = (TAG_ALU_4) + (bytes_emitted / 16) - 1;
2346 bundle.padding = padding;
2347 bundle.control = bundle.tag | control;
2348
2349 break;
2350 }
2351
2352 case TAG_LOAD_STORE_4: {
2353 /* Load store instructions have two words at once. If
2354 * we only have one queued up, we need to NOP pad.
2355 * Otherwise, we store both in succession to save space
2356 * and cycles -- letting them go in parallel -- skip
2357 * the next. The usefulness of this optimisation is
2358 * greatly dependent on the quality of the instruction
2359 * scheduler.
2360 */
2361
2362 midgard_instruction *next_op = mir_next_op(ins);
2363
2364 if ((struct list_head *) next_op != &block->instructions && next_op->type == TAG_LOAD_STORE_4) {
2365 /* As the two operate concurrently, make sure
2366 * they are not dependent */
2367
2368 if (can_run_concurrent_ssa(ins, next_op) || true) {
2369 /* Skip ahead, since it's redundant with the pair */
2370 instructions_consumed = 1 + (instructions_emitted++);
2371 }
2372 }
2373
2374 break;
2375 }
2376
2377 default:
2378 /* Texture ops default to single-op-per-bundle scheduling */
2379 break;
2380 }
2381
2382 /* Copy the instructions into the bundle */
2383 bundle.instruction_count = instructions_emitted + 1;
2384
2385 int used_idx = 0;
2386
2387 midgard_instruction *uins = ins;
2388 for (int i = 0; used_idx < bundle.instruction_count; ++i) {
2389 bundle.instructions[used_idx++] = *uins;
2390 uins = mir_next_op(uins);
2391 }
2392
2393 *skip = (instructions_consumed == -1) ? instructions_emitted : instructions_consumed;
2394
2395 return bundle;
2396 }
2397
2398 static int
2399 quadword_size(int tag)
2400 {
2401 switch (tag) {
2402 case TAG_ALU_4:
2403 return 1;
2404
2405 case TAG_ALU_8:
2406 return 2;
2407
2408 case TAG_ALU_12:
2409 return 3;
2410
2411 case TAG_ALU_16:
2412 return 4;
2413
2414 case TAG_LOAD_STORE_4:
2415 return 1;
2416
2417 case TAG_TEXTURE_4:
2418 return 1;
2419
2420 default:
2421 assert(0);
2422 return 0;
2423 }
2424 }
2425
2426 /* Schedule a single block by iterating its instruction to create bundles.
2427 * While we go, tally about the bundle sizes to compute the block size. */
2428
2429 static void
2430 schedule_block(compiler_context *ctx, midgard_block *block)
2431 {
2432 util_dynarray_init(&block->bundles, NULL);
2433
2434 block->quadword_count = 0;
2435
2436 mir_foreach_instr_in_block(block, ins) {
2437 int skip;
2438 midgard_bundle bundle = schedule_bundle(ctx, block, ins, &skip);
2439 util_dynarray_append(&block->bundles, midgard_bundle, bundle);
2440
2441 if (bundle.has_blend_constant) {
2442 /* TODO: Multiblock? */
2443 int quadwords_within_block = block->quadword_count + quadword_size(bundle.tag) - 1;
2444 ctx->blend_constant_offset = quadwords_within_block * 0x10;
2445 }
2446
2447 while(skip--)
2448 ins = mir_next_op(ins);
2449
2450 block->quadword_count += quadword_size(bundle.tag);
2451 }
2452
2453 block->is_scheduled = true;
2454 }
2455
2456 static void
2457 schedule_program(compiler_context *ctx)
2458 {
2459 allocate_registers(ctx);
2460
2461 mir_foreach_block(ctx, block) {
2462 schedule_block(ctx, block);
2463 }
2464 }
2465
2466 /* After everything is scheduled, emit whole bundles at a time */
2467
2468 static void
2469 emit_binary_bundle(compiler_context *ctx, midgard_bundle *bundle, struct util_dynarray *emission, int next_tag)
2470 {
2471 int lookahead = next_tag << 4;
2472
2473 switch (bundle->tag) {
2474 case TAG_ALU_4:
2475 case TAG_ALU_8:
2476 case TAG_ALU_12:
2477 case TAG_ALU_16: {
2478 /* Actually emit each component */
2479 util_dynarray_append(emission, uint32_t, bundle->control | lookahead);
2480
2481 for (int i = 0; i < bundle->register_words_count; ++i)
2482 util_dynarray_append(emission, uint16_t, bundle->register_words[i]);
2483
2484 /* Emit body words based on the instructions bundled */
2485 for (int i = 0; i < bundle->instruction_count; ++i) {
2486 midgard_instruction *ins = &bundle->instructions[i];
2487
2488 if (ins->unit & UNITS_ANY_VECTOR) {
2489 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins->alu, sizeof(midgard_vector_alu));
2490 } else if (ins->compact_branch) {
2491 /* Dummy move, XXX DRY */
2492 if ((i == 0) && ins->writeout) {
2493 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2494 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins.alu, sizeof(midgard_vector_alu));
2495 }
2496
2497 if (ins->unit == ALU_ENAB_BR_COMPACT) {
2498 memcpy(util_dynarray_grow(emission, sizeof(ins->br_compact)), &ins->br_compact, sizeof(ins->br_compact));
2499 } else {
2500 memcpy(util_dynarray_grow(emission, sizeof(ins->branch_extended)), &ins->branch_extended, sizeof(ins->branch_extended));
2501 }
2502 } else {
2503 /* Scalar */
2504 midgard_scalar_alu scalarised = vector_to_scalar_alu(ins->alu, ins);
2505 memcpy(util_dynarray_grow(emission, sizeof(scalarised)), &scalarised, sizeof(scalarised));
2506 }
2507 }
2508
2509 /* Emit padding (all zero) */
2510 memset(util_dynarray_grow(emission, bundle->padding), 0, bundle->padding);
2511
2512 /* Tack on constants */
2513
2514 if (bundle->has_embedded_constants) {
2515 util_dynarray_append(emission, float, bundle->constants[0]);
2516 util_dynarray_append(emission, float, bundle->constants[1]);
2517 util_dynarray_append(emission, float, bundle->constants[2]);
2518 util_dynarray_append(emission, float, bundle->constants[3]);
2519 }
2520
2521 break;
2522 }
2523
2524 case TAG_LOAD_STORE_4: {
2525 /* One or two composing instructions */
2526
2527 uint64_t current64, next64 = LDST_NOP;
2528
2529 memcpy(&current64, &bundle->instructions[0].load_store, sizeof(current64));
2530
2531 if (bundle->instruction_count == 2)
2532 memcpy(&next64, &bundle->instructions[1].load_store, sizeof(next64));
2533
2534 midgard_load_store instruction = {
2535 .type = bundle->tag,
2536 .next_type = next_tag,
2537 .word1 = current64,
2538 .word2 = next64
2539 };
2540
2541 util_dynarray_append(emission, midgard_load_store, instruction);
2542
2543 break;
2544 }
2545
2546 case TAG_TEXTURE_4: {
2547 /* Texture instructions are easy, since there is no
2548 * pipelining nor VLIW to worry about. We may need to set the .last flag */
2549
2550 midgard_instruction *ins = &bundle->instructions[0];
2551
2552 ins->texture.type = TAG_TEXTURE_4;
2553 ins->texture.next_type = next_tag;
2554
2555 ctx->texture_op_count--;
2556
2557 if (!ctx->texture_op_count) {
2558 ins->texture.cont = 0;
2559 ins->texture.last = 1;
2560 }
2561
2562 util_dynarray_append(emission, midgard_texture_word, ins->texture);
2563 break;
2564 }
2565
2566 default:
2567 printf("Unknown midgard instruction type\n");
2568 assert(0);
2569 break;
2570 }
2571 }
2572
2573
2574 /* ALU instructions can inline or embed constants, which decreases register
2575 * pressure and saves space. */
2576
2577 #define CONDITIONAL_ATTACH(src) { \
2578 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src + 1); \
2579 \
2580 if (entry) { \
2581 attach_constants(ctx, alu, entry, alu->ssa_args.src + 1); \
2582 alu->ssa_args.src = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
2583 } \
2584 }
2585
2586 static void
2587 inline_alu_constants(compiler_context *ctx)
2588 {
2589 mir_foreach_instr(ctx, alu) {
2590 /* Other instructions cannot inline constants */
2591 if (alu->type != TAG_ALU_4) continue;
2592
2593 /* If there is already a constant here, we can do nothing */
2594 if (alu->has_constants) continue;
2595
2596 CONDITIONAL_ATTACH(src0);
2597
2598 if (!alu->has_constants) {
2599 CONDITIONAL_ATTACH(src1)
2600 } else if (!alu->inline_constant) {
2601 /* Corner case: _two_ vec4 constants, for instance with a
2602 * csel. For this case, we can only use a constant
2603 * register for one, we'll have to emit a move for the
2604 * other. Note, if both arguments are constants, then
2605 * necessarily neither argument depends on the value of
2606 * any particular register. As the destination register
2607 * will be wiped, that means we can spill the constant
2608 * to the destination register.
2609 */
2610
2611 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src1 + 1);
2612 unsigned scratch = alu->ssa_args.dest;
2613
2614 if (entry) {
2615 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
2616 attach_constants(ctx, &ins, entry, alu->ssa_args.src1 + 1);
2617
2618 /* Force a break XXX Defer r31 writes */
2619 ins.unit = UNIT_VLUT;
2620
2621 /* Set the source */
2622 alu->ssa_args.src1 = scratch;
2623
2624 /* Inject us -before- the last instruction which set r31 */
2625 mir_insert_instruction_before(mir_prev_op(alu), ins);
2626 }
2627 }
2628 }
2629 }
2630
2631 /* Midgard supports two types of constants, embedded constants (128-bit) and
2632 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
2633 * constants can be demoted to inline constants, for space savings and
2634 * sometimes a performance boost */
2635
2636 static void
2637 embedded_to_inline_constant(compiler_context *ctx)
2638 {
2639 mir_foreach_instr(ctx, ins) {
2640 if (!ins->has_constants) continue;
2641
2642 if (ins->ssa_args.inline_constant) continue;
2643
2644 /* Blend constants must not be inlined by definition */
2645 if (ins->has_blend_constant) continue;
2646
2647 /* src1 cannot be an inline constant due to encoding
2648 * restrictions. So, if possible we try to flip the arguments
2649 * in that case */
2650
2651 int op = ins->alu.op;
2652
2653 if (ins->ssa_args.src0 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2654 /* Flip based on op. Fallthrough intentional */
2655
2656 switch (op) {
2657 /* These ops require an operational change to flip their arguments TODO */
2658 case midgard_alu_op_flt:
2659 case midgard_alu_op_fle:
2660 case midgard_alu_op_ilt:
2661 case midgard_alu_op_ile:
2662 case midgard_alu_op_fcsel:
2663 case midgard_alu_op_icsel:
2664 case midgard_alu_op_isub:
2665 printf("Missed non-commutative flip (%s)\n", alu_opcode_names[op]);
2666 break;
2667
2668 /* These ops are commutative and Just Flip */
2669 case midgard_alu_op_fne:
2670 case midgard_alu_op_fadd:
2671 case midgard_alu_op_fmul:
2672 case midgard_alu_op_fmin:
2673 case midgard_alu_op_fmax:
2674 case midgard_alu_op_iadd:
2675 case midgard_alu_op_imul:
2676 case midgard_alu_op_feq:
2677 case midgard_alu_op_ieq:
2678 case midgard_alu_op_ine:
2679 case midgard_alu_op_iand:
2680 case midgard_alu_op_ior:
2681 case midgard_alu_op_ixor:
2682 /* Flip the SSA numbers */
2683 ins->ssa_args.src0 = ins->ssa_args.src1;
2684 ins->ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
2685
2686 /* And flip the modifiers */
2687
2688 unsigned src_temp;
2689
2690 src_temp = ins->alu.src2;
2691 ins->alu.src2 = ins->alu.src1;
2692 ins->alu.src1 = src_temp;
2693
2694 default:
2695 break;
2696 }
2697 }
2698
2699 if (ins->ssa_args.src1 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2700 /* Extract the source information */
2701
2702 midgard_vector_alu_src *src;
2703 int q = ins->alu.src2;
2704 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2705 src = m;
2706
2707 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
2708 int component = src->swizzle & 3;
2709
2710 /* Scale constant appropriately, if we can legally */
2711 uint16_t scaled_constant = 0;
2712
2713 /* XXX: Check legality */
2714 if (midgard_is_integer_op(op)) {
2715 /* TODO: Inline integer */
2716 continue;
2717
2718 unsigned int *iconstants = (unsigned int *) ins->constants;
2719 scaled_constant = (uint16_t) iconstants[component];
2720
2721 /* Constant overflow after resize */
2722 if (scaled_constant != iconstants[component])
2723 continue;
2724 } else {
2725 scaled_constant = _mesa_float_to_half((float) ins->constants[component]);
2726 }
2727
2728 /* We don't know how to handle these with a constant */
2729
2730 if (src->abs || src->negate || src->half || src->rep_low || src->rep_high) {
2731 printf("Bailing inline constant...\n");
2732 continue;
2733 }
2734
2735 /* Make sure that the constant is not itself a
2736 * vector by checking if all accessed values
2737 * (by the swizzle) are the same. */
2738
2739 uint32_t *cons = (uint32_t *) ins->constants;
2740 uint32_t value = cons[component];
2741
2742 bool is_vector = false;
2743 unsigned mask = effective_writemask(&ins->alu);
2744
2745 for (int c = 1; c < 4; ++c) {
2746 /* We only care if this component is actually used */
2747 if (!(mask & (1 << c)))
2748 continue;
2749
2750 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
2751
2752 if (test != value) {
2753 is_vector = true;
2754 break;
2755 }
2756 }
2757
2758 if (is_vector)
2759 continue;
2760
2761 /* Get rid of the embedded constant */
2762 ins->has_constants = false;
2763 ins->ssa_args.src1 = SSA_UNUSED_0;
2764 ins->ssa_args.inline_constant = true;
2765 ins->inline_constant = scaled_constant;
2766 }
2767 }
2768 }
2769
2770 /* Map normal SSA sources to other SSA sources / fixed registers (like
2771 * uniforms) */
2772
2773 static void
2774 map_ssa_to_alias(compiler_context *ctx, int *ref)
2775 {
2776 unsigned int alias = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_alias, *ref + 1);
2777
2778 if (alias) {
2779 /* Remove entry in leftovers to avoid a redunant fmov */
2780
2781 struct set_entry *leftover = _mesa_set_search(ctx->leftover_ssa_to_alias, ((void *) (uintptr_t) (*ref + 1)));
2782
2783 if (leftover)
2784 _mesa_set_remove(ctx->leftover_ssa_to_alias, leftover);
2785
2786 /* Assign the alias map */
2787 *ref = alias - 1;
2788 return;
2789 }
2790 }
2791
2792 #define AS_SRC(to, u) \
2793 int q##to = ins->alu.src2; \
2794 midgard_vector_alu_src *to = (midgard_vector_alu_src *) &q##to;
2795
2796 /* Removing unused moves is necessary to clean up the texture pipeline results.
2797 *
2798 * To do so, we find moves in the MIR. We check if their destination is live later. If it's not, the move is redundant. */
2799
2800 static void
2801 midgard_eliminate_orphan_moves(compiler_context *ctx, midgard_block *block)
2802 {
2803 mir_foreach_instr_in_block_safe(block, ins) {
2804 if (ins->type != TAG_ALU_4) continue;
2805
2806 if (ins->alu.op != midgard_alu_op_fmov) continue;
2807
2808 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
2809
2810 if (midgard_is_pinned(ctx, ins->ssa_args.dest)) continue;
2811
2812 if (is_live_after(ctx, block, ins, ins->ssa_args.dest)) continue;
2813
2814 mir_remove_instruction(ins);
2815 }
2816 }
2817
2818 /* The following passes reorder MIR instructions to enable better scheduling */
2819
2820 static void
2821 midgard_pair_load_store(compiler_context *ctx, midgard_block *block)
2822 {
2823 mir_foreach_instr_in_block_safe(block, ins) {
2824 if (ins->type != TAG_LOAD_STORE_4) continue;
2825
2826 /* We've found a load/store op. Check if next is also load/store. */
2827 midgard_instruction *next_op = mir_next_op(ins);
2828 if (&next_op->link != &block->instructions) {
2829 if (next_op->type == TAG_LOAD_STORE_4) {
2830 /* If so, we're done since we're a pair */
2831 ins = mir_next_op(ins);
2832 continue;
2833 }
2834
2835 /* Maximum search distance to pair, to avoid register pressure disasters */
2836 int search_distance = 8;
2837
2838 /* Otherwise, we have an orphaned load/store -- search for another load */
2839 mir_foreach_instr_in_block_from(block, c, mir_next_op(ins)) {
2840 /* Terminate search if necessary */
2841 if (!(search_distance--)) break;
2842
2843 if (c->type != TAG_LOAD_STORE_4) continue;
2844
2845 if (OP_IS_STORE(c->load_store.op)) continue;
2846
2847 /* We found one! Move it up to pair and remove it from the old location */
2848
2849 mir_insert_instruction_before(ins, *c);
2850 mir_remove_instruction(c);
2851
2852 break;
2853 }
2854 }
2855 }
2856 }
2857
2858 /* Emit varying stores late */
2859
2860 static void
2861 midgard_emit_store(compiler_context *ctx, midgard_block *block) {
2862 /* Iterate in reverse to get the final write, rather than the first */
2863
2864 mir_foreach_instr_in_block_safe_rev(block, ins) {
2865 /* Check if what we just wrote needs a store */
2866 int idx = ins->ssa_args.dest;
2867 uintptr_t varying = ((uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_varyings, idx + 1));
2868
2869 if (!varying) continue;
2870
2871 varying -= 1;
2872
2873 /* We need to store to the appropriate varying, so emit the
2874 * move/store */
2875
2876 /* TODO: Integrate with special purpose RA (and scheduler?) */
2877 bool high_varying_register = false;
2878
2879 midgard_instruction mov = v_fmov(idx, blank_alu_src, SSA_FIXED_REGISTER(REGISTER_VARYING_BASE + high_varying_register));
2880
2881 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(high_varying_register), varying);
2882 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
2883
2884 mir_insert_instruction_before(mir_next_op(ins), st);
2885 mir_insert_instruction_before(mir_next_op(ins), mov);
2886
2887 /* We no longer need to store this varying */
2888 _mesa_hash_table_u64_remove(ctx->ssa_varyings, idx + 1);
2889 }
2890 }
2891
2892 /* If there are leftovers after the below pass, emit actual fmov
2893 * instructions for the slow-but-correct path */
2894
2895 static void
2896 emit_leftover_move(compiler_context *ctx)
2897 {
2898 set_foreach(ctx->leftover_ssa_to_alias, leftover) {
2899 int base = ((uintptr_t) leftover->key) - 1;
2900 int mapped = base;
2901
2902 map_ssa_to_alias(ctx, &mapped);
2903 EMIT(fmov, mapped, blank_alu_src, base);
2904 }
2905 }
2906
2907 static void
2908 actualise_ssa_to_alias(compiler_context *ctx)
2909 {
2910 mir_foreach_instr(ctx, ins) {
2911 map_ssa_to_alias(ctx, &ins->ssa_args.src0);
2912 map_ssa_to_alias(ctx, &ins->ssa_args.src1);
2913 }
2914
2915 emit_leftover_move(ctx);
2916 }
2917
2918 /* Vertex shaders do not write gl_Position as is; instead, they write a
2919 * transformed screen space position as a varying. See section 12.5 "Coordinate
2920 * Transformation" of the ES 3.2 full specification for details.
2921 *
2922 * This transformation occurs early on, as NIR and prior to optimisation, in
2923 * order to take advantage of NIR optimisation passes of the transform itself.
2924 * */
2925
2926 static void
2927 write_transformed_position(nir_builder *b, nir_src input_point_src, int uniform_no)
2928 {
2929 nir_ssa_def *input_point = nir_ssa_for_src(b, input_point_src, 4);
2930
2931 /* Get viewport from the uniforms */
2932 nir_intrinsic_instr *load;
2933 load = nir_intrinsic_instr_create(b->shader, nir_intrinsic_load_uniform);
2934 load->num_components = 4;
2935 load->src[0] = nir_src_for_ssa(nir_imm_int(b, uniform_no));
2936 nir_ssa_dest_init(&load->instr, &load->dest, 4, 32, NULL);
2937 nir_builder_instr_insert(b, &load->instr);
2938
2939 /* Formatted as <width, height, centerx, centery> */
2940 nir_ssa_def *viewport_vec4 = &load->dest.ssa;
2941 nir_ssa_def *viewport_width_2 = nir_channel(b, viewport_vec4, 0);
2942 nir_ssa_def *viewport_height_2 = nir_channel(b, viewport_vec4, 1);
2943 nir_ssa_def *viewport_offset = nir_channels(b, viewport_vec4, 0x8 | 0x4);
2944
2945 /* XXX: From uniforms? */
2946 nir_ssa_def *depth_near = nir_imm_float(b, 0.0);
2947 nir_ssa_def *depth_far = nir_imm_float(b, 1.0);
2948
2949 /* World space to normalised device coordinates */
2950
2951 nir_ssa_def *w_recip = nir_frcp(b, nir_channel(b, input_point, 3));
2952 nir_ssa_def *ndc_point = nir_fmul(b, nir_channels(b, input_point, 0x7), w_recip);
2953
2954 /* Normalised device coordinates to screen space */
2955
2956 nir_ssa_def *viewport_multiplier = nir_vec2(b, viewport_width_2, viewport_height_2);
2957 nir_ssa_def *viewport_xy = nir_fadd(b, nir_fmul(b, nir_channels(b, ndc_point, 0x3), viewport_multiplier), viewport_offset);
2958
2959 nir_ssa_def *depth_multiplier = nir_fmul(b, nir_fsub(b, depth_far, depth_near), nir_imm_float(b, 0.5f));
2960 nir_ssa_def *depth_offset = nir_fmul(b, nir_fadd(b, depth_far, depth_near), nir_imm_float(b, 0.5f));
2961 nir_ssa_def *screen_depth = nir_fadd(b, nir_fmul(b, nir_channel(b, ndc_point, 2), depth_multiplier), depth_offset);
2962
2963 /* gl_Position will be written out in screenspace xyz, with w set to
2964 * the reciprocal we computed earlier. The transformed w component is
2965 * then used for perspective-correct varying interpolation. The
2966 * transformed w component must preserve its original sign; this is
2967 * used in depth clipping computations */
2968
2969 nir_ssa_def *screen_space = nir_vec4(b,
2970 nir_channel(b, viewport_xy, 0),
2971 nir_channel(b, viewport_xy, 1),
2972 screen_depth,
2973 w_recip);
2974
2975 /* Finally, write out the transformed values to the varying */
2976
2977 nir_intrinsic_instr *store;
2978 store = nir_intrinsic_instr_create(b->shader, nir_intrinsic_store_output);
2979 store->num_components = 4;
2980 nir_intrinsic_set_base(store, 0);
2981 nir_intrinsic_set_write_mask(store, 0xf);
2982 store->src[0].ssa = screen_space;
2983 store->src[0].is_ssa = true;
2984 store->src[1] = nir_src_for_ssa(nir_imm_int(b, 0));
2985 nir_builder_instr_insert(b, &store->instr);
2986 }
2987
2988 static void
2989 transform_position_writes(nir_shader *shader)
2990 {
2991 nir_foreach_function(func, shader) {
2992 nir_foreach_block(block, func->impl) {
2993 nir_foreach_instr_safe(instr, block) {
2994 if (instr->type != nir_instr_type_intrinsic) continue;
2995
2996 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
2997 nir_variable *out = NULL;
2998
2999 switch (intr->intrinsic) {
3000 case nir_intrinsic_store_output:
3001 /* already had i/o lowered.. lookup the matching output var: */
3002 nir_foreach_variable(var, &shader->outputs) {
3003 int drvloc = var->data.driver_location;
3004
3005 if (nir_intrinsic_base(intr) == drvloc) {
3006 out = var;
3007 break;
3008 }
3009 }
3010
3011 break;
3012
3013 default:
3014 break;
3015 }
3016
3017 if (!out) continue;
3018
3019 if (out->data.mode != nir_var_shader_out)
3020 continue;
3021
3022 if (out->data.location != VARYING_SLOT_POS)
3023 continue;
3024
3025 nir_builder b;
3026 nir_builder_init(&b, func->impl);
3027 b.cursor = nir_before_instr(instr);
3028
3029 write_transformed_position(&b, intr->src[0], UNIFORM_VIEWPORT);
3030 nir_instr_remove(instr);
3031 }
3032 }
3033 }
3034 }
3035
3036 static void
3037 emit_fragment_epilogue(compiler_context *ctx)
3038 {
3039 /* Special case: writing out constants requires us to include the move
3040 * explicitly now, so shove it into r0 */
3041
3042 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, ctx->fragment_output + 1);
3043
3044 if (constant_value) {
3045 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(0));
3046 attach_constants(ctx, &ins, constant_value, ctx->fragment_output + 1);
3047 emit_mir_instruction(ctx, ins);
3048 }
3049
3050 /* Perform the actual fragment writeout. We have two writeout/branch
3051 * instructions, forming a loop until writeout is successful as per the
3052 * docs. TODO: gl_FragDepth */
3053
3054 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3055 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3056 }
3057
3058 /* For the blend epilogue, we need to convert the blended fragment vec4 (stored
3059 * in r0) to a RGBA8888 value by scaling and type converting. We then output it
3060 * with the int8 analogue to the fragment epilogue */
3061
3062 static void
3063 emit_blend_epilogue(compiler_context *ctx)
3064 {
3065 /* vmul.fmul.none.fulllow hr48, r0, #255 */
3066
3067 midgard_instruction scale = {
3068 .type = TAG_ALU_4,
3069 .unit = UNIT_VMUL,
3070 .inline_constant = _mesa_float_to_half(255.0),
3071 .ssa_args = {
3072 .src0 = SSA_FIXED_REGISTER(0),
3073 .src1 = SSA_UNUSED_0,
3074 .dest = SSA_FIXED_REGISTER(24),
3075 .inline_constant = true
3076 },
3077 .alu = {
3078 .op = midgard_alu_op_fmul,
3079 .reg_mode = midgard_reg_mode_full,
3080 .dest_override = midgard_dest_override_lower,
3081 .mask = 0xFF,
3082 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3083 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3084 }
3085 };
3086
3087 emit_mir_instruction(ctx, scale);
3088
3089 /* vadd.f2u8.pos.low hr0, hr48, #0 */
3090
3091 midgard_vector_alu_src alu_src = blank_alu_src;
3092 alu_src.half = true;
3093
3094 midgard_instruction f2u8 = {
3095 .type = TAG_ALU_4,
3096 .ssa_args = {
3097 .src0 = SSA_FIXED_REGISTER(24),
3098 .src1 = SSA_UNUSED_0,
3099 .dest = SSA_FIXED_REGISTER(0),
3100 .inline_constant = true
3101 },
3102 .alu = {
3103 .op = midgard_alu_op_f2u8,
3104 .reg_mode = midgard_reg_mode_half,
3105 .dest_override = midgard_dest_override_lower,
3106 .outmod = midgard_outmod_pos,
3107 .mask = 0xF,
3108 .src1 = vector_alu_srco_unsigned(alu_src),
3109 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3110 }
3111 };
3112
3113 emit_mir_instruction(ctx, f2u8);
3114
3115 /* vmul.imov.quarter r0, r0, r0 */
3116
3117 midgard_instruction imov_8 = {
3118 .type = TAG_ALU_4,
3119 .ssa_args = {
3120 .src0 = SSA_UNUSED_1,
3121 .src1 = SSA_FIXED_REGISTER(0),
3122 .dest = SSA_FIXED_REGISTER(0),
3123 },
3124 .alu = {
3125 .op = midgard_alu_op_imov,
3126 .reg_mode = midgard_reg_mode_quarter,
3127 .dest_override = midgard_dest_override_none,
3128 .mask = 0xFF,
3129 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3130 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3131 }
3132 };
3133
3134 /* Emit branch epilogue with the 8-bit move as the source */
3135
3136 emit_mir_instruction(ctx, imov_8);
3137 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3138
3139 emit_mir_instruction(ctx, imov_8);
3140 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3141 }
3142
3143 static midgard_block *
3144 emit_block(compiler_context *ctx, nir_block *block)
3145 {
3146 midgard_block *this_block = malloc(sizeof(midgard_block));
3147 list_addtail(&this_block->link, &ctx->blocks);
3148
3149 this_block->is_scheduled = false;
3150 ++ctx->block_count;
3151
3152 ctx->texture_index[0] = -1;
3153 ctx->texture_index[1] = -1;
3154
3155 /* Set up current block */
3156 list_inithead(&this_block->instructions);
3157 ctx->current_block = this_block;
3158
3159 nir_foreach_instr(instr, block) {
3160 emit_instr(ctx, instr);
3161 ++ctx->instruction_count;
3162 }
3163
3164 inline_alu_constants(ctx);
3165 embedded_to_inline_constant(ctx);
3166
3167 /* Perform heavylifting for aliasing */
3168 actualise_ssa_to_alias(ctx);
3169
3170 midgard_emit_store(ctx, this_block);
3171 midgard_eliminate_orphan_moves(ctx, this_block);
3172 midgard_pair_load_store(ctx, this_block);
3173
3174 /* Append fragment shader epilogue (value writeout) */
3175 if (ctx->stage == MESA_SHADER_FRAGMENT) {
3176 if (block == nir_impl_last_block(ctx->func->impl)) {
3177 if (ctx->is_blend)
3178 emit_blend_epilogue(ctx);
3179 else
3180 emit_fragment_epilogue(ctx);
3181 }
3182 }
3183
3184 /* Fallthrough save */
3185 this_block->next_fallthrough = ctx->previous_source_block;
3186
3187 if (block == nir_start_block(ctx->func->impl))
3188 ctx->initial_block = this_block;
3189
3190 if (block == nir_impl_last_block(ctx->func->impl))
3191 ctx->final_block = this_block;
3192
3193 /* Allow the next control flow to access us retroactively, for
3194 * branching etc */
3195 ctx->current_block = this_block;
3196
3197 /* Document the fallthrough chain */
3198 ctx->previous_source_block = this_block;
3199
3200 return this_block;
3201 }
3202
3203 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
3204
3205 static void
3206 emit_if(struct compiler_context *ctx, nir_if *nif)
3207 {
3208 /* Conditional branches expect the condition in r31.w; emit a move for
3209 * that in the _previous_ block (which is the current block). */
3210 emit_condition(ctx, &nif->condition, true);
3211
3212 /* Speculatively emit the branch, but we can't fill it in until later */
3213 EMIT(branch, true, true);
3214 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
3215
3216 /* Emit the two subblocks */
3217 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
3218
3219 /* Emit a jump from the end of the then block to the end of the else */
3220 EMIT(branch, false, false);
3221 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
3222
3223 /* Emit second block, and check if it's empty */
3224
3225 int else_idx = ctx->block_count;
3226 int count_in = ctx->instruction_count;
3227 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
3228 int after_else_idx = ctx->block_count;
3229
3230 /* Now that we have the subblocks emitted, fix up the branches */
3231
3232 assert(then_block);
3233 assert(else_block);
3234
3235 if (ctx->instruction_count == count_in) {
3236 /* The else block is empty, so don't emit an exit jump */
3237 mir_remove_instruction(then_exit);
3238 then_branch->branch.target_block = after_else_idx;
3239 } else {
3240 then_branch->branch.target_block = else_idx;
3241 then_exit->branch.target_block = after_else_idx;
3242 }
3243 }
3244
3245 static void
3246 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
3247 {
3248 /* Remember where we are */
3249 midgard_block *start_block = ctx->current_block;
3250
3251 /* Allocate a loop number for this. TODO: Nested loops. Instead of a
3252 * single current_loop variable, maybe we need a stack */
3253
3254 int loop_idx = ++ctx->current_loop;
3255
3256 /* Get index from before the body so we can loop back later */
3257 int start_idx = ctx->block_count;
3258
3259 /* Emit the body itself */
3260 emit_cf_list(ctx, &nloop->body);
3261
3262 /* Branch back to loop back */
3263 struct midgard_instruction br_back = v_branch(false, false);
3264 br_back.branch.target_block = start_idx;
3265 emit_mir_instruction(ctx, br_back);
3266
3267 /* Find the index of the block about to follow us (note: we don't add
3268 * one; blocks are 0-indexed so we get a fencepost problem) */
3269 int break_block_idx = ctx->block_count;
3270
3271 /* Fix up the break statements we emitted to point to the right place,
3272 * now that we can allocate a block number for them */
3273
3274 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
3275 print_mir_block(block);
3276 mir_foreach_instr_in_block(block, ins) {
3277 if (ins->type != TAG_ALU_4) continue;
3278 if (!ins->compact_branch) continue;
3279 if (ins->prepacked_branch) continue;
3280
3281 /* We found a branch -- check the type to see if we need to do anything */
3282 if (ins->branch.target_type != TARGET_BREAK) continue;
3283
3284 /* It's a break! Check if it's our break */
3285 if (ins->branch.target_break != loop_idx) continue;
3286
3287 /* Okay, cool, we're breaking out of this loop.
3288 * Rewrite from a break to a goto */
3289
3290 ins->branch.target_type = TARGET_GOTO;
3291 ins->branch.target_block = break_block_idx;
3292 }
3293 }
3294 }
3295
3296 static midgard_block *
3297 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
3298 {
3299 midgard_block *start_block = NULL;
3300
3301 foreach_list_typed(nir_cf_node, node, node, list) {
3302 switch (node->type) {
3303 case nir_cf_node_block: {
3304 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
3305
3306 if (!start_block)
3307 start_block = block;
3308
3309 break;
3310 }
3311
3312 case nir_cf_node_if:
3313 emit_if(ctx, nir_cf_node_as_if(node));
3314 break;
3315
3316 case nir_cf_node_loop:
3317 emit_loop(ctx, nir_cf_node_as_loop(node));
3318 break;
3319
3320 case nir_cf_node_function:
3321 assert(0);
3322 break;
3323 }
3324 }
3325
3326 return start_block;
3327 }
3328
3329 /* Due to lookahead, we need to report the first tag executed in the command
3330 * stream and in branch targets. An initial block might be empty, so iterate
3331 * until we find one that 'works' */
3332
3333 static unsigned
3334 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
3335 {
3336 midgard_block *initial_block = mir_get_block(ctx, block_idx);
3337
3338 unsigned first_tag = 0;
3339
3340 do {
3341 midgard_bundle *initial_bundle = util_dynarray_element(&initial_block->bundles, midgard_bundle, 0);
3342
3343 if (initial_bundle) {
3344 first_tag = initial_bundle->tag;
3345 break;
3346 }
3347
3348 /* Initial block is empty, try the next block */
3349 initial_block = list_first_entry(&(initial_block->link), midgard_block, link);
3350 } while(initial_block != NULL);
3351
3352 assert(first_tag);
3353 return first_tag;
3354 }
3355
3356 int
3357 midgard_compile_shader_nir(nir_shader *nir, midgard_program *program, bool is_blend)
3358 {
3359 struct util_dynarray *compiled = &program->compiled;
3360
3361 compiler_context ictx = {
3362 .nir = nir,
3363 .stage = nir->info.stage,
3364
3365 .is_blend = is_blend,
3366 .blend_constant_offset = -1,
3367
3368 .alpha_ref = program->alpha_ref
3369 };
3370
3371 compiler_context *ctx = &ictx;
3372
3373 /* TODO: Decide this at runtime */
3374 ctx->uniform_cutoff = 8;
3375
3376 switch (ctx->stage) {
3377 case MESA_SHADER_VERTEX:
3378 ctx->special_uniforms = 1;
3379 break;
3380
3381 default:
3382 ctx->special_uniforms = 0;
3383 break;
3384 }
3385
3386 /* Append epilogue uniforms if necessary. The cmdstream depends on
3387 * these being at the -end-; see assign_var_locations. */
3388
3389 if (ctx->stage == MESA_SHADER_VERTEX) {
3390 nir_variable_create(nir, nir_var_uniform, glsl_vec4_type(), "viewport");
3391 }
3392
3393 /* Assign var locations early, so the epilogue can use them if necessary */
3394
3395 nir_assign_var_locations(&nir->outputs, &nir->num_outputs, glsl_type_size);
3396 nir_assign_var_locations(&nir->inputs, &nir->num_inputs, glsl_type_size);
3397 nir_assign_var_locations(&nir->uniforms, &nir->num_uniforms, glsl_type_size);
3398
3399 /* Initialize at a global (not block) level hash tables */
3400
3401 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
3402 ctx->ssa_varyings = _mesa_hash_table_u64_create(NULL);
3403 ctx->ssa_to_alias = _mesa_hash_table_u64_create(NULL);
3404 ctx->ssa_to_register = _mesa_hash_table_u64_create(NULL);
3405 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
3406 ctx->leftover_ssa_to_alias = _mesa_set_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal);
3407
3408 /* Assign actual uniform location, skipping over samplers */
3409
3410 ctx->uniform_nir_to_mdg = _mesa_hash_table_u64_create(NULL);
3411
3412 nir_foreach_variable(var, &nir->uniforms) {
3413 if (glsl_get_base_type(var->type) == GLSL_TYPE_SAMPLER) continue;
3414
3415 unsigned length = glsl_get_aoa_size(var->type);
3416
3417 if (!length) {
3418 length = glsl_get_length(var->type);
3419 }
3420
3421 if (!length) {
3422 length = glsl_get_matrix_columns(var->type);
3423 }
3424
3425 for (int col = 0; col < length; ++col) {
3426 int id = ctx->uniform_count++;
3427 _mesa_hash_table_u64_insert(ctx->uniform_nir_to_mdg, var->data.driver_location + col + 1, (void *) ((uintptr_t) (id + 1)));
3428 }
3429 }
3430
3431 if (ctx->stage == MESA_SHADER_VERTEX) {
3432 ctx->varying_nir_to_mdg = _mesa_hash_table_u64_create(NULL);
3433
3434 /* First, collect the special varyings */
3435 nir_foreach_variable(var, &nir->outputs) {
3436 if (var->data.location == VARYING_SLOT_POS) {
3437 /* Set position first, always. It takes up two
3438 * spots, the latter one is de facto unused (at
3439 * least from the shader's perspective), we
3440 * just need to skip over the spot*/
3441
3442 _mesa_hash_table_u64_insert(ctx->varying_nir_to_mdg, var->data.driver_location + 1, (void *) ((uintptr_t) (0 + 1)));
3443 ctx->varying_count = MAX2(ctx->varying_count, 2);
3444 } else if (var->data.location == VARYING_SLOT_PSIZ) {
3445 /* Set point size second (third, see above) */
3446 _mesa_hash_table_u64_insert(ctx->varying_nir_to_mdg, var->data.driver_location + 1, (void *) ((uintptr_t) (2 + 1)));
3447 ctx->varying_count = MAX2(ctx->varying_count, 3);
3448
3449 program->writes_point_size = true;
3450 }
3451 }
3452
3453 /* Now, collect normal varyings */
3454
3455 nir_foreach_variable(var, &nir->outputs) {
3456 if (var->data.location == VARYING_SLOT_POS || var->data.location == VARYING_SLOT_PSIZ) continue;
3457
3458 for (int col = 0; col < glsl_get_matrix_columns(var->type); ++col) {
3459 int id = ctx->varying_count++;
3460 _mesa_hash_table_u64_insert(ctx->varying_nir_to_mdg, var->data.driver_location + col + 1, (void *) ((uintptr_t) (id + 1)));
3461 }
3462 }
3463 }
3464
3465
3466
3467 /* Lower vars -- not I/O -- before epilogue */
3468
3469 NIR_PASS_V(nir, nir_lower_var_copies);
3470 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3471 NIR_PASS_V(nir, nir_split_var_copies);
3472 NIR_PASS_V(nir, nir_lower_var_copies);
3473 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
3474 NIR_PASS_V(nir, nir_lower_var_copies);
3475 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3476 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
3477
3478 /* Append vertex epilogue before optimisation, so the epilogue itself
3479 * is optimised */
3480
3481 if (ctx->stage == MESA_SHADER_VERTEX)
3482 transform_position_writes(nir);
3483
3484 /* Optimisation passes */
3485
3486 optimise_nir(nir);
3487
3488 nir_print_shader(nir, stdout);
3489
3490 /* Assign counts, now that we're sure (post-optimisation) */
3491 program->uniform_count = nir->num_uniforms;
3492
3493 program->attribute_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_inputs : 0;
3494 program->varying_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_outputs : ((ctx->stage == MESA_SHADER_FRAGMENT) ? nir->num_inputs : 0);
3495
3496
3497 nir_foreach_function(func, nir) {
3498 if (!func->impl)
3499 continue;
3500
3501 list_inithead(&ctx->blocks);
3502 ctx->block_count = 0;
3503 ctx->func = func;
3504
3505 emit_cf_list(ctx, &func->impl->body);
3506 emit_block(ctx, func->impl->end_block);
3507
3508 break; /* TODO: Multi-function shaders */
3509 }
3510
3511 util_dynarray_init(compiled, NULL);
3512
3513 /* Schedule! */
3514 schedule_program(ctx);
3515
3516 /* Now that all the bundles are scheduled and we can calculate block
3517 * sizes, emit actual branch instructions rather than placeholders */
3518
3519 int br_block_idx = 0;
3520
3521 mir_foreach_block(ctx, block) {
3522 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3523 for (int c = 0; c < bundle->instruction_count; ++c) {
3524 midgard_instruction *ins = &bundle->instructions[c];
3525
3526 if (!midgard_is_branch_unit(ins->unit)) continue;
3527
3528 if (ins->prepacked_branch) continue;
3529
3530 /* Parse some basic branch info */
3531 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
3532 bool is_conditional = ins->branch.conditional;
3533 bool is_inverted = ins->branch.invert_conditional;
3534 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
3535
3536 /* Determine the block we're jumping to */
3537 int target_number = ins->branch.target_block;
3538
3539 /* Report the destination tag. Discards don't need this */
3540 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
3541
3542 /* Count up the number of quadwords we're jumping over. That is, the number of quadwords in each of the blocks between (br_block_idx, target_number) */
3543 int quadword_offset = 0;
3544
3545 if (is_discard) {
3546 /* Jump to the end of the shader. We
3547 * need to include not only the
3548 * following blocks, but also the
3549 * contents of our current block (since
3550 * discard can come in the middle of
3551 * the block) */
3552
3553 midgard_block *blk = mir_get_block(ctx, br_block_idx + 1);
3554
3555 for (midgard_bundle *bun = bundle + 1; bun < (midgard_bundle *)((char*) block->bundles.data + block->bundles.size); ++bun) {
3556 quadword_offset += quadword_size(bun->tag);
3557 }
3558
3559 mir_foreach_block_from(ctx, blk, b) {
3560 quadword_offset += b->quadword_count;
3561 }
3562
3563 } else if (target_number > br_block_idx) {
3564 /* Jump forward */
3565
3566 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
3567 midgard_block *blk = mir_get_block(ctx, idx);
3568 assert(blk);
3569
3570 quadword_offset += blk->quadword_count;
3571 }
3572 } else {
3573 /* Jump backwards */
3574
3575 for (int idx = br_block_idx; idx >= target_number; --idx) {
3576 midgard_block *blk = mir_get_block(ctx, idx);
3577 assert(blk);
3578
3579 quadword_offset -= blk->quadword_count;
3580 }
3581 }
3582
3583 /* Unconditional extended branches (far jumps)
3584 * have issues, so we always use a conditional
3585 * branch, setting the condition to always for
3586 * unconditional. For compact unconditional
3587 * branches, cond isn't used so it doesn't
3588 * matter what we pick. */
3589
3590 midgard_condition cond =
3591 !is_conditional ? midgard_condition_always :
3592 is_inverted ? midgard_condition_false :
3593 midgard_condition_true;
3594
3595 midgard_jmp_writeout_op op =
3596 is_discard ? midgard_jmp_writeout_op_discard :
3597 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
3598 midgard_jmp_writeout_op_branch_cond;
3599
3600 if (!is_compact) {
3601 midgard_branch_extended branch =
3602 midgard_create_branch_extended(
3603 cond, op,
3604 dest_tag,
3605 quadword_offset);
3606
3607 memcpy(&ins->branch_extended, &branch, sizeof(branch));
3608 } else if (is_conditional || is_discard) {
3609 midgard_branch_cond branch = {
3610 .op = op,
3611 .dest_tag = dest_tag,
3612 .offset = quadword_offset,
3613 .cond = cond
3614 };
3615
3616 assert(branch.offset == quadword_offset);
3617
3618 memcpy(&ins->br_compact, &branch, sizeof(branch));
3619 } else {
3620 assert(op == midgard_jmp_writeout_op_branch_uncond);
3621
3622 midgard_branch_uncond branch = {
3623 .op = op,
3624 .dest_tag = dest_tag,
3625 .offset = quadword_offset,
3626 .unknown = 1
3627 };
3628
3629 assert(branch.offset == quadword_offset);
3630
3631 memcpy(&ins->br_compact, &branch, sizeof(branch));
3632 }
3633 }
3634 }
3635
3636 ++br_block_idx;
3637 }
3638
3639 /* Emit flat binary from the instruction arrays. Iterate each block in
3640 * sequence. Save instruction boundaries such that lookahead tags can
3641 * be assigned easily */
3642
3643 /* Cache _all_ bundles in source order for lookahead across failed branches */
3644
3645 int bundle_count = 0;
3646 mir_foreach_block(ctx, block) {
3647 bundle_count += block->bundles.size / sizeof(midgard_bundle);
3648 }
3649 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
3650 int bundle_idx = 0;
3651 mir_foreach_block(ctx, block) {
3652 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3653 source_order_bundles[bundle_idx++] = bundle;
3654 }
3655 }
3656
3657 int current_bundle = 0;
3658
3659 mir_foreach_block(ctx, block) {
3660 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3661 int lookahead = 1;
3662
3663 if (current_bundle + 1 < bundle_count) {
3664 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
3665
3666 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
3667 lookahead = 1;
3668 } else {
3669 lookahead = next;
3670 }
3671 }
3672
3673 emit_binary_bundle(ctx, bundle, compiled, lookahead);
3674 ++current_bundle;
3675 }
3676
3677 /* TODO: Free deeper */
3678 //util_dynarray_fini(&block->instructions);
3679 }
3680
3681 free(source_order_bundles);
3682
3683 /* Report the very first tag executed */
3684 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
3685
3686 /* Deal with off-by-one related to the fencepost problem */
3687 program->work_register_count = ctx->work_registers + 1;
3688
3689 program->can_discard = ctx->can_discard;
3690 program->uniform_cutoff = ctx->uniform_cutoff;
3691
3692 program->blend_patch_offset = ctx->blend_constant_offset;
3693
3694 disassemble_midgard(program->compiled.data, program->compiled.size);
3695
3696 return 0;
3697 }