panfrost/midgard: Share MIR utilities
[mesa.git] / src / gallium / drivers / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/u_debug.h"
40 #include "util/u_dynarray.h"
41 #include "util/list.h"
42 #include "main/mtypes.h"
43
44 #include "midgard.h"
45 #include "midgard_nir.h"
46 #include "midgard_compile.h"
47 #include "midgard_ops.h"
48 #include "helpers.h"
49 #include "compiler.h"
50
51 #include "disassemble.h"
52
53 static const struct debug_named_value debug_options[] = {
54 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
55 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
56 DEBUG_NAMED_VALUE_END
57 };
58
59 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
60
61 int midgard_debug = 0;
62
63 #define DBG(fmt, ...) \
64 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
65 fprintf(stderr, "%s:%d: "fmt, \
66 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
67
68 static bool
69 midgard_is_branch_unit(unsigned unit)
70 {
71 return (unit == ALU_ENAB_BRANCH) || (unit == ALU_ENAB_BR_COMPACT);
72 }
73
74 static void
75 midgard_block_add_successor(midgard_block *block, midgard_block *successor)
76 {
77 block->successors[block->nr_successors++] = successor;
78 assert(block->nr_successors <= ARRAY_SIZE(block->successors));
79 }
80
81 /* Helpers to generate midgard_instruction's using macro magic, since every
82 * driver seems to do it that way */
83
84 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
85 #define SWIZZLE_XYZW SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W)
86
87 #define M_LOAD_STORE(name, rname, uname) \
88 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
89 midgard_instruction i = { \
90 .type = TAG_LOAD_STORE_4, \
91 .ssa_args = { \
92 .rname = ssa, \
93 .uname = -1, \
94 .src1 = -1 \
95 }, \
96 .load_store = { \
97 .op = midgard_op_##name, \
98 .mask = 0xF, \
99 .swizzle = SWIZZLE_XYZW, \
100 .address = address \
101 } \
102 }; \
103 \
104 return i; \
105 }
106
107 #define M_LOAD(name) M_LOAD_STORE(name, dest, src0)
108 #define M_STORE(name) M_LOAD_STORE(name, src0, dest)
109
110 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
111 * the corresponding Midgard source */
112
113 static midgard_vector_alu_src
114 vector_alu_modifiers(nir_alu_src *src, bool is_int)
115 {
116 if (!src) return blank_alu_src;
117
118 midgard_vector_alu_src alu_src = {
119 .rep_low = 0,
120 .rep_high = 0,
121 .half = 0, /* TODO */
122 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
123 };
124
125 if (is_int) {
126 /* TODO: sign-extend/zero-extend */
127 alu_src.mod = midgard_int_normal;
128
129 /* These should have been lowered away */
130 assert(!(src->abs || src->negate));
131 } else {
132 alu_src.mod = (src->abs << 0) | (src->negate << 1);
133 }
134
135 return alu_src;
136 }
137
138 /* load/store instructions have both 32-bit and 16-bit variants, depending on
139 * whether we are using vectors composed of highp or mediump. At the moment, we
140 * don't support half-floats -- this requires changes in other parts of the
141 * compiler -- therefore the 16-bit versions are commented out. */
142
143 //M_LOAD(ld_attr_16);
144 M_LOAD(ld_attr_32);
145 //M_LOAD(ld_vary_16);
146 M_LOAD(ld_vary_32);
147 //M_LOAD(ld_uniform_16);
148 M_LOAD(ld_uniform_32);
149 M_LOAD(ld_color_buffer_8);
150 //M_STORE(st_vary_16);
151 M_STORE(st_vary_32);
152 M_STORE(st_cubemap_coords);
153
154 static midgard_instruction
155 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
156 {
157 midgard_branch_cond branch = {
158 .op = op,
159 .dest_tag = tag,
160 .offset = offset,
161 .cond = cond
162 };
163
164 uint16_t compact;
165 memcpy(&compact, &branch, sizeof(branch));
166
167 midgard_instruction ins = {
168 .type = TAG_ALU_4,
169 .unit = ALU_ENAB_BR_COMPACT,
170 .prepacked_branch = true,
171 .compact_branch = true,
172 .br_compact = compact
173 };
174
175 if (op == midgard_jmp_writeout_op_writeout)
176 ins.writeout = true;
177
178 return ins;
179 }
180
181 static midgard_instruction
182 v_branch(bool conditional, bool invert)
183 {
184 midgard_instruction ins = {
185 .type = TAG_ALU_4,
186 .unit = ALU_ENAB_BRANCH,
187 .compact_branch = true,
188 .branch = {
189 .conditional = conditional,
190 .invert_conditional = invert
191 }
192 };
193
194 return ins;
195 }
196
197 static midgard_branch_extended
198 midgard_create_branch_extended( midgard_condition cond,
199 midgard_jmp_writeout_op op,
200 unsigned dest_tag,
201 signed quadword_offset)
202 {
203 /* For unclear reasons, the condition code is repeated 8 times */
204 uint16_t duplicated_cond =
205 (cond << 14) |
206 (cond << 12) |
207 (cond << 10) |
208 (cond << 8) |
209 (cond << 6) |
210 (cond << 4) |
211 (cond << 2) |
212 (cond << 0);
213
214 midgard_branch_extended branch = {
215 .op = op,
216 .dest_tag = dest_tag,
217 .offset = quadword_offset,
218 .cond = duplicated_cond
219 };
220
221 return branch;
222 }
223
224 static void
225 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
226 {
227 ins->has_constants = true;
228 memcpy(&ins->constants, constants, 16);
229 }
230
231 static int
232 glsl_type_size(const struct glsl_type *type, bool bindless)
233 {
234 return glsl_count_attribute_slots(type, false);
235 }
236
237 /* Lower fdot2 to a vector multiplication followed by channel addition */
238 static void
239 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
240 {
241 if (alu->op != nir_op_fdot2)
242 return;
243
244 b->cursor = nir_before_instr(&alu->instr);
245
246 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
247 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
248
249 nir_ssa_def *product = nir_fmul(b, src0, src1);
250
251 nir_ssa_def *sum = nir_fadd(b,
252 nir_channel(b, product, 0),
253 nir_channel(b, product, 1));
254
255 /* Replace the fdot2 with this sum */
256 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
257 }
258
259 static int
260 midgard_nir_sysval_for_intrinsic(nir_intrinsic_instr *instr)
261 {
262 switch (instr->intrinsic) {
263 case nir_intrinsic_load_viewport_scale:
264 return PAN_SYSVAL_VIEWPORT_SCALE;
265 case nir_intrinsic_load_viewport_offset:
266 return PAN_SYSVAL_VIEWPORT_OFFSET;
267 default:
268 return -1;
269 }
270 }
271
272 static void
273 midgard_nir_assign_sysval_body(compiler_context *ctx, nir_instr *instr)
274 {
275 int sysval = -1;
276
277 if (instr->type == nir_instr_type_intrinsic) {
278 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
279 sysval = midgard_nir_sysval_for_intrinsic(intr);
280 }
281
282 if (sysval < 0)
283 return;
284
285 /* We have a sysval load; check if it's already been assigned */
286
287 if (_mesa_hash_table_u64_search(ctx->sysval_to_id, sysval))
288 return;
289
290 /* It hasn't -- so assign it now! */
291
292 unsigned id = ctx->sysval_count++;
293 _mesa_hash_table_u64_insert(ctx->sysval_to_id, sysval, (void *) ((uintptr_t) id + 1));
294 ctx->sysvals[id] = sysval;
295 }
296
297 static void
298 midgard_nir_assign_sysvals(compiler_context *ctx, nir_shader *shader)
299 {
300 ctx->sysval_count = 0;
301
302 nir_foreach_function(function, shader) {
303 if (!function->impl) continue;
304
305 nir_foreach_block(block, function->impl) {
306 nir_foreach_instr_safe(instr, block) {
307 midgard_nir_assign_sysval_body(ctx, instr);
308 }
309 }
310 }
311 }
312
313 static bool
314 midgard_nir_lower_fdot2(nir_shader *shader)
315 {
316 bool progress = false;
317
318 nir_foreach_function(function, shader) {
319 if (!function->impl) continue;
320
321 nir_builder _b;
322 nir_builder *b = &_b;
323 nir_builder_init(b, function->impl);
324
325 nir_foreach_block(block, function->impl) {
326 nir_foreach_instr_safe(instr, block) {
327 if (instr->type != nir_instr_type_alu) continue;
328
329 nir_alu_instr *alu = nir_instr_as_alu(instr);
330 midgard_nir_lower_fdot2_body(b, alu);
331
332 progress |= true;
333 }
334 }
335
336 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
337
338 }
339
340 return progress;
341 }
342
343 static void
344 optimise_nir(nir_shader *nir)
345 {
346 bool progress;
347 unsigned lower_flrp =
348 (nir->options->lower_flrp16 ? 16 : 0) |
349 (nir->options->lower_flrp32 ? 32 : 0) |
350 (nir->options->lower_flrp64 ? 64 : 0);
351
352 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
353 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
354
355 nir_lower_tex_options lower_tex_options = {
356 .lower_rect = true
357 };
358
359 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
360
361 do {
362 progress = false;
363
364 NIR_PASS(progress, nir, nir_lower_var_copies);
365 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
366
367 NIR_PASS(progress, nir, nir_copy_prop);
368 NIR_PASS(progress, nir, nir_opt_dce);
369 NIR_PASS(progress, nir, nir_opt_dead_cf);
370 NIR_PASS(progress, nir, nir_opt_cse);
371 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
372 NIR_PASS(progress, nir, nir_opt_algebraic);
373 NIR_PASS(progress, nir, nir_opt_constant_folding);
374
375 if (lower_flrp != 0) {
376 bool lower_flrp_progress = false;
377 NIR_PASS(lower_flrp_progress,
378 nir,
379 nir_lower_flrp,
380 lower_flrp,
381 false /* always_precise */,
382 nir->options->lower_ffma);
383 if (lower_flrp_progress) {
384 NIR_PASS(progress, nir,
385 nir_opt_constant_folding);
386 progress = true;
387 }
388
389 /* Nothing should rematerialize any flrps, so we only
390 * need to do this lowering once.
391 */
392 lower_flrp = 0;
393 }
394
395 NIR_PASS(progress, nir, nir_opt_undef);
396 NIR_PASS(progress, nir, nir_opt_loop_unroll,
397 nir_var_shader_in |
398 nir_var_shader_out |
399 nir_var_function_temp);
400
401 /* TODO: Enable vectorize when merged upstream */
402 // NIR_PASS(progress, nir, nir_opt_vectorize);
403 } while (progress);
404
405 /* Must be run at the end to prevent creation of fsin/fcos ops */
406 NIR_PASS(progress, nir, midgard_nir_scale_trig);
407
408 do {
409 progress = false;
410
411 NIR_PASS(progress, nir, nir_opt_dce);
412 NIR_PASS(progress, nir, nir_opt_algebraic);
413 NIR_PASS(progress, nir, nir_opt_constant_folding);
414 NIR_PASS(progress, nir, nir_copy_prop);
415 } while (progress);
416
417 NIR_PASS(progress, nir, nir_opt_algebraic_late);
418
419 /* We implement booleans as 32-bit 0/~0 */
420 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
421
422 /* Now that booleans are lowered, we can run out late opts */
423 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
424
425 /* Lower mods for float ops only. Integer ops don't support modifiers
426 * (saturate doesn't make sense on integers, neg/abs require dedicated
427 * instructions) */
428
429 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
430 NIR_PASS(progress, nir, nir_copy_prop);
431 NIR_PASS(progress, nir, nir_opt_dce);
432
433 /* Take us out of SSA */
434 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
435 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
436
437 /* We are a vector architecture; write combine where possible */
438 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
439 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
440
441 NIR_PASS(progress, nir, nir_opt_dce);
442 }
443
444 /* Front-half of aliasing the SSA slots, merely by inserting the flag in the
445 * appropriate hash table. Intentional off-by-one to avoid confusing NULL with
446 * r0. See the comments in compiler_context */
447
448 static void
449 alias_ssa(compiler_context *ctx, int dest, int src)
450 {
451 _mesa_hash_table_u64_insert(ctx->ssa_to_alias, dest + 1, (void *) ((uintptr_t) src + 1));
452 _mesa_set_add(ctx->leftover_ssa_to_alias, (void *) (uintptr_t) (dest + 1));
453 }
454
455 /* ...or undo it, after which the original index will be used (dummy move should be emitted alongside this) */
456
457 static void
458 unalias_ssa(compiler_context *ctx, int dest)
459 {
460 _mesa_hash_table_u64_remove(ctx->ssa_to_alias, dest + 1);
461 /* TODO: Remove from leftover or no? */
462 }
463
464 /* Do not actually emit a load; instead, cache the constant for inlining */
465
466 static void
467 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
468 {
469 nir_ssa_def def = instr->def;
470
471 float *v = rzalloc_array(NULL, float, 4);
472 nir_const_load_to_arr(v, instr, f32);
473 _mesa_hash_table_u64_insert(ctx->ssa_constants, def.index + 1, v);
474 }
475
476 static unsigned
477 nir_src_index(compiler_context *ctx, nir_src *src)
478 {
479 if (src->is_ssa)
480 return src->ssa->index;
481 else {
482 assert(!src->reg.indirect);
483 return ctx->func->impl->ssa_alloc + src->reg.reg->index;
484 }
485 }
486
487 static unsigned
488 nir_dest_index(compiler_context *ctx, nir_dest *dst)
489 {
490 if (dst->is_ssa)
491 return dst->ssa.index;
492 else {
493 assert(!dst->reg.indirect);
494 return ctx->func->impl->ssa_alloc + dst->reg.reg->index;
495 }
496 }
497
498 static unsigned
499 nir_alu_src_index(compiler_context *ctx, nir_alu_src *src)
500 {
501 return nir_src_index(ctx, &src->src);
502 }
503
504 static bool
505 nir_is_non_scalar_swizzle(nir_alu_src *src, unsigned nr_components)
506 {
507 unsigned comp = src->swizzle[0];
508
509 for (unsigned c = 1; c < nr_components; ++c) {
510 if (src->swizzle[c] != comp)
511 return true;
512 }
513
514 return false;
515 }
516
517 /* Midgard puts scalar conditionals in r31.w; move an arbitrary source (the
518 * output of a conditional test) into that register */
519
520 static void
521 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch, unsigned component)
522 {
523 int condition = nir_src_index(ctx, src);
524
525 /* Source to swizzle the desired component into w */
526
527 const midgard_vector_alu_src alu_src = {
528 .swizzle = SWIZZLE(component, component, component, component),
529 };
530
531 /* There is no boolean move instruction. Instead, we simulate a move by
532 * ANDing the condition with itself to get it into r31.w */
533
534 midgard_instruction ins = {
535 .type = TAG_ALU_4,
536
537 /* We need to set the conditional as close as possible */
538 .precede_break = true,
539 .unit = for_branch ? UNIT_SMUL : UNIT_SADD,
540
541 .ssa_args = {
542
543 .src0 = condition,
544 .src1 = condition,
545 .dest = SSA_FIXED_REGISTER(31),
546 },
547 .alu = {
548 .op = midgard_alu_op_iand,
549 .outmod = midgard_outmod_int,
550 .reg_mode = midgard_reg_mode_32,
551 .dest_override = midgard_dest_override_none,
552 .mask = (0x3 << 6), /* w */
553 .src1 = vector_alu_srco_unsigned(alu_src),
554 .src2 = vector_alu_srco_unsigned(alu_src)
555 },
556 };
557
558 emit_mir_instruction(ctx, ins);
559 }
560
561 /* Or, for mixed conditions (with csel_v), here's a vector version using all of
562 * r31 instead */
563
564 static void
565 emit_condition_mixed(compiler_context *ctx, nir_alu_src *src, unsigned nr_comp)
566 {
567 int condition = nir_src_index(ctx, &src->src);
568
569 /* Source to swizzle the desired component into w */
570
571 const midgard_vector_alu_src alu_src = {
572 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle),
573 };
574
575 /* There is no boolean move instruction. Instead, we simulate a move by
576 * ANDing the condition with itself to get it into r31.w */
577
578 midgard_instruction ins = {
579 .type = TAG_ALU_4,
580 .precede_break = true,
581 .ssa_args = {
582 .src0 = condition,
583 .src1 = condition,
584 .dest = SSA_FIXED_REGISTER(31),
585 },
586 .alu = {
587 .op = midgard_alu_op_iand,
588 .outmod = midgard_outmod_int,
589 .reg_mode = midgard_reg_mode_32,
590 .dest_override = midgard_dest_override_none,
591 .mask = expand_writemask((1 << nr_comp) - 1),
592 .src1 = vector_alu_srco_unsigned(alu_src),
593 .src2 = vector_alu_srco_unsigned(alu_src)
594 },
595 };
596
597 emit_mir_instruction(ctx, ins);
598 }
599
600
601
602 /* Likewise, indirect offsets are put in r27.w. TODO: Allow componentwise
603 * pinning to eliminate this move in all known cases */
604
605 static void
606 emit_indirect_offset(compiler_context *ctx, nir_src *src)
607 {
608 int offset = nir_src_index(ctx, src);
609
610 midgard_instruction ins = {
611 .type = TAG_ALU_4,
612 .ssa_args = {
613 .src0 = SSA_UNUSED_1,
614 .src1 = offset,
615 .dest = SSA_FIXED_REGISTER(REGISTER_OFFSET),
616 },
617 .alu = {
618 .op = midgard_alu_op_imov,
619 .outmod = midgard_outmod_int,
620 .reg_mode = midgard_reg_mode_32,
621 .dest_override = midgard_dest_override_none,
622 .mask = (0x3 << 6), /* w */
623 .src1 = vector_alu_srco_unsigned(zero_alu_src),
624 .src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx)
625 },
626 };
627
628 emit_mir_instruction(ctx, ins);
629 }
630
631 #define ALU_CASE(nir, _op) \
632 case nir_op_##nir: \
633 op = midgard_alu_op_##_op; \
634 break;
635 static bool
636 nir_is_fzero_constant(nir_src src)
637 {
638 if (!nir_src_is_const(src))
639 return false;
640
641 for (unsigned c = 0; c < nir_src_num_components(src); ++c) {
642 if (nir_src_comp_as_float(src, c) != 0.0)
643 return false;
644 }
645
646 return true;
647 }
648
649 static void
650 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
651 {
652 bool is_ssa = instr->dest.dest.is_ssa;
653
654 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
655 unsigned nr_components = is_ssa ? instr->dest.dest.ssa.num_components : instr->dest.dest.reg.reg->num_components;
656 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
657
658 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
659 * supported. A few do not and are commented for now. Also, there are a
660 * number of NIR ops which Midgard does not support and need to be
661 * lowered, also TODO. This switch block emits the opcode and calling
662 * convention of the Midgard instruction; actual packing is done in
663 * emit_alu below */
664
665 unsigned op;
666
667 switch (instr->op) {
668 ALU_CASE(fadd, fadd);
669 ALU_CASE(fmul, fmul);
670 ALU_CASE(fmin, fmin);
671 ALU_CASE(fmax, fmax);
672 ALU_CASE(imin, imin);
673 ALU_CASE(imax, imax);
674 ALU_CASE(umin, umin);
675 ALU_CASE(umax, umax);
676 ALU_CASE(ffloor, ffloor);
677 ALU_CASE(fround_even, froundeven);
678 ALU_CASE(ftrunc, ftrunc);
679 ALU_CASE(fceil, fceil);
680 ALU_CASE(fdot3, fdot3);
681 ALU_CASE(fdot4, fdot4);
682 ALU_CASE(iadd, iadd);
683 ALU_CASE(isub, isub);
684 ALU_CASE(imul, imul);
685 ALU_CASE(iabs, iabs);
686 ALU_CASE(mov, imov);
687
688 ALU_CASE(feq32, feq);
689 ALU_CASE(fne32, fne);
690 ALU_CASE(flt32, flt);
691 ALU_CASE(ieq32, ieq);
692 ALU_CASE(ine32, ine);
693 ALU_CASE(ilt32, ilt);
694 ALU_CASE(ult32, ult);
695
696 /* We don't have a native b2f32 instruction. Instead, like many
697 * GPUs, we exploit booleans as 0/~0 for false/true, and
698 * correspondingly AND
699 * by 1.0 to do the type conversion. For the moment, prime us
700 * to emit:
701 *
702 * iand [whatever], #0
703 *
704 * At the end of emit_alu (as MIR), we'll fix-up the constant
705 */
706
707 ALU_CASE(b2f32, iand);
708 ALU_CASE(b2i32, iand);
709
710 /* Likewise, we don't have a dedicated f2b32 instruction, but
711 * we can do a "not equal to 0.0" test. */
712
713 ALU_CASE(f2b32, fne);
714 ALU_CASE(i2b32, ine);
715
716 ALU_CASE(frcp, frcp);
717 ALU_CASE(frsq, frsqrt);
718 ALU_CASE(fsqrt, fsqrt);
719 ALU_CASE(fexp2, fexp2);
720 ALU_CASE(flog2, flog2);
721
722 ALU_CASE(f2i32, f2i);
723 ALU_CASE(f2u32, f2u);
724 ALU_CASE(i2f32, i2f);
725 ALU_CASE(u2f32, u2f);
726
727 ALU_CASE(fsin, fsin);
728 ALU_CASE(fcos, fcos);
729
730 ALU_CASE(iand, iand);
731 ALU_CASE(ior, ior);
732 ALU_CASE(ixor, ixor);
733 ALU_CASE(inot, inand);
734 ALU_CASE(ishl, ishl);
735 ALU_CASE(ishr, iasr);
736 ALU_CASE(ushr, ilsr);
737
738 ALU_CASE(b32all_fequal2, fball_eq);
739 ALU_CASE(b32all_fequal3, fball_eq);
740 ALU_CASE(b32all_fequal4, fball_eq);
741
742 ALU_CASE(b32any_fnequal2, fbany_neq);
743 ALU_CASE(b32any_fnequal3, fbany_neq);
744 ALU_CASE(b32any_fnequal4, fbany_neq);
745
746 ALU_CASE(b32all_iequal2, iball_eq);
747 ALU_CASE(b32all_iequal3, iball_eq);
748 ALU_CASE(b32all_iequal4, iball_eq);
749
750 ALU_CASE(b32any_inequal2, ibany_neq);
751 ALU_CASE(b32any_inequal3, ibany_neq);
752 ALU_CASE(b32any_inequal4, ibany_neq);
753
754 /* Source mods will be shoved in later */
755 ALU_CASE(fabs, fmov);
756 ALU_CASE(fneg, fmov);
757 ALU_CASE(fsat, fmov);
758
759 /* For greater-or-equal, we lower to less-or-equal and flip the
760 * arguments */
761
762 case nir_op_fge:
763 case nir_op_fge32:
764 case nir_op_ige32:
765 case nir_op_uge32: {
766 op =
767 instr->op == nir_op_fge ? midgard_alu_op_fle :
768 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
769 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
770 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
771 0;
772
773 /* Swap via temporary */
774 nir_alu_src temp = instr->src[1];
775 instr->src[1] = instr->src[0];
776 instr->src[0] = temp;
777
778 break;
779 }
780
781 case nir_op_b32csel: {
782 /* Midgard features both fcsel and icsel, depending on
783 * the type of the arguments/output. However, as long
784 * as we're careful we can _always_ use icsel and
785 * _never_ need fcsel, since the latter does additional
786 * floating-point-specific processing whereas the
787 * former just moves bits on the wire. It's not obvious
788 * why these are separate opcodes, save for the ability
789 * to do things like sat/pos/abs/neg for free */
790
791 bool mixed = nir_is_non_scalar_swizzle(&instr->src[0], nr_components);
792 op = mixed ? midgard_alu_op_icsel_v : midgard_alu_op_icsel;
793
794 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
795 nr_inputs = 2;
796
797 /* Emit the condition into r31 */
798
799 if (mixed)
800 emit_condition_mixed(ctx, &instr->src[0], nr_components);
801 else
802 emit_condition(ctx, &instr->src[0].src, false, instr->src[0].swizzle[0]);
803
804 /* The condition is the first argument; move the other
805 * arguments up one to be a binary instruction for
806 * Midgard */
807
808 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
809 break;
810 }
811
812 default:
813 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
814 assert(0);
815 return;
816 }
817
818 /* Midgard can perform certain modifiers on output of an ALU op */
819 midgard_outmod outmod =
820 midgard_is_integer_out_op(op) ? midgard_outmod_int :
821 instr->dest.saturate ? midgard_outmod_sat : midgard_outmod_none;
822
823 if (instr->op == nir_op_fsat)
824 outmod = midgard_outmod_sat;
825
826 /* fmax(a, 0.0) can turn into a .pos modifier as an optimization */
827
828 if (instr->op == nir_op_fmax) {
829 if (nir_is_fzero_constant(instr->src[0].src)) {
830 op = midgard_alu_op_fmov;
831 nr_inputs = 1;
832 outmod = midgard_outmod_pos;
833 instr->src[0] = instr->src[1];
834 } else if (nir_is_fzero_constant(instr->src[1].src)) {
835 op = midgard_alu_op_fmov;
836 nr_inputs = 1;
837 outmod = midgard_outmod_pos;
838 }
839 }
840
841 /* Fetch unit, quirks, etc information */
842 unsigned opcode_props = alu_opcode_props[op].props;
843 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
844
845 /* src0 will always exist afaik, but src1 will not for 1-argument
846 * instructions. The latter can only be fetched if the instruction
847 * needs it, or else we may segfault. */
848
849 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
850 unsigned src1 = nr_inputs == 2 ? nir_alu_src_index(ctx, &instr->src[1]) : SSA_UNUSED_0;
851
852 /* Rather than use the instruction generation helpers, we do it
853 * ourselves here to avoid the mess */
854
855 midgard_instruction ins = {
856 .type = TAG_ALU_4,
857 .ssa_args = {
858 .src0 = quirk_flipped_r24 ? SSA_UNUSED_1 : src0,
859 .src1 = quirk_flipped_r24 ? src0 : src1,
860 .dest = dest,
861 }
862 };
863
864 nir_alu_src *nirmods[2] = { NULL };
865
866 if (nr_inputs == 2) {
867 nirmods[0] = &instr->src[0];
868 nirmods[1] = &instr->src[1];
869 } else if (nr_inputs == 1) {
870 nirmods[quirk_flipped_r24] = &instr->src[0];
871 } else {
872 assert(0);
873 }
874
875 /* These were lowered to a move, so apply the corresponding mod */
876
877 if (instr->op == nir_op_fneg || instr->op == nir_op_fabs) {
878 nir_alu_src *s = nirmods[quirk_flipped_r24];
879
880 if (instr->op == nir_op_fneg)
881 s->negate = !s->negate;
882
883 if (instr->op == nir_op_fabs)
884 s->abs = !s->abs;
885 }
886
887 bool is_int = midgard_is_integer_op(op);
888
889 midgard_vector_alu alu = {
890 .op = op,
891 .reg_mode = midgard_reg_mode_32,
892 .dest_override = midgard_dest_override_none,
893 .outmod = outmod,
894
895 /* Writemask only valid for non-SSA NIR */
896 .mask = expand_writemask((1 << nr_components) - 1),
897
898 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int)),
899 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1], is_int)),
900 };
901
902 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
903
904 if (!is_ssa)
905 alu.mask &= expand_writemask(instr->dest.write_mask);
906
907 ins.alu = alu;
908
909 /* Late fixup for emulated instructions */
910
911 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
912 /* Presently, our second argument is an inline #0 constant.
913 * Switch over to an embedded 1.0 constant (that can't fit
914 * inline, since we're 32-bit, not 16-bit like the inline
915 * constants) */
916
917 ins.ssa_args.inline_constant = false;
918 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
919 ins.has_constants = true;
920
921 if (instr->op == nir_op_b2f32) {
922 ins.constants[0] = 1.0f;
923 } else {
924 /* Type pun it into place */
925 uint32_t one = 0x1;
926 memcpy(&ins.constants[0], &one, sizeof(uint32_t));
927 }
928
929 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
930 } else if (instr->op == nir_op_f2b32 || instr->op == nir_op_i2b32) {
931 ins.ssa_args.inline_constant = false;
932 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
933 ins.has_constants = true;
934 ins.constants[0] = 0.0f;
935 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
936 } else if (instr->op == nir_op_inot) {
937 /* ~b = ~(b & b), so duplicate the source */
938 ins.ssa_args.src1 = ins.ssa_args.src0;
939 ins.alu.src2 = ins.alu.src1;
940 }
941
942 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
943 /* To avoid duplicating the lookup tables (probably), true LUT
944 * instructions can only operate as if they were scalars. Lower
945 * them here by changing the component. */
946
947 uint8_t original_swizzle[4];
948 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
949
950 for (int i = 0; i < nr_components; ++i) {
951 ins.alu.mask = (0x3) << (2 * i); /* Mask the associated component */
952
953 for (int j = 0; j < 4; ++j)
954 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
955
956 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int));
957 emit_mir_instruction(ctx, ins);
958 }
959 } else {
960 emit_mir_instruction(ctx, ins);
961 }
962 }
963
964 #undef ALU_CASE
965
966 static void
967 emit_uniform_read(compiler_context *ctx, unsigned dest, unsigned offset, nir_src *indirect_offset)
968 {
969 /* TODO: half-floats */
970
971 if (!indirect_offset && offset < ctx->uniform_cutoff) {
972 /* Fast path: For the first 16 uniforms, direct accesses are
973 * 0-cycle, since they're just a register fetch in the usual
974 * case. So, we alias the registers while we're still in
975 * SSA-space */
976
977 int reg_slot = 23 - offset;
978 alias_ssa(ctx, dest, SSA_FIXED_REGISTER(reg_slot));
979 } else {
980 /* Otherwise, read from the 'special' UBO to access
981 * higher-indexed uniforms, at a performance cost. More
982 * generally, we're emitting a UBO read instruction. */
983
984 midgard_instruction ins = m_ld_uniform_32(dest, offset);
985
986 /* TODO: Don't split */
987 ins.load_store.varying_parameters = (offset & 7) << 7;
988 ins.load_store.address = offset >> 3;
989
990 if (indirect_offset) {
991 emit_indirect_offset(ctx, indirect_offset);
992 ins.load_store.unknown = 0x8700; /* xxx: what is this? */
993 } else {
994 ins.load_store.unknown = 0x1E00; /* xxx: what is this? */
995 }
996
997 emit_mir_instruction(ctx, ins);
998 }
999 }
1000
1001 static void
1002 emit_sysval_read(compiler_context *ctx, nir_intrinsic_instr *instr)
1003 {
1004 /* First, pull out the destination */
1005 unsigned dest = nir_dest_index(ctx, &instr->dest);
1006
1007 /* Now, figure out which uniform this is */
1008 int sysval = midgard_nir_sysval_for_intrinsic(instr);
1009 void *val = _mesa_hash_table_u64_search(ctx->sysval_to_id, sysval);
1010
1011 /* Sysvals are prefix uniforms */
1012 unsigned uniform = ((uintptr_t) val) - 1;
1013
1014 /* Emit the read itself -- this is never indirect */
1015 emit_uniform_read(ctx, dest, uniform, NULL);
1016 }
1017
1018 /* Reads RGBA8888 value from the tilebuffer and converts to a RGBA32F register,
1019 * using scalar ops functional on earlier Midgard generations. Newer Midgard
1020 * generations have faster vectorized reads. This operation is for blend
1021 * shaders in particular; reading the tilebuffer from the fragment shader
1022 * remains an open problem. */
1023
1024 static void
1025 emit_fb_read_blend_scalar(compiler_context *ctx, unsigned reg)
1026 {
1027 midgard_instruction ins = m_ld_color_buffer_8(reg, 0);
1028 ins.load_store.swizzle = 0; /* xxxx */
1029
1030 /* Read each component sequentially */
1031
1032 for (unsigned c = 0; c < 4; ++c) {
1033 ins.load_store.mask = (1 << c);
1034 ins.load_store.unknown = c;
1035 emit_mir_instruction(ctx, ins);
1036 }
1037
1038 /* vadd.u2f hr2, zext(hr2), #0 */
1039
1040 midgard_vector_alu_src alu_src = blank_alu_src;
1041 alu_src.mod = midgard_int_zero_extend;
1042 alu_src.half = true;
1043
1044 midgard_instruction u2f = {
1045 .type = TAG_ALU_4,
1046 .ssa_args = {
1047 .src0 = reg,
1048 .src1 = SSA_UNUSED_0,
1049 .dest = reg,
1050 .inline_constant = true
1051 },
1052 .alu = {
1053 .op = midgard_alu_op_u2f,
1054 .reg_mode = midgard_reg_mode_16,
1055 .dest_override = midgard_dest_override_none,
1056 .mask = 0xF,
1057 .src1 = vector_alu_srco_unsigned(alu_src),
1058 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1059 }
1060 };
1061
1062 emit_mir_instruction(ctx, u2f);
1063
1064 /* vmul.fmul.sat r1, hr2, #0.00392151 */
1065
1066 alu_src.mod = 0;
1067
1068 midgard_instruction fmul = {
1069 .type = TAG_ALU_4,
1070 .inline_constant = _mesa_float_to_half(1.0 / 255.0),
1071 .ssa_args = {
1072 .src0 = reg,
1073 .dest = reg,
1074 .src1 = SSA_UNUSED_0,
1075 .inline_constant = true
1076 },
1077 .alu = {
1078 .op = midgard_alu_op_fmul,
1079 .reg_mode = midgard_reg_mode_32,
1080 .dest_override = midgard_dest_override_none,
1081 .outmod = midgard_outmod_sat,
1082 .mask = 0xFF,
1083 .src1 = vector_alu_srco_unsigned(alu_src),
1084 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1085 }
1086 };
1087
1088 emit_mir_instruction(ctx, fmul);
1089 }
1090
1091 static void
1092 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1093 {
1094 unsigned offset, reg;
1095
1096 switch (instr->intrinsic) {
1097 case nir_intrinsic_discard_if:
1098 emit_condition(ctx, &instr->src[0], true, COMPONENT_X);
1099
1100 /* fallthrough */
1101
1102 case nir_intrinsic_discard: {
1103 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1104 struct midgard_instruction discard = v_branch(conditional, false);
1105 discard.branch.target_type = TARGET_DISCARD;
1106 emit_mir_instruction(ctx, discard);
1107
1108 ctx->can_discard = true;
1109 break;
1110 }
1111
1112 case nir_intrinsic_load_uniform:
1113 case nir_intrinsic_load_input:
1114 offset = nir_intrinsic_base(instr);
1115
1116 unsigned nr_comp = nir_intrinsic_dest_components(instr);
1117 bool direct = nir_src_is_const(instr->src[0]);
1118
1119 if (direct) {
1120 offset += nir_src_as_uint(instr->src[0]);
1121 }
1122
1123 reg = nir_dest_index(ctx, &instr->dest);
1124
1125 if (instr->intrinsic == nir_intrinsic_load_uniform && !ctx->is_blend) {
1126 emit_uniform_read(ctx, reg, ctx->sysval_count + offset, !direct ? &instr->src[0] : NULL);
1127 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1128 /* XXX: Half-floats? */
1129 /* TODO: swizzle, mask */
1130
1131 midgard_instruction ins = m_ld_vary_32(reg, offset);
1132 ins.load_store.mask = (1 << nr_comp) - 1;
1133
1134 midgard_varying_parameter p = {
1135 .is_varying = 1,
1136 .interpolation = midgard_interp_default,
1137 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1138 };
1139
1140 unsigned u;
1141 memcpy(&u, &p, sizeof(p));
1142 ins.load_store.varying_parameters = u;
1143
1144 if (direct) {
1145 /* We have the offset totally ready */
1146 ins.load_store.unknown = 0x1e9e; /* xxx: what is this? */
1147 } else {
1148 /* We have it partially ready, but we need to
1149 * add in the dynamic index, moved to r27.w */
1150 emit_indirect_offset(ctx, &instr->src[0]);
1151 ins.load_store.unknown = 0x79e; /* xxx: what is this? */
1152 }
1153
1154 emit_mir_instruction(ctx, ins);
1155 } else if (ctx->is_blend) {
1156 /* For blend shaders, load the input color, which is
1157 * preloaded to r0 */
1158
1159 midgard_instruction move = v_fmov(reg, blank_alu_src, SSA_FIXED_REGISTER(0));
1160 emit_mir_instruction(ctx, move);
1161 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1162 midgard_instruction ins = m_ld_attr_32(reg, offset);
1163 ins.load_store.unknown = 0x1E1E; /* XXX: What is this? */
1164 ins.load_store.mask = (1 << nr_comp) - 1;
1165 emit_mir_instruction(ctx, ins);
1166 } else {
1167 DBG("Unknown load\n");
1168 assert(0);
1169 }
1170
1171 break;
1172
1173 case nir_intrinsic_load_output:
1174 assert(nir_src_is_const(instr->src[0]));
1175 reg = nir_dest_index(ctx, &instr->dest);
1176
1177 if (ctx->is_blend) {
1178 /* TODO: MRT */
1179 emit_fb_read_blend_scalar(ctx, reg);
1180 } else {
1181 DBG("Unknown output load\n");
1182 assert(0);
1183 }
1184
1185 break;
1186
1187 case nir_intrinsic_load_blend_const_color_rgba: {
1188 assert(ctx->is_blend);
1189 reg = nir_dest_index(ctx, &instr->dest);
1190
1191 /* Blend constants are embedded directly in the shader and
1192 * patched in, so we use some magic routing */
1193
1194 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1195 ins.has_constants = true;
1196 ins.has_blend_constant = true;
1197 emit_mir_instruction(ctx, ins);
1198 break;
1199 }
1200
1201 case nir_intrinsic_store_output:
1202 assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
1203
1204 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
1205
1206 reg = nir_src_index(ctx, &instr->src[0]);
1207
1208 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1209 /* gl_FragColor is not emitted with load/store
1210 * instructions. Instead, it gets plonked into
1211 * r0 at the end of the shader and we do the
1212 * framebuffer writeout dance. TODO: Defer
1213 * writes */
1214
1215 midgard_instruction move = v_fmov(reg, blank_alu_src, SSA_FIXED_REGISTER(0));
1216 emit_mir_instruction(ctx, move);
1217
1218 /* Save the index we're writing to for later reference
1219 * in the epilogue */
1220
1221 ctx->fragment_output = reg;
1222 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1223 /* Varyings are written into one of two special
1224 * varying register, r26 or r27. The register itself is selected as the register
1225 * in the st_vary instruction, minus the base of 26. E.g. write into r27 and then call st_vary(1)
1226 *
1227 * Normally emitting fmov's is frowned upon,
1228 * but due to unique constraints of
1229 * REGISTER_VARYING, fmov emission + a
1230 * dedicated cleanup pass is the only way to
1231 * guarantee correctness when considering some
1232 * (common) edge cases XXX: FIXME */
1233
1234 /* If this varying corresponds to a constant (why?!),
1235 * emit that now since it won't get picked up by
1236 * hoisting (since there is no corresponding move
1237 * emitted otherwise) */
1238
1239 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, reg + 1);
1240
1241 if (constant_value) {
1242 /* Special case: emit the varying write
1243 * directly to r26 (looks funny in asm but it's
1244 * fine) and emit the store _now_. Possibly
1245 * slightly slower, but this is a really stupid
1246 * special case anyway (why on earth would you
1247 * have a constant varying? Your own fault for
1248 * slightly worse perf :P) */
1249
1250 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(26));
1251 attach_constants(ctx, &ins, constant_value, reg + 1);
1252 emit_mir_instruction(ctx, ins);
1253
1254 midgard_instruction st = m_st_vary_32(SSA_FIXED_REGISTER(0), offset);
1255 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
1256 emit_mir_instruction(ctx, st);
1257 } else {
1258 /* Do not emit the varying yet -- instead, just mark down that we need to later */
1259
1260 _mesa_hash_table_u64_insert(ctx->ssa_varyings, reg + 1, (void *) ((uintptr_t) (offset + 1)));
1261 }
1262 } else {
1263 DBG("Unknown store\n");
1264 assert(0);
1265 }
1266
1267 break;
1268
1269 case nir_intrinsic_load_alpha_ref_float:
1270 assert(instr->dest.is_ssa);
1271
1272 float ref_value = ctx->alpha_ref;
1273
1274 float *v = ralloc_array(NULL, float, 4);
1275 memcpy(v, &ref_value, sizeof(float));
1276 _mesa_hash_table_u64_insert(ctx->ssa_constants, instr->dest.ssa.index + 1, v);
1277 break;
1278
1279 case nir_intrinsic_load_viewport_scale:
1280 case nir_intrinsic_load_viewport_offset:
1281 emit_sysval_read(ctx, instr);
1282 break;
1283
1284 default:
1285 printf ("Unhandled intrinsic\n");
1286 assert(0);
1287 break;
1288 }
1289 }
1290
1291 static unsigned
1292 midgard_tex_format(enum glsl_sampler_dim dim)
1293 {
1294 switch (dim) {
1295 case GLSL_SAMPLER_DIM_2D:
1296 case GLSL_SAMPLER_DIM_EXTERNAL:
1297 return TEXTURE_2D;
1298
1299 case GLSL_SAMPLER_DIM_3D:
1300 return TEXTURE_3D;
1301
1302 case GLSL_SAMPLER_DIM_CUBE:
1303 return TEXTURE_CUBE;
1304
1305 default:
1306 DBG("Unknown sampler dim type\n");
1307 assert(0);
1308 return 0;
1309 }
1310 }
1311
1312 static void
1313 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1314 {
1315 /* TODO */
1316 //assert (!instr->sampler);
1317 //assert (!instr->texture_array_size);
1318 assert (instr->op == nir_texop_tex);
1319
1320 /* Allocate registers via a round robin scheme to alternate between the two registers */
1321 int reg = ctx->texture_op_count & 1;
1322 int in_reg = reg, out_reg = reg;
1323
1324 /* Make room for the reg */
1325
1326 if (ctx->texture_index[reg] > -1)
1327 unalias_ssa(ctx, ctx->texture_index[reg]);
1328
1329 int texture_index = instr->texture_index;
1330 int sampler_index = texture_index;
1331
1332 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1333 switch (instr->src[i].src_type) {
1334 case nir_tex_src_coord: {
1335 int index = nir_src_index(ctx, &instr->src[i].src);
1336
1337 midgard_vector_alu_src alu_src = blank_alu_src;
1338
1339 int reg = SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + in_reg);
1340
1341 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1342 /* For cubemaps, we need to load coords into
1343 * special r27, and then use a special ld/st op
1344 * to copy into the texture register */
1345
1346 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_X);
1347
1348 midgard_instruction move = v_fmov(index, alu_src, SSA_FIXED_REGISTER(27));
1349 emit_mir_instruction(ctx, move);
1350
1351 midgard_instruction st = m_st_cubemap_coords(reg, 0);
1352 st.load_store.unknown = 0x24; /* XXX: What is this? */
1353 st.load_store.mask = 0x3; /* xy? */
1354 st.load_store.swizzle = alu_src.swizzle;
1355 emit_mir_instruction(ctx, st);
1356
1357 } else {
1358 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_X, COMPONENT_X);
1359
1360 midgard_instruction ins = v_fmov(index, alu_src, reg);
1361 emit_mir_instruction(ctx, ins);
1362 }
1363
1364 break;
1365 }
1366
1367 default: {
1368 DBG("Unknown source type\n");
1369 //assert(0);
1370 break;
1371 }
1372 }
1373 }
1374
1375 /* No helper to build texture words -- we do it all here */
1376 midgard_instruction ins = {
1377 .type = TAG_TEXTURE_4,
1378 .texture = {
1379 .op = TEXTURE_OP_NORMAL,
1380 .format = midgard_tex_format(instr->sampler_dim),
1381 .texture_handle = texture_index,
1382 .sampler_handle = sampler_index,
1383
1384 /* TODO: Don't force xyzw */
1385 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
1386 .mask = 0xF,
1387
1388 /* TODO: half */
1389 //.in_reg_full = 1,
1390 .out_full = 1,
1391
1392 .filter = 1,
1393
1394 /* Always 1 */
1395 .unknown7 = 1,
1396
1397 /* Assume we can continue; hint it out later */
1398 .cont = 1,
1399 }
1400 };
1401
1402 /* Set registers to read and write from the same place */
1403 ins.texture.in_reg_select = in_reg;
1404 ins.texture.out_reg_select = out_reg;
1405
1406 /* TODO: Dynamic swizzle input selection, half-swizzles? */
1407 if (instr->sampler_dim == GLSL_SAMPLER_DIM_3D) {
1408 ins.texture.in_reg_swizzle_right = COMPONENT_X;
1409 ins.texture.in_reg_swizzle_left = COMPONENT_Y;
1410 //ins.texture.in_reg_swizzle_third = COMPONENT_Z;
1411 } else {
1412 ins.texture.in_reg_swizzle_left = COMPONENT_X;
1413 ins.texture.in_reg_swizzle_right = COMPONENT_Y;
1414 //ins.texture.in_reg_swizzle_third = COMPONENT_X;
1415 }
1416
1417 emit_mir_instruction(ctx, ins);
1418
1419 /* Simultaneously alias the destination and emit a move for it. The move will be eliminated if possible */
1420
1421 int o_reg = REGISTER_TEXTURE_BASE + out_reg, o_index = nir_dest_index(ctx, &instr->dest);
1422 alias_ssa(ctx, o_index, SSA_FIXED_REGISTER(o_reg));
1423 ctx->texture_index[reg] = o_index;
1424
1425 midgard_instruction ins2 = v_fmov(SSA_FIXED_REGISTER(o_reg), blank_alu_src, o_index);
1426 emit_mir_instruction(ctx, ins2);
1427
1428 /* Used for .cont and .last hinting */
1429 ctx->texture_op_count++;
1430 }
1431
1432 static void
1433 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1434 {
1435 switch (instr->type) {
1436 case nir_jump_break: {
1437 /* Emit a branch out of the loop */
1438 struct midgard_instruction br = v_branch(false, false);
1439 br.branch.target_type = TARGET_BREAK;
1440 br.branch.target_break = ctx->current_loop_depth;
1441 emit_mir_instruction(ctx, br);
1442
1443 DBG("break..\n");
1444 break;
1445 }
1446
1447 default:
1448 DBG("Unknown jump type %d\n", instr->type);
1449 break;
1450 }
1451 }
1452
1453 static void
1454 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1455 {
1456 switch (instr->type) {
1457 case nir_instr_type_load_const:
1458 emit_load_const(ctx, nir_instr_as_load_const(instr));
1459 break;
1460
1461 case nir_instr_type_intrinsic:
1462 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1463 break;
1464
1465 case nir_instr_type_alu:
1466 emit_alu(ctx, nir_instr_as_alu(instr));
1467 break;
1468
1469 case nir_instr_type_tex:
1470 emit_tex(ctx, nir_instr_as_tex(instr));
1471 break;
1472
1473 case nir_instr_type_jump:
1474 emit_jump(ctx, nir_instr_as_jump(instr));
1475 break;
1476
1477 case nir_instr_type_ssa_undef:
1478 /* Spurious */
1479 break;
1480
1481 default:
1482 DBG("Unhandled instruction type\n");
1483 break;
1484 }
1485 }
1486
1487 /* Midgard IR only knows vector ALU types, but we sometimes need to actually
1488 * use scalar ALU instructions, for functional or performance reasons. To do
1489 * this, we just demote vector ALU payloads to scalar. */
1490
1491 static int
1492 component_from_mask(unsigned mask)
1493 {
1494 for (int c = 0; c < 4; ++c) {
1495 if (mask & (3 << (2 * c)))
1496 return c;
1497 }
1498
1499 assert(0);
1500 return 0;
1501 }
1502
1503 static bool
1504 is_single_component_mask(unsigned mask)
1505 {
1506 int components = 0;
1507
1508 for (int c = 0; c < 4; ++c)
1509 if (mask & (3 << (2 * c)))
1510 components++;
1511
1512 return components == 1;
1513 }
1514
1515 /* Create a mask of accessed components from a swizzle to figure out vector
1516 * dependencies */
1517
1518 static unsigned
1519 swizzle_to_access_mask(unsigned swizzle)
1520 {
1521 unsigned component_mask = 0;
1522
1523 for (int i = 0; i < 4; ++i) {
1524 unsigned c = (swizzle >> (2 * i)) & 3;
1525 component_mask |= (1 << c);
1526 }
1527
1528 return component_mask;
1529 }
1530
1531 static unsigned
1532 vector_to_scalar_source(unsigned u, bool is_int)
1533 {
1534 midgard_vector_alu_src v;
1535 memcpy(&v, &u, sizeof(v));
1536
1537 /* TODO: Integers */
1538
1539 midgard_scalar_alu_src s = {
1540 .full = !v.half,
1541 .component = (v.swizzle & 3) << 1
1542 };
1543
1544 if (is_int) {
1545 /* TODO */
1546 } else {
1547 s.abs = v.mod & MIDGARD_FLOAT_MOD_ABS;
1548 s.negate = v.mod & MIDGARD_FLOAT_MOD_NEG;
1549 }
1550
1551 unsigned o;
1552 memcpy(&o, &s, sizeof(s));
1553
1554 return o & ((1 << 6) - 1);
1555 }
1556
1557 static midgard_scalar_alu
1558 vector_to_scalar_alu(midgard_vector_alu v, midgard_instruction *ins)
1559 {
1560 bool is_int = midgard_is_integer_op(v.op);
1561
1562 /* The output component is from the mask */
1563 midgard_scalar_alu s = {
1564 .op = v.op,
1565 .src1 = vector_to_scalar_source(v.src1, is_int),
1566 .src2 = vector_to_scalar_source(v.src2, is_int),
1567 .unknown = 0,
1568 .outmod = v.outmod,
1569 .output_full = 1, /* TODO: Half */
1570 .output_component = component_from_mask(v.mask) << 1,
1571 };
1572
1573 /* Inline constant is passed along rather than trying to extract it
1574 * from v */
1575
1576 if (ins->ssa_args.inline_constant) {
1577 uint16_t imm = 0;
1578 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
1579 imm |= (lower_11 >> 9) & 3;
1580 imm |= (lower_11 >> 6) & 4;
1581 imm |= (lower_11 >> 2) & 0x38;
1582 imm |= (lower_11 & 63) << 6;
1583
1584 s.src2 = imm;
1585 }
1586
1587 return s;
1588 }
1589
1590 /* Midgard prefetches instruction types, so during emission we need to
1591 * lookahead too. Unless this is the last instruction, in which we return 1. Or
1592 * if this is the second to last and the last is an ALU, then it's also 1... */
1593
1594 #define IS_ALU(tag) (tag == TAG_ALU_4 || tag == TAG_ALU_8 || \
1595 tag == TAG_ALU_12 || tag == TAG_ALU_16)
1596
1597 #define EMIT_AND_COUNT(type, val) util_dynarray_append(emission, type, val); \
1598 bytes_emitted += sizeof(type)
1599
1600 static void
1601 emit_binary_vector_instruction(midgard_instruction *ains,
1602 uint16_t *register_words, int *register_words_count,
1603 uint64_t *body_words, size_t *body_size, int *body_words_count,
1604 size_t *bytes_emitted)
1605 {
1606 memcpy(&register_words[(*register_words_count)++], &ains->registers, sizeof(ains->registers));
1607 *bytes_emitted += sizeof(midgard_reg_info);
1608
1609 body_size[*body_words_count] = sizeof(midgard_vector_alu);
1610 memcpy(&body_words[(*body_words_count)++], &ains->alu, sizeof(ains->alu));
1611 *bytes_emitted += sizeof(midgard_vector_alu);
1612 }
1613
1614 /* Checks for an SSA data hazard between two adjacent instructions, keeping in
1615 * mind that we are a vector architecture and we can write to different
1616 * components simultaneously */
1617
1618 static bool
1619 can_run_concurrent_ssa(midgard_instruction *first, midgard_instruction *second)
1620 {
1621 /* Each instruction reads some registers and writes to a register. See
1622 * where the first writes */
1623
1624 /* Figure out where exactly we wrote to */
1625 int source = first->ssa_args.dest;
1626 int source_mask = first->type == TAG_ALU_4 ? squeeze_writemask(first->alu.mask) : 0xF;
1627
1628 /* As long as the second doesn't read from the first, we're okay */
1629 if (second->ssa_args.src0 == source) {
1630 if (first->type == TAG_ALU_4) {
1631 /* Figure out which components we just read from */
1632
1633 int q = second->alu.src1;
1634 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
1635
1636 /* Check if there are components in common, and fail if so */
1637 if (swizzle_to_access_mask(m->swizzle) & source_mask)
1638 return false;
1639 } else
1640 return false;
1641
1642 }
1643
1644 if (second->ssa_args.src1 == source)
1645 return false;
1646
1647 /* Otherwise, it's safe in that regard. Another data hazard is both
1648 * writing to the same place, of course */
1649
1650 if (second->ssa_args.dest == source) {
1651 /* ...but only if the components overlap */
1652 int dest_mask = second->type == TAG_ALU_4 ? squeeze_writemask(second->alu.mask) : 0xF;
1653
1654 if (dest_mask & source_mask)
1655 return false;
1656 }
1657
1658 /* ...That's it */
1659 return true;
1660 }
1661
1662 static bool
1663 midgard_has_hazard(
1664 midgard_instruction **segment, unsigned segment_size,
1665 midgard_instruction *ains)
1666 {
1667 for (int s = 0; s < segment_size; ++s)
1668 if (!can_run_concurrent_ssa(segment[s], ains))
1669 return true;
1670
1671 return false;
1672
1673
1674 }
1675
1676 /* Schedules, but does not emit, a single basic block. After scheduling, the
1677 * final tag and size of the block are known, which are necessary for branching
1678 * */
1679
1680 static midgard_bundle
1681 schedule_bundle(compiler_context *ctx, midgard_block *block, midgard_instruction *ins, int *skip)
1682 {
1683 int instructions_emitted = 0, instructions_consumed = -1;
1684 midgard_bundle bundle = { 0 };
1685
1686 uint8_t tag = ins->type;
1687
1688 /* Default to the instruction's tag */
1689 bundle.tag = tag;
1690
1691 switch (ins->type) {
1692 case TAG_ALU_4: {
1693 uint32_t control = 0;
1694 size_t bytes_emitted = sizeof(control);
1695
1696 /* TODO: Constant combining */
1697 int index = 0, last_unit = 0;
1698
1699 /* Previous instructions, for the purpose of parallelism */
1700 midgard_instruction *segment[4] = {0};
1701 int segment_size = 0;
1702
1703 instructions_emitted = -1;
1704 midgard_instruction *pins = ins;
1705
1706 for (;;) {
1707 midgard_instruction *ains = pins;
1708
1709 /* Advance instruction pointer */
1710 if (index) {
1711 ains = mir_next_op(pins);
1712 pins = ains;
1713 }
1714
1715 /* Out-of-work condition */
1716 if ((struct list_head *) ains == &block->instructions)
1717 break;
1718
1719 /* Ensure that the chain can continue */
1720 if (ains->type != TAG_ALU_4) break;
1721
1722 /* If there's already something in the bundle and we
1723 * have weird scheduler constraints, break now */
1724 if (ains->precede_break && index) break;
1725
1726 /* According to the presentation "The ARM
1727 * Mali-T880 Mobile GPU" from HotChips 27,
1728 * there are two pipeline stages. Branching
1729 * position determined experimentally. Lines
1730 * are executed in parallel:
1731 *
1732 * [ VMUL ] [ SADD ]
1733 * [ VADD ] [ SMUL ] [ LUT ] [ BRANCH ]
1734 *
1735 * Verify that there are no ordering dependencies here.
1736 *
1737 * TODO: Allow for parallelism!!!
1738 */
1739
1740 /* Pick a unit for it if it doesn't force a particular unit */
1741
1742 int unit = ains->unit;
1743
1744 if (!unit) {
1745 int op = ains->alu.op;
1746 int units = alu_opcode_props[op].props;
1747
1748 bool vectorable = units & UNITS_ANY_VECTOR;
1749 bool scalarable = units & UNITS_SCALAR;
1750 bool could_scalar = is_single_component_mask(ains->alu.mask);
1751 bool vector = vectorable && !(could_scalar && scalarable);
1752
1753 if (!vector)
1754 assert(units & UNITS_SCALAR);
1755
1756 if (vector) {
1757 if (last_unit >= UNIT_VADD) {
1758 if (units & UNIT_VLUT)
1759 unit = UNIT_VLUT;
1760 else
1761 break;
1762 } else {
1763 if ((units & UNIT_VMUL) && !(control & UNIT_VMUL))
1764 unit = UNIT_VMUL;
1765 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
1766 unit = UNIT_VADD;
1767 else if (units & UNIT_VLUT)
1768 unit = UNIT_VLUT;
1769 else
1770 break;
1771 }
1772 } else {
1773 if (last_unit >= UNIT_VADD) {
1774 if ((units & UNIT_SMUL) && !(control & UNIT_SMUL))
1775 unit = UNIT_SMUL;
1776 else if (units & UNIT_VLUT)
1777 unit = UNIT_VLUT;
1778 else
1779 break;
1780 } else {
1781 if ((units & UNIT_SADD) && !(control & UNIT_SADD) && !midgard_has_hazard(segment, segment_size, ains))
1782 unit = UNIT_SADD;
1783 else if (units & UNIT_SMUL)
1784 unit = ((units & UNIT_VMUL) && !(control & UNIT_VMUL)) ? UNIT_VMUL : UNIT_SMUL;
1785 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
1786 unit = UNIT_VADD;
1787 else
1788 break;
1789 }
1790 }
1791
1792 assert(unit & units);
1793 }
1794
1795 /* Late unit check, this time for encoding (not parallelism) */
1796 if (unit <= last_unit) break;
1797
1798 /* Clear the segment */
1799 if (last_unit < UNIT_VADD && unit >= UNIT_VADD)
1800 segment_size = 0;
1801
1802 if (midgard_has_hazard(segment, segment_size, ains))
1803 break;
1804
1805 /* We're good to go -- emit the instruction */
1806 ains->unit = unit;
1807
1808 segment[segment_size++] = ains;
1809
1810 /* Only one set of embedded constants per
1811 * bundle possible; if we have more, we must
1812 * break the chain early, unfortunately */
1813
1814 if (ains->has_constants) {
1815 if (bundle.has_embedded_constants) {
1816 /* The blend constant needs to be
1817 * alone, since it conflicts with
1818 * everything by definition*/
1819
1820 if (ains->has_blend_constant || bundle.has_blend_constant)
1821 break;
1822
1823 /* ...but if there are already
1824 * constants but these are the
1825 * *same* constants, we let it
1826 * through */
1827
1828 if (memcmp(bundle.constants, ains->constants, sizeof(bundle.constants)))
1829 break;
1830 } else {
1831 bundle.has_embedded_constants = true;
1832 memcpy(bundle.constants, ains->constants, sizeof(bundle.constants));
1833
1834 /* If this is a blend shader special constant, track it for patching */
1835 bundle.has_blend_constant |= ains->has_blend_constant;
1836 }
1837 }
1838
1839 if (ains->unit & UNITS_ANY_VECTOR) {
1840 emit_binary_vector_instruction(ains, bundle.register_words,
1841 &bundle.register_words_count, bundle.body_words,
1842 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
1843 } else if (ains->compact_branch) {
1844 /* All of r0 has to be written out
1845 * along with the branch writeout.
1846 * (slow!) */
1847
1848 if (ains->writeout) {
1849 if (index == 0) {
1850 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
1851 ins.unit = UNIT_VMUL;
1852
1853 control |= ins.unit;
1854
1855 emit_binary_vector_instruction(&ins, bundle.register_words,
1856 &bundle.register_words_count, bundle.body_words,
1857 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
1858 } else {
1859 /* Analyse the group to see if r0 is written in full, on-time, without hanging dependencies*/
1860 bool written_late = false;
1861 bool components[4] = { 0 };
1862 uint16_t register_dep_mask = 0;
1863 uint16_t written_mask = 0;
1864
1865 midgard_instruction *qins = ins;
1866 for (int t = 0; t < index; ++t) {
1867 if (qins->registers.out_reg != 0) {
1868 /* Mark down writes */
1869
1870 written_mask |= (1 << qins->registers.out_reg);
1871 } else {
1872 /* Mark down the register dependencies for errata check */
1873
1874 if (qins->registers.src1_reg < 16)
1875 register_dep_mask |= (1 << qins->registers.src1_reg);
1876
1877 if (qins->registers.src2_reg < 16)
1878 register_dep_mask |= (1 << qins->registers.src2_reg);
1879
1880 int mask = qins->alu.mask;
1881
1882 for (int c = 0; c < 4; ++c)
1883 if (mask & (0x3 << (2 * c)))
1884 components[c] = true;
1885
1886 /* ..but if the writeout is too late, we have to break up anyway... for some reason */
1887
1888 if (qins->unit == UNIT_VLUT)
1889 written_late = true;
1890 }
1891
1892 /* Advance instruction pointer */
1893 qins = mir_next_op(qins);
1894 }
1895
1896
1897 /* Register dependencies of r0 must be out of fragment writeout bundle */
1898 if (register_dep_mask & written_mask)
1899 break;
1900
1901 if (written_late)
1902 break;
1903
1904 /* If even a single component is not written, break it up (conservative check). */
1905 bool breakup = false;
1906
1907 for (int c = 0; c < 4; ++c)
1908 if (!components[c])
1909 breakup = true;
1910
1911 if (breakup)
1912 break;
1913
1914 /* Otherwise, we're free to proceed */
1915 }
1916 }
1917
1918 if (ains->unit == ALU_ENAB_BRANCH) {
1919 bundle.body_size[bundle.body_words_count] = sizeof(midgard_branch_extended);
1920 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->branch_extended, sizeof(midgard_branch_extended));
1921 bytes_emitted += sizeof(midgard_branch_extended);
1922 } else {
1923 bundle.body_size[bundle.body_words_count] = sizeof(ains->br_compact);
1924 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->br_compact, sizeof(ains->br_compact));
1925 bytes_emitted += sizeof(ains->br_compact);
1926 }
1927 } else {
1928 memcpy(&bundle.register_words[bundle.register_words_count++], &ains->registers, sizeof(ains->registers));
1929 bytes_emitted += sizeof(midgard_reg_info);
1930
1931 bundle.body_size[bundle.body_words_count] = sizeof(midgard_scalar_alu);
1932 bundle.body_words_count++;
1933 bytes_emitted += sizeof(midgard_scalar_alu);
1934 }
1935
1936 /* Defer marking until after writing to allow for break */
1937 control |= ains->unit;
1938 last_unit = ains->unit;
1939 ++instructions_emitted;
1940 ++index;
1941 }
1942
1943 /* Bubble up the number of instructions for skipping */
1944 instructions_consumed = index - 1;
1945
1946 int padding = 0;
1947
1948 /* Pad ALU op to nearest word */
1949
1950 if (bytes_emitted & 15) {
1951 padding = 16 - (bytes_emitted & 15);
1952 bytes_emitted += padding;
1953 }
1954
1955 /* Constants must always be quadwords */
1956 if (bundle.has_embedded_constants)
1957 bytes_emitted += 16;
1958
1959 /* Size ALU instruction for tag */
1960 bundle.tag = (TAG_ALU_4) + (bytes_emitted / 16) - 1;
1961 bundle.padding = padding;
1962 bundle.control = bundle.tag | control;
1963
1964 break;
1965 }
1966
1967 case TAG_LOAD_STORE_4: {
1968 /* Load store instructions have two words at once. If
1969 * we only have one queued up, we need to NOP pad.
1970 * Otherwise, we store both in succession to save space
1971 * and cycles -- letting them go in parallel -- skip
1972 * the next. The usefulness of this optimisation is
1973 * greatly dependent on the quality of the instruction
1974 * scheduler.
1975 */
1976
1977 midgard_instruction *next_op = mir_next_op(ins);
1978
1979 if ((struct list_head *) next_op != &block->instructions && next_op->type == TAG_LOAD_STORE_4) {
1980 /* As the two operate concurrently, make sure
1981 * they are not dependent */
1982
1983 if (can_run_concurrent_ssa(ins, next_op) || true) {
1984 /* Skip ahead, since it's redundant with the pair */
1985 instructions_consumed = 1 + (instructions_emitted++);
1986 }
1987 }
1988
1989 break;
1990 }
1991
1992 default:
1993 /* Texture ops default to single-op-per-bundle scheduling */
1994 break;
1995 }
1996
1997 /* Copy the instructions into the bundle */
1998 bundle.instruction_count = instructions_emitted + 1;
1999
2000 int used_idx = 0;
2001
2002 midgard_instruction *uins = ins;
2003 for (int i = 0; used_idx < bundle.instruction_count; ++i) {
2004 bundle.instructions[used_idx++] = *uins;
2005 uins = mir_next_op(uins);
2006 }
2007
2008 *skip = (instructions_consumed == -1) ? instructions_emitted : instructions_consumed;
2009
2010 return bundle;
2011 }
2012
2013 static int
2014 quadword_size(int tag)
2015 {
2016 switch (tag) {
2017 case TAG_ALU_4:
2018 return 1;
2019
2020 case TAG_ALU_8:
2021 return 2;
2022
2023 case TAG_ALU_12:
2024 return 3;
2025
2026 case TAG_ALU_16:
2027 return 4;
2028
2029 case TAG_LOAD_STORE_4:
2030 return 1;
2031
2032 case TAG_TEXTURE_4:
2033 return 1;
2034
2035 default:
2036 assert(0);
2037 return 0;
2038 }
2039 }
2040
2041 /* Schedule a single block by iterating its instruction to create bundles.
2042 * While we go, tally about the bundle sizes to compute the block size. */
2043
2044 static void
2045 schedule_block(compiler_context *ctx, midgard_block *block)
2046 {
2047 util_dynarray_init(&block->bundles, NULL);
2048
2049 block->quadword_count = 0;
2050
2051 mir_foreach_instr_in_block(block, ins) {
2052 int skip;
2053 midgard_bundle bundle = schedule_bundle(ctx, block, ins, &skip);
2054 util_dynarray_append(&block->bundles, midgard_bundle, bundle);
2055
2056 if (bundle.has_blend_constant) {
2057 /* TODO: Multiblock? */
2058 int quadwords_within_block = block->quadword_count + quadword_size(bundle.tag) - 1;
2059 ctx->blend_constant_offset = quadwords_within_block * 0x10;
2060 }
2061
2062 while(skip--)
2063 ins = mir_next_op(ins);
2064
2065 block->quadword_count += quadword_size(bundle.tag);
2066 }
2067
2068 block->is_scheduled = true;
2069 }
2070
2071 static void
2072 schedule_program(compiler_context *ctx)
2073 {
2074 /* We run RA prior to scheduling */
2075 struct ra_graph *g = allocate_registers(ctx);
2076 install_registers(ctx, g);
2077
2078 mir_foreach_block(ctx, block) {
2079 schedule_block(ctx, block);
2080 }
2081 }
2082
2083 /* After everything is scheduled, emit whole bundles at a time */
2084
2085 static void
2086 emit_binary_bundle(compiler_context *ctx, midgard_bundle *bundle, struct util_dynarray *emission, int next_tag)
2087 {
2088 int lookahead = next_tag << 4;
2089
2090 switch (bundle->tag) {
2091 case TAG_ALU_4:
2092 case TAG_ALU_8:
2093 case TAG_ALU_12:
2094 case TAG_ALU_16: {
2095 /* Actually emit each component */
2096 util_dynarray_append(emission, uint32_t, bundle->control | lookahead);
2097
2098 for (int i = 0; i < bundle->register_words_count; ++i)
2099 util_dynarray_append(emission, uint16_t, bundle->register_words[i]);
2100
2101 /* Emit body words based on the instructions bundled */
2102 for (int i = 0; i < bundle->instruction_count; ++i) {
2103 midgard_instruction *ins = &bundle->instructions[i];
2104
2105 if (ins->unit & UNITS_ANY_VECTOR) {
2106 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins->alu, sizeof(midgard_vector_alu));
2107 } else if (ins->compact_branch) {
2108 /* Dummy move, XXX DRY */
2109 if ((i == 0) && ins->writeout) {
2110 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2111 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins.alu, sizeof(midgard_vector_alu));
2112 }
2113
2114 if (ins->unit == ALU_ENAB_BR_COMPACT) {
2115 memcpy(util_dynarray_grow(emission, sizeof(ins->br_compact)), &ins->br_compact, sizeof(ins->br_compact));
2116 } else {
2117 memcpy(util_dynarray_grow(emission, sizeof(ins->branch_extended)), &ins->branch_extended, sizeof(ins->branch_extended));
2118 }
2119 } else {
2120 /* Scalar */
2121 midgard_scalar_alu scalarised = vector_to_scalar_alu(ins->alu, ins);
2122 memcpy(util_dynarray_grow(emission, sizeof(scalarised)), &scalarised, sizeof(scalarised));
2123 }
2124 }
2125
2126 /* Emit padding (all zero) */
2127 memset(util_dynarray_grow(emission, bundle->padding), 0, bundle->padding);
2128
2129 /* Tack on constants */
2130
2131 if (bundle->has_embedded_constants) {
2132 util_dynarray_append(emission, float, bundle->constants[0]);
2133 util_dynarray_append(emission, float, bundle->constants[1]);
2134 util_dynarray_append(emission, float, bundle->constants[2]);
2135 util_dynarray_append(emission, float, bundle->constants[3]);
2136 }
2137
2138 break;
2139 }
2140
2141 case TAG_LOAD_STORE_4: {
2142 /* One or two composing instructions */
2143
2144 uint64_t current64, next64 = LDST_NOP;
2145
2146 memcpy(&current64, &bundle->instructions[0].load_store, sizeof(current64));
2147
2148 if (bundle->instruction_count == 2)
2149 memcpy(&next64, &bundle->instructions[1].load_store, sizeof(next64));
2150
2151 midgard_load_store instruction = {
2152 .type = bundle->tag,
2153 .next_type = next_tag,
2154 .word1 = current64,
2155 .word2 = next64
2156 };
2157
2158 util_dynarray_append(emission, midgard_load_store, instruction);
2159
2160 break;
2161 }
2162
2163 case TAG_TEXTURE_4: {
2164 /* Texture instructions are easy, since there is no
2165 * pipelining nor VLIW to worry about. We may need to set the .last flag */
2166
2167 midgard_instruction *ins = &bundle->instructions[0];
2168
2169 ins->texture.type = TAG_TEXTURE_4;
2170 ins->texture.next_type = next_tag;
2171
2172 ctx->texture_op_count--;
2173
2174 if (!ctx->texture_op_count) {
2175 ins->texture.cont = 0;
2176 ins->texture.last = 1;
2177 }
2178
2179 util_dynarray_append(emission, midgard_texture_word, ins->texture);
2180 break;
2181 }
2182
2183 default:
2184 DBG("Unknown midgard instruction type\n");
2185 assert(0);
2186 break;
2187 }
2188 }
2189
2190
2191 /* ALU instructions can inline or embed constants, which decreases register
2192 * pressure and saves space. */
2193
2194 #define CONDITIONAL_ATTACH(src) { \
2195 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src + 1); \
2196 \
2197 if (entry) { \
2198 attach_constants(ctx, alu, entry, alu->ssa_args.src + 1); \
2199 alu->ssa_args.src = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
2200 } \
2201 }
2202
2203 static void
2204 inline_alu_constants(compiler_context *ctx)
2205 {
2206 mir_foreach_instr(ctx, alu) {
2207 /* Other instructions cannot inline constants */
2208 if (alu->type != TAG_ALU_4) continue;
2209
2210 /* If there is already a constant here, we can do nothing */
2211 if (alu->has_constants) continue;
2212
2213 /* It makes no sense to inline constants on a branch */
2214 if (alu->compact_branch || alu->prepacked_branch) continue;
2215
2216 CONDITIONAL_ATTACH(src0);
2217
2218 if (!alu->has_constants) {
2219 CONDITIONAL_ATTACH(src1)
2220 } else if (!alu->inline_constant) {
2221 /* Corner case: _two_ vec4 constants, for instance with a
2222 * csel. For this case, we can only use a constant
2223 * register for one, we'll have to emit a move for the
2224 * other. Note, if both arguments are constants, then
2225 * necessarily neither argument depends on the value of
2226 * any particular register. As the destination register
2227 * will be wiped, that means we can spill the constant
2228 * to the destination register.
2229 */
2230
2231 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src1 + 1);
2232 unsigned scratch = alu->ssa_args.dest;
2233
2234 if (entry) {
2235 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
2236 attach_constants(ctx, &ins, entry, alu->ssa_args.src1 + 1);
2237
2238 /* Force a break XXX Defer r31 writes */
2239 ins.unit = UNIT_VLUT;
2240
2241 /* Set the source */
2242 alu->ssa_args.src1 = scratch;
2243
2244 /* Inject us -before- the last instruction which set r31 */
2245 mir_insert_instruction_before(mir_prev_op(alu), ins);
2246 }
2247 }
2248 }
2249 }
2250
2251 /* Midgard supports two types of constants, embedded constants (128-bit) and
2252 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
2253 * constants can be demoted to inline constants, for space savings and
2254 * sometimes a performance boost */
2255
2256 static void
2257 embedded_to_inline_constant(compiler_context *ctx)
2258 {
2259 mir_foreach_instr(ctx, ins) {
2260 if (!ins->has_constants) continue;
2261
2262 if (ins->ssa_args.inline_constant) continue;
2263
2264 /* Blend constants must not be inlined by definition */
2265 if (ins->has_blend_constant) continue;
2266
2267 /* src1 cannot be an inline constant due to encoding
2268 * restrictions. So, if possible we try to flip the arguments
2269 * in that case */
2270
2271 int op = ins->alu.op;
2272
2273 if (ins->ssa_args.src0 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2274 switch (op) {
2275 /* These ops require an operational change to flip
2276 * their arguments TODO */
2277 case midgard_alu_op_flt:
2278 case midgard_alu_op_fle:
2279 case midgard_alu_op_ilt:
2280 case midgard_alu_op_ile:
2281 case midgard_alu_op_fcsel:
2282 case midgard_alu_op_icsel:
2283 DBG("Missed non-commutative flip (%s)\n", alu_opcode_props[op].name);
2284 default:
2285 break;
2286 }
2287
2288 if (alu_opcode_props[op].props & OP_COMMUTES) {
2289 /* Flip the SSA numbers */
2290 ins->ssa_args.src0 = ins->ssa_args.src1;
2291 ins->ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
2292
2293 /* And flip the modifiers */
2294
2295 unsigned src_temp;
2296
2297 src_temp = ins->alu.src2;
2298 ins->alu.src2 = ins->alu.src1;
2299 ins->alu.src1 = src_temp;
2300 }
2301 }
2302
2303 if (ins->ssa_args.src1 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2304 /* Extract the source information */
2305
2306 midgard_vector_alu_src *src;
2307 int q = ins->alu.src2;
2308 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2309 src = m;
2310
2311 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
2312 int component = src->swizzle & 3;
2313
2314 /* Scale constant appropriately, if we can legally */
2315 uint16_t scaled_constant = 0;
2316
2317 if (midgard_is_integer_op(op)) {
2318 unsigned int *iconstants = (unsigned int *) ins->constants;
2319 scaled_constant = (uint16_t) iconstants[component];
2320
2321 /* Constant overflow after resize */
2322 if (scaled_constant != iconstants[component])
2323 continue;
2324 } else {
2325 float original = (float) ins->constants[component];
2326 scaled_constant = _mesa_float_to_half(original);
2327
2328 /* Check for loss of precision. If this is
2329 * mediump, we don't care, but for a highp
2330 * shader, we need to pay attention. NIR
2331 * doesn't yet tell us which mode we're in!
2332 * Practically this prevents most constants
2333 * from being inlined, sadly. */
2334
2335 float fp32 = _mesa_half_to_float(scaled_constant);
2336
2337 if (fp32 != original)
2338 continue;
2339 }
2340
2341 /* We don't know how to handle these with a constant */
2342
2343 if (src->mod || src->half || src->rep_low || src->rep_high) {
2344 DBG("Bailing inline constant...\n");
2345 continue;
2346 }
2347
2348 /* Make sure that the constant is not itself a
2349 * vector by checking if all accessed values
2350 * (by the swizzle) are the same. */
2351
2352 uint32_t *cons = (uint32_t *) ins->constants;
2353 uint32_t value = cons[component];
2354
2355 bool is_vector = false;
2356 unsigned mask = effective_writemask(&ins->alu);
2357
2358 for (int c = 1; c < 4; ++c) {
2359 /* We only care if this component is actually used */
2360 if (!(mask & (1 << c)))
2361 continue;
2362
2363 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
2364
2365 if (test != value) {
2366 is_vector = true;
2367 break;
2368 }
2369 }
2370
2371 if (is_vector)
2372 continue;
2373
2374 /* Get rid of the embedded constant */
2375 ins->has_constants = false;
2376 ins->ssa_args.src1 = SSA_UNUSED_0;
2377 ins->ssa_args.inline_constant = true;
2378 ins->inline_constant = scaled_constant;
2379 }
2380 }
2381 }
2382
2383 /* Map normal SSA sources to other SSA sources / fixed registers (like
2384 * uniforms) */
2385
2386 static void
2387 map_ssa_to_alias(compiler_context *ctx, int *ref)
2388 {
2389 unsigned int alias = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_alias, *ref + 1);
2390
2391 if (alias) {
2392 /* Remove entry in leftovers to avoid a redunant fmov */
2393
2394 struct set_entry *leftover = _mesa_set_search(ctx->leftover_ssa_to_alias, ((void *) (uintptr_t) (*ref + 1)));
2395
2396 if (leftover)
2397 _mesa_set_remove(ctx->leftover_ssa_to_alias, leftover);
2398
2399 /* Assign the alias map */
2400 *ref = alias - 1;
2401 return;
2402 }
2403 }
2404
2405 /* Basic dead code elimination on the MIR itself, which cleans up e.g. the
2406 * texture pipeline */
2407
2408 static bool
2409 midgard_opt_dead_code_eliminate(compiler_context *ctx, midgard_block *block)
2410 {
2411 bool progress = false;
2412
2413 mir_foreach_instr_in_block_safe(block, ins) {
2414 if (ins->type != TAG_ALU_4) continue;
2415 if (ins->compact_branch) continue;
2416
2417 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
2418 if (mir_is_live_after(ctx, block, ins, ins->ssa_args.dest)) continue;
2419
2420 mir_remove_instruction(ins);
2421 progress = true;
2422 }
2423
2424 return progress;
2425 }
2426
2427 static bool
2428 mir_nontrivial_mod(midgard_vector_alu_src src, bool is_int, unsigned mask)
2429 {
2430 /* abs or neg */
2431 if (!is_int && src.mod) return true;
2432
2433 /* swizzle */
2434 for (unsigned c = 0; c < 4; ++c) {
2435 if (!(mask & (1 << c))) continue;
2436 if (((src.swizzle >> (2*c)) & 3) != c) return true;
2437 }
2438
2439 return false;
2440 }
2441
2442 static bool
2443 midgard_opt_copy_prop(compiler_context *ctx, midgard_block *block)
2444 {
2445 bool progress = false;
2446
2447 mir_foreach_instr_in_block_safe(block, ins) {
2448 if (ins->type != TAG_ALU_4) continue;
2449 if (!OP_IS_MOVE(ins->alu.op)) continue;
2450
2451 unsigned from = ins->ssa_args.src1;
2452 unsigned to = ins->ssa_args.dest;
2453
2454 /* We only work on pure SSA */
2455
2456 if (to >= SSA_FIXED_MINIMUM) continue;
2457 if (from >= SSA_FIXED_MINIMUM) continue;
2458 if (to >= ctx->func->impl->ssa_alloc) continue;
2459 if (from >= ctx->func->impl->ssa_alloc) continue;
2460
2461 /* Constant propagation is not handled here, either */
2462 if (ins->ssa_args.inline_constant) continue;
2463 if (ins->has_constants) continue;
2464
2465 /* Also, if the move has side effects, we're helpless */
2466
2467 midgard_vector_alu_src src =
2468 vector_alu_from_unsigned(ins->alu.src2);
2469 unsigned mask = squeeze_writemask(ins->alu.mask);
2470 bool is_int = midgard_is_integer_op(ins->alu.op);
2471
2472 if (mir_nontrivial_mod(src, is_int, mask)) continue;
2473 if (ins->alu.outmod != midgard_outmod_none) continue;
2474
2475 mir_foreach_instr_in_block_from(block, v, mir_next_op(ins)) {
2476 if (v->ssa_args.src0 == to) {
2477 v->ssa_args.src0 = from;
2478 progress = true;
2479 }
2480
2481 if (v->ssa_args.src1 == to && !v->ssa_args.inline_constant) {
2482 v->ssa_args.src1 = from;
2483 progress = true;
2484 }
2485 }
2486 }
2487
2488 return progress;
2489 }
2490
2491 static bool
2492 midgard_opt_copy_prop_tex(compiler_context *ctx, midgard_block *block)
2493 {
2494 bool progress = false;
2495
2496 mir_foreach_instr_in_block_safe(block, ins) {
2497 if (ins->type != TAG_ALU_4) continue;
2498 if (!OP_IS_MOVE(ins->alu.op)) continue;
2499
2500 unsigned from = ins->ssa_args.src1;
2501 unsigned to = ins->ssa_args.dest;
2502
2503 /* Make sure it's simple enough for us to handle */
2504
2505 if (from >= SSA_FIXED_MINIMUM) continue;
2506 if (from >= ctx->func->impl->ssa_alloc) continue;
2507 if (to < SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE)) continue;
2508 if (to > SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + 1)) continue;
2509
2510 bool eliminated = false;
2511
2512 mir_foreach_instr_in_block_from_rev(block, v, mir_prev_op(ins)) {
2513 /* The texture registers are not SSA so be careful.
2514 * Conservatively, just stop if we hit a texture op
2515 * (even if it may not write) to where we are */
2516
2517 if (v->type != TAG_ALU_4)
2518 break;
2519
2520 if (v->ssa_args.dest == from) {
2521 /* We don't want to track partial writes ... */
2522 if (v->alu.mask == 0xF) {
2523 v->ssa_args.dest = to;
2524 eliminated = true;
2525 }
2526
2527 break;
2528 }
2529 }
2530
2531 if (eliminated)
2532 mir_remove_instruction(ins);
2533
2534 progress |= eliminated;
2535 }
2536
2537 return progress;
2538 }
2539
2540 /* The following passes reorder MIR instructions to enable better scheduling */
2541
2542 static void
2543 midgard_pair_load_store(compiler_context *ctx, midgard_block *block)
2544 {
2545 mir_foreach_instr_in_block_safe(block, ins) {
2546 if (ins->type != TAG_LOAD_STORE_4) continue;
2547
2548 /* We've found a load/store op. Check if next is also load/store. */
2549 midgard_instruction *next_op = mir_next_op(ins);
2550 if (&next_op->link != &block->instructions) {
2551 if (next_op->type == TAG_LOAD_STORE_4) {
2552 /* If so, we're done since we're a pair */
2553 ins = mir_next_op(ins);
2554 continue;
2555 }
2556
2557 /* Maximum search distance to pair, to avoid register pressure disasters */
2558 int search_distance = 8;
2559
2560 /* Otherwise, we have an orphaned load/store -- search for another load */
2561 mir_foreach_instr_in_block_from(block, c, mir_next_op(ins)) {
2562 /* Terminate search if necessary */
2563 if (!(search_distance--)) break;
2564
2565 if (c->type != TAG_LOAD_STORE_4) continue;
2566
2567 /* Stores cannot be reordered, since they have
2568 * dependencies. For the same reason, indirect
2569 * loads cannot be reordered as their index is
2570 * loaded in r27.w */
2571
2572 if (OP_IS_STORE(c->load_store.op)) continue;
2573
2574 /* It appears the 0x800 bit is set whenever a
2575 * load is direct, unset when it is indirect.
2576 * Skip indirect loads. */
2577
2578 if (!(c->load_store.unknown & 0x800)) continue;
2579
2580 /* We found one! Move it up to pair and remove it from the old location */
2581
2582 mir_insert_instruction_before(ins, *c);
2583 mir_remove_instruction(c);
2584
2585 break;
2586 }
2587 }
2588 }
2589 }
2590
2591 /* Emit varying stores late */
2592
2593 static void
2594 midgard_emit_store(compiler_context *ctx, midgard_block *block) {
2595 /* Iterate in reverse to get the final write, rather than the first */
2596
2597 mir_foreach_instr_in_block_safe_rev(block, ins) {
2598 /* Check if what we just wrote needs a store */
2599 int idx = ins->ssa_args.dest;
2600 uintptr_t varying = ((uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_varyings, idx + 1));
2601
2602 if (!varying) continue;
2603
2604 varying -= 1;
2605
2606 /* We need to store to the appropriate varying, so emit the
2607 * move/store */
2608
2609 /* TODO: Integrate with special purpose RA (and scheduler?) */
2610 bool high_varying_register = false;
2611
2612 midgard_instruction mov = v_fmov(idx, blank_alu_src, SSA_FIXED_REGISTER(REGISTER_VARYING_BASE + high_varying_register));
2613
2614 midgard_instruction st = m_st_vary_32(SSA_FIXED_REGISTER(high_varying_register), varying);
2615 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
2616
2617 mir_insert_instruction_before(mir_next_op(ins), st);
2618 mir_insert_instruction_before(mir_next_op(ins), mov);
2619
2620 /* We no longer need to store this varying */
2621 _mesa_hash_table_u64_remove(ctx->ssa_varyings, idx + 1);
2622 }
2623 }
2624
2625 /* If there are leftovers after the below pass, emit actual fmov
2626 * instructions for the slow-but-correct path */
2627
2628 static void
2629 emit_leftover_move(compiler_context *ctx)
2630 {
2631 set_foreach(ctx->leftover_ssa_to_alias, leftover) {
2632 int base = ((uintptr_t) leftover->key) - 1;
2633 int mapped = base;
2634
2635 map_ssa_to_alias(ctx, &mapped);
2636 EMIT(fmov, mapped, blank_alu_src, base);
2637 }
2638 }
2639
2640 static void
2641 actualise_ssa_to_alias(compiler_context *ctx)
2642 {
2643 mir_foreach_instr(ctx, ins) {
2644 map_ssa_to_alias(ctx, &ins->ssa_args.src0);
2645 map_ssa_to_alias(ctx, &ins->ssa_args.src1);
2646 }
2647
2648 emit_leftover_move(ctx);
2649 }
2650
2651 static void
2652 emit_fragment_epilogue(compiler_context *ctx)
2653 {
2654 /* Special case: writing out constants requires us to include the move
2655 * explicitly now, so shove it into r0 */
2656
2657 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, ctx->fragment_output + 1);
2658
2659 if (constant_value) {
2660 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(0));
2661 attach_constants(ctx, &ins, constant_value, ctx->fragment_output + 1);
2662 emit_mir_instruction(ctx, ins);
2663 }
2664
2665 /* Perform the actual fragment writeout. We have two writeout/branch
2666 * instructions, forming a loop until writeout is successful as per the
2667 * docs. TODO: gl_FragDepth */
2668
2669 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
2670 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
2671 }
2672
2673 /* For the blend epilogue, we need to convert the blended fragment vec4 (stored
2674 * in r0) to a RGBA8888 value by scaling and type converting. We then output it
2675 * with the int8 analogue to the fragment epilogue */
2676
2677 static void
2678 emit_blend_epilogue(compiler_context *ctx)
2679 {
2680 /* vmul.fmul.none.fulllow hr48, r0, #255 */
2681
2682 midgard_instruction scale = {
2683 .type = TAG_ALU_4,
2684 .unit = UNIT_VMUL,
2685 .inline_constant = _mesa_float_to_half(255.0),
2686 .ssa_args = {
2687 .src0 = SSA_FIXED_REGISTER(0),
2688 .src1 = SSA_UNUSED_0,
2689 .dest = SSA_FIXED_REGISTER(24),
2690 .inline_constant = true
2691 },
2692 .alu = {
2693 .op = midgard_alu_op_fmul,
2694 .reg_mode = midgard_reg_mode_32,
2695 .dest_override = midgard_dest_override_lower,
2696 .mask = 0xFF,
2697 .src1 = vector_alu_srco_unsigned(blank_alu_src),
2698 .src2 = vector_alu_srco_unsigned(blank_alu_src),
2699 }
2700 };
2701
2702 emit_mir_instruction(ctx, scale);
2703
2704 /* vadd.f2u8.pos.low hr0, hr48, #0 */
2705
2706 midgard_vector_alu_src alu_src = blank_alu_src;
2707 alu_src.half = true;
2708
2709 midgard_instruction f2u8 = {
2710 .type = TAG_ALU_4,
2711 .ssa_args = {
2712 .src0 = SSA_FIXED_REGISTER(24),
2713 .src1 = SSA_UNUSED_0,
2714 .dest = SSA_FIXED_REGISTER(0),
2715 .inline_constant = true
2716 },
2717 .alu = {
2718 .op = midgard_alu_op_f2u8,
2719 .reg_mode = midgard_reg_mode_16,
2720 .dest_override = midgard_dest_override_lower,
2721 .outmod = midgard_outmod_pos,
2722 .mask = 0xF,
2723 .src1 = vector_alu_srco_unsigned(alu_src),
2724 .src2 = vector_alu_srco_unsigned(blank_alu_src),
2725 }
2726 };
2727
2728 emit_mir_instruction(ctx, f2u8);
2729
2730 /* vmul.imov.quarter r0, r0, r0 */
2731
2732 midgard_instruction imov_8 = {
2733 .type = TAG_ALU_4,
2734 .ssa_args = {
2735 .src0 = SSA_UNUSED_1,
2736 .src1 = SSA_FIXED_REGISTER(0),
2737 .dest = SSA_FIXED_REGISTER(0),
2738 },
2739 .alu = {
2740 .op = midgard_alu_op_imov,
2741 .reg_mode = midgard_reg_mode_8,
2742 .dest_override = midgard_dest_override_none,
2743 .outmod = midgard_outmod_int,
2744 .mask = 0xFF,
2745 .src1 = vector_alu_srco_unsigned(blank_alu_src),
2746 .src2 = vector_alu_srco_unsigned(blank_alu_src),
2747 }
2748 };
2749
2750 /* Emit branch epilogue with the 8-bit move as the source */
2751
2752 emit_mir_instruction(ctx, imov_8);
2753 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
2754
2755 emit_mir_instruction(ctx, imov_8);
2756 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
2757 }
2758
2759 static midgard_block *
2760 emit_block(compiler_context *ctx, nir_block *block)
2761 {
2762 midgard_block *this_block = calloc(sizeof(midgard_block), 1);
2763 list_addtail(&this_block->link, &ctx->blocks);
2764
2765 this_block->is_scheduled = false;
2766 ++ctx->block_count;
2767
2768 ctx->texture_index[0] = -1;
2769 ctx->texture_index[1] = -1;
2770
2771 /* Add us as a successor to the block we are following */
2772 if (ctx->current_block)
2773 midgard_block_add_successor(ctx->current_block, this_block);
2774
2775 /* Set up current block */
2776 list_inithead(&this_block->instructions);
2777 ctx->current_block = this_block;
2778
2779 nir_foreach_instr(instr, block) {
2780 emit_instr(ctx, instr);
2781 ++ctx->instruction_count;
2782 }
2783
2784 inline_alu_constants(ctx);
2785 embedded_to_inline_constant(ctx);
2786
2787 /* Perform heavylifting for aliasing */
2788 actualise_ssa_to_alias(ctx);
2789
2790 midgard_emit_store(ctx, this_block);
2791 midgard_pair_load_store(ctx, this_block);
2792
2793 /* Append fragment shader epilogue (value writeout) */
2794 if (ctx->stage == MESA_SHADER_FRAGMENT) {
2795 if (block == nir_impl_last_block(ctx->func->impl)) {
2796 if (ctx->is_blend)
2797 emit_blend_epilogue(ctx);
2798 else
2799 emit_fragment_epilogue(ctx);
2800 }
2801 }
2802
2803 if (block == nir_start_block(ctx->func->impl))
2804 ctx->initial_block = this_block;
2805
2806 if (block == nir_impl_last_block(ctx->func->impl))
2807 ctx->final_block = this_block;
2808
2809 /* Allow the next control flow to access us retroactively, for
2810 * branching etc */
2811 ctx->current_block = this_block;
2812
2813 /* Document the fallthrough chain */
2814 ctx->previous_source_block = this_block;
2815
2816 return this_block;
2817 }
2818
2819 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
2820
2821 static void
2822 emit_if(struct compiler_context *ctx, nir_if *nif)
2823 {
2824 /* Conditional branches expect the condition in r31.w; emit a move for
2825 * that in the _previous_ block (which is the current block). */
2826 emit_condition(ctx, &nif->condition, true, COMPONENT_X);
2827
2828 /* Speculatively emit the branch, but we can't fill it in until later */
2829 EMIT(branch, true, true);
2830 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
2831
2832 /* Emit the two subblocks */
2833 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
2834
2835 /* Emit a jump from the end of the then block to the end of the else */
2836 EMIT(branch, false, false);
2837 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
2838
2839 /* Emit second block, and check if it's empty */
2840
2841 int else_idx = ctx->block_count;
2842 int count_in = ctx->instruction_count;
2843 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
2844 int after_else_idx = ctx->block_count;
2845
2846 /* Now that we have the subblocks emitted, fix up the branches */
2847
2848 assert(then_block);
2849 assert(else_block);
2850
2851 if (ctx->instruction_count == count_in) {
2852 /* The else block is empty, so don't emit an exit jump */
2853 mir_remove_instruction(then_exit);
2854 then_branch->branch.target_block = after_else_idx;
2855 } else {
2856 then_branch->branch.target_block = else_idx;
2857 then_exit->branch.target_block = after_else_idx;
2858 }
2859 }
2860
2861 static void
2862 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
2863 {
2864 /* Remember where we are */
2865 midgard_block *start_block = ctx->current_block;
2866
2867 /* Allocate a loop number, growing the current inner loop depth */
2868 int loop_idx = ++ctx->current_loop_depth;
2869
2870 /* Get index from before the body so we can loop back later */
2871 int start_idx = ctx->block_count;
2872
2873 /* Emit the body itself */
2874 emit_cf_list(ctx, &nloop->body);
2875
2876 /* Branch back to loop back */
2877 struct midgard_instruction br_back = v_branch(false, false);
2878 br_back.branch.target_block = start_idx;
2879 emit_mir_instruction(ctx, br_back);
2880
2881 /* Mark down that branch in the graph. Note that we're really branching
2882 * to the block *after* we started in. TODO: Why doesn't the branch
2883 * itself have an off-by-one then...? */
2884 midgard_block_add_successor(ctx->current_block, start_block->successors[0]);
2885
2886 /* Find the index of the block about to follow us (note: we don't add
2887 * one; blocks are 0-indexed so we get a fencepost problem) */
2888 int break_block_idx = ctx->block_count;
2889
2890 /* Fix up the break statements we emitted to point to the right place,
2891 * now that we can allocate a block number for them */
2892
2893 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
2894 mir_foreach_instr_in_block(block, ins) {
2895 if (ins->type != TAG_ALU_4) continue;
2896 if (!ins->compact_branch) continue;
2897 if (ins->prepacked_branch) continue;
2898
2899 /* We found a branch -- check the type to see if we need to do anything */
2900 if (ins->branch.target_type != TARGET_BREAK) continue;
2901
2902 /* It's a break! Check if it's our break */
2903 if (ins->branch.target_break != loop_idx) continue;
2904
2905 /* Okay, cool, we're breaking out of this loop.
2906 * Rewrite from a break to a goto */
2907
2908 ins->branch.target_type = TARGET_GOTO;
2909 ins->branch.target_block = break_block_idx;
2910 }
2911 }
2912
2913 /* Now that we've finished emitting the loop, free up the depth again
2914 * so we play nice with recursion amid nested loops */
2915 --ctx->current_loop_depth;
2916 }
2917
2918 static midgard_block *
2919 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
2920 {
2921 midgard_block *start_block = NULL;
2922
2923 foreach_list_typed(nir_cf_node, node, node, list) {
2924 switch (node->type) {
2925 case nir_cf_node_block: {
2926 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
2927
2928 if (!start_block)
2929 start_block = block;
2930
2931 break;
2932 }
2933
2934 case nir_cf_node_if:
2935 emit_if(ctx, nir_cf_node_as_if(node));
2936 break;
2937
2938 case nir_cf_node_loop:
2939 emit_loop(ctx, nir_cf_node_as_loop(node));
2940 break;
2941
2942 case nir_cf_node_function:
2943 assert(0);
2944 break;
2945 }
2946 }
2947
2948 return start_block;
2949 }
2950
2951 /* Due to lookahead, we need to report the first tag executed in the command
2952 * stream and in branch targets. An initial block might be empty, so iterate
2953 * until we find one that 'works' */
2954
2955 static unsigned
2956 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
2957 {
2958 midgard_block *initial_block = mir_get_block(ctx, block_idx);
2959
2960 unsigned first_tag = 0;
2961
2962 do {
2963 midgard_bundle *initial_bundle = util_dynarray_element(&initial_block->bundles, midgard_bundle, 0);
2964
2965 if (initial_bundle) {
2966 first_tag = initial_bundle->tag;
2967 break;
2968 }
2969
2970 /* Initial block is empty, try the next block */
2971 initial_block = list_first_entry(&(initial_block->link), midgard_block, link);
2972 } while(initial_block != NULL);
2973
2974 assert(first_tag);
2975 return first_tag;
2976 }
2977
2978 int
2979 midgard_compile_shader_nir(nir_shader *nir, midgard_program *program, bool is_blend)
2980 {
2981 struct util_dynarray *compiled = &program->compiled;
2982
2983 midgard_debug = debug_get_option_midgard_debug();
2984
2985 compiler_context ictx = {
2986 .nir = nir,
2987 .stage = nir->info.stage,
2988
2989 .is_blend = is_blend,
2990 .blend_constant_offset = -1,
2991
2992 .alpha_ref = program->alpha_ref
2993 };
2994
2995 compiler_context *ctx = &ictx;
2996
2997 /* TODO: Decide this at runtime */
2998 ctx->uniform_cutoff = 8;
2999
3000 /* Assign var locations early, so the epilogue can use them if necessary */
3001
3002 nir_assign_var_locations(&nir->outputs, &nir->num_outputs, glsl_type_size);
3003 nir_assign_var_locations(&nir->inputs, &nir->num_inputs, glsl_type_size);
3004 nir_assign_var_locations(&nir->uniforms, &nir->num_uniforms, glsl_type_size);
3005
3006 /* Initialize at a global (not block) level hash tables */
3007
3008 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
3009 ctx->ssa_varyings = _mesa_hash_table_u64_create(NULL);
3010 ctx->ssa_to_alias = _mesa_hash_table_u64_create(NULL);
3011 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
3012 ctx->sysval_to_id = _mesa_hash_table_u64_create(NULL);
3013 ctx->leftover_ssa_to_alias = _mesa_set_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal);
3014
3015 /* Record the varying mapping for the command stream's bookkeeping */
3016
3017 struct exec_list *varyings =
3018 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
3019
3020 nir_foreach_variable(var, varyings) {
3021 unsigned loc = var->data.driver_location;
3022 unsigned sz = glsl_type_size(var->type, FALSE);
3023
3024 for (int c = 0; c < sz; ++c) {
3025 program->varyings[loc + c] = var->data.location;
3026 }
3027 }
3028
3029 /* Lower gl_Position pre-optimisation */
3030
3031 if (ctx->stage == MESA_SHADER_VERTEX)
3032 NIR_PASS_V(nir, nir_lower_viewport_transform);
3033
3034 NIR_PASS_V(nir, nir_lower_var_copies);
3035 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3036 NIR_PASS_V(nir, nir_split_var_copies);
3037 NIR_PASS_V(nir, nir_lower_var_copies);
3038 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
3039 NIR_PASS_V(nir, nir_lower_var_copies);
3040 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3041
3042 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
3043
3044 /* Optimisation passes */
3045
3046 optimise_nir(nir);
3047
3048 if (midgard_debug & MIDGARD_DBG_SHADERS) {
3049 nir_print_shader(nir, stdout);
3050 }
3051
3052 /* Assign sysvals and counts, now that we're sure
3053 * (post-optimisation) */
3054
3055 midgard_nir_assign_sysvals(ctx, nir);
3056
3057 program->uniform_count = nir->num_uniforms;
3058 program->sysval_count = ctx->sysval_count;
3059 memcpy(program->sysvals, ctx->sysvals, sizeof(ctx->sysvals[0]) * ctx->sysval_count);
3060
3061 program->attribute_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_inputs : 0;
3062 program->varying_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_outputs : ((ctx->stage == MESA_SHADER_FRAGMENT) ? nir->num_inputs : 0);
3063
3064 nir_foreach_function(func, nir) {
3065 if (!func->impl)
3066 continue;
3067
3068 list_inithead(&ctx->blocks);
3069 ctx->block_count = 0;
3070 ctx->func = func;
3071
3072 emit_cf_list(ctx, &func->impl->body);
3073 emit_block(ctx, func->impl->end_block);
3074
3075 break; /* TODO: Multi-function shaders */
3076 }
3077
3078 util_dynarray_init(compiled, NULL);
3079
3080 /* MIR-level optimizations */
3081
3082 bool progress = false;
3083
3084 do {
3085 progress = false;
3086
3087 mir_foreach_block(ctx, block) {
3088 progress |= midgard_opt_copy_prop(ctx, block);
3089 progress |= midgard_opt_copy_prop_tex(ctx, block);
3090 progress |= midgard_opt_dead_code_eliminate(ctx, block);
3091 }
3092 } while (progress);
3093
3094 /* Schedule! */
3095 schedule_program(ctx);
3096
3097 /* Now that all the bundles are scheduled and we can calculate block
3098 * sizes, emit actual branch instructions rather than placeholders */
3099
3100 int br_block_idx = 0;
3101
3102 mir_foreach_block(ctx, block) {
3103 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3104 for (int c = 0; c < bundle->instruction_count; ++c) {
3105 midgard_instruction *ins = &bundle->instructions[c];
3106
3107 if (!midgard_is_branch_unit(ins->unit)) continue;
3108
3109 if (ins->prepacked_branch) continue;
3110
3111 /* Parse some basic branch info */
3112 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
3113 bool is_conditional = ins->branch.conditional;
3114 bool is_inverted = ins->branch.invert_conditional;
3115 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
3116
3117 /* Determine the block we're jumping to */
3118 int target_number = ins->branch.target_block;
3119
3120 /* Report the destination tag. Discards don't need this */
3121 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
3122
3123 /* Count up the number of quadwords we're jumping over. That is, the number of quadwords in each of the blocks between (br_block_idx, target_number) */
3124 int quadword_offset = 0;
3125
3126 if (is_discard) {
3127 /* Jump to the end of the shader. We
3128 * need to include not only the
3129 * following blocks, but also the
3130 * contents of our current block (since
3131 * discard can come in the middle of
3132 * the block) */
3133
3134 midgard_block *blk = mir_get_block(ctx, br_block_idx + 1);
3135
3136 for (midgard_bundle *bun = bundle + 1; bun < (midgard_bundle *)((char*) block->bundles.data + block->bundles.size); ++bun) {
3137 quadword_offset += quadword_size(bun->tag);
3138 }
3139
3140 mir_foreach_block_from(ctx, blk, b) {
3141 quadword_offset += b->quadword_count;
3142 }
3143
3144 } else if (target_number > br_block_idx) {
3145 /* Jump forward */
3146
3147 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
3148 midgard_block *blk = mir_get_block(ctx, idx);
3149 assert(blk);
3150
3151 quadword_offset += blk->quadword_count;
3152 }
3153 } else {
3154 /* Jump backwards */
3155
3156 for (int idx = br_block_idx; idx >= target_number; --idx) {
3157 midgard_block *blk = mir_get_block(ctx, idx);
3158 assert(blk);
3159
3160 quadword_offset -= blk->quadword_count;
3161 }
3162 }
3163
3164 /* Unconditional extended branches (far jumps)
3165 * have issues, so we always use a conditional
3166 * branch, setting the condition to always for
3167 * unconditional. For compact unconditional
3168 * branches, cond isn't used so it doesn't
3169 * matter what we pick. */
3170
3171 midgard_condition cond =
3172 !is_conditional ? midgard_condition_always :
3173 is_inverted ? midgard_condition_false :
3174 midgard_condition_true;
3175
3176 midgard_jmp_writeout_op op =
3177 is_discard ? midgard_jmp_writeout_op_discard :
3178 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
3179 midgard_jmp_writeout_op_branch_cond;
3180
3181 if (!is_compact) {
3182 midgard_branch_extended branch =
3183 midgard_create_branch_extended(
3184 cond, op,
3185 dest_tag,
3186 quadword_offset);
3187
3188 memcpy(&ins->branch_extended, &branch, sizeof(branch));
3189 } else if (is_conditional || is_discard) {
3190 midgard_branch_cond branch = {
3191 .op = op,
3192 .dest_tag = dest_tag,
3193 .offset = quadword_offset,
3194 .cond = cond
3195 };
3196
3197 assert(branch.offset == quadword_offset);
3198
3199 memcpy(&ins->br_compact, &branch, sizeof(branch));
3200 } else {
3201 assert(op == midgard_jmp_writeout_op_branch_uncond);
3202
3203 midgard_branch_uncond branch = {
3204 .op = op,
3205 .dest_tag = dest_tag,
3206 .offset = quadword_offset,
3207 .unknown = 1
3208 };
3209
3210 assert(branch.offset == quadword_offset);
3211
3212 memcpy(&ins->br_compact, &branch, sizeof(branch));
3213 }
3214 }
3215 }
3216
3217 ++br_block_idx;
3218 }
3219
3220 /* Emit flat binary from the instruction arrays. Iterate each block in
3221 * sequence. Save instruction boundaries such that lookahead tags can
3222 * be assigned easily */
3223
3224 /* Cache _all_ bundles in source order for lookahead across failed branches */
3225
3226 int bundle_count = 0;
3227 mir_foreach_block(ctx, block) {
3228 bundle_count += block->bundles.size / sizeof(midgard_bundle);
3229 }
3230 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
3231 int bundle_idx = 0;
3232 mir_foreach_block(ctx, block) {
3233 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3234 source_order_bundles[bundle_idx++] = bundle;
3235 }
3236 }
3237
3238 int current_bundle = 0;
3239
3240 mir_foreach_block(ctx, block) {
3241 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3242 int lookahead = 1;
3243
3244 if (current_bundle + 1 < bundle_count) {
3245 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
3246
3247 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
3248 lookahead = 1;
3249 } else {
3250 lookahead = next;
3251 }
3252 }
3253
3254 emit_binary_bundle(ctx, bundle, compiled, lookahead);
3255 ++current_bundle;
3256 }
3257
3258 /* TODO: Free deeper */
3259 //util_dynarray_fini(&block->instructions);
3260 }
3261
3262 free(source_order_bundles);
3263
3264 /* Report the very first tag executed */
3265 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
3266
3267 /* Deal with off-by-one related to the fencepost problem */
3268 program->work_register_count = ctx->work_registers + 1;
3269
3270 program->can_discard = ctx->can_discard;
3271 program->uniform_cutoff = ctx->uniform_cutoff;
3272
3273 program->blend_patch_offset = ctx->blend_constant_offset;
3274
3275 if (midgard_debug & MIDGARD_DBG_SHADERS)
3276 disassemble_midgard(program->compiled.data, program->compiled.size);
3277
3278 return 0;
3279 }