panfrost/midgard: Lower source modifiers for ints
[mesa.git] / src / gallium / drivers / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/register_allocate.h"
40 #include "util/u_debug.h"
41 #include "util/u_dynarray.h"
42 #include "util/list.h"
43 #include "main/mtypes.h"
44
45 #include "midgard.h"
46 #include "midgard_nir.h"
47 #include "midgard_compile.h"
48 #include "helpers.h"
49
50 #include "disassemble.h"
51
52 static const struct debug_named_value debug_options[] = {
53 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
54 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
55 DEBUG_NAMED_VALUE_END
56 };
57
58 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
59
60 int midgard_debug = 0;
61
62 #define DBG(fmt, ...) \
63 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
64 fprintf(stderr, "%s:%d: "fmt, \
65 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
66
67 /* Instruction arguments represented as block-local SSA indices, rather than
68 * registers. Negative values mean unused. */
69
70 typedef struct {
71 int src0;
72 int src1;
73 int dest;
74
75 /* src1 is -not- SSA but instead a 16-bit inline constant to be smudged
76 * in. Only valid for ALU ops. */
77 bool inline_constant;
78 } ssa_args;
79
80 /* Forward declare so midgard_branch can reference */
81 struct midgard_block;
82
83 /* Target types. Defaults to TARGET_GOTO (the type corresponding directly to
84 * the hardware), hence why that must be zero. TARGET_DISCARD signals this
85 * instruction is actually a discard op. */
86
87 #define TARGET_GOTO 0
88 #define TARGET_BREAK 1
89 #define TARGET_CONTINUE 2
90 #define TARGET_DISCARD 3
91
92 typedef struct midgard_branch {
93 /* If conditional, the condition is specified in r31.w */
94 bool conditional;
95
96 /* For conditionals, if this is true, we branch on FALSE. If false, we branch on TRUE. */
97 bool invert_conditional;
98
99 /* Branch targets: the start of a block, the start of a loop (continue), the end of a loop (break). Value is one of TARGET_ */
100 unsigned target_type;
101
102 /* The actual target */
103 union {
104 int target_block;
105 int target_break;
106 int target_continue;
107 };
108 } midgard_branch;
109
110 /* Generic in-memory data type repesenting a single logical instruction, rather
111 * than a single instruction group. This is the preferred form for code gen.
112 * Multiple midgard_insturctions will later be combined during scheduling,
113 * though this is not represented in this structure. Its format bridges
114 * the low-level binary representation with the higher level semantic meaning.
115 *
116 * Notably, it allows registers to be specified as block local SSA, for code
117 * emitted before the register allocation pass.
118 */
119
120 typedef struct midgard_instruction {
121 /* Must be first for casting */
122 struct list_head link;
123
124 unsigned type; /* ALU, load/store, texture */
125
126 /* If the register allocator has not run yet... */
127 ssa_args ssa_args;
128
129 /* Special fields for an ALU instruction */
130 midgard_reg_info registers;
131
132 /* I.e. (1 << alu_bit) */
133 int unit;
134
135 bool has_constants;
136 float constants[4];
137 uint16_t inline_constant;
138 bool has_blend_constant;
139
140 bool compact_branch;
141 bool writeout;
142 bool prepacked_branch;
143
144 union {
145 midgard_load_store_word load_store;
146 midgard_vector_alu alu;
147 midgard_texture_word texture;
148 midgard_branch_extended branch_extended;
149 uint16_t br_compact;
150
151 /* General branch, rather than packed br_compact. Higher level
152 * than the other components */
153 midgard_branch branch;
154 };
155 } midgard_instruction;
156
157 typedef struct midgard_block {
158 /* Link to next block. Must be first for mir_get_block */
159 struct list_head link;
160
161 /* List of midgard_instructions emitted for the current block */
162 struct list_head instructions;
163
164 bool is_scheduled;
165
166 /* List of midgard_bundles emitted (after the scheduler has run) */
167 struct util_dynarray bundles;
168
169 /* Number of quadwords _actually_ emitted, as determined after scheduling */
170 unsigned quadword_count;
171
172 struct midgard_block *next_fallthrough;
173 } midgard_block;
174
175 /* Helpers to generate midgard_instruction's using macro magic, since every
176 * driver seems to do it that way */
177
178 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
179
180 #define M_LOAD_STORE(name, rname, uname) \
181 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
182 midgard_instruction i = { \
183 .type = TAG_LOAD_STORE_4, \
184 .ssa_args = { \
185 .rname = ssa, \
186 .uname = -1, \
187 .src1 = -1 \
188 }, \
189 .load_store = { \
190 .op = midgard_op_##name, \
191 .mask = 0xF, \
192 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W), \
193 .address = address \
194 } \
195 }; \
196 \
197 return i; \
198 }
199
200 #define M_LOAD(name) M_LOAD_STORE(name, dest, src0)
201 #define M_STORE(name) M_LOAD_STORE(name, src0, dest)
202
203 const midgard_vector_alu_src blank_alu_src = {
204 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
205 };
206
207 const midgard_vector_alu_src blank_alu_src_xxxx = {
208 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_X, COMPONENT_X, COMPONENT_X),
209 };
210
211 const midgard_scalar_alu_src blank_scalar_alu_src = {
212 .full = true
213 };
214
215 /* Used for encoding the unused source of 1-op instructions */
216 const midgard_vector_alu_src zero_alu_src = { 0 };
217
218 /* Coerce structs to integer */
219
220 static unsigned
221 vector_alu_srco_unsigned(midgard_vector_alu_src src)
222 {
223 unsigned u;
224 memcpy(&u, &src, sizeof(src));
225 return u;
226 }
227
228 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
229 * the corresponding Midgard source */
230
231 static midgard_vector_alu_src
232 vector_alu_modifiers(nir_alu_src *src)
233 {
234 if (!src) return blank_alu_src;
235
236 midgard_vector_alu_src alu_src = {
237 .abs = src->abs,
238 .negate = src->negate,
239 .rep_low = 0,
240 .rep_high = 0,
241 .half = 0, /* TODO */
242 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
243 };
244
245 return alu_src;
246 }
247
248 /* 'Intrinsic' move for misc aliasing uses independent of actual NIR ALU code */
249
250 static midgard_instruction
251 v_fmov(unsigned src, midgard_vector_alu_src mod, unsigned dest)
252 {
253 midgard_instruction ins = {
254 .type = TAG_ALU_4,
255 .ssa_args = {
256 .src0 = SSA_UNUSED_1,
257 .src1 = src,
258 .dest = dest,
259 },
260 .alu = {
261 .op = midgard_alu_op_fmov,
262 .reg_mode = midgard_reg_mode_full,
263 .dest_override = midgard_dest_override_none,
264 .mask = 0xFF,
265 .src1 = vector_alu_srco_unsigned(zero_alu_src),
266 .src2 = vector_alu_srco_unsigned(mod)
267 },
268 };
269
270 return ins;
271 }
272
273 /* load/store instructions have both 32-bit and 16-bit variants, depending on
274 * whether we are using vectors composed of highp or mediump. At the moment, we
275 * don't support half-floats -- this requires changes in other parts of the
276 * compiler -- therefore the 16-bit versions are commented out. */
277
278 //M_LOAD(load_attr_16);
279 M_LOAD(load_attr_32);
280 //M_LOAD(load_vary_16);
281 M_LOAD(load_vary_32);
282 //M_LOAD(load_uniform_16);
283 M_LOAD(load_uniform_32);
284 M_LOAD(load_color_buffer_8);
285 //M_STORE(store_vary_16);
286 M_STORE(store_vary_32);
287
288 static midgard_instruction
289 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
290 {
291 midgard_branch_cond branch = {
292 .op = op,
293 .dest_tag = tag,
294 .offset = offset,
295 .cond = cond
296 };
297
298 uint16_t compact;
299 memcpy(&compact, &branch, sizeof(branch));
300
301 midgard_instruction ins = {
302 .type = TAG_ALU_4,
303 .unit = ALU_ENAB_BR_COMPACT,
304 .prepacked_branch = true,
305 .compact_branch = true,
306 .br_compact = compact
307 };
308
309 if (op == midgard_jmp_writeout_op_writeout)
310 ins.writeout = true;
311
312 return ins;
313 }
314
315 static midgard_instruction
316 v_branch(bool conditional, bool invert)
317 {
318 midgard_instruction ins = {
319 .type = TAG_ALU_4,
320 .unit = ALU_ENAB_BRANCH,
321 .compact_branch = true,
322 .branch = {
323 .conditional = conditional,
324 .invert_conditional = invert
325 }
326 };
327
328 return ins;
329 }
330
331 static midgard_branch_extended
332 midgard_create_branch_extended( midgard_condition cond,
333 midgard_jmp_writeout_op op,
334 unsigned dest_tag,
335 signed quadword_offset)
336 {
337 /* For unclear reasons, the condition code is repeated 8 times */
338 uint16_t duplicated_cond =
339 (cond << 14) |
340 (cond << 12) |
341 (cond << 10) |
342 (cond << 8) |
343 (cond << 6) |
344 (cond << 4) |
345 (cond << 2) |
346 (cond << 0);
347
348 midgard_branch_extended branch = {
349 .op = op,
350 .dest_tag = dest_tag,
351 .offset = quadword_offset,
352 .cond = duplicated_cond
353 };
354
355 return branch;
356 }
357
358 typedef struct midgard_bundle {
359 /* Tag for the overall bundle */
360 int tag;
361
362 /* Instructions contained by the bundle */
363 int instruction_count;
364 midgard_instruction instructions[5];
365
366 /* Bundle-wide ALU configuration */
367 int padding;
368 int control;
369 bool has_embedded_constants;
370 float constants[4];
371 bool has_blend_constant;
372
373 uint16_t register_words[8];
374 int register_words_count;
375
376 uint64_t body_words[8];
377 size_t body_size[8];
378 int body_words_count;
379 } midgard_bundle;
380
381 typedef struct compiler_context {
382 nir_shader *nir;
383 gl_shader_stage stage;
384
385 /* Is internally a blend shader? Depends on stage == FRAGMENT */
386 bool is_blend;
387
388 /* Tracking for blend constant patching */
389 int blend_constant_number;
390 int blend_constant_offset;
391
392 /* Current NIR function */
393 nir_function *func;
394
395 /* Unordered list of midgard_blocks */
396 int block_count;
397 struct list_head blocks;
398
399 midgard_block *initial_block;
400 midgard_block *previous_source_block;
401 midgard_block *final_block;
402
403 /* List of midgard_instructions emitted for the current block */
404 midgard_block *current_block;
405
406 /* The index corresponding to the current loop, e.g. for breaks/contineus */
407 int current_loop;
408
409 /* Constants which have been loaded, for later inlining */
410 struct hash_table_u64 *ssa_constants;
411
412 /* SSA indices to be outputted to corresponding varying offset */
413 struct hash_table_u64 *ssa_varyings;
414
415 /* SSA values / registers which have been aliased. Naively, these
416 * demand a fmov output; instead, we alias them in a later pass to
417 * avoid the wasted op.
418 *
419 * A note on encoding: to avoid dynamic memory management here, rather
420 * than ampping to a pointer, we map to the source index; the key
421 * itself is just the destination index. */
422
423 struct hash_table_u64 *ssa_to_alias;
424 struct set *leftover_ssa_to_alias;
425
426 /* Actual SSA-to-register for RA */
427 struct hash_table_u64 *ssa_to_register;
428
429 /* Mapping of hashes computed from NIR indices to the sequential temp indices ultimately used in MIR */
430 struct hash_table_u64 *hash_to_temp;
431 int temp_count;
432 int max_hash;
433
434 /* Uniform IDs for mdg */
435 struct hash_table_u64 *uniform_nir_to_mdg;
436 int uniform_count;
437
438 /* Just the count of the max register used. Higher count => higher
439 * register pressure */
440 int work_registers;
441
442 /* Used for cont/last hinting. Increase when a tex op is added.
443 * Decrease when a tex op is removed. */
444 int texture_op_count;
445
446 /* Mapping of texture register -> SSA index for unaliasing */
447 int texture_index[2];
448
449 /* Count of special uniforms (viewport, etc) in vec4 units */
450 int special_uniforms;
451
452 /* If any path hits a discard instruction */
453 bool can_discard;
454
455 /* The number of uniforms allowable for the fast path */
456 int uniform_cutoff;
457
458 /* Count of instructions emitted from NIR overall, across all blocks */
459 int instruction_count;
460
461 /* Alpha ref value passed in */
462 float alpha_ref;
463
464 /* The index corresponding to the fragment output */
465 unsigned fragment_output;
466 } compiler_context;
467
468 /* Append instruction to end of current block */
469
470 static midgard_instruction *
471 mir_upload_ins(struct midgard_instruction ins)
472 {
473 midgard_instruction *heap = malloc(sizeof(ins));
474 memcpy(heap, &ins, sizeof(ins));
475 return heap;
476 }
477
478 static void
479 emit_mir_instruction(struct compiler_context *ctx, struct midgard_instruction ins)
480 {
481 list_addtail(&(mir_upload_ins(ins))->link, &ctx->current_block->instructions);
482 }
483
484 static void
485 mir_insert_instruction_before(struct midgard_instruction *tag, struct midgard_instruction ins)
486 {
487 list_addtail(&(mir_upload_ins(ins))->link, &tag->link);
488 }
489
490 static void
491 mir_remove_instruction(struct midgard_instruction *ins)
492 {
493 list_del(&ins->link);
494 }
495
496 static midgard_instruction*
497 mir_prev_op(struct midgard_instruction *ins)
498 {
499 return list_last_entry(&(ins->link), midgard_instruction, link);
500 }
501
502 static midgard_instruction*
503 mir_next_op(struct midgard_instruction *ins)
504 {
505 return list_first_entry(&(ins->link), midgard_instruction, link);
506 }
507
508 static midgard_block *
509 mir_next_block(struct midgard_block *blk)
510 {
511 return list_first_entry(&(blk->link), midgard_block, link);
512 }
513
514
515 #define mir_foreach_block(ctx, v) list_for_each_entry(struct midgard_block, v, &ctx->blocks, link)
516 #define mir_foreach_block_from(ctx, from, v) list_for_each_entry_from(struct midgard_block, v, from, &ctx->blocks, link)
517
518 #define mir_foreach_instr(ctx, v) list_for_each_entry(struct midgard_instruction, v, &ctx->current_block->instructions, link)
519 #define mir_foreach_instr_safe(ctx, v) list_for_each_entry_safe(struct midgard_instruction, v, &ctx->current_block->instructions, link)
520 #define mir_foreach_instr_in_block(block, v) list_for_each_entry(struct midgard_instruction, v, &block->instructions, link)
521 #define mir_foreach_instr_in_block_safe(block, v) list_for_each_entry_safe(struct midgard_instruction, v, &block->instructions, link)
522 #define mir_foreach_instr_in_block_safe_rev(block, v) list_for_each_entry_safe_rev(struct midgard_instruction, v, &block->instructions, link)
523 #define mir_foreach_instr_in_block_from(block, v, from) list_for_each_entry_from(struct midgard_instruction, v, from, &block->instructions, link)
524
525
526 static midgard_instruction *
527 mir_last_in_block(struct midgard_block *block)
528 {
529 return list_last_entry(&block->instructions, struct midgard_instruction, link);
530 }
531
532 static midgard_block *
533 mir_get_block(compiler_context *ctx, int idx)
534 {
535 struct list_head *lst = &ctx->blocks;
536
537 while ((idx--) + 1)
538 lst = lst->next;
539
540 return (struct midgard_block *) lst;
541 }
542
543 /* Pretty printer for internal Midgard IR */
544
545 static void
546 print_mir_source(int source)
547 {
548 if (source >= SSA_FIXED_MINIMUM) {
549 /* Specific register */
550 int reg = SSA_REG_FROM_FIXED(source);
551
552 /* TODO: Moving threshold */
553 if (reg > 16 && reg < 24)
554 printf("u%d", 23 - reg);
555 else
556 printf("r%d", reg);
557 } else {
558 printf("%d", source);
559 }
560 }
561
562 static void
563 print_mir_instruction(midgard_instruction *ins)
564 {
565 printf("\t");
566
567 switch (ins->type) {
568 case TAG_ALU_4: {
569 midgard_alu_op op = ins->alu.op;
570 const char *name = alu_opcode_names[op];
571
572 if (ins->unit)
573 printf("%d.", ins->unit);
574
575 printf("%s", name ? name : "??");
576 break;
577 }
578
579 case TAG_LOAD_STORE_4: {
580 midgard_load_store_op op = ins->load_store.op;
581 const char *name = load_store_opcode_names[op];
582
583 assert(name);
584 printf("%s", name);
585 break;
586 }
587
588 case TAG_TEXTURE_4: {
589 printf("texture");
590 break;
591 }
592
593 default:
594 assert(0);
595 }
596
597 ssa_args *args = &ins->ssa_args;
598
599 printf(" %d, ", args->dest);
600
601 print_mir_source(args->src0);
602 printf(", ");
603
604 if (args->inline_constant)
605 printf("#%d", ins->inline_constant);
606 else
607 print_mir_source(args->src1);
608
609 if (ins->has_constants)
610 printf(" <%f, %f, %f, %f>", ins->constants[0], ins->constants[1], ins->constants[2], ins->constants[3]);
611
612 printf("\n");
613 }
614
615 static void
616 print_mir_block(midgard_block *block)
617 {
618 printf("{\n");
619
620 mir_foreach_instr_in_block(block, ins) {
621 print_mir_instruction(ins);
622 }
623
624 printf("}\n");
625 }
626
627
628
629 static void
630 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
631 {
632 ins->has_constants = true;
633 memcpy(&ins->constants, constants, 16);
634
635 /* If this is the special blend constant, mark this instruction */
636
637 if (ctx->is_blend && ctx->blend_constant_number == name)
638 ins->has_blend_constant = true;
639 }
640
641 static int
642 glsl_type_size(const struct glsl_type *type)
643 {
644 return glsl_count_attribute_slots(type, false);
645 }
646
647 /* Lower fdot2 to a vector multiplication followed by channel addition */
648 static void
649 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
650 {
651 if (alu->op != nir_op_fdot2)
652 return;
653
654 b->cursor = nir_before_instr(&alu->instr);
655
656 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
657 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
658
659 nir_ssa_def *product = nir_fmul(b, src0, src1);
660
661 nir_ssa_def *sum = nir_fadd(b,
662 nir_channel(b, product, 0),
663 nir_channel(b, product, 1));
664
665 /* Replace the fdot2 with this sum */
666 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
667 }
668
669 static bool
670 midgard_nir_lower_fdot2(nir_shader *shader)
671 {
672 bool progress = false;
673
674 nir_foreach_function(function, shader) {
675 if (!function->impl) continue;
676
677 nir_builder _b;
678 nir_builder *b = &_b;
679 nir_builder_init(b, function->impl);
680
681 nir_foreach_block(block, function->impl) {
682 nir_foreach_instr_safe(instr, block) {
683 if (instr->type != nir_instr_type_alu) continue;
684
685 nir_alu_instr *alu = nir_instr_as_alu(instr);
686 midgard_nir_lower_fdot2_body(b, alu);
687
688 progress |= true;
689 }
690 }
691
692 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
693
694 }
695
696 return progress;
697 }
698
699 static void
700 optimise_nir(nir_shader *nir)
701 {
702 bool progress;
703
704 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
705 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
706
707 nir_lower_tex_options lower_tex_options = {
708 .lower_rect = true
709 };
710
711 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
712
713 do {
714 progress = false;
715
716 NIR_PASS(progress, nir, midgard_nir_lower_algebraic);
717 NIR_PASS(progress, nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
718 NIR_PASS(progress, nir, nir_lower_var_copies);
719 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
720
721 NIR_PASS(progress, nir, nir_copy_prop);
722 NIR_PASS(progress, nir, nir_opt_dce);
723 NIR_PASS(progress, nir, nir_opt_dead_cf);
724 NIR_PASS(progress, nir, nir_opt_cse);
725 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
726 NIR_PASS(progress, nir, nir_opt_algebraic);
727 NIR_PASS(progress, nir, nir_opt_constant_folding);
728 NIR_PASS(progress, nir, nir_opt_undef);
729 NIR_PASS(progress, nir, nir_opt_loop_unroll,
730 nir_var_shader_in |
731 nir_var_shader_out |
732 nir_var_function_temp);
733
734 /* TODO: Enable vectorize when merged upstream */
735 // NIR_PASS(progress, nir, nir_opt_vectorize);
736 } while (progress);
737
738 /* Must be run at the end to prevent creation of fsin/fcos ops */
739 NIR_PASS(progress, nir, midgard_nir_scale_trig);
740
741 do {
742 progress = false;
743
744 NIR_PASS(progress, nir, nir_opt_dce);
745 NIR_PASS(progress, nir, nir_opt_algebraic);
746 NIR_PASS(progress, nir, nir_opt_constant_folding);
747 NIR_PASS(progress, nir, nir_copy_prop);
748 } while (progress);
749
750 NIR_PASS(progress, nir, nir_opt_algebraic_late);
751 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
752
753 /* Lower mods for float ops only. Integer ops don't support modifiers
754 * (saturate doesn't make sense on integers, neg/abs require dedicated
755 * instructions) */
756
757 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
758 NIR_PASS(progress, nir, nir_copy_prop);
759 NIR_PASS(progress, nir, nir_opt_dce);
760
761 /* We implement booleans as 32-bit 0/~0 */
762 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
763
764 /* Take us out of SSA */
765 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
766 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
767
768 /* We are a vector architecture; write combine where possible */
769 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
770 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
771
772 NIR_PASS(progress, nir, nir_opt_dce);
773 }
774
775 /* Front-half of aliasing the SSA slots, merely by inserting the flag in the
776 * appropriate hash table. Intentional off-by-one to avoid confusing NULL with
777 * r0. See the comments in compiler_context */
778
779 static void
780 alias_ssa(compiler_context *ctx, int dest, int src)
781 {
782 _mesa_hash_table_u64_insert(ctx->ssa_to_alias, dest + 1, (void *) ((uintptr_t) src + 1));
783 _mesa_set_add(ctx->leftover_ssa_to_alias, (void *) (uintptr_t) (dest + 1));
784 }
785
786 /* ...or undo it, after which the original index will be used (dummy move should be emitted alongside this) */
787
788 static void
789 unalias_ssa(compiler_context *ctx, int dest)
790 {
791 _mesa_hash_table_u64_remove(ctx->ssa_to_alias, dest + 1);
792 /* TODO: Remove from leftover or no? */
793 }
794
795 static void
796 midgard_pin_output(compiler_context *ctx, int index, int reg)
797 {
798 _mesa_hash_table_u64_insert(ctx->ssa_to_register, index + 1, (void *) ((uintptr_t) reg + 1));
799 }
800
801 static bool
802 midgard_is_pinned(compiler_context *ctx, int index)
803 {
804 return _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1) != NULL;
805 }
806
807 /* Do not actually emit a load; instead, cache the constant for inlining */
808
809 static void
810 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
811 {
812 nir_ssa_def def = instr->def;
813
814 float *v = ralloc_array(NULL, float, 4);
815 memcpy(v, &instr->value.f32, 4 * sizeof(float));
816 _mesa_hash_table_u64_insert(ctx->ssa_constants, def.index + 1, v);
817 }
818
819 /* Duplicate bits to convert sane 4-bit writemask to obscure 8-bit format (or
820 * do the inverse) */
821
822 static unsigned
823 expand_writemask(unsigned mask)
824 {
825 unsigned o = 0;
826
827 for (int i = 0; i < 4; ++i)
828 if (mask & (1 << i))
829 o |= (3 << (2 * i));
830
831 return o;
832 }
833
834 static unsigned
835 squeeze_writemask(unsigned mask)
836 {
837 unsigned o = 0;
838
839 for (int i = 0; i < 4; ++i)
840 if (mask & (3 << (2 * i)))
841 o |= (1 << i);
842
843 return o;
844
845 }
846
847 /* Determines effective writemask, taking quirks and expansion into account */
848 static unsigned
849 effective_writemask(midgard_vector_alu *alu)
850 {
851 /* Channel count is off-by-one to fit in two-bits (0 channel makes no
852 * sense) */
853
854 unsigned channel_count = GET_CHANNEL_COUNT(alu_opcode_props[alu->op]);
855
856 /* If there is a fixed channel count, construct the appropriate mask */
857
858 if (channel_count)
859 return (1 << channel_count) - 1;
860
861 /* Otherwise, just squeeze the existing mask */
862 return squeeze_writemask(alu->mask);
863 }
864
865 static unsigned
866 find_or_allocate_temp(compiler_context *ctx, unsigned hash)
867 {
868 if ((hash < 0) || (hash >= SSA_FIXED_MINIMUM))
869 return hash;
870
871 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->hash_to_temp, hash + 1);
872
873 if (temp)
874 return temp - 1;
875
876 /* If no temp is find, allocate one */
877 temp = ctx->temp_count++;
878 ctx->max_hash = MAX2(ctx->max_hash, hash);
879
880 _mesa_hash_table_u64_insert(ctx->hash_to_temp, hash + 1, (void *) ((uintptr_t) temp + 1));
881
882 return temp;
883 }
884
885 static unsigned
886 nir_src_index(compiler_context *ctx, nir_src *src)
887 {
888 if (src->is_ssa)
889 return src->ssa->index;
890 else
891 return ctx->func->impl->ssa_alloc + src->reg.reg->index;
892 }
893
894 static unsigned
895 nir_dest_index(compiler_context *ctx, nir_dest *dst)
896 {
897 if (dst->is_ssa)
898 return dst->ssa.index;
899 else
900 return ctx->func->impl->ssa_alloc + dst->reg.reg->index;
901 }
902
903 static unsigned
904 nir_alu_src_index(compiler_context *ctx, nir_alu_src *src)
905 {
906 return nir_src_index(ctx, &src->src);
907 }
908
909 /* Midgard puts conditionals in r31.w; move an arbitrary source (the output of
910 * a conditional test) into that register */
911
912 static void
913 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch)
914 {
915 /* XXX: Force component correct */
916 int condition = nir_src_index(ctx, src);
917
918 /* There is no boolean move instruction. Instead, we simulate a move by
919 * ANDing the condition with itself to get it into r31.w */
920
921 midgard_instruction ins = {
922 .type = TAG_ALU_4,
923 .unit = for_branch ? UNIT_SMUL : UNIT_SADD, /* TODO: DEDUCE THIS */
924 .ssa_args = {
925 .src0 = condition,
926 .src1 = condition,
927 .dest = SSA_FIXED_REGISTER(31),
928 },
929 .alu = {
930 .op = midgard_alu_op_iand,
931 .reg_mode = midgard_reg_mode_full,
932 .dest_override = midgard_dest_override_none,
933 .mask = (0x3 << 6), /* w */
934 .src1 = vector_alu_srco_unsigned(blank_alu_src_xxxx),
935 .src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx)
936 },
937 };
938
939 emit_mir_instruction(ctx, ins);
940 }
941
942 #define ALU_CASE(nir, _op) \
943 case nir_op_##nir: \
944 op = midgard_alu_op_##_op; \
945 break;
946
947 static void
948 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
949 {
950 bool is_ssa = instr->dest.dest.is_ssa;
951
952 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
953 unsigned nr_components = is_ssa ? instr->dest.dest.ssa.num_components : instr->dest.dest.reg.reg->num_components;
954 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
955
956 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
957 * supported. A few do not and are commented for now. Also, there are a
958 * number of NIR ops which Midgard does not support and need to be
959 * lowered, also TODO. This switch block emits the opcode and calling
960 * convention of the Midgard instruction; actual packing is done in
961 * emit_alu below */
962
963 unsigned op;
964
965 switch (instr->op) {
966 ALU_CASE(fadd, fadd);
967 ALU_CASE(fmul, fmul);
968 ALU_CASE(fmin, fmin);
969 ALU_CASE(fmax, fmax);
970 ALU_CASE(imin, imin);
971 ALU_CASE(imax, imax);
972 ALU_CASE(fmov, fmov);
973 ALU_CASE(ffloor, ffloor);
974 ALU_CASE(fround_even, froundeven);
975 ALU_CASE(ftrunc, ftrunc);
976 ALU_CASE(fceil, fceil);
977 ALU_CASE(fdot3, fdot3);
978 ALU_CASE(fdot4, fdot4);
979 ALU_CASE(iadd, iadd);
980 ALU_CASE(isub, isub);
981 ALU_CASE(imul, imul);
982 ALU_CASE(iabs, iabs);
983
984 /* XXX: Use fmov, not imov, since imov was causing major
985 * issues with texture precision? XXX research */
986 ALU_CASE(imov, fmov);
987
988 ALU_CASE(feq32, feq);
989 ALU_CASE(fne32, fne);
990 ALU_CASE(flt32, flt);
991 ALU_CASE(ieq32, ieq);
992 ALU_CASE(ine32, ine);
993 ALU_CASE(ilt32, ilt);
994
995 /* We don't have a native b2f32 instruction. Instead, like many
996 * GPUs, we exploit booleans as 0/~0 for false/true, and
997 * correspondingly AND
998 * by 1.0 to do the type conversion. For the moment, prime us
999 * to emit:
1000 *
1001 * iand [whatever], #0
1002 *
1003 * At the end of emit_alu (as MIR), we'll fix-up the constant
1004 */
1005
1006 ALU_CASE(b2f32, iand);
1007 ALU_CASE(b2i32, iand);
1008
1009 /* Likewise, we don't have a dedicated f2b32 instruction, but
1010 * we can do a "not equal to 0.0" test. */
1011
1012 ALU_CASE(f2b32, fne);
1013 ALU_CASE(i2b32, ine);
1014
1015 ALU_CASE(frcp, frcp);
1016 ALU_CASE(frsq, frsqrt);
1017 ALU_CASE(fsqrt, fsqrt);
1018 ALU_CASE(fpow, fpow);
1019 ALU_CASE(fexp2, fexp2);
1020 ALU_CASE(flog2, flog2);
1021
1022 ALU_CASE(f2i32, f2i);
1023 ALU_CASE(f2u32, f2u);
1024 ALU_CASE(i2f32, i2f);
1025 ALU_CASE(u2f32, u2f);
1026
1027 ALU_CASE(fsin, fsin);
1028 ALU_CASE(fcos, fcos);
1029
1030 ALU_CASE(iand, iand);
1031 ALU_CASE(ior, ior);
1032 ALU_CASE(ixor, ixor);
1033 ALU_CASE(inot, inot);
1034 ALU_CASE(ishl, ishl);
1035 ALU_CASE(ishr, iasr);
1036 ALU_CASE(ushr, ilsr);
1037
1038 ALU_CASE(b32all_fequal2, fball_eq);
1039 ALU_CASE(b32all_fequal3, fball_eq);
1040 ALU_CASE(b32all_fequal4, fball_eq);
1041
1042 ALU_CASE(b32any_fnequal2, fbany_neq);
1043 ALU_CASE(b32any_fnequal3, fbany_neq);
1044 ALU_CASE(b32any_fnequal4, fbany_neq);
1045
1046 ALU_CASE(b32all_iequal2, iball_eq);
1047 ALU_CASE(b32all_iequal3, iball_eq);
1048 ALU_CASE(b32all_iequal4, iball_eq);
1049
1050 ALU_CASE(b32any_inequal2, ibany_neq);
1051 ALU_CASE(b32any_inequal3, ibany_neq);
1052 ALU_CASE(b32any_inequal4, ibany_neq);
1053
1054 /* For greater-or-equal, we use less-or-equal and flip the
1055 * arguments */
1056
1057 case nir_op_ige32: {
1058 op = midgard_alu_op_ile;
1059
1060 /* Swap via temporary */
1061 nir_alu_src temp = instr->src[1];
1062 instr->src[1] = instr->src[0];
1063 instr->src[0] = temp;
1064
1065 break;
1066 }
1067
1068 case nir_op_b32csel: {
1069 op = midgard_alu_op_fcsel;
1070
1071 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
1072 nr_inputs = 2;
1073
1074 emit_condition(ctx, &instr->src[0].src, false);
1075
1076 /* The condition is the first argument; move the other
1077 * arguments up one to be a binary instruction for
1078 * Midgard */
1079
1080 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
1081 break;
1082 }
1083
1084 default:
1085 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
1086 assert(0);
1087 return;
1088 }
1089
1090 /* Fetch unit, quirks, etc information */
1091 unsigned opcode_props = alu_opcode_props[op];
1092 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
1093
1094 /* Initialise fields common between scalar/vector instructions */
1095 midgard_outmod outmod = instr->dest.saturate ? midgard_outmod_sat : midgard_outmod_none;
1096
1097 /* src0 will always exist afaik, but src1 will not for 1-argument
1098 * instructions. The latter can only be fetched if the instruction
1099 * needs it, or else we may segfault. */
1100
1101 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
1102 unsigned src1 = nr_inputs == 2 ? nir_alu_src_index(ctx, &instr->src[1]) : SSA_UNUSED_0;
1103
1104 /* Rather than use the instruction generation helpers, we do it
1105 * ourselves here to avoid the mess */
1106
1107 midgard_instruction ins = {
1108 .type = TAG_ALU_4,
1109 .ssa_args = {
1110 .src0 = quirk_flipped_r24 ? SSA_UNUSED_1 : src0,
1111 .src1 = quirk_flipped_r24 ? src0 : src1,
1112 .dest = dest,
1113 }
1114 };
1115
1116 nir_alu_src *nirmods[2] = { NULL };
1117
1118 if (nr_inputs == 2) {
1119 nirmods[0] = &instr->src[0];
1120 nirmods[1] = &instr->src[1];
1121 } else if (nr_inputs == 1) {
1122 nirmods[quirk_flipped_r24] = &instr->src[0];
1123 } else {
1124 assert(0);
1125 }
1126
1127 midgard_vector_alu alu = {
1128 .op = op,
1129 .reg_mode = midgard_reg_mode_full,
1130 .dest_override = midgard_dest_override_none,
1131 .outmod = outmod,
1132
1133 /* Writemask only valid for non-SSA NIR */
1134 .mask = expand_writemask((1 << nr_components) - 1),
1135
1136 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0])),
1137 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1])),
1138 };
1139
1140 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1141
1142 if (!is_ssa)
1143 alu.mask &= expand_writemask(instr->dest.write_mask);
1144
1145 ins.alu = alu;
1146
1147 /* Late fixup for emulated instructions */
1148
1149 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1150 /* Presently, our second argument is an inline #0 constant.
1151 * Switch over to an embedded 1.0 constant (that can't fit
1152 * inline, since we're 32-bit, not 16-bit like the inline
1153 * constants) */
1154
1155 ins.ssa_args.inline_constant = false;
1156 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1157 ins.has_constants = true;
1158
1159 if (instr->op == nir_op_b2f32) {
1160 ins.constants[0] = 1.0f;
1161 } else {
1162 /* Type pun it into place */
1163 uint32_t one = 0x1;
1164 memcpy(&ins.constants[0], &one, sizeof(uint32_t));
1165 }
1166
1167 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1168 } else if (instr->op == nir_op_f2b32) {
1169 ins.ssa_args.inline_constant = false;
1170 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1171 ins.has_constants = true;
1172 ins.constants[0] = 0.0f;
1173 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1174 }
1175
1176 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1177 /* To avoid duplicating the lookup tables (probably), true LUT
1178 * instructions can only operate as if they were scalars. Lower
1179 * them here by changing the component. */
1180
1181 uint8_t original_swizzle[4];
1182 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
1183
1184 for (int i = 0; i < nr_components; ++i) {
1185 ins.alu.mask = (0x3) << (2 * i); /* Mask the associated component */
1186
1187 for (int j = 0; j < 4; ++j)
1188 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1189
1190 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0]));
1191 emit_mir_instruction(ctx, ins);
1192 }
1193 } else {
1194 emit_mir_instruction(ctx, ins);
1195 }
1196 }
1197
1198 #undef ALU_CASE
1199
1200 static void
1201 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1202 {
1203 nir_const_value *const_offset;
1204 unsigned offset, reg;
1205
1206 switch (instr->intrinsic) {
1207 case nir_intrinsic_discard_if:
1208 emit_condition(ctx, &instr->src[0], true);
1209
1210 /* fallthrough */
1211
1212 case nir_intrinsic_discard: {
1213 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1214 struct midgard_instruction discard = v_branch(conditional, false);
1215 discard.branch.target_type = TARGET_DISCARD;
1216 emit_mir_instruction(ctx, discard);
1217
1218 ctx->can_discard = true;
1219 break;
1220 }
1221
1222 case nir_intrinsic_load_uniform:
1223 case nir_intrinsic_load_input:
1224 const_offset = nir_src_as_const_value(instr->src[0]);
1225 assert (const_offset && "no indirect inputs");
1226
1227 offset = nir_intrinsic_base(instr) + const_offset->u32[0];
1228
1229 reg = nir_dest_index(ctx, &instr->dest);
1230
1231 if (instr->intrinsic == nir_intrinsic_load_uniform && !ctx->is_blend) {
1232 /* TODO: half-floats */
1233
1234 int uniform_offset = 0;
1235
1236 if (offset >= SPECIAL_UNIFORM_BASE) {
1237 /* XXX: Resolve which uniform */
1238 uniform_offset = 0;
1239 } else {
1240 /* Offset away from the special
1241 * uniform block */
1242
1243 void *entry = _mesa_hash_table_u64_search(ctx->uniform_nir_to_mdg, offset + 1);
1244
1245 /* XXX */
1246 if (!entry) {
1247 DBG("WARNING: Unknown uniform %d\n", offset);
1248 break;
1249 }
1250
1251 uniform_offset = (uintptr_t) (entry) - 1;
1252 uniform_offset += ctx->special_uniforms;
1253 }
1254
1255 if (uniform_offset < ctx->uniform_cutoff) {
1256 /* Fast path: For the first 16 uniform,
1257 * accesses are 0-cycle, since they're
1258 * just a register fetch in the usual
1259 * case. So, we alias the registers
1260 * while we're still in SSA-space */
1261
1262 int reg_slot = 23 - uniform_offset;
1263 alias_ssa(ctx, reg, SSA_FIXED_REGISTER(reg_slot));
1264 } else {
1265 /* Otherwise, read from the 'special'
1266 * UBO to access higher-indexed
1267 * uniforms, at a performance cost */
1268
1269 midgard_instruction ins = m_load_uniform_32(reg, uniform_offset);
1270
1271 /* TODO: Don't split */
1272 ins.load_store.varying_parameters = (uniform_offset & 7) << 7;
1273 ins.load_store.address = uniform_offset >> 3;
1274
1275 ins.load_store.unknown = 0x1E00; /* xxx: what is this? */
1276 emit_mir_instruction(ctx, ins);
1277 }
1278 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1279 /* XXX: Half-floats? */
1280 /* TODO: swizzle, mask */
1281
1282 midgard_instruction ins = m_load_vary_32(reg, offset);
1283
1284 midgard_varying_parameter p = {
1285 .is_varying = 1,
1286 .interpolation = midgard_interp_default,
1287 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1288 };
1289
1290 unsigned u;
1291 memcpy(&u, &p, sizeof(p));
1292 ins.load_store.varying_parameters = u;
1293
1294 ins.load_store.unknown = 0x1e9e; /* xxx: what is this? */
1295 emit_mir_instruction(ctx, ins);
1296 } else if (ctx->is_blend && instr->intrinsic == nir_intrinsic_load_uniform) {
1297 /* Constant encoded as a pinned constant */
1298
1299 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1300 ins.has_constants = true;
1301 ins.has_blend_constant = true;
1302 emit_mir_instruction(ctx, ins);
1303 } else if (ctx->is_blend) {
1304 /* For blend shaders, a load might be
1305 * translated various ways depending on what
1306 * we're loading. Figure out how this is used */
1307
1308 nir_variable *out = NULL;
1309
1310 nir_foreach_variable(var, &ctx->nir->inputs) {
1311 int drvloc = var->data.driver_location;
1312
1313 if (nir_intrinsic_base(instr) == drvloc) {
1314 out = var;
1315 break;
1316 }
1317 }
1318
1319 assert(out);
1320
1321 if (out->data.location == VARYING_SLOT_COL0) {
1322 /* Source color preloaded to r0 */
1323
1324 midgard_pin_output(ctx, reg, 0);
1325 } else if (out->data.location == VARYING_SLOT_COL1) {
1326 /* Destination color must be read from framebuffer */
1327
1328 midgard_instruction ins = m_load_color_buffer_8(reg, 0);
1329 ins.load_store.swizzle = 0; /* xxxx */
1330
1331 /* Read each component sequentially */
1332
1333 for (int c = 0; c < 4; ++c) {
1334 ins.load_store.mask = (1 << c);
1335 ins.load_store.unknown = c;
1336 emit_mir_instruction(ctx, ins);
1337 }
1338
1339 /* vadd.u2f hr2, abs(hr2), #0 */
1340
1341 midgard_vector_alu_src alu_src = blank_alu_src;
1342 alu_src.abs = true;
1343 alu_src.half = true;
1344
1345 midgard_instruction u2f = {
1346 .type = TAG_ALU_4,
1347 .ssa_args = {
1348 .src0 = reg,
1349 .src1 = SSA_UNUSED_0,
1350 .dest = reg,
1351 .inline_constant = true
1352 },
1353 .alu = {
1354 .op = midgard_alu_op_u2f,
1355 .reg_mode = midgard_reg_mode_half,
1356 .dest_override = midgard_dest_override_none,
1357 .mask = 0xF,
1358 .src1 = vector_alu_srco_unsigned(alu_src),
1359 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1360 }
1361 };
1362
1363 emit_mir_instruction(ctx, u2f);
1364
1365 /* vmul.fmul.sat r1, hr2, #0.00392151 */
1366
1367 alu_src.abs = false;
1368
1369 midgard_instruction fmul = {
1370 .type = TAG_ALU_4,
1371 .inline_constant = _mesa_float_to_half(1.0 / 255.0),
1372 .ssa_args = {
1373 .src0 = reg,
1374 .dest = reg,
1375 .src1 = SSA_UNUSED_0,
1376 .inline_constant = true
1377 },
1378 .alu = {
1379 .op = midgard_alu_op_fmul,
1380 .reg_mode = midgard_reg_mode_full,
1381 .dest_override = midgard_dest_override_none,
1382 .outmod = midgard_outmod_sat,
1383 .mask = 0xFF,
1384 .src1 = vector_alu_srco_unsigned(alu_src),
1385 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1386 }
1387 };
1388
1389 emit_mir_instruction(ctx, fmul);
1390 } else {
1391 DBG("Unknown input in blend shader\n");
1392 assert(0);
1393 }
1394 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1395 midgard_instruction ins = m_load_attr_32(reg, offset);
1396 ins.load_store.unknown = 0x1E1E; /* XXX: What is this? */
1397 ins.load_store.mask = (1 << instr->num_components) - 1;
1398 emit_mir_instruction(ctx, ins);
1399 } else {
1400 DBG("Unknown load\n");
1401 assert(0);
1402 }
1403
1404 break;
1405
1406 case nir_intrinsic_store_output:
1407 const_offset = nir_src_as_const_value(instr->src[1]);
1408 assert(const_offset && "no indirect outputs");
1409
1410 offset = nir_intrinsic_base(instr) + const_offset->u32[0];
1411
1412 reg = nir_src_index(ctx, &instr->src[0]);
1413
1414 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1415 /* gl_FragColor is not emitted with load/store
1416 * instructions. Instead, it gets plonked into
1417 * r0 at the end of the shader and we do the
1418 * framebuffer writeout dance. TODO: Defer
1419 * writes */
1420
1421 midgard_pin_output(ctx, reg, 0);
1422
1423 /* Save the index we're writing to for later reference
1424 * in the epilogue */
1425
1426 ctx->fragment_output = reg;
1427 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1428 /* Varyings are written into one of two special
1429 * varying register, r26 or r27. The register itself is selected as the register
1430 * in the st_vary instruction, minus the base of 26. E.g. write into r27 and then call st_vary(1)
1431 *
1432 * Normally emitting fmov's is frowned upon,
1433 * but due to unique constraints of
1434 * REGISTER_VARYING, fmov emission + a
1435 * dedicated cleanup pass is the only way to
1436 * guarantee correctness when considering some
1437 * (common) edge cases XXX: FIXME */
1438
1439 /* If this varying corresponds to a constant (why?!),
1440 * emit that now since it won't get picked up by
1441 * hoisting (since there is no corresponding move
1442 * emitted otherwise) */
1443
1444 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, reg + 1);
1445
1446 if (constant_value) {
1447 /* Special case: emit the varying write
1448 * directly to r26 (looks funny in asm but it's
1449 * fine) and emit the store _now_. Possibly
1450 * slightly slower, but this is a really stupid
1451 * special case anyway (why on earth would you
1452 * have a constant varying? Your own fault for
1453 * slightly worse perf :P) */
1454
1455 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(26));
1456 attach_constants(ctx, &ins, constant_value, reg + 1);
1457 emit_mir_instruction(ctx, ins);
1458
1459 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(0), offset);
1460 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
1461 emit_mir_instruction(ctx, st);
1462 } else {
1463 /* Do not emit the varying yet -- instead, just mark down that we need to later */
1464
1465 _mesa_hash_table_u64_insert(ctx->ssa_varyings, reg + 1, (void *) ((uintptr_t) (offset + 1)));
1466 }
1467 } else {
1468 DBG("Unknown store\n");
1469 assert(0);
1470 }
1471
1472 break;
1473
1474 case nir_intrinsic_load_alpha_ref_float:
1475 assert(instr->dest.is_ssa);
1476
1477 float ref_value = ctx->alpha_ref;
1478
1479 float *v = ralloc_array(NULL, float, 4);
1480 memcpy(v, &ref_value, sizeof(float));
1481 _mesa_hash_table_u64_insert(ctx->ssa_constants, instr->dest.ssa.index + 1, v);
1482 break;
1483
1484
1485 default:
1486 printf ("Unhandled intrinsic\n");
1487 assert(0);
1488 break;
1489 }
1490 }
1491
1492 static unsigned
1493 midgard_tex_format(enum glsl_sampler_dim dim)
1494 {
1495 switch (dim) {
1496 case GLSL_SAMPLER_DIM_2D:
1497 case GLSL_SAMPLER_DIM_EXTERNAL:
1498 return TEXTURE_2D;
1499
1500 case GLSL_SAMPLER_DIM_3D:
1501 return TEXTURE_3D;
1502
1503 case GLSL_SAMPLER_DIM_CUBE:
1504 return TEXTURE_CUBE;
1505
1506 default:
1507 DBG("Unknown sampler dim type\n");
1508 assert(0);
1509 return 0;
1510 }
1511 }
1512
1513 static void
1514 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1515 {
1516 /* TODO */
1517 //assert (!instr->sampler);
1518 //assert (!instr->texture_array_size);
1519 assert (instr->op == nir_texop_tex);
1520
1521 /* Allocate registers via a round robin scheme to alternate between the two registers */
1522 int reg = ctx->texture_op_count & 1;
1523 int in_reg = reg, out_reg = reg;
1524
1525 /* Make room for the reg */
1526
1527 if (ctx->texture_index[reg] > -1)
1528 unalias_ssa(ctx, ctx->texture_index[reg]);
1529
1530 int texture_index = instr->texture_index;
1531 int sampler_index = texture_index;
1532
1533 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1534 switch (instr->src[i].src_type) {
1535 case nir_tex_src_coord: {
1536 int index = nir_src_index(ctx, &instr->src[i].src);
1537
1538 midgard_vector_alu_src alu_src = blank_alu_src;
1539 alu_src.swizzle = (COMPONENT_Y << 2);
1540
1541 midgard_instruction ins = v_fmov(index, alu_src, SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + in_reg));
1542 emit_mir_instruction(ctx, ins);
1543
1544 //midgard_pin_output(ctx, index, REGISTER_TEXTURE_BASE + in_reg);
1545
1546 break;
1547 }
1548
1549 default: {
1550 DBG("Unknown source type\n");
1551 //assert(0);
1552 break;
1553 }
1554 }
1555 }
1556
1557 /* No helper to build texture words -- we do it all here */
1558 midgard_instruction ins = {
1559 .type = TAG_TEXTURE_4,
1560 .texture = {
1561 .op = TEXTURE_OP_NORMAL,
1562 .format = midgard_tex_format(instr->sampler_dim),
1563 .texture_handle = texture_index,
1564 .sampler_handle = sampler_index,
1565
1566 /* TODO: Don't force xyzw */
1567 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
1568 .mask = 0xF,
1569
1570 /* TODO: half */
1571 //.in_reg_full = 1,
1572 .out_full = 1,
1573
1574 .filter = 1,
1575
1576 /* Always 1 */
1577 .unknown7 = 1,
1578
1579 /* Assume we can continue; hint it out later */
1580 .cont = 1,
1581 }
1582 };
1583
1584 /* Set registers to read and write from the same place */
1585 ins.texture.in_reg_select = in_reg;
1586 ins.texture.out_reg_select = out_reg;
1587
1588 /* TODO: Dynamic swizzle input selection, half-swizzles? */
1589 if (instr->sampler_dim == GLSL_SAMPLER_DIM_3D) {
1590 ins.texture.in_reg_swizzle_right = COMPONENT_X;
1591 ins.texture.in_reg_swizzle_left = COMPONENT_Y;
1592 //ins.texture.in_reg_swizzle_third = COMPONENT_Z;
1593 } else {
1594 ins.texture.in_reg_swizzle_left = COMPONENT_X;
1595 ins.texture.in_reg_swizzle_right = COMPONENT_Y;
1596 //ins.texture.in_reg_swizzle_third = COMPONENT_X;
1597 }
1598
1599 emit_mir_instruction(ctx, ins);
1600
1601 /* Simultaneously alias the destination and emit a move for it. The move will be eliminated if possible */
1602
1603 int o_reg = REGISTER_TEXTURE_BASE + out_reg, o_index = nir_dest_index(ctx, &instr->dest);
1604 alias_ssa(ctx, o_index, SSA_FIXED_REGISTER(o_reg));
1605 ctx->texture_index[reg] = o_index;
1606
1607 midgard_instruction ins2 = v_fmov(SSA_FIXED_REGISTER(o_reg), blank_alu_src, o_index);
1608 emit_mir_instruction(ctx, ins2);
1609
1610 /* Used for .cont and .last hinting */
1611 ctx->texture_op_count++;
1612 }
1613
1614 static void
1615 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1616 {
1617 switch (instr->type) {
1618 case nir_jump_break: {
1619 /* Emit a branch out of the loop */
1620 struct midgard_instruction br = v_branch(false, false);
1621 br.branch.target_type = TARGET_BREAK;
1622 br.branch.target_break = ctx->current_loop;
1623 emit_mir_instruction(ctx, br);
1624
1625 DBG("break..\n");
1626 break;
1627 }
1628
1629 default:
1630 DBG("Unknown jump type %d\n", instr->type);
1631 break;
1632 }
1633 }
1634
1635 static void
1636 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1637 {
1638 switch (instr->type) {
1639 case nir_instr_type_load_const:
1640 emit_load_const(ctx, nir_instr_as_load_const(instr));
1641 break;
1642
1643 case nir_instr_type_intrinsic:
1644 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1645 break;
1646
1647 case nir_instr_type_alu:
1648 emit_alu(ctx, nir_instr_as_alu(instr));
1649 break;
1650
1651 case nir_instr_type_tex:
1652 emit_tex(ctx, nir_instr_as_tex(instr));
1653 break;
1654
1655 case nir_instr_type_jump:
1656 emit_jump(ctx, nir_instr_as_jump(instr));
1657 break;
1658
1659 case nir_instr_type_ssa_undef:
1660 /* Spurious */
1661 break;
1662
1663 default:
1664 DBG("Unhandled instruction type\n");
1665 break;
1666 }
1667 }
1668
1669 /* Determine the actual hardware from the index based on the RA results or special values */
1670
1671 static int
1672 dealias_register(compiler_context *ctx, struct ra_graph *g, int reg, int maxreg)
1673 {
1674 if (reg >= SSA_FIXED_MINIMUM)
1675 return SSA_REG_FROM_FIXED(reg);
1676
1677 if (reg >= 0) {
1678 assert(reg < maxreg);
1679 int r = ra_get_node_reg(g, reg);
1680 ctx->work_registers = MAX2(ctx->work_registers, r);
1681 return r;
1682 }
1683
1684 switch (reg) {
1685 /* fmov style unused */
1686 case SSA_UNUSED_0:
1687 return REGISTER_UNUSED;
1688
1689 /* lut style unused */
1690 case SSA_UNUSED_1:
1691 return REGISTER_UNUSED;
1692
1693 default:
1694 DBG("Unknown SSA register alias %d\n", reg);
1695 assert(0);
1696 return 31;
1697 }
1698 }
1699
1700 static unsigned int
1701 midgard_ra_select_callback(struct ra_graph *g, BITSET_WORD *regs, void *data)
1702 {
1703 /* Choose the first available register to minimise reported register pressure */
1704
1705 for (int i = 0; i < 16; ++i) {
1706 if (BITSET_TEST(regs, i)) {
1707 return i;
1708 }
1709 }
1710
1711 assert(0);
1712 return 0;
1713 }
1714
1715 static bool
1716 midgard_is_live_in_instr(midgard_instruction *ins, int src)
1717 {
1718 if (ins->ssa_args.src0 == src) return true;
1719 if (ins->ssa_args.src1 == src) return true;
1720
1721 return false;
1722 }
1723
1724 static bool
1725 is_live_after(compiler_context *ctx, midgard_block *block, midgard_instruction *start, int src)
1726 {
1727 /* Check the rest of the block for liveness */
1728 mir_foreach_instr_in_block_from(block, ins, mir_next_op(start)) {
1729 if (midgard_is_live_in_instr(ins, src))
1730 return true;
1731 }
1732
1733 /* Check the rest of the blocks for liveness */
1734 mir_foreach_block_from(ctx, mir_next_block(block), b) {
1735 mir_foreach_instr_in_block(b, ins) {
1736 if (midgard_is_live_in_instr(ins, src))
1737 return true;
1738 }
1739 }
1740
1741 /* TODO: How does control flow interact in complex shaders? */
1742
1743 return false;
1744 }
1745
1746 static void
1747 allocate_registers(compiler_context *ctx)
1748 {
1749 /* First, initialize the RA */
1750 struct ra_regs *regs = ra_alloc_reg_set(NULL, 32, true);
1751
1752 /* Create a primary (general purpose) class, as well as special purpose
1753 * pipeline register classes */
1754
1755 int primary_class = ra_alloc_reg_class(regs);
1756 int varying_class = ra_alloc_reg_class(regs);
1757
1758 /* Add the full set of work registers */
1759 int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0);
1760 for (int i = 0; i < work_count; ++i)
1761 ra_class_add_reg(regs, primary_class, i);
1762
1763 /* Add special registers */
1764 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE);
1765 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE + 1);
1766
1767 /* We're done setting up */
1768 ra_set_finalize(regs, NULL);
1769
1770 /* Transform the MIR into squeezed index form */
1771 mir_foreach_block(ctx, block) {
1772 mir_foreach_instr_in_block(block, ins) {
1773 if (ins->compact_branch) continue;
1774
1775 ins->ssa_args.src0 = find_or_allocate_temp(ctx, ins->ssa_args.src0);
1776 ins->ssa_args.src1 = find_or_allocate_temp(ctx, ins->ssa_args.src1);
1777 ins->ssa_args.dest = find_or_allocate_temp(ctx, ins->ssa_args.dest);
1778 }
1779 if (midgard_debug & MIDGARD_DBG_SHADERS)
1780 print_mir_block(block);
1781 }
1782
1783 /* Let's actually do register allocation */
1784 int nodes = ctx->temp_count;
1785 struct ra_graph *g = ra_alloc_interference_graph(regs, nodes);
1786
1787 /* Set everything to the work register class, unless it has somewhere
1788 * special to go */
1789
1790 mir_foreach_block(ctx, block) {
1791 mir_foreach_instr_in_block(block, ins) {
1792 if (ins->compact_branch) continue;
1793
1794 if (ins->ssa_args.dest < 0) continue;
1795
1796 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
1797
1798 int class = primary_class;
1799
1800 ra_set_node_class(g, ins->ssa_args.dest, class);
1801 }
1802 }
1803
1804 for (int index = 0; index <= ctx->max_hash; ++index) {
1805 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1);
1806
1807 if (temp) {
1808 unsigned reg = temp - 1;
1809 int t = find_or_allocate_temp(ctx, index);
1810 ra_set_node_reg(g, t, reg);
1811 }
1812 }
1813
1814 /* Determine liveness */
1815
1816 int *live_start = malloc(nodes * sizeof(int));
1817 int *live_end = malloc(nodes * sizeof(int));
1818
1819 /* Initialize as non-existent */
1820
1821 for (int i = 0; i < nodes; ++i) {
1822 live_start[i] = live_end[i] = -1;
1823 }
1824
1825 int d = 0;
1826
1827 mir_foreach_block(ctx, block) {
1828 mir_foreach_instr_in_block(block, ins) {
1829 if (ins->compact_branch) continue;
1830
1831 if (ins->ssa_args.dest < SSA_FIXED_MINIMUM) {
1832 /* If this destination is not yet live, it is now since we just wrote it */
1833
1834 int dest = ins->ssa_args.dest;
1835
1836 if (live_start[dest] == -1)
1837 live_start[dest] = d;
1838 }
1839
1840 /* Since we just used a source, the source might be
1841 * dead now. Scan the rest of the block for
1842 * invocations, and if there are none, the source dies
1843 * */
1844
1845 int sources[2] = { ins->ssa_args.src0, ins->ssa_args.src1 };
1846
1847 for (int src = 0; src < 2; ++src) {
1848 int s = sources[src];
1849
1850 if (s < 0) continue;
1851
1852 if (s >= SSA_FIXED_MINIMUM) continue;
1853
1854 if (!is_live_after(ctx, block, ins, s)) {
1855 live_end[s] = d;
1856 }
1857 }
1858
1859 ++d;
1860 }
1861 }
1862
1863 /* If a node still hasn't been killed, kill it now */
1864
1865 for (int i = 0; i < nodes; ++i) {
1866 /* live_start == -1 most likely indicates a pinned output */
1867
1868 if (live_end[i] == -1)
1869 live_end[i] = d;
1870 }
1871
1872 /* Setup interference between nodes that are live at the same time */
1873
1874 for (int i = 0; i < nodes; ++i) {
1875 for (int j = i + 1; j < nodes; ++j) {
1876 if (!(live_start[i] >= live_end[j] || live_start[j] >= live_end[i]))
1877 ra_add_node_interference(g, i, j);
1878 }
1879 }
1880
1881 ra_set_select_reg_callback(g, midgard_ra_select_callback, NULL);
1882
1883 if (!ra_allocate(g)) {
1884 DBG("Error allocating registers\n");
1885 assert(0);
1886 }
1887
1888 /* Cleanup */
1889 free(live_start);
1890 free(live_end);
1891
1892 mir_foreach_block(ctx, block) {
1893 mir_foreach_instr_in_block(block, ins) {
1894 if (ins->compact_branch) continue;
1895
1896 ssa_args args = ins->ssa_args;
1897
1898 switch (ins->type) {
1899 case TAG_ALU_4:
1900 ins->registers.src1_reg = dealias_register(ctx, g, args.src0, nodes);
1901
1902 ins->registers.src2_imm = args.inline_constant;
1903
1904 if (args.inline_constant) {
1905 /* Encode inline 16-bit constant as a vector by default */
1906
1907 ins->registers.src2_reg = ins->inline_constant >> 11;
1908
1909 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
1910
1911 uint16_t imm = ((lower_11 >> 8) & 0x7) | ((lower_11 & 0xFF) << 3);
1912 ins->alu.src2 = imm << 2;
1913 } else {
1914 ins->registers.src2_reg = dealias_register(ctx, g, args.src1, nodes);
1915 }
1916
1917 ins->registers.out_reg = dealias_register(ctx, g, args.dest, nodes);
1918
1919 break;
1920
1921 case TAG_LOAD_STORE_4: {
1922 if (OP_IS_STORE(ins->load_store.op)) {
1923 /* TODO: use ssa_args for store_vary */
1924 ins->load_store.reg = 0;
1925 } else {
1926 bool has_dest = args.dest >= 0;
1927 int ssa_arg = has_dest ? args.dest : args.src0;
1928
1929 ins->load_store.reg = dealias_register(ctx, g, ssa_arg, nodes);
1930 }
1931
1932 break;
1933 }
1934
1935 default:
1936 break;
1937 }
1938 }
1939 }
1940 }
1941
1942 /* Midgard IR only knows vector ALU types, but we sometimes need to actually
1943 * use scalar ALU instructions, for functional or performance reasons. To do
1944 * this, we just demote vector ALU payloads to scalar. */
1945
1946 static int
1947 component_from_mask(unsigned mask)
1948 {
1949 for (int c = 0; c < 4; ++c) {
1950 if (mask & (3 << (2 * c)))
1951 return c;
1952 }
1953
1954 assert(0);
1955 return 0;
1956 }
1957
1958 static bool
1959 is_single_component_mask(unsigned mask)
1960 {
1961 int components = 0;
1962
1963 for (int c = 0; c < 4; ++c)
1964 if (mask & (3 << (2 * c)))
1965 components++;
1966
1967 return components == 1;
1968 }
1969
1970 /* Create a mask of accessed components from a swizzle to figure out vector
1971 * dependencies */
1972
1973 static unsigned
1974 swizzle_to_access_mask(unsigned swizzle)
1975 {
1976 unsigned component_mask = 0;
1977
1978 for (int i = 0; i < 4; ++i) {
1979 unsigned c = (swizzle >> (2 * i)) & 3;
1980 component_mask |= (1 << c);
1981 }
1982
1983 return component_mask;
1984 }
1985
1986 static unsigned
1987 vector_to_scalar_source(unsigned u)
1988 {
1989 midgard_vector_alu_src v;
1990 memcpy(&v, &u, sizeof(v));
1991
1992 midgard_scalar_alu_src s = {
1993 .abs = v.abs,
1994 .negate = v.negate,
1995 .full = !v.half,
1996 .component = (v.swizzle & 3) << 1
1997 };
1998
1999 unsigned o;
2000 memcpy(&o, &s, sizeof(s));
2001
2002 return o & ((1 << 6) - 1);
2003 }
2004
2005 static midgard_scalar_alu
2006 vector_to_scalar_alu(midgard_vector_alu v, midgard_instruction *ins)
2007 {
2008 /* The output component is from the mask */
2009 midgard_scalar_alu s = {
2010 .op = v.op,
2011 .src1 = vector_to_scalar_source(v.src1),
2012 .src2 = vector_to_scalar_source(v.src2),
2013 .unknown = 0,
2014 .outmod = v.outmod,
2015 .output_full = 1, /* TODO: Half */
2016 .output_component = component_from_mask(v.mask) << 1,
2017 };
2018
2019 /* Inline constant is passed along rather than trying to extract it
2020 * from v */
2021
2022 if (ins->ssa_args.inline_constant) {
2023 uint16_t imm = 0;
2024 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
2025 imm |= (lower_11 >> 9) & 3;
2026 imm |= (lower_11 >> 6) & 4;
2027 imm |= (lower_11 >> 2) & 0x38;
2028 imm |= (lower_11 & 63) << 6;
2029
2030 s.src2 = imm;
2031 }
2032
2033 return s;
2034 }
2035
2036 /* Midgard prefetches instruction types, so during emission we need to
2037 * lookahead too. Unless this is the last instruction, in which we return 1. Or
2038 * if this is the second to last and the last is an ALU, then it's also 1... */
2039
2040 #define IS_ALU(tag) (tag == TAG_ALU_4 || tag == TAG_ALU_8 || \
2041 tag == TAG_ALU_12 || tag == TAG_ALU_16)
2042
2043 #define EMIT_AND_COUNT(type, val) util_dynarray_append(emission, type, val); \
2044 bytes_emitted += sizeof(type)
2045
2046 static void
2047 emit_binary_vector_instruction(midgard_instruction *ains,
2048 uint16_t *register_words, int *register_words_count,
2049 uint64_t *body_words, size_t *body_size, int *body_words_count,
2050 size_t *bytes_emitted)
2051 {
2052 memcpy(&register_words[(*register_words_count)++], &ains->registers, sizeof(ains->registers));
2053 *bytes_emitted += sizeof(midgard_reg_info);
2054
2055 body_size[*body_words_count] = sizeof(midgard_vector_alu);
2056 memcpy(&body_words[(*body_words_count)++], &ains->alu, sizeof(ains->alu));
2057 *bytes_emitted += sizeof(midgard_vector_alu);
2058 }
2059
2060 /* Checks for an SSA data hazard between two adjacent instructions, keeping in
2061 * mind that we are a vector architecture and we can write to different
2062 * components simultaneously */
2063
2064 static bool
2065 can_run_concurrent_ssa(midgard_instruction *first, midgard_instruction *second)
2066 {
2067 /* Each instruction reads some registers and writes to a register. See
2068 * where the first writes */
2069
2070 /* Figure out where exactly we wrote to */
2071 int source = first->ssa_args.dest;
2072 int source_mask = first->type == TAG_ALU_4 ? squeeze_writemask(first->alu.mask) : 0xF;
2073
2074 /* As long as the second doesn't read from the first, we're okay */
2075 if (second->ssa_args.src0 == source) {
2076 if (first->type == TAG_ALU_4) {
2077 /* Figure out which components we just read from */
2078
2079 int q = second->alu.src1;
2080 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2081
2082 /* Check if there are components in common, and fail if so */
2083 if (swizzle_to_access_mask(m->swizzle) & source_mask)
2084 return false;
2085 } else
2086 return false;
2087
2088 }
2089
2090 if (second->ssa_args.src1 == source)
2091 return false;
2092
2093 /* Otherwise, it's safe in that regard. Another data hazard is both
2094 * writing to the same place, of course */
2095
2096 if (second->ssa_args.dest == source) {
2097 /* ...but only if the components overlap */
2098 int dest_mask = second->type == TAG_ALU_4 ? squeeze_writemask(second->alu.mask) : 0xF;
2099
2100 if (dest_mask & source_mask)
2101 return false;
2102 }
2103
2104 /* ...That's it */
2105 return true;
2106 }
2107
2108 static bool
2109 midgard_has_hazard(
2110 midgard_instruction **segment, unsigned segment_size,
2111 midgard_instruction *ains)
2112 {
2113 for (int s = 0; s < segment_size; ++s)
2114 if (!can_run_concurrent_ssa(segment[s], ains))
2115 return true;
2116
2117 return false;
2118
2119
2120 }
2121
2122 /* Schedules, but does not emit, a single basic block. After scheduling, the
2123 * final tag and size of the block are known, which are necessary for branching
2124 * */
2125
2126 static midgard_bundle
2127 schedule_bundle(compiler_context *ctx, midgard_block *block, midgard_instruction *ins, int *skip)
2128 {
2129 int instructions_emitted = 0, instructions_consumed = -1;
2130 midgard_bundle bundle = { 0 };
2131
2132 uint8_t tag = ins->type;
2133
2134 /* Default to the instruction's tag */
2135 bundle.tag = tag;
2136
2137 switch (ins->type) {
2138 case TAG_ALU_4: {
2139 uint32_t control = 0;
2140 size_t bytes_emitted = sizeof(control);
2141
2142 /* TODO: Constant combining */
2143 int index = 0, last_unit = 0;
2144
2145 /* Previous instructions, for the purpose of parallelism */
2146 midgard_instruction *segment[4] = {0};
2147 int segment_size = 0;
2148
2149 instructions_emitted = -1;
2150 midgard_instruction *pins = ins;
2151
2152 for (;;) {
2153 midgard_instruction *ains = pins;
2154
2155 /* Advance instruction pointer */
2156 if (index) {
2157 ains = mir_next_op(pins);
2158 pins = ains;
2159 }
2160
2161 /* Out-of-work condition */
2162 if ((struct list_head *) ains == &block->instructions)
2163 break;
2164
2165 /* Ensure that the chain can continue */
2166 if (ains->type != TAG_ALU_4) break;
2167
2168 /* According to the presentation "The ARM
2169 * Mali-T880 Mobile GPU" from HotChips 27,
2170 * there are two pipeline stages. Branching
2171 * position determined experimentally. Lines
2172 * are executed in parallel:
2173 *
2174 * [ VMUL ] [ SADD ]
2175 * [ VADD ] [ SMUL ] [ LUT ] [ BRANCH ]
2176 *
2177 * Verify that there are no ordering dependencies here.
2178 *
2179 * TODO: Allow for parallelism!!!
2180 */
2181
2182 /* Pick a unit for it if it doesn't force a particular unit */
2183
2184 int unit = ains->unit;
2185
2186 if (!unit) {
2187 int op = ains->alu.op;
2188 int units = alu_opcode_props[op];
2189
2190 /* TODO: Promotion of scalars to vectors */
2191 int vector = ((!is_single_component_mask(ains->alu.mask)) || ((units & UNITS_SCALAR) == 0)) && (units & UNITS_ANY_VECTOR);
2192
2193 if (!vector)
2194 assert(units & UNITS_SCALAR);
2195
2196 if (vector) {
2197 if (last_unit >= UNIT_VADD) {
2198 if (units & UNIT_VLUT)
2199 unit = UNIT_VLUT;
2200 else
2201 break;
2202 } else {
2203 if ((units & UNIT_VMUL) && !(control & UNIT_VMUL))
2204 unit = UNIT_VMUL;
2205 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2206 unit = UNIT_VADD;
2207 else if (units & UNIT_VLUT)
2208 unit = UNIT_VLUT;
2209 else
2210 break;
2211 }
2212 } else {
2213 if (last_unit >= UNIT_VADD) {
2214 if ((units & UNIT_SMUL) && !(control & UNIT_SMUL))
2215 unit = UNIT_SMUL;
2216 else if (units & UNIT_VLUT)
2217 unit = UNIT_VLUT;
2218 else
2219 break;
2220 } else {
2221 if ((units & UNIT_SADD) && !(control & UNIT_SADD) && !midgard_has_hazard(segment, segment_size, ains))
2222 unit = UNIT_SADD;
2223 else if (units & UNIT_SMUL)
2224 unit = ((units & UNIT_VMUL) && !(control & UNIT_VMUL)) ? UNIT_VMUL : UNIT_SMUL;
2225 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2226 unit = UNIT_VADD;
2227 else
2228 break;
2229 }
2230 }
2231
2232 assert(unit & units);
2233 }
2234
2235 /* Late unit check, this time for encoding (not parallelism) */
2236 if (unit <= last_unit) break;
2237
2238 /* Clear the segment */
2239 if (last_unit < UNIT_VADD && unit >= UNIT_VADD)
2240 segment_size = 0;
2241
2242 if (midgard_has_hazard(segment, segment_size, ains))
2243 break;
2244
2245 /* We're good to go -- emit the instruction */
2246 ains->unit = unit;
2247
2248 segment[segment_size++] = ains;
2249
2250 /* Only one set of embedded constants per
2251 * bundle possible; if we have more, we must
2252 * break the chain early, unfortunately */
2253
2254 if (ains->has_constants) {
2255 if (bundle.has_embedded_constants) {
2256 /* ...but if there are already
2257 * constants but these are the
2258 * *same* constants, we let it
2259 * through */
2260
2261 if (memcmp(bundle.constants, ains->constants, sizeof(bundle.constants)))
2262 break;
2263 } else {
2264 bundle.has_embedded_constants = true;
2265 memcpy(bundle.constants, ains->constants, sizeof(bundle.constants));
2266
2267 /* If this is a blend shader special constant, track it for patching */
2268 if (ains->has_blend_constant)
2269 bundle.has_blend_constant = true;
2270 }
2271 }
2272
2273 if (ains->unit & UNITS_ANY_VECTOR) {
2274 emit_binary_vector_instruction(ains, bundle.register_words,
2275 &bundle.register_words_count, bundle.body_words,
2276 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2277 } else if (ains->compact_branch) {
2278 /* All of r0 has to be written out
2279 * along with the branch writeout.
2280 * (slow!) */
2281
2282 if (ains->writeout) {
2283 if (index == 0) {
2284 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2285 ins.unit = UNIT_VMUL;
2286
2287 control |= ins.unit;
2288
2289 emit_binary_vector_instruction(&ins, bundle.register_words,
2290 &bundle.register_words_count, bundle.body_words,
2291 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2292 } else {
2293 /* Analyse the group to see if r0 is written in full, on-time, without hanging dependencies*/
2294 bool written_late = false;
2295 bool components[4] = { 0 };
2296 uint16_t register_dep_mask = 0;
2297 uint16_t written_mask = 0;
2298
2299 midgard_instruction *qins = ins;
2300 for (int t = 0; t < index; ++t) {
2301 if (qins->registers.out_reg != 0) {
2302 /* Mark down writes */
2303
2304 written_mask |= (1 << qins->registers.out_reg);
2305 } else {
2306 /* Mark down the register dependencies for errata check */
2307
2308 if (qins->registers.src1_reg < 16)
2309 register_dep_mask |= (1 << qins->registers.src1_reg);
2310
2311 if (qins->registers.src2_reg < 16)
2312 register_dep_mask |= (1 << qins->registers.src2_reg);
2313
2314 int mask = qins->alu.mask;
2315
2316 for (int c = 0; c < 4; ++c)
2317 if (mask & (0x3 << (2 * c)))
2318 components[c] = true;
2319
2320 /* ..but if the writeout is too late, we have to break up anyway... for some reason */
2321
2322 if (qins->unit == UNIT_VLUT)
2323 written_late = true;
2324 }
2325
2326 /* Advance instruction pointer */
2327 qins = mir_next_op(qins);
2328 }
2329
2330
2331 /* ERRATA (?): In a bundle ending in a fragment writeout, the register dependencies of r0 cannot be written within this bundle (discovered in -bshading:shading=phong) */
2332 if (register_dep_mask & written_mask) {
2333 DBG("ERRATA WORKAROUND: Breakup for writeout dependency masks %X vs %X (common %X)\n", register_dep_mask, written_mask, register_dep_mask & written_mask);
2334 break;
2335 }
2336
2337 if (written_late)
2338 break;
2339
2340 /* If even a single component is not written, break it up (conservative check). */
2341 bool breakup = false;
2342
2343 for (int c = 0; c < 4; ++c)
2344 if (!components[c])
2345 breakup = true;
2346
2347 if (breakup)
2348 break;
2349
2350 /* Otherwise, we're free to proceed */
2351 }
2352 }
2353
2354 if (ains->unit == ALU_ENAB_BRANCH) {
2355 bundle.body_size[bundle.body_words_count] = sizeof(midgard_branch_extended);
2356 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->branch_extended, sizeof(midgard_branch_extended));
2357 bytes_emitted += sizeof(midgard_branch_extended);
2358 } else {
2359 bundle.body_size[bundle.body_words_count] = sizeof(ains->br_compact);
2360 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->br_compact, sizeof(ains->br_compact));
2361 bytes_emitted += sizeof(ains->br_compact);
2362 }
2363 } else {
2364 memcpy(&bundle.register_words[bundle.register_words_count++], &ains->registers, sizeof(ains->registers));
2365 bytes_emitted += sizeof(midgard_reg_info);
2366
2367 bundle.body_size[bundle.body_words_count] = sizeof(midgard_scalar_alu);
2368 bundle.body_words_count++;
2369 bytes_emitted += sizeof(midgard_scalar_alu);
2370 }
2371
2372 /* Defer marking until after writing to allow for break */
2373 control |= ains->unit;
2374 last_unit = ains->unit;
2375 ++instructions_emitted;
2376 ++index;
2377 }
2378
2379 /* Bubble up the number of instructions for skipping */
2380 instructions_consumed = index - 1;
2381
2382 int padding = 0;
2383
2384 /* Pad ALU op to nearest word */
2385
2386 if (bytes_emitted & 15) {
2387 padding = 16 - (bytes_emitted & 15);
2388 bytes_emitted += padding;
2389 }
2390
2391 /* Constants must always be quadwords */
2392 if (bundle.has_embedded_constants)
2393 bytes_emitted += 16;
2394
2395 /* Size ALU instruction for tag */
2396 bundle.tag = (TAG_ALU_4) + (bytes_emitted / 16) - 1;
2397 bundle.padding = padding;
2398 bundle.control = bundle.tag | control;
2399
2400 break;
2401 }
2402
2403 case TAG_LOAD_STORE_4: {
2404 /* Load store instructions have two words at once. If
2405 * we only have one queued up, we need to NOP pad.
2406 * Otherwise, we store both in succession to save space
2407 * and cycles -- letting them go in parallel -- skip
2408 * the next. The usefulness of this optimisation is
2409 * greatly dependent on the quality of the instruction
2410 * scheduler.
2411 */
2412
2413 midgard_instruction *next_op = mir_next_op(ins);
2414
2415 if ((struct list_head *) next_op != &block->instructions && next_op->type == TAG_LOAD_STORE_4) {
2416 /* As the two operate concurrently, make sure
2417 * they are not dependent */
2418
2419 if (can_run_concurrent_ssa(ins, next_op) || true) {
2420 /* Skip ahead, since it's redundant with the pair */
2421 instructions_consumed = 1 + (instructions_emitted++);
2422 }
2423 }
2424
2425 break;
2426 }
2427
2428 default:
2429 /* Texture ops default to single-op-per-bundle scheduling */
2430 break;
2431 }
2432
2433 /* Copy the instructions into the bundle */
2434 bundle.instruction_count = instructions_emitted + 1;
2435
2436 int used_idx = 0;
2437
2438 midgard_instruction *uins = ins;
2439 for (int i = 0; used_idx < bundle.instruction_count; ++i) {
2440 bundle.instructions[used_idx++] = *uins;
2441 uins = mir_next_op(uins);
2442 }
2443
2444 *skip = (instructions_consumed == -1) ? instructions_emitted : instructions_consumed;
2445
2446 return bundle;
2447 }
2448
2449 static int
2450 quadword_size(int tag)
2451 {
2452 switch (tag) {
2453 case TAG_ALU_4:
2454 return 1;
2455
2456 case TAG_ALU_8:
2457 return 2;
2458
2459 case TAG_ALU_12:
2460 return 3;
2461
2462 case TAG_ALU_16:
2463 return 4;
2464
2465 case TAG_LOAD_STORE_4:
2466 return 1;
2467
2468 case TAG_TEXTURE_4:
2469 return 1;
2470
2471 default:
2472 assert(0);
2473 return 0;
2474 }
2475 }
2476
2477 /* Schedule a single block by iterating its instruction to create bundles.
2478 * While we go, tally about the bundle sizes to compute the block size. */
2479
2480 static void
2481 schedule_block(compiler_context *ctx, midgard_block *block)
2482 {
2483 util_dynarray_init(&block->bundles, NULL);
2484
2485 block->quadword_count = 0;
2486
2487 mir_foreach_instr_in_block(block, ins) {
2488 int skip;
2489 midgard_bundle bundle = schedule_bundle(ctx, block, ins, &skip);
2490 util_dynarray_append(&block->bundles, midgard_bundle, bundle);
2491
2492 if (bundle.has_blend_constant) {
2493 /* TODO: Multiblock? */
2494 int quadwords_within_block = block->quadword_count + quadword_size(bundle.tag) - 1;
2495 ctx->blend_constant_offset = quadwords_within_block * 0x10;
2496 }
2497
2498 while(skip--)
2499 ins = mir_next_op(ins);
2500
2501 block->quadword_count += quadword_size(bundle.tag);
2502 }
2503
2504 block->is_scheduled = true;
2505 }
2506
2507 static void
2508 schedule_program(compiler_context *ctx)
2509 {
2510 allocate_registers(ctx);
2511
2512 mir_foreach_block(ctx, block) {
2513 schedule_block(ctx, block);
2514 }
2515 }
2516
2517 /* After everything is scheduled, emit whole bundles at a time */
2518
2519 static void
2520 emit_binary_bundle(compiler_context *ctx, midgard_bundle *bundle, struct util_dynarray *emission, int next_tag)
2521 {
2522 int lookahead = next_tag << 4;
2523
2524 switch (bundle->tag) {
2525 case TAG_ALU_4:
2526 case TAG_ALU_8:
2527 case TAG_ALU_12:
2528 case TAG_ALU_16: {
2529 /* Actually emit each component */
2530 util_dynarray_append(emission, uint32_t, bundle->control | lookahead);
2531
2532 for (int i = 0; i < bundle->register_words_count; ++i)
2533 util_dynarray_append(emission, uint16_t, bundle->register_words[i]);
2534
2535 /* Emit body words based on the instructions bundled */
2536 for (int i = 0; i < bundle->instruction_count; ++i) {
2537 midgard_instruction *ins = &bundle->instructions[i];
2538
2539 if (ins->unit & UNITS_ANY_VECTOR) {
2540 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins->alu, sizeof(midgard_vector_alu));
2541 } else if (ins->compact_branch) {
2542 /* Dummy move, XXX DRY */
2543 if ((i == 0) && ins->writeout) {
2544 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2545 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins.alu, sizeof(midgard_vector_alu));
2546 }
2547
2548 if (ins->unit == ALU_ENAB_BR_COMPACT) {
2549 memcpy(util_dynarray_grow(emission, sizeof(ins->br_compact)), &ins->br_compact, sizeof(ins->br_compact));
2550 } else {
2551 memcpy(util_dynarray_grow(emission, sizeof(ins->branch_extended)), &ins->branch_extended, sizeof(ins->branch_extended));
2552 }
2553 } else {
2554 /* Scalar */
2555 midgard_scalar_alu scalarised = vector_to_scalar_alu(ins->alu, ins);
2556 memcpy(util_dynarray_grow(emission, sizeof(scalarised)), &scalarised, sizeof(scalarised));
2557 }
2558 }
2559
2560 /* Emit padding (all zero) */
2561 memset(util_dynarray_grow(emission, bundle->padding), 0, bundle->padding);
2562
2563 /* Tack on constants */
2564
2565 if (bundle->has_embedded_constants) {
2566 util_dynarray_append(emission, float, bundle->constants[0]);
2567 util_dynarray_append(emission, float, bundle->constants[1]);
2568 util_dynarray_append(emission, float, bundle->constants[2]);
2569 util_dynarray_append(emission, float, bundle->constants[3]);
2570 }
2571
2572 break;
2573 }
2574
2575 case TAG_LOAD_STORE_4: {
2576 /* One or two composing instructions */
2577
2578 uint64_t current64, next64 = LDST_NOP;
2579
2580 memcpy(&current64, &bundle->instructions[0].load_store, sizeof(current64));
2581
2582 if (bundle->instruction_count == 2)
2583 memcpy(&next64, &bundle->instructions[1].load_store, sizeof(next64));
2584
2585 midgard_load_store instruction = {
2586 .type = bundle->tag,
2587 .next_type = next_tag,
2588 .word1 = current64,
2589 .word2 = next64
2590 };
2591
2592 util_dynarray_append(emission, midgard_load_store, instruction);
2593
2594 break;
2595 }
2596
2597 case TAG_TEXTURE_4: {
2598 /* Texture instructions are easy, since there is no
2599 * pipelining nor VLIW to worry about. We may need to set the .last flag */
2600
2601 midgard_instruction *ins = &bundle->instructions[0];
2602
2603 ins->texture.type = TAG_TEXTURE_4;
2604 ins->texture.next_type = next_tag;
2605
2606 ctx->texture_op_count--;
2607
2608 if (!ctx->texture_op_count) {
2609 ins->texture.cont = 0;
2610 ins->texture.last = 1;
2611 }
2612
2613 util_dynarray_append(emission, midgard_texture_word, ins->texture);
2614 break;
2615 }
2616
2617 default:
2618 DBG("Unknown midgard instruction type\n");
2619 assert(0);
2620 break;
2621 }
2622 }
2623
2624
2625 /* ALU instructions can inline or embed constants, which decreases register
2626 * pressure and saves space. */
2627
2628 #define CONDITIONAL_ATTACH(src) { \
2629 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src + 1); \
2630 \
2631 if (entry) { \
2632 attach_constants(ctx, alu, entry, alu->ssa_args.src + 1); \
2633 alu->ssa_args.src = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
2634 } \
2635 }
2636
2637 static void
2638 inline_alu_constants(compiler_context *ctx)
2639 {
2640 mir_foreach_instr(ctx, alu) {
2641 /* Other instructions cannot inline constants */
2642 if (alu->type != TAG_ALU_4) continue;
2643
2644 /* If there is already a constant here, we can do nothing */
2645 if (alu->has_constants) continue;
2646
2647 CONDITIONAL_ATTACH(src0);
2648
2649 if (!alu->has_constants) {
2650 CONDITIONAL_ATTACH(src1)
2651 } else if (!alu->inline_constant) {
2652 /* Corner case: _two_ vec4 constants, for instance with a
2653 * csel. For this case, we can only use a constant
2654 * register for one, we'll have to emit a move for the
2655 * other. Note, if both arguments are constants, then
2656 * necessarily neither argument depends on the value of
2657 * any particular register. As the destination register
2658 * will be wiped, that means we can spill the constant
2659 * to the destination register.
2660 */
2661
2662 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src1 + 1);
2663 unsigned scratch = alu->ssa_args.dest;
2664
2665 if (entry) {
2666 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
2667 attach_constants(ctx, &ins, entry, alu->ssa_args.src1 + 1);
2668
2669 /* Force a break XXX Defer r31 writes */
2670 ins.unit = UNIT_VLUT;
2671
2672 /* Set the source */
2673 alu->ssa_args.src1 = scratch;
2674
2675 /* Inject us -before- the last instruction which set r31 */
2676 mir_insert_instruction_before(mir_prev_op(alu), ins);
2677 }
2678 }
2679 }
2680 }
2681
2682 /* Midgard supports two types of constants, embedded constants (128-bit) and
2683 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
2684 * constants can be demoted to inline constants, for space savings and
2685 * sometimes a performance boost */
2686
2687 static void
2688 embedded_to_inline_constant(compiler_context *ctx)
2689 {
2690 mir_foreach_instr(ctx, ins) {
2691 if (!ins->has_constants) continue;
2692
2693 if (ins->ssa_args.inline_constant) continue;
2694
2695 /* Blend constants must not be inlined by definition */
2696 if (ins->has_blend_constant) continue;
2697
2698 /* src1 cannot be an inline constant due to encoding
2699 * restrictions. So, if possible we try to flip the arguments
2700 * in that case */
2701
2702 int op = ins->alu.op;
2703
2704 if (ins->ssa_args.src0 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2705 /* Flip based on op. Fallthrough intentional */
2706
2707 switch (op) {
2708 /* These ops require an operational change to flip their arguments TODO */
2709 case midgard_alu_op_flt:
2710 case midgard_alu_op_fle:
2711 case midgard_alu_op_ilt:
2712 case midgard_alu_op_ile:
2713 case midgard_alu_op_fcsel:
2714 case midgard_alu_op_icsel:
2715 case midgard_alu_op_isub:
2716 DBG("Missed non-commutative flip (%s)\n", alu_opcode_names[op]);
2717 break;
2718
2719 /* These ops are commutative and Just Flip */
2720 case midgard_alu_op_fne:
2721 case midgard_alu_op_fadd:
2722 case midgard_alu_op_fmul:
2723 case midgard_alu_op_fmin:
2724 case midgard_alu_op_fmax:
2725 case midgard_alu_op_iadd:
2726 case midgard_alu_op_imul:
2727 case midgard_alu_op_feq:
2728 case midgard_alu_op_ieq:
2729 case midgard_alu_op_ine:
2730 case midgard_alu_op_iand:
2731 case midgard_alu_op_ior:
2732 case midgard_alu_op_ixor:
2733 /* Flip the SSA numbers */
2734 ins->ssa_args.src0 = ins->ssa_args.src1;
2735 ins->ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
2736
2737 /* And flip the modifiers */
2738
2739 unsigned src_temp;
2740
2741 src_temp = ins->alu.src2;
2742 ins->alu.src2 = ins->alu.src1;
2743 ins->alu.src1 = src_temp;
2744
2745 default:
2746 break;
2747 }
2748 }
2749
2750 if (ins->ssa_args.src1 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2751 /* Extract the source information */
2752
2753 midgard_vector_alu_src *src;
2754 int q = ins->alu.src2;
2755 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2756 src = m;
2757
2758 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
2759 int component = src->swizzle & 3;
2760
2761 /* Scale constant appropriately, if we can legally */
2762 uint16_t scaled_constant = 0;
2763
2764 /* XXX: Check legality */
2765 if (midgard_is_integer_op(op)) {
2766 /* TODO: Inline integer */
2767 continue;
2768
2769 unsigned int *iconstants = (unsigned int *) ins->constants;
2770 scaled_constant = (uint16_t) iconstants[component];
2771
2772 /* Constant overflow after resize */
2773 if (scaled_constant != iconstants[component])
2774 continue;
2775 } else {
2776 scaled_constant = _mesa_float_to_half((float) ins->constants[component]);
2777 }
2778
2779 /* We don't know how to handle these with a constant */
2780
2781 if (src->abs || src->negate || src->half || src->rep_low || src->rep_high) {
2782 DBG("Bailing inline constant...\n");
2783 continue;
2784 }
2785
2786 /* Make sure that the constant is not itself a
2787 * vector by checking if all accessed values
2788 * (by the swizzle) are the same. */
2789
2790 uint32_t *cons = (uint32_t *) ins->constants;
2791 uint32_t value = cons[component];
2792
2793 bool is_vector = false;
2794 unsigned mask = effective_writemask(&ins->alu);
2795
2796 for (int c = 1; c < 4; ++c) {
2797 /* We only care if this component is actually used */
2798 if (!(mask & (1 << c)))
2799 continue;
2800
2801 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
2802
2803 if (test != value) {
2804 is_vector = true;
2805 break;
2806 }
2807 }
2808
2809 if (is_vector)
2810 continue;
2811
2812 /* Get rid of the embedded constant */
2813 ins->has_constants = false;
2814 ins->ssa_args.src1 = SSA_UNUSED_0;
2815 ins->ssa_args.inline_constant = true;
2816 ins->inline_constant = scaled_constant;
2817 }
2818 }
2819 }
2820
2821 /* Map normal SSA sources to other SSA sources / fixed registers (like
2822 * uniforms) */
2823
2824 static void
2825 map_ssa_to_alias(compiler_context *ctx, int *ref)
2826 {
2827 unsigned int alias = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_alias, *ref + 1);
2828
2829 if (alias) {
2830 /* Remove entry in leftovers to avoid a redunant fmov */
2831
2832 struct set_entry *leftover = _mesa_set_search(ctx->leftover_ssa_to_alias, ((void *) (uintptr_t) (*ref + 1)));
2833
2834 if (leftover)
2835 _mesa_set_remove(ctx->leftover_ssa_to_alias, leftover);
2836
2837 /* Assign the alias map */
2838 *ref = alias - 1;
2839 return;
2840 }
2841 }
2842
2843 #define AS_SRC(to, u) \
2844 int q##to = ins->alu.src2; \
2845 midgard_vector_alu_src *to = (midgard_vector_alu_src *) &q##to;
2846
2847 /* Removing unused moves is necessary to clean up the texture pipeline results.
2848 *
2849 * To do so, we find moves in the MIR. We check if their destination is live later. If it's not, the move is redundant. */
2850
2851 static void
2852 midgard_eliminate_orphan_moves(compiler_context *ctx, midgard_block *block)
2853 {
2854 mir_foreach_instr_in_block_safe(block, ins) {
2855 if (ins->type != TAG_ALU_4) continue;
2856
2857 if (ins->alu.op != midgard_alu_op_fmov) continue;
2858
2859 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
2860
2861 if (midgard_is_pinned(ctx, ins->ssa_args.dest)) continue;
2862
2863 if (is_live_after(ctx, block, ins, ins->ssa_args.dest)) continue;
2864
2865 mir_remove_instruction(ins);
2866 }
2867 }
2868
2869 /* The following passes reorder MIR instructions to enable better scheduling */
2870
2871 static void
2872 midgard_pair_load_store(compiler_context *ctx, midgard_block *block)
2873 {
2874 mir_foreach_instr_in_block_safe(block, ins) {
2875 if (ins->type != TAG_LOAD_STORE_4) continue;
2876
2877 /* We've found a load/store op. Check if next is also load/store. */
2878 midgard_instruction *next_op = mir_next_op(ins);
2879 if (&next_op->link != &block->instructions) {
2880 if (next_op->type == TAG_LOAD_STORE_4) {
2881 /* If so, we're done since we're a pair */
2882 ins = mir_next_op(ins);
2883 continue;
2884 }
2885
2886 /* Maximum search distance to pair, to avoid register pressure disasters */
2887 int search_distance = 8;
2888
2889 /* Otherwise, we have an orphaned load/store -- search for another load */
2890 mir_foreach_instr_in_block_from(block, c, mir_next_op(ins)) {
2891 /* Terminate search if necessary */
2892 if (!(search_distance--)) break;
2893
2894 if (c->type != TAG_LOAD_STORE_4) continue;
2895
2896 if (OP_IS_STORE(c->load_store.op)) continue;
2897
2898 /* We found one! Move it up to pair and remove it from the old location */
2899
2900 mir_insert_instruction_before(ins, *c);
2901 mir_remove_instruction(c);
2902
2903 break;
2904 }
2905 }
2906 }
2907 }
2908
2909 /* Emit varying stores late */
2910
2911 static void
2912 midgard_emit_store(compiler_context *ctx, midgard_block *block) {
2913 /* Iterate in reverse to get the final write, rather than the first */
2914
2915 mir_foreach_instr_in_block_safe_rev(block, ins) {
2916 /* Check if what we just wrote needs a store */
2917 int idx = ins->ssa_args.dest;
2918 uintptr_t varying = ((uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_varyings, idx + 1));
2919
2920 if (!varying) continue;
2921
2922 varying -= 1;
2923
2924 /* We need to store to the appropriate varying, so emit the
2925 * move/store */
2926
2927 /* TODO: Integrate with special purpose RA (and scheduler?) */
2928 bool high_varying_register = false;
2929
2930 midgard_instruction mov = v_fmov(idx, blank_alu_src, SSA_FIXED_REGISTER(REGISTER_VARYING_BASE + high_varying_register));
2931
2932 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(high_varying_register), varying);
2933 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
2934
2935 mir_insert_instruction_before(mir_next_op(ins), st);
2936 mir_insert_instruction_before(mir_next_op(ins), mov);
2937
2938 /* We no longer need to store this varying */
2939 _mesa_hash_table_u64_remove(ctx->ssa_varyings, idx + 1);
2940 }
2941 }
2942
2943 /* If there are leftovers after the below pass, emit actual fmov
2944 * instructions for the slow-but-correct path */
2945
2946 static void
2947 emit_leftover_move(compiler_context *ctx)
2948 {
2949 set_foreach(ctx->leftover_ssa_to_alias, leftover) {
2950 int base = ((uintptr_t) leftover->key) - 1;
2951 int mapped = base;
2952
2953 map_ssa_to_alias(ctx, &mapped);
2954 EMIT(fmov, mapped, blank_alu_src, base);
2955 }
2956 }
2957
2958 static void
2959 actualise_ssa_to_alias(compiler_context *ctx)
2960 {
2961 mir_foreach_instr(ctx, ins) {
2962 map_ssa_to_alias(ctx, &ins->ssa_args.src0);
2963 map_ssa_to_alias(ctx, &ins->ssa_args.src1);
2964 }
2965
2966 emit_leftover_move(ctx);
2967 }
2968
2969 /* Vertex shaders do not write gl_Position as is; instead, they write a
2970 * transformed screen space position as a varying. See section 12.5 "Coordinate
2971 * Transformation" of the ES 3.2 full specification for details.
2972 *
2973 * This transformation occurs early on, as NIR and prior to optimisation, in
2974 * order to take advantage of NIR optimisation passes of the transform itself.
2975 * */
2976
2977 static void
2978 write_transformed_position(nir_builder *b, nir_src input_point_src, int uniform_no)
2979 {
2980 nir_ssa_def *input_point = nir_ssa_for_src(b, input_point_src, 4);
2981
2982 /* Get viewport from the uniforms */
2983 nir_intrinsic_instr *load;
2984 load = nir_intrinsic_instr_create(b->shader, nir_intrinsic_load_uniform);
2985 load->num_components = 4;
2986 load->src[0] = nir_src_for_ssa(nir_imm_int(b, uniform_no));
2987 nir_ssa_dest_init(&load->instr, &load->dest, 4, 32, NULL);
2988 nir_builder_instr_insert(b, &load->instr);
2989
2990 /* Formatted as <width, height, centerx, centery> */
2991 nir_ssa_def *viewport_vec4 = &load->dest.ssa;
2992 nir_ssa_def *viewport_width_2 = nir_channel(b, viewport_vec4, 0);
2993 nir_ssa_def *viewport_height_2 = nir_channel(b, viewport_vec4, 1);
2994 nir_ssa_def *viewport_offset = nir_channels(b, viewport_vec4, 0x8 | 0x4);
2995
2996 /* XXX: From uniforms? */
2997 nir_ssa_def *depth_near = nir_imm_float(b, 0.0);
2998 nir_ssa_def *depth_far = nir_imm_float(b, 1.0);
2999
3000 /* World space to normalised device coordinates */
3001
3002 nir_ssa_def *w_recip = nir_frcp(b, nir_channel(b, input_point, 3));
3003 nir_ssa_def *ndc_point = nir_fmul(b, nir_channels(b, input_point, 0x7), w_recip);
3004
3005 /* Normalised device coordinates to screen space */
3006
3007 nir_ssa_def *viewport_multiplier = nir_vec2(b, viewport_width_2, viewport_height_2);
3008 nir_ssa_def *viewport_xy = nir_fadd(b, nir_fmul(b, nir_channels(b, ndc_point, 0x3), viewport_multiplier), viewport_offset);
3009
3010 nir_ssa_def *depth_multiplier = nir_fmul(b, nir_fsub(b, depth_far, depth_near), nir_imm_float(b, 0.5f));
3011 nir_ssa_def *depth_offset = nir_fmul(b, nir_fadd(b, depth_far, depth_near), nir_imm_float(b, 0.5f));
3012 nir_ssa_def *screen_depth = nir_fadd(b, nir_fmul(b, nir_channel(b, ndc_point, 2), depth_multiplier), depth_offset);
3013
3014 /* gl_Position will be written out in screenspace xyz, with w set to
3015 * the reciprocal we computed earlier. The transformed w component is
3016 * then used for perspective-correct varying interpolation. The
3017 * transformed w component must preserve its original sign; this is
3018 * used in depth clipping computations */
3019
3020 nir_ssa_def *screen_space = nir_vec4(b,
3021 nir_channel(b, viewport_xy, 0),
3022 nir_channel(b, viewport_xy, 1),
3023 screen_depth,
3024 w_recip);
3025
3026 /* Finally, write out the transformed values to the varying */
3027
3028 nir_intrinsic_instr *store;
3029 store = nir_intrinsic_instr_create(b->shader, nir_intrinsic_store_output);
3030 store->num_components = 4;
3031 nir_intrinsic_set_base(store, 0);
3032 nir_intrinsic_set_write_mask(store, 0xf);
3033 store->src[0].ssa = screen_space;
3034 store->src[0].is_ssa = true;
3035 store->src[1] = nir_src_for_ssa(nir_imm_int(b, 0));
3036 nir_builder_instr_insert(b, &store->instr);
3037 }
3038
3039 static void
3040 transform_position_writes(nir_shader *shader)
3041 {
3042 nir_foreach_function(func, shader) {
3043 nir_foreach_block(block, func->impl) {
3044 nir_foreach_instr_safe(instr, block) {
3045 if (instr->type != nir_instr_type_intrinsic) continue;
3046
3047 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
3048 nir_variable *out = NULL;
3049
3050 switch (intr->intrinsic) {
3051 case nir_intrinsic_store_output:
3052 /* already had i/o lowered.. lookup the matching output var: */
3053 nir_foreach_variable(var, &shader->outputs) {
3054 int drvloc = var->data.driver_location;
3055
3056 if (nir_intrinsic_base(intr) == drvloc) {
3057 out = var;
3058 break;
3059 }
3060 }
3061
3062 break;
3063
3064 default:
3065 break;
3066 }
3067
3068 if (!out) continue;
3069
3070 if (out->data.mode != nir_var_shader_out)
3071 continue;
3072
3073 if (out->data.location != VARYING_SLOT_POS)
3074 continue;
3075
3076 nir_builder b;
3077 nir_builder_init(&b, func->impl);
3078 b.cursor = nir_before_instr(instr);
3079
3080 write_transformed_position(&b, intr->src[0], UNIFORM_VIEWPORT);
3081 nir_instr_remove(instr);
3082 }
3083 }
3084 }
3085 }
3086
3087 static void
3088 emit_fragment_epilogue(compiler_context *ctx)
3089 {
3090 /* Special case: writing out constants requires us to include the move
3091 * explicitly now, so shove it into r0 */
3092
3093 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, ctx->fragment_output + 1);
3094
3095 if (constant_value) {
3096 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(0));
3097 attach_constants(ctx, &ins, constant_value, ctx->fragment_output + 1);
3098 emit_mir_instruction(ctx, ins);
3099 }
3100
3101 /* Perform the actual fragment writeout. We have two writeout/branch
3102 * instructions, forming a loop until writeout is successful as per the
3103 * docs. TODO: gl_FragDepth */
3104
3105 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3106 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3107 }
3108
3109 /* For the blend epilogue, we need to convert the blended fragment vec4 (stored
3110 * in r0) to a RGBA8888 value by scaling and type converting. We then output it
3111 * with the int8 analogue to the fragment epilogue */
3112
3113 static void
3114 emit_blend_epilogue(compiler_context *ctx)
3115 {
3116 /* vmul.fmul.none.fulllow hr48, r0, #255 */
3117
3118 midgard_instruction scale = {
3119 .type = TAG_ALU_4,
3120 .unit = UNIT_VMUL,
3121 .inline_constant = _mesa_float_to_half(255.0),
3122 .ssa_args = {
3123 .src0 = SSA_FIXED_REGISTER(0),
3124 .src1 = SSA_UNUSED_0,
3125 .dest = SSA_FIXED_REGISTER(24),
3126 .inline_constant = true
3127 },
3128 .alu = {
3129 .op = midgard_alu_op_fmul,
3130 .reg_mode = midgard_reg_mode_full,
3131 .dest_override = midgard_dest_override_lower,
3132 .mask = 0xFF,
3133 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3134 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3135 }
3136 };
3137
3138 emit_mir_instruction(ctx, scale);
3139
3140 /* vadd.f2u8.pos.low hr0, hr48, #0 */
3141
3142 midgard_vector_alu_src alu_src = blank_alu_src;
3143 alu_src.half = true;
3144
3145 midgard_instruction f2u8 = {
3146 .type = TAG_ALU_4,
3147 .ssa_args = {
3148 .src0 = SSA_FIXED_REGISTER(24),
3149 .src1 = SSA_UNUSED_0,
3150 .dest = SSA_FIXED_REGISTER(0),
3151 .inline_constant = true
3152 },
3153 .alu = {
3154 .op = midgard_alu_op_f2u8,
3155 .reg_mode = midgard_reg_mode_half,
3156 .dest_override = midgard_dest_override_lower,
3157 .outmod = midgard_outmod_pos,
3158 .mask = 0xF,
3159 .src1 = vector_alu_srco_unsigned(alu_src),
3160 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3161 }
3162 };
3163
3164 emit_mir_instruction(ctx, f2u8);
3165
3166 /* vmul.imov.quarter r0, r0, r0 */
3167
3168 midgard_instruction imov_8 = {
3169 .type = TAG_ALU_4,
3170 .ssa_args = {
3171 .src0 = SSA_UNUSED_1,
3172 .src1 = SSA_FIXED_REGISTER(0),
3173 .dest = SSA_FIXED_REGISTER(0),
3174 },
3175 .alu = {
3176 .op = midgard_alu_op_imov,
3177 .reg_mode = midgard_reg_mode_quarter,
3178 .dest_override = midgard_dest_override_none,
3179 .mask = 0xFF,
3180 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3181 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3182 }
3183 };
3184
3185 /* Emit branch epilogue with the 8-bit move as the source */
3186
3187 emit_mir_instruction(ctx, imov_8);
3188 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3189
3190 emit_mir_instruction(ctx, imov_8);
3191 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3192 }
3193
3194 static midgard_block *
3195 emit_block(compiler_context *ctx, nir_block *block)
3196 {
3197 midgard_block *this_block = malloc(sizeof(midgard_block));
3198 list_addtail(&this_block->link, &ctx->blocks);
3199
3200 this_block->is_scheduled = false;
3201 ++ctx->block_count;
3202
3203 ctx->texture_index[0] = -1;
3204 ctx->texture_index[1] = -1;
3205
3206 /* Set up current block */
3207 list_inithead(&this_block->instructions);
3208 ctx->current_block = this_block;
3209
3210 nir_foreach_instr(instr, block) {
3211 emit_instr(ctx, instr);
3212 ++ctx->instruction_count;
3213 }
3214
3215 inline_alu_constants(ctx);
3216 embedded_to_inline_constant(ctx);
3217
3218 /* Perform heavylifting for aliasing */
3219 actualise_ssa_to_alias(ctx);
3220
3221 midgard_emit_store(ctx, this_block);
3222 midgard_eliminate_orphan_moves(ctx, this_block);
3223 midgard_pair_load_store(ctx, this_block);
3224
3225 /* Append fragment shader epilogue (value writeout) */
3226 if (ctx->stage == MESA_SHADER_FRAGMENT) {
3227 if (block == nir_impl_last_block(ctx->func->impl)) {
3228 if (ctx->is_blend)
3229 emit_blend_epilogue(ctx);
3230 else
3231 emit_fragment_epilogue(ctx);
3232 }
3233 }
3234
3235 /* Fallthrough save */
3236 this_block->next_fallthrough = ctx->previous_source_block;
3237
3238 if (block == nir_start_block(ctx->func->impl))
3239 ctx->initial_block = this_block;
3240
3241 if (block == nir_impl_last_block(ctx->func->impl))
3242 ctx->final_block = this_block;
3243
3244 /* Allow the next control flow to access us retroactively, for
3245 * branching etc */
3246 ctx->current_block = this_block;
3247
3248 /* Document the fallthrough chain */
3249 ctx->previous_source_block = this_block;
3250
3251 return this_block;
3252 }
3253
3254 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
3255
3256 static void
3257 emit_if(struct compiler_context *ctx, nir_if *nif)
3258 {
3259 /* Conditional branches expect the condition in r31.w; emit a move for
3260 * that in the _previous_ block (which is the current block). */
3261 emit_condition(ctx, &nif->condition, true);
3262
3263 /* Speculatively emit the branch, but we can't fill it in until later */
3264 EMIT(branch, true, true);
3265 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
3266
3267 /* Emit the two subblocks */
3268 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
3269
3270 /* Emit a jump from the end of the then block to the end of the else */
3271 EMIT(branch, false, false);
3272 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
3273
3274 /* Emit second block, and check if it's empty */
3275
3276 int else_idx = ctx->block_count;
3277 int count_in = ctx->instruction_count;
3278 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
3279 int after_else_idx = ctx->block_count;
3280
3281 /* Now that we have the subblocks emitted, fix up the branches */
3282
3283 assert(then_block);
3284 assert(else_block);
3285
3286 if (ctx->instruction_count == count_in) {
3287 /* The else block is empty, so don't emit an exit jump */
3288 mir_remove_instruction(then_exit);
3289 then_branch->branch.target_block = after_else_idx;
3290 } else {
3291 then_branch->branch.target_block = else_idx;
3292 then_exit->branch.target_block = after_else_idx;
3293 }
3294 }
3295
3296 static void
3297 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
3298 {
3299 /* Remember where we are */
3300 midgard_block *start_block = ctx->current_block;
3301
3302 /* Allocate a loop number for this. TODO: Nested loops. Instead of a
3303 * single current_loop variable, maybe we need a stack */
3304
3305 int loop_idx = ++ctx->current_loop;
3306
3307 /* Get index from before the body so we can loop back later */
3308 int start_idx = ctx->block_count;
3309
3310 /* Emit the body itself */
3311 emit_cf_list(ctx, &nloop->body);
3312
3313 /* Branch back to loop back */
3314 struct midgard_instruction br_back = v_branch(false, false);
3315 br_back.branch.target_block = start_idx;
3316 emit_mir_instruction(ctx, br_back);
3317
3318 /* Find the index of the block about to follow us (note: we don't add
3319 * one; blocks are 0-indexed so we get a fencepost problem) */
3320 int break_block_idx = ctx->block_count;
3321
3322 /* Fix up the break statements we emitted to point to the right place,
3323 * now that we can allocate a block number for them */
3324
3325 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
3326 if (midgard_debug & MIDGARD_DBG_SHADERS)
3327 print_mir_block(block);
3328 mir_foreach_instr_in_block(block, ins) {
3329 if (ins->type != TAG_ALU_4) continue;
3330 if (!ins->compact_branch) continue;
3331 if (ins->prepacked_branch) continue;
3332
3333 /* We found a branch -- check the type to see if we need to do anything */
3334 if (ins->branch.target_type != TARGET_BREAK) continue;
3335
3336 /* It's a break! Check if it's our break */
3337 if (ins->branch.target_break != loop_idx) continue;
3338
3339 /* Okay, cool, we're breaking out of this loop.
3340 * Rewrite from a break to a goto */
3341
3342 ins->branch.target_type = TARGET_GOTO;
3343 ins->branch.target_block = break_block_idx;
3344 }
3345 }
3346 }
3347
3348 static midgard_block *
3349 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
3350 {
3351 midgard_block *start_block = NULL;
3352
3353 foreach_list_typed(nir_cf_node, node, node, list) {
3354 switch (node->type) {
3355 case nir_cf_node_block: {
3356 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
3357
3358 if (!start_block)
3359 start_block = block;
3360
3361 break;
3362 }
3363
3364 case nir_cf_node_if:
3365 emit_if(ctx, nir_cf_node_as_if(node));
3366 break;
3367
3368 case nir_cf_node_loop:
3369 emit_loop(ctx, nir_cf_node_as_loop(node));
3370 break;
3371
3372 case nir_cf_node_function:
3373 assert(0);
3374 break;
3375 }
3376 }
3377
3378 return start_block;
3379 }
3380
3381 /* Due to lookahead, we need to report the first tag executed in the command
3382 * stream and in branch targets. An initial block might be empty, so iterate
3383 * until we find one that 'works' */
3384
3385 static unsigned
3386 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
3387 {
3388 midgard_block *initial_block = mir_get_block(ctx, block_idx);
3389
3390 unsigned first_tag = 0;
3391
3392 do {
3393 midgard_bundle *initial_bundle = util_dynarray_element(&initial_block->bundles, midgard_bundle, 0);
3394
3395 if (initial_bundle) {
3396 first_tag = initial_bundle->tag;
3397 break;
3398 }
3399
3400 /* Initial block is empty, try the next block */
3401 initial_block = list_first_entry(&(initial_block->link), midgard_block, link);
3402 } while(initial_block != NULL);
3403
3404 assert(first_tag);
3405 return first_tag;
3406 }
3407
3408 int
3409 midgard_compile_shader_nir(nir_shader *nir, midgard_program *program, bool is_blend)
3410 {
3411 struct util_dynarray *compiled = &program->compiled;
3412
3413 midgard_debug = debug_get_option_midgard_debug();
3414
3415 compiler_context ictx = {
3416 .nir = nir,
3417 .stage = nir->info.stage,
3418
3419 .is_blend = is_blend,
3420 .blend_constant_offset = -1,
3421
3422 .alpha_ref = program->alpha_ref
3423 };
3424
3425 compiler_context *ctx = &ictx;
3426
3427 /* TODO: Decide this at runtime */
3428 ctx->uniform_cutoff = 8;
3429
3430 switch (ctx->stage) {
3431 case MESA_SHADER_VERTEX:
3432 ctx->special_uniforms = 1;
3433 break;
3434
3435 default:
3436 ctx->special_uniforms = 0;
3437 break;
3438 }
3439
3440 /* Append epilogue uniforms if necessary. The cmdstream depends on
3441 * these being at the -end-; see assign_var_locations. */
3442
3443 if (ctx->stage == MESA_SHADER_VERTEX) {
3444 nir_variable_create(nir, nir_var_uniform, glsl_vec4_type(), "viewport");
3445 }
3446
3447 /* Assign var locations early, so the epilogue can use them if necessary */
3448
3449 nir_assign_var_locations(&nir->outputs, &nir->num_outputs, glsl_type_size);
3450 nir_assign_var_locations(&nir->inputs, &nir->num_inputs, glsl_type_size);
3451 nir_assign_var_locations(&nir->uniforms, &nir->num_uniforms, glsl_type_size);
3452
3453 /* Initialize at a global (not block) level hash tables */
3454
3455 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
3456 ctx->ssa_varyings = _mesa_hash_table_u64_create(NULL);
3457 ctx->ssa_to_alias = _mesa_hash_table_u64_create(NULL);
3458 ctx->ssa_to_register = _mesa_hash_table_u64_create(NULL);
3459 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
3460 ctx->leftover_ssa_to_alias = _mesa_set_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal);
3461
3462 /* Assign actual uniform location, skipping over samplers */
3463
3464 ctx->uniform_nir_to_mdg = _mesa_hash_table_u64_create(NULL);
3465
3466 nir_foreach_variable(var, &nir->uniforms) {
3467 if (glsl_get_base_type(var->type) == GLSL_TYPE_SAMPLER) continue;
3468
3469 unsigned length = glsl_get_aoa_size(var->type);
3470
3471 if (!length) {
3472 length = glsl_get_length(var->type);
3473 }
3474
3475 if (!length) {
3476 length = glsl_get_matrix_columns(var->type);
3477 }
3478
3479 for (int col = 0; col < length; ++col) {
3480 int id = ctx->uniform_count++;
3481 _mesa_hash_table_u64_insert(ctx->uniform_nir_to_mdg, var->data.driver_location + col + 1, (void *) ((uintptr_t) (id + 1)));
3482 }
3483 }
3484
3485 /* Record the varying mapping for the command stream's bookkeeping */
3486
3487 struct exec_list *varyings =
3488 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
3489
3490 nir_foreach_variable(var, varyings) {
3491 unsigned loc = var->data.driver_location;
3492 program->varyings[loc] = var->data.location;
3493 }
3494
3495 /* Lower vars -- not I/O -- before epilogue */
3496
3497 NIR_PASS_V(nir, nir_lower_var_copies);
3498 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3499 NIR_PASS_V(nir, nir_split_var_copies);
3500 NIR_PASS_V(nir, nir_lower_var_copies);
3501 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
3502 NIR_PASS_V(nir, nir_lower_var_copies);
3503 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3504 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
3505
3506 /* Append vertex epilogue before optimisation, so the epilogue itself
3507 * is optimised */
3508
3509 if (ctx->stage == MESA_SHADER_VERTEX)
3510 transform_position_writes(nir);
3511
3512 /* Optimisation passes */
3513
3514 optimise_nir(nir);
3515
3516 if (midgard_debug & MIDGARD_DBG_SHADERS) {
3517 nir_print_shader(nir, stdout);
3518 }
3519
3520 /* Assign counts, now that we're sure (post-optimisation) */
3521 program->uniform_count = nir->num_uniforms;
3522
3523 program->attribute_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_inputs : 0;
3524 program->varying_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_outputs : ((ctx->stage == MESA_SHADER_FRAGMENT) ? nir->num_inputs : 0);
3525
3526
3527 nir_foreach_function(func, nir) {
3528 if (!func->impl)
3529 continue;
3530
3531 list_inithead(&ctx->blocks);
3532 ctx->block_count = 0;
3533 ctx->func = func;
3534
3535 emit_cf_list(ctx, &func->impl->body);
3536 emit_block(ctx, func->impl->end_block);
3537
3538 break; /* TODO: Multi-function shaders */
3539 }
3540
3541 util_dynarray_init(compiled, NULL);
3542
3543 /* Schedule! */
3544 schedule_program(ctx);
3545
3546 /* Now that all the bundles are scheduled and we can calculate block
3547 * sizes, emit actual branch instructions rather than placeholders */
3548
3549 int br_block_idx = 0;
3550
3551 mir_foreach_block(ctx, block) {
3552 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3553 for (int c = 0; c < bundle->instruction_count; ++c) {
3554 midgard_instruction *ins = &bundle->instructions[c];
3555
3556 if (!midgard_is_branch_unit(ins->unit)) continue;
3557
3558 if (ins->prepacked_branch) continue;
3559
3560 /* Parse some basic branch info */
3561 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
3562 bool is_conditional = ins->branch.conditional;
3563 bool is_inverted = ins->branch.invert_conditional;
3564 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
3565
3566 /* Determine the block we're jumping to */
3567 int target_number = ins->branch.target_block;
3568
3569 /* Report the destination tag. Discards don't need this */
3570 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
3571
3572 /* Count up the number of quadwords we're jumping over. That is, the number of quadwords in each of the blocks between (br_block_idx, target_number) */
3573 int quadword_offset = 0;
3574
3575 if (is_discard) {
3576 /* Jump to the end of the shader. We
3577 * need to include not only the
3578 * following blocks, but also the
3579 * contents of our current block (since
3580 * discard can come in the middle of
3581 * the block) */
3582
3583 midgard_block *blk = mir_get_block(ctx, br_block_idx + 1);
3584
3585 for (midgard_bundle *bun = bundle + 1; bun < (midgard_bundle *)((char*) block->bundles.data + block->bundles.size); ++bun) {
3586 quadword_offset += quadword_size(bun->tag);
3587 }
3588
3589 mir_foreach_block_from(ctx, blk, b) {
3590 quadword_offset += b->quadword_count;
3591 }
3592
3593 } else if (target_number > br_block_idx) {
3594 /* Jump forward */
3595
3596 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
3597 midgard_block *blk = mir_get_block(ctx, idx);
3598 assert(blk);
3599
3600 quadword_offset += blk->quadword_count;
3601 }
3602 } else {
3603 /* Jump backwards */
3604
3605 for (int idx = br_block_idx; idx >= target_number; --idx) {
3606 midgard_block *blk = mir_get_block(ctx, idx);
3607 assert(blk);
3608
3609 quadword_offset -= blk->quadword_count;
3610 }
3611 }
3612
3613 /* Unconditional extended branches (far jumps)
3614 * have issues, so we always use a conditional
3615 * branch, setting the condition to always for
3616 * unconditional. For compact unconditional
3617 * branches, cond isn't used so it doesn't
3618 * matter what we pick. */
3619
3620 midgard_condition cond =
3621 !is_conditional ? midgard_condition_always :
3622 is_inverted ? midgard_condition_false :
3623 midgard_condition_true;
3624
3625 midgard_jmp_writeout_op op =
3626 is_discard ? midgard_jmp_writeout_op_discard :
3627 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
3628 midgard_jmp_writeout_op_branch_cond;
3629
3630 if (!is_compact) {
3631 midgard_branch_extended branch =
3632 midgard_create_branch_extended(
3633 cond, op,
3634 dest_tag,
3635 quadword_offset);
3636
3637 memcpy(&ins->branch_extended, &branch, sizeof(branch));
3638 } else if (is_conditional || is_discard) {
3639 midgard_branch_cond branch = {
3640 .op = op,
3641 .dest_tag = dest_tag,
3642 .offset = quadword_offset,
3643 .cond = cond
3644 };
3645
3646 assert(branch.offset == quadword_offset);
3647
3648 memcpy(&ins->br_compact, &branch, sizeof(branch));
3649 } else {
3650 assert(op == midgard_jmp_writeout_op_branch_uncond);
3651
3652 midgard_branch_uncond branch = {
3653 .op = op,
3654 .dest_tag = dest_tag,
3655 .offset = quadword_offset,
3656 .unknown = 1
3657 };
3658
3659 assert(branch.offset == quadword_offset);
3660
3661 memcpy(&ins->br_compact, &branch, sizeof(branch));
3662 }
3663 }
3664 }
3665
3666 ++br_block_idx;
3667 }
3668
3669 /* Emit flat binary from the instruction arrays. Iterate each block in
3670 * sequence. Save instruction boundaries such that lookahead tags can
3671 * be assigned easily */
3672
3673 /* Cache _all_ bundles in source order for lookahead across failed branches */
3674
3675 int bundle_count = 0;
3676 mir_foreach_block(ctx, block) {
3677 bundle_count += block->bundles.size / sizeof(midgard_bundle);
3678 }
3679 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
3680 int bundle_idx = 0;
3681 mir_foreach_block(ctx, block) {
3682 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3683 source_order_bundles[bundle_idx++] = bundle;
3684 }
3685 }
3686
3687 int current_bundle = 0;
3688
3689 mir_foreach_block(ctx, block) {
3690 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3691 int lookahead = 1;
3692
3693 if (current_bundle + 1 < bundle_count) {
3694 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
3695
3696 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
3697 lookahead = 1;
3698 } else {
3699 lookahead = next;
3700 }
3701 }
3702
3703 emit_binary_bundle(ctx, bundle, compiled, lookahead);
3704 ++current_bundle;
3705 }
3706
3707 /* TODO: Free deeper */
3708 //util_dynarray_fini(&block->instructions);
3709 }
3710
3711 free(source_order_bundles);
3712
3713 /* Report the very first tag executed */
3714 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
3715
3716 /* Deal with off-by-one related to the fencepost problem */
3717 program->work_register_count = ctx->work_registers + 1;
3718
3719 program->can_discard = ctx->can_discard;
3720 program->uniform_cutoff = ctx->uniform_cutoff;
3721
3722 program->blend_patch_offset = ctx->blend_constant_offset;
3723
3724 if (midgard_debug & MIDGARD_DBG_SHADERS)
3725 disassemble_midgard(program->compiled.data, program->compiled.size);
3726
3727 return 0;
3728 }