panfrost/midgard: Hoist mask field
[mesa.git] / src / gallium / drivers / panfrost / midgard / midgard_emit.c
1 /*
2 * Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include "compiler.h"
25 #include "midgard_ops.h"
26
27 /* Midgard IR only knows vector ALU types, but we sometimes need to actually
28 * use scalar ALU instructions, for functional or performance reasons. To do
29 * this, we just demote vector ALU payloads to scalar. */
30
31 static int
32 component_from_mask(unsigned mask)
33 {
34 for (int c = 0; c < 8; ++c) {
35 if (mask & (1 << c))
36 return c;
37 }
38
39 assert(0);
40 return 0;
41 }
42
43 static unsigned
44 vector_to_scalar_source(unsigned u, bool is_int, bool is_full)
45 {
46 midgard_vector_alu_src v;
47 memcpy(&v, &u, sizeof(v));
48
49 /* TODO: Integers */
50
51 unsigned component = v.swizzle & 3;
52 bool upper = false; /* TODO */
53
54 midgard_scalar_alu_src s = { 0 };
55
56 if (is_full) {
57 /* For a 32-bit op, just check the source half flag */
58 s.full = !v.half;
59 } else if (!v.half) {
60 /* For a 16-bit op that's not subdivided, never full */
61 s.full = false;
62 } else {
63 /* We can't do 8-bit scalar, abort! */
64 assert(0);
65 }
66
67 /* Component indexing takes size into account */
68
69 if (s.full)
70 s.component = component << 1;
71 else
72 s.component = component + (upper << 2);
73
74 if (is_int) {
75 /* TODO */
76 } else {
77 s.abs = v.mod & MIDGARD_FLOAT_MOD_ABS;
78 s.negate = v.mod & MIDGARD_FLOAT_MOD_NEG;
79 }
80
81 unsigned o;
82 memcpy(&o, &s, sizeof(s));
83
84 return o & ((1 << 6) - 1);
85 }
86
87 static midgard_scalar_alu
88 vector_to_scalar_alu(midgard_vector_alu v, midgard_instruction *ins)
89 {
90 bool is_int = midgard_is_integer_op(v.op);
91 bool is_full = v.reg_mode == midgard_reg_mode_32;
92
93 /* The output component is from the mask */
94 midgard_scalar_alu s = {
95 .op = v.op,
96 .src1 = vector_to_scalar_source(v.src1, is_int, is_full),
97 .src2 = vector_to_scalar_source(v.src2, is_int, is_full),
98 .unknown = 0,
99 .outmod = v.outmod,
100 .output_full = is_full,
101 .output_component = component_from_mask(ins->mask),
102 };
103
104 /* Full components are physically spaced out */
105 if (is_full) {
106 assert(s.output_component < 4);
107 s.output_component <<= 1;
108 }
109
110 /* Inline constant is passed along rather than trying to extract it
111 * from v */
112
113 if (ins->ssa_args.inline_constant) {
114 uint16_t imm = 0;
115 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
116 imm |= (lower_11 >> 9) & 3;
117 imm |= (lower_11 >> 6) & 4;
118 imm |= (lower_11 >> 2) & 0x38;
119 imm |= (lower_11 & 63) << 6;
120
121 s.src2 = imm;
122 }
123
124 return s;
125 }
126
127 static void
128 emit_alu_bundle(compiler_context *ctx,
129 midgard_bundle *bundle,
130 struct util_dynarray *emission,
131 unsigned lookahead)
132 {
133 /* Emit the control word */
134 util_dynarray_append(emission, uint32_t, bundle->control | lookahead);
135
136 /* Next up, emit register words */
137 for (unsigned i = 0; i < bundle->instruction_count; ++i) {
138 midgard_instruction *ins = bundle->instructions[i];
139
140 /* Check if this instruction has registers */
141 if (ins->compact_branch || ins->prepacked_branch) continue;
142
143 /* Otherwise, just emit the registers */
144 uint16_t reg_word = 0;
145 memcpy(&reg_word, &ins->registers, sizeof(uint16_t));
146 util_dynarray_append(emission, uint16_t, reg_word);
147 }
148
149 /* Now, we emit the body itself */
150 for (unsigned i = 0; i < bundle->instruction_count; ++i) {
151 midgard_instruction *ins = bundle->instructions[i];
152
153 /* Where is this body */
154 unsigned size = 0;
155 void *source = NULL;
156
157 /* In case we demote to a scalar */
158 midgard_scalar_alu scalarized;
159
160 if (ins->unit & UNITS_ANY_VECTOR) {
161 if (ins->alu.reg_mode == midgard_reg_mode_32)
162 ins->alu.mask = expand_writemask_32(ins->mask);
163 else
164 ins->alu.mask = ins->mask;
165
166 size = sizeof(midgard_vector_alu);
167 source = &ins->alu;
168 } else if (ins->unit == ALU_ENAB_BR_COMPACT) {
169 size = sizeof(midgard_branch_cond);
170 source = &ins->br_compact;
171 } else if (ins->compact_branch) { /* misnomer */
172 size = sizeof(midgard_branch_extended);
173 source = &ins->branch_extended;
174 } else {
175 size = sizeof(midgard_scalar_alu);
176 scalarized = vector_to_scalar_alu(ins->alu, ins);
177 source = &scalarized;
178 }
179
180 memcpy(util_dynarray_grow_bytes(emission, 1, size), source, size);
181 }
182
183 /* Emit padding (all zero) */
184 memset(util_dynarray_grow_bytes(emission, 1, bundle->padding), 0, bundle->padding);
185
186 /* Tack on constants */
187
188 if (bundle->has_embedded_constants) {
189 util_dynarray_append(emission, float, bundle->constants[0]);
190 util_dynarray_append(emission, float, bundle->constants[1]);
191 util_dynarray_append(emission, float, bundle->constants[2]);
192 util_dynarray_append(emission, float, bundle->constants[3]);
193 }
194 }
195
196 /* After everything is scheduled, emit whole bundles at a time */
197
198 void
199 emit_binary_bundle(compiler_context *ctx,
200 midgard_bundle *bundle,
201 struct util_dynarray *emission,
202 int next_tag)
203 {
204 int lookahead = next_tag << 4;
205
206 switch (bundle->tag) {
207 case TAG_ALU_4:
208 case TAG_ALU_8:
209 case TAG_ALU_12:
210 case TAG_ALU_16:
211 emit_alu_bundle(ctx, bundle, emission, lookahead);
212 break;
213
214 case TAG_LOAD_STORE_4: {
215 /* One or two composing instructions */
216
217 uint64_t current64, next64 = LDST_NOP;
218
219 /* Copy masks */
220
221 for (unsigned i = 0; i < bundle->instruction_count; ++i) {
222 bundle->instructions[i]->load_store.mask =
223 bundle->instructions[i]->mask;
224 }
225
226 memcpy(&current64, &bundle->instructions[0]->load_store, sizeof(current64));
227
228 if (bundle->instruction_count == 2)
229 memcpy(&next64, &bundle->instructions[1]->load_store, sizeof(next64));
230
231 midgard_load_store instruction = {
232 .type = bundle->tag,
233 .next_type = next_tag,
234 .word1 = current64,
235 .word2 = next64
236 };
237
238 util_dynarray_append(emission, midgard_load_store, instruction);
239
240 break;
241 }
242
243 case TAG_TEXTURE_4:
244 case TAG_TEXTURE_4_VTX: {
245 /* Texture instructions are easy, since there is no pipelining
246 * nor VLIW to worry about. We may need to set .cont/.last
247 * flags. */
248
249 midgard_instruction *ins = bundle->instructions[0];
250
251 ins->texture.type = bundle->tag;
252 ins->texture.next_type = next_tag;
253 ins->texture.mask = ins->mask;
254
255 ctx->texture_op_count--;
256
257 if (ins->texture.op == TEXTURE_OP_NORMAL) {
258 bool continues = ctx->texture_op_count > 0;
259 ins->texture.cont = continues;
260 ins->texture.last = !continues;
261 } else {
262 ins->texture.cont = ins->texture.last = 1;
263 }
264
265 util_dynarray_append(emission, midgard_texture_word, ins->texture);
266 break;
267 }
268
269 default:
270 unreachable("Unknown midgard instruction type\n");
271 }
272 }