2b6206545b3bc3e738bcbce2792478476c6bb314
[mesa.git] / src / gallium / drivers / panfrost / pan_blend_shaders.c
1 /*
2 * © Copyright 2018 Alyssa Rosenzweig
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 */
24
25 #include <stdio.h>
26 #include "pan_blend_shaders.h"
27 #include "pan_util.h"
28 #include "midgard/midgard_compile.h"
29 #include "compiler/nir/nir_builder.h"
30 #include "midgard/nir_lower_blend.h"
31 #include "gallium/auxiliary/util/u_blend.h"
32
33 /*
34 * Implements the command stream portion of programmatic blend shaders.
35 *
36 * On Midgard, common blending operations are accelerated by the fixed-function
37 * blending pipeline. Panfrost supports this fast path via the code in
38 * pan_blending.c. Nevertheless, uncommon blend modes (including some seemingly
39 * simple modes present in ES2) require "blend shaders", a special internal
40 * shader type used for programmable blending.
41 *
42 * Blend shaders operate during the normal blending time, but they bypass the
43 * fixed-function blending pipeline and instead go straight to the Midgard
44 * shader cores. The shaders themselves are essentially just fragment shaders,
45 * making heavy use of uint8 arithmetic to manipulate RGB values for the
46 * framebuffer.
47 *
48 * As is typical with Midgard, shader binaries must be accompanied by
49 * information about the first tag (ORed with the bottom nibble of address,
50 * like usual) and work registers. Work register count is specified in the
51 * blend descriptor, as well as in the coresponding fragment shader's work
52 * count. This suggests that blend shader invocation is tied to fragment shader
53 * execution.
54 *
55 * ---
56 *
57 * As for blend shaders, they use the standard ISA.
58 *
59 * The source pixel colour, including alpha, is preloaded into r0 as a vec4 of
60 * float32.
61 *
62 * The destination pixel colour must be loaded explicitly via load/store ops.
63 * TODO: Investigate.
64 *
65 * They use fragment shader writeout; however, instead of writing a vec4 of
66 * float32 for RGBA encoding, we writeout a vec4 of uint8, using 8-bit imov
67 * instead of 32-bit fmov. The net result is that r0 encodes a single uint32
68 * containing all four channels of the color. Accordingly, the blend shader
69 * epilogue has to scale all four channels by 255 and then type convert to a
70 * uint8.
71 *
72 * ---
73 *
74 * Blend shaders hardcode constants. Naively, this requires recompilation each
75 * time the blend color changes, which is a performance risk. Accordingly, we
76 * 'cheat' a bit: instead of loading the constant, we compile a shader with a
77 * dummy constant, exporting the offset to the immediate in the shader binary,
78 * storing this generic binary and metadata in the CSO itself at CSO create
79 * time.
80 *
81 * We then hot patch in the color into this shader at attachment / color change
82 * time, allowing for CSO create to be the only expensive operation
83 * (compilation).
84 */
85
86 static nir_lower_blend_options
87 nir_make_options(const struct pipe_blend_state *blend, unsigned nr_cbufs)
88 {
89 nir_lower_blend_options options;
90
91 for (unsigned i = 0; i < nr_cbufs; ++i) {
92 /* If blend is disabled, we just use replace mode */
93
94 nir_lower_blend_channel rgb = {
95 .func = BLEND_FUNC_ADD,
96 .src_factor = BLEND_FACTOR_ZERO,
97 .invert_src_factor = true,
98 .dst_factor = BLEND_FACTOR_ZERO,
99 .invert_dst_factor = false
100 };
101
102 nir_lower_blend_channel alpha = rgb;
103
104 if (blend->rt[i].blend_enable) {
105 rgb.func = util_blend_func_to_shader(blend->rt[i].rgb_func);
106 rgb.src_factor = util_blend_factor_to_shader(blend->rt[i].rgb_src_factor);
107 rgb.dst_factor = util_blend_factor_to_shader(blend->rt[i].rgb_dst_factor);
108 rgb.invert_src_factor = util_blend_factor_is_inverted(blend->rt[i].rgb_src_factor);
109 rgb.invert_dst_factor = util_blend_factor_is_inverted(blend->rt[i].rgb_dst_factor);
110
111 alpha.func = util_blend_func_to_shader(blend->rt[i].alpha_func);
112 alpha.src_factor = util_blend_factor_to_shader(blend->rt[i].alpha_src_factor);
113 alpha.dst_factor = util_blend_factor_to_shader(blend->rt[i].alpha_dst_factor);
114 alpha.invert_src_factor = util_blend_factor_is_inverted(blend->rt[i].alpha_src_factor);
115 alpha.invert_dst_factor = util_blend_factor_is_inverted(blend->rt[i].alpha_dst_factor);
116 }
117
118 options.rt[i].rgb = rgb;
119 options.rt[i].alpha = alpha;
120
121 options.rt[i].colormask = blend->rt[i].colormask;
122 }
123
124 return options;
125 }
126
127 void
128 panfrost_make_blend_shader(
129 struct panfrost_context *ctx,
130 struct panfrost_blend_state *cso,
131 const struct pipe_blend_color *blend_color,
132 enum pipe_format format)
133 {
134 /* Build the shader */
135
136 nir_shader *shader = nir_shader_create(NULL, MESA_SHADER_FRAGMENT, &midgard_nir_options, NULL);
137 nir_function *fn = nir_function_create(shader, "main");
138 nir_function_impl *impl = nir_function_impl_create(fn);
139
140 /* Create the blend variables */
141
142 nir_variable *c_src = nir_variable_create(shader, nir_var_shader_in, glsl_vector_type(GLSL_TYPE_FLOAT, 4), "gl_Color");
143 nir_variable *c_out = nir_variable_create(shader, nir_var_shader_out, glsl_vector_type(GLSL_TYPE_FLOAT, 4), "gl_FragColor");
144
145 c_src->data.location = VARYING_SLOT_COL0;
146 c_out->data.location = FRAG_RESULT_COLOR;
147
148 /* Setup nir_builder */
149
150 nir_builder _b;
151 nir_builder *b = &_b;
152 nir_builder_init(b, impl);
153 b->cursor = nir_before_block(nir_start_block(impl));
154
155 /* Setup inputs */
156
157 nir_ssa_def *s_src = nir_load_var(b, c_src);
158
159 /* Build a trivial blend shader */
160 nir_store_var(b, c_out, s_src, 0xFF);
161
162 nir_lower_blend_options options =
163 nir_make_options(&cso->base, 1);
164 NIR_PASS_V(shader, nir_lower_blend, options);
165
166 NIR_PASS_V(shader, nir_lower_framebuffer, format);
167
168 /* Compile the built shader */
169
170 midgard_program program;
171 midgard_compile_shader_nir(shader, &program, true);
172
173 /* Upload the shader */
174
175 int size = program.compiled.size;
176 uint8_t *dst = program.compiled.data;
177
178 /* Hot patch in constant color */
179
180 if (program.blend_patch_offset >= 0) {
181 float *hot_color = (float *) (dst + program.blend_patch_offset);
182
183 for (int c = 0; c < 4; ++c)
184 hot_color[c] = blend_color->color[c];
185 }
186
187 cso->blend_shader = panfrost_upload(&ctx->shaders, dst, size, true) | program.first_tag;
188
189 /* We need to switch to shader mode */
190 cso->has_blend_shader = true;
191
192 /* At least two work registers are needed due to an encoding quirk */
193 cso->blend_work_count = MAX2(program.work_register_count, 2);
194 }