lima,panfrost: Move lima_tiling.c/h to /src/panfrost
[mesa.git] / src / gallium / drivers / panfrost / pan_blend_shaders.c
1 /*
2 * © Copyright 2018 Alyssa Rosenzweig
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 */
24
25 #include <stdio.h>
26 #include "pan_blend_shaders.h"
27 #include "pan_util.h"
28 #include "midgard/midgard_compile.h"
29 #include "compiler/nir/nir_builder.h"
30 #include "midgard/nir_lower_blend.h"
31 #include "gallium/auxiliary/util/u_blend.h"
32
33 /*
34 * Implements the command stream portion of programmatic blend shaders.
35 *
36 * On Midgard, common blending operations are accelerated by the fixed-function
37 * blending pipeline. Panfrost supports this fast path via the code in
38 * pan_blending.c. Nevertheless, uncommon blend modes (including some seemingly
39 * simple modes present in ES2) require "blend shaders", a special internal
40 * shader type used for programmable blending.
41 *
42 * Blend shaders operate during the normal blending time, but they bypass the
43 * fixed-function blending pipeline and instead go straight to the Midgard
44 * shader cores. The shaders themselves are essentially just fragment shaders,
45 * making heavy use of uint8 arithmetic to manipulate RGB values for the
46 * framebuffer.
47 *
48 * As is typical with Midgard, shader binaries must be accompanied by
49 * information about the first tag (ORed with the bottom nibble of address,
50 * like usual) and work registers. Work register count is specified in the
51 * blend descriptor, as well as in the coresponding fragment shader's work
52 * count. This suggests that blend shader invocation is tied to fragment shader
53 * execution.
54 *
55 * ---
56 *
57 * As for blend shaders, they use the standard ISA.
58 *
59 * The source pixel colour, including alpha, is preloaded into r0 as a vec4 of
60 * float32.
61 *
62 * The destination pixel colour must be loaded explicitly via load/store ops.
63 * TODO: Investigate.
64 *
65 * They use fragment shader writeout; however, instead of writing a vec4 of
66 * float32 for RGBA encoding, we writeout a vec4 of uint8, using 8-bit imov
67 * instead of 32-bit fmov. The net result is that r0 encodes a single uint32
68 * containing all four channels of the color. Accordingly, the blend shader
69 * epilogue has to scale all four channels by 255 and then type convert to a
70 * uint8.
71 *
72 * ---
73 *
74 * Blend shaders hardcode constants. Naively, this requires recompilation each
75 * time the blend color changes, which is a performance risk. Accordingly, we
76 * 'cheat' a bit: instead of loading the constant, we compile a shader with a
77 * dummy constant, exporting the offset to the immediate in the shader binary,
78 * storing this generic binary and metadata in the CSO itself at CSO create
79 * time.
80 *
81 * We then hot patch in the color into this shader at attachment / color change
82 * time, allowing for CSO create to be the only expensive operation
83 * (compilation).
84 */
85
86 static nir_lower_blend_options
87 nir_make_options(const struct pipe_blend_state *blend, unsigned nr_cbufs)
88 {
89 nir_lower_blend_options options;
90
91 for (unsigned i = 0; i < nr_cbufs; ++i) {
92 nir_lower_blend_channel rgb = {
93 .func = util_blend_func_to_shader(blend->rt[i].rgb_func),
94 .src_factor = util_blend_factor_to_shader(blend->rt[i].rgb_src_factor),
95 .dst_factor = util_blend_factor_to_shader(blend->rt[i].rgb_dst_factor),
96 .invert_src_factor = util_blend_factor_is_inverted(blend->rt[i].rgb_src_factor),
97 .invert_dst_factor = util_blend_factor_is_inverted(blend->rt[i].rgb_dst_factor)
98 };
99
100 nir_lower_blend_channel alpha = {
101 .func = util_blend_func_to_shader(blend->rt[i].alpha_func),
102 .src_factor = util_blend_factor_to_shader(blend->rt[i].alpha_src_factor),
103 .dst_factor = util_blend_factor_to_shader(blend->rt[i].alpha_dst_factor),
104 .invert_src_factor = util_blend_factor_is_inverted(blend->rt[i].alpha_src_factor),
105 .invert_dst_factor = util_blend_factor_is_inverted(blend->rt[i].alpha_dst_factor)
106 };
107
108 options.rt[i].rgb = rgb;
109 options.rt[i].alpha = alpha;
110
111 options.rt[i].colormask = blend->rt[i].colormask;
112 }
113
114 return options;
115 }
116
117 void
118 panfrost_make_blend_shader(struct panfrost_context *ctx, struct panfrost_blend_state *cso, const struct pipe_blend_color *blend_color)
119 {
120 /* Build the shader */
121
122 nir_shader *shader = nir_shader_create(NULL, MESA_SHADER_FRAGMENT, &midgard_nir_options, NULL);
123 nir_function *fn = nir_function_create(shader, "main");
124 nir_function_impl *impl = nir_function_impl_create(fn);
125
126 /* Create the blend variables */
127
128 nir_variable *c_src = nir_variable_create(shader, nir_var_shader_in, glsl_vector_type(GLSL_TYPE_FLOAT, 4), "gl_Color");
129 nir_variable *c_out = nir_variable_create(shader, nir_var_shader_out, glsl_vector_type(GLSL_TYPE_FLOAT, 4), "gl_FragColor");
130
131 c_src->data.location = VARYING_SLOT_COL0;
132 c_out->data.location = FRAG_RESULT_COLOR;
133
134 /* Setup nir_builder */
135
136 nir_builder _b;
137 nir_builder *b = &_b;
138 nir_builder_init(b, impl);
139 b->cursor = nir_before_block(nir_start_block(impl));
140
141 /* Setup inputs */
142
143 nir_ssa_def *s_src = nir_load_var(b, c_src);
144
145 /* Build a trivial blend shader */
146 nir_store_var(b, c_out, s_src, 0xFF);
147
148 nir_lower_blend_options options =
149 nir_make_options(&cso->base, 1);
150 NIR_PASS_V(shader, nir_lower_blend, options);
151
152 /* Compile the built shader */
153
154 midgard_program program;
155 midgard_compile_shader_nir(shader, &program, true);
156
157 /* Upload the shader */
158
159 int size = program.compiled.size;
160 uint8_t *dst = program.compiled.data;
161
162 /* Hot patch in constant color */
163
164 if (program.blend_patch_offset >= 0) {
165 float *hot_color = (float *) (dst + program.blend_patch_offset);
166
167 for (int c = 0; c < 4; ++c)
168 hot_color[c] = blend_color->color[c];
169 }
170
171 cso->blend_shader = panfrost_upload(&ctx->shaders, dst, size, true) | program.first_tag;
172
173 /* We need to switch to shader mode */
174 cso->has_blend_shader = true;
175
176 /* At least two work registers are needed due to an encoding quirk */
177 cso->blend_work_count = MAX2(program.work_register_count, 2);
178 }