gallium/drivers: Remove unnecessary semicolons
[mesa.git] / src / gallium / drivers / r300 / compiler / radeon_pair_schedule.c
1 /*
2 * Copyright (C) 2009 Nicolai Haehnle.
3 *
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining
7 * a copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sublicense, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial
16 * portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 * IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 */
27
28 #include "radeon_program_pair.h"
29
30 #include <stdio.h>
31
32 #include "radeon_compiler.h"
33 #include "radeon_compiler_util.h"
34 #include "radeon_dataflow.h"
35 #include "radeon_list.h"
36 #include "radeon_variable.h"
37
38 #include "util/u_debug.h"
39
40 #define VERBOSE 0
41
42 #define DBG(...) do { if (VERBOSE) fprintf(stderr, __VA_ARGS__); } while(0)
43
44 struct schedule_instruction {
45 struct rc_instruction * Instruction;
46
47 /** Next instruction in the linked list of ready instructions. */
48 struct schedule_instruction *NextReady;
49
50 /** Values that this instruction reads and writes */
51 struct reg_value * WriteValues[4];
52 struct reg_value * ReadValues[12];
53 unsigned int NumWriteValues:3;
54 unsigned int NumReadValues:4;
55
56 /**
57 * Number of (read and write) dependencies that must be resolved before
58 * this instruction can be scheduled.
59 */
60 unsigned int NumDependencies:5;
61
62 /** List of all readers (see rc_get_readers() for the definition of
63 * "all readers"), even those outside the basic block this instruction
64 * lives in. */
65 struct rc_reader_data GlobalReaders;
66
67 /** If the scheduler has paired an RGB and an Alpha instruction together,
68 * PairedInst references the alpha insturction's dependency information.
69 */
70 struct schedule_instruction * PairedInst;
71
72 /** This scheduler uses the value of Score to determine which
73 * instruction to schedule. Instructions with a higher value of Score
74 * will be scheduled first. */
75 int Score;
76
77 /** The number of components that read from a TEX instruction. */
78 unsigned TexReadCount;
79
80 /** For TEX instructions a list of readers */
81 struct rc_list * TexReaders;
82 };
83
84
85 /**
86 * Used to keep track of which instructions read a value.
87 */
88 struct reg_value_reader {
89 struct schedule_instruction *Reader;
90 struct reg_value_reader *Next;
91 };
92
93 /**
94 * Used to keep track which values are stored in each component of a
95 * RC_FILE_TEMPORARY.
96 */
97 struct reg_value {
98 struct schedule_instruction * Writer;
99
100 /**
101 * Unordered linked list of instructions that read from this value.
102 * When this value becomes available, we increase all readers'
103 * dependency count.
104 */
105 struct reg_value_reader *Readers;
106
107 /**
108 * Number of readers of this value. This is decremented each time
109 * a reader of the value is committed.
110 * When the reader cound reaches zero, the dependency count
111 * of the instruction writing \ref Next is decremented.
112 */
113 unsigned int NumReaders;
114
115 struct reg_value *Next; /**< Pointer to the next value to be written to the same register */
116 };
117
118 struct register_state {
119 struct reg_value * Values[4];
120 };
121
122 struct remap_reg {
123 struct rc_instruciont * Inst;
124 unsigned int OldIndex:(RC_REGISTER_INDEX_BITS+1);
125 unsigned int OldSwizzle:3;
126 unsigned int NewIndex:(RC_REGISTER_INDEX_BITS+1);
127 unsigned int NewSwizzle:3;
128 unsigned int OnlyTexReads:1;
129 struct remap_reg * Next;
130 };
131
132 struct schedule_state {
133 struct radeon_compiler * C;
134 struct schedule_instruction * Current;
135 /** Array of the previous writers of Current's destination register
136 * indexed by channel. */
137 struct schedule_instruction * PrevWriter[4];
138
139 struct register_state Temporary[RC_REGISTER_MAX_INDEX];
140
141 /**
142 * Linked lists of instructions that can be scheduled right now,
143 * based on which ALU/TEX resources they require.
144 */
145 /*@{*/
146 struct schedule_instruction *ReadyFullALU;
147 struct schedule_instruction *ReadyRGB;
148 struct schedule_instruction *ReadyAlpha;
149 struct schedule_instruction *ReadyTEX;
150 /*@}*/
151 struct rc_list *PendingTEX;
152
153 void (*CalcScore)(struct schedule_instruction *);
154 long max_tex_group;
155 unsigned PrevBlockHasTex:1;
156 unsigned TEXCount;
157 unsigned Opt:1;
158 };
159
160 static struct reg_value ** get_reg_valuep(struct schedule_state * s,
161 rc_register_file file, unsigned int index, unsigned int chan)
162 {
163 if (file != RC_FILE_TEMPORARY)
164 return 0;
165
166 if (index >= RC_REGISTER_MAX_INDEX) {
167 rc_error(s->C, "%s: index %i out of bounds\n", __FUNCTION__, index);
168 return 0;
169 }
170
171 return &s->Temporary[index].Values[chan];
172 }
173
174 static unsigned get_tex_read_count(struct schedule_instruction * sinst)
175 {
176 unsigned tex_read_count = sinst->TexReadCount;
177 if (sinst->PairedInst) {
178 tex_read_count += sinst->PairedInst->TexReadCount;
179 }
180 return tex_read_count;
181 }
182
183 #if VERBOSE
184 static void print_list(struct schedule_instruction * sinst)
185 {
186 struct schedule_instruction * ptr;
187 for (ptr = sinst; ptr; ptr=ptr->NextReady) {
188 unsigned tex_read_count = get_tex_read_count(ptr);
189 unsigned score = sinst->Score;
190 fprintf(stderr,"%u (%d) [%u],", ptr->Instruction->IP, score,
191 tex_read_count);
192 }
193 fprintf(stderr, "\n");
194 }
195 #endif
196
197 static void remove_inst_from_list(struct schedule_instruction ** list,
198 struct schedule_instruction * inst)
199 {
200 struct schedule_instruction * prev = NULL;
201 struct schedule_instruction * list_ptr;
202 for (list_ptr = *list; list_ptr; prev = list_ptr,
203 list_ptr = list_ptr->NextReady) {
204 if (list_ptr == inst) {
205 if (prev) {
206 prev->NextReady = inst->NextReady;
207 } else {
208 *list = inst->NextReady;
209 }
210 inst->NextReady = NULL;
211 break;
212 }
213 }
214 }
215
216 static void add_inst_to_list(struct schedule_instruction ** list, struct schedule_instruction * inst)
217 {
218 inst->NextReady = *list;
219 *list = inst;
220 }
221
222 static void add_inst_to_list_score(struct schedule_instruction ** list,
223 struct schedule_instruction * inst)
224 {
225 struct schedule_instruction * temp;
226 struct schedule_instruction * prev;
227 if (!*list) {
228 *list = inst;
229 return;
230 }
231 temp = *list;
232 prev = NULL;
233 while(temp && inst->Score <= temp->Score) {
234 prev = temp;
235 temp = temp->NextReady;
236 }
237
238 if (!prev) {
239 inst->NextReady = temp;
240 *list = inst;
241 } else {
242 prev->NextReady = inst;
243 inst->NextReady = temp;
244 }
245 }
246
247 static void instruction_ready(struct schedule_state * s, struct schedule_instruction * sinst)
248 {
249 DBG("%i is now ready\n", sinst->Instruction->IP);
250
251 /* Adding Ready TEX instructions to the end of the "Ready List" helps
252 * us emit TEX instructions in blocks without losing our place. */
253 if (sinst->Instruction->Type == RC_INSTRUCTION_NORMAL)
254 add_inst_to_list_score(&s->ReadyTEX, sinst);
255 else if (sinst->Instruction->U.P.Alpha.Opcode == RC_OPCODE_NOP)
256 add_inst_to_list_score(&s->ReadyRGB, sinst);
257 else if (sinst->Instruction->U.P.RGB.Opcode == RC_OPCODE_NOP)
258 add_inst_to_list_score(&s->ReadyAlpha, sinst);
259 else
260 add_inst_to_list_score(&s->ReadyFullALU, sinst);
261 }
262
263 static void decrease_dependencies(struct schedule_state * s, struct schedule_instruction * sinst)
264 {
265 assert(sinst->NumDependencies > 0);
266 sinst->NumDependencies--;
267 if (!sinst->NumDependencies)
268 instruction_ready(s, sinst);
269 }
270
271 /* These functions provide different heuristics for scheduling instructions.
272 * The default is calc_score_readers. */
273
274 #if 0
275
276 static void calc_score_zero(struct schedule_instruction * sinst)
277 {
278 sinst->Score = 0;
279 }
280
281 static void calc_score_deps(struct schedule_instruction * sinst)
282 {
283 int i;
284 sinst->Score = 0;
285 for (i = 0; i < sinst->NumWriteValues; i++) {
286 struct reg_value * v = sinst->WriteValues[i];
287 if (v->NumReaders) {
288 struct reg_value_reader * r;
289 for (r = v->Readers; r; r = r->Next) {
290 if (r->Reader->NumDependencies == 1) {
291 sinst->Score += 100;
292 }
293 sinst->Score += r->Reader->NumDependencies;
294 }
295 }
296 }
297 }
298
299 #endif
300
301 #define NO_OUTPUT_SCORE (1 << 24)
302
303 static void score_no_output(struct schedule_instruction * sinst)
304 {
305 assert(sinst->Instruction->Type != RC_INSTRUCTION_NORMAL);
306 if (!sinst->Instruction->U.P.RGB.OutputWriteMask &&
307 !sinst->Instruction->U.P.Alpha.OutputWriteMask) {
308 if (sinst->PairedInst) {
309 if (!sinst->PairedInst->Instruction->U.P.
310 RGB.OutputWriteMask
311 && !sinst->PairedInst->Instruction->U.P.
312 Alpha.OutputWriteMask) {
313 sinst->Score |= NO_OUTPUT_SCORE;
314 }
315
316 } else {
317 sinst->Score |= NO_OUTPUT_SCORE;
318 }
319 }
320 }
321
322 #define PAIRED_SCORE (1 << 16)
323
324 static void calc_score_r300(struct schedule_instruction * sinst)
325 {
326 unsigned src_idx;
327
328 if (sinst->Instruction->Type == RC_INSTRUCTION_NORMAL) {
329 sinst->Score = 0;
330 return;
331 }
332
333 score_no_output(sinst);
334
335 if (sinst->PairedInst) {
336 sinst->Score |= PAIRED_SCORE;
337 return;
338 }
339
340 for (src_idx = 0; src_idx < 4; src_idx++) {
341 sinst->Score += sinst->Instruction->U.P.RGB.Src[src_idx].Used +
342 sinst->Instruction->U.P.Alpha.Src[src_idx].Used;
343 }
344 }
345
346 #define NO_READ_TEX_SCORE (1 << 16)
347
348 static void calc_score_readers(struct schedule_instruction * sinst)
349 {
350 if (sinst->Instruction->Type == RC_INSTRUCTION_NORMAL) {
351 sinst->Score = 0;
352 } else {
353 sinst->Score = sinst->NumReadValues;
354 if (sinst->PairedInst) {
355 sinst->Score += sinst->PairedInst->NumReadValues;
356 }
357 if (get_tex_read_count(sinst) == 0) {
358 sinst->Score |= NO_READ_TEX_SCORE;
359 }
360 score_no_output(sinst);
361 }
362 }
363
364 /**
365 * This function decreases the dependencies of the next instruction that
366 * wants to write to each of sinst's read values.
367 */
368 static void commit_update_reads(struct schedule_state * s,
369 struct schedule_instruction * sinst){
370 unsigned int i;
371 for(i = 0; i < sinst->NumReadValues; ++i) {
372 struct reg_value * v = sinst->ReadValues[i];
373 assert(v->NumReaders > 0);
374 v->NumReaders--;
375 if (!v->NumReaders) {
376 if (v->Next) {
377 decrease_dependencies(s, v->Next->Writer);
378 }
379 }
380 }
381 if (sinst->PairedInst) {
382 commit_update_reads(s, sinst->PairedInst);
383 }
384 }
385
386 static void commit_update_writes(struct schedule_state * s,
387 struct schedule_instruction * sinst){
388 unsigned int i;
389 for(i = 0; i < sinst->NumWriteValues; ++i) {
390 struct reg_value * v = sinst->WriteValues[i];
391 if (v->NumReaders) {
392 for(struct reg_value_reader * r = v->Readers; r; r = r->Next) {
393 decrease_dependencies(s, r->Reader);
394 }
395 } else {
396 /* This happens in instruction sequences of the type
397 * OP r.x, ...;
398 * OP r.x, r.x, ...;
399 * See also the subtlety in how instructions that both
400 * read and write the same register are scanned.
401 */
402 if (v->Next)
403 decrease_dependencies(s, v->Next->Writer);
404 }
405 }
406 if (sinst->PairedInst) {
407 commit_update_writes(s, sinst->PairedInst);
408 }
409 }
410
411 static void notify_sem_wait(struct schedule_state *s)
412 {
413 struct rc_list * pend_ptr;
414 for (pend_ptr = s->PendingTEX; pend_ptr; pend_ptr = pend_ptr->Next) {
415 struct rc_list * read_ptr;
416 struct schedule_instruction * pending = pend_ptr->Item;
417 for (read_ptr = pending->TexReaders; read_ptr;
418 read_ptr = read_ptr->Next) {
419 struct schedule_instruction * reader = read_ptr->Item;
420 reader->TexReadCount--;
421 }
422 }
423 s->PendingTEX = NULL;
424 }
425
426 static void commit_alu_instruction(struct schedule_state * s, struct schedule_instruction * sinst)
427 {
428 DBG("%i: commit score = %d\n", sinst->Instruction->IP, sinst->Score);
429
430 commit_update_reads(s, sinst);
431
432 commit_update_writes(s, sinst);
433
434 if (get_tex_read_count(sinst) > 0) {
435 sinst->Instruction->U.P.SemWait = 1;
436 notify_sem_wait(s);
437 }
438 }
439
440 /**
441 * Emit all ready texture instructions in a single block.
442 *
443 * Emit as a single block to (hopefully) sample many textures in parallel,
444 * and to avoid hardware indirections on R300.
445 */
446 static void emit_all_tex(struct schedule_state * s, struct rc_instruction * before)
447 {
448 struct schedule_instruction *readytex;
449 struct rc_instruction * inst_begin;
450
451 assert(s->ReadyTEX);
452 notify_sem_wait(s);
453
454 /* Node marker for R300 */
455 inst_begin = rc_insert_new_instruction(s->C, before->Prev);
456 inst_begin->U.I.Opcode = RC_OPCODE_BEGIN_TEX;
457
458 /* Link texture instructions back in */
459 readytex = s->ReadyTEX;
460 while(readytex) {
461 rc_insert_instruction(before->Prev, readytex->Instruction);
462 DBG("%i: commit TEX reads\n", readytex->Instruction->IP);
463
464 /* All of the TEX instructions in the same TEX block have
465 * their source registers read from before any of the
466 * instructions in that block write to their destination
467 * registers. This means that when we commit a TEX
468 * instruction, any other TEX instruction that wants to write
469 * to one of the committed instruction's source register can be
470 * marked as ready and should be emitted in the same TEX
471 * block. This prevents the following sequence from being
472 * emitted in two different TEX blocks:
473 * 0: TEX temp[0].xyz, temp[1].xy__, 2D[0];
474 * 1: TEX temp[1].xyz, temp[2].xy__, 2D[0];
475 */
476 commit_update_reads(s, readytex);
477 readytex = readytex->NextReady;
478 }
479 readytex = s->ReadyTEX;
480 s->ReadyTEX = 0;
481 while(readytex){
482 DBG("%i: commit TEX writes\n", readytex->Instruction->IP);
483 commit_update_writes(s, readytex);
484 /* Set semaphore bits for last TEX instruction in the block */
485 if (!readytex->NextReady) {
486 readytex->Instruction->U.I.TexSemAcquire = 1;
487 readytex->Instruction->U.I.TexSemWait = 1;
488 }
489 rc_list_add(&s->PendingTEX, rc_list(&s->C->Pool, readytex));
490 readytex = readytex->NextReady;
491 }
492 }
493
494 /* This is a helper function for destructive_merge_instructions(). It helps
495 * merge presubtract sources from two instructions and makes sure the
496 * presubtract sources end up in the correct spot. This function assumes that
497 * dst_full is an rgb instruction, meaning that it has a vector instruction(rgb)
498 * but no scalar instruction (alpha).
499 * @return 0 if merging the presubtract sources fails.
500 * @retrun 1 if merging the presubtract sources succeeds.
501 */
502 static int merge_presub_sources(
503 struct rc_pair_instruction * dst_full,
504 struct rc_pair_sub_instruction src,
505 unsigned int type)
506 {
507 unsigned int srcp_src, srcp_regs, is_rgb, is_alpha;
508 struct rc_pair_sub_instruction * dst_sub;
509 const struct rc_opcode_info * info;
510
511 assert(dst_full->Alpha.Opcode == RC_OPCODE_NOP);
512
513 switch(type) {
514 case RC_SOURCE_RGB:
515 is_rgb = 1;
516 is_alpha = 0;
517 dst_sub = &dst_full->RGB;
518 break;
519 case RC_SOURCE_ALPHA:
520 is_rgb = 0;
521 is_alpha = 1;
522 dst_sub = &dst_full->Alpha;
523 break;
524 default:
525 assert(0);
526 return 0;
527 }
528
529 info = rc_get_opcode_info(dst_full->RGB.Opcode);
530
531 if (dst_sub->Src[RC_PAIR_PRESUB_SRC].Used)
532 return 0;
533
534 srcp_regs = rc_presubtract_src_reg_count(
535 src.Src[RC_PAIR_PRESUB_SRC].Index);
536 for(srcp_src = 0; srcp_src < srcp_regs; srcp_src++) {
537 unsigned int arg;
538 int free_source;
539 unsigned int one_way = 0;
540 struct rc_pair_instruction_source srcp = src.Src[srcp_src];
541 struct rc_pair_instruction_source temp;
542
543 free_source = rc_pair_alloc_source(dst_full, is_rgb, is_alpha,
544 srcp.File, srcp.Index);
545
546 /* If free_source < 0 then there are no free source
547 * slots. */
548 if (free_source < 0)
549 return 0;
550
551 temp = dst_sub->Src[srcp_src];
552 dst_sub->Src[srcp_src] = dst_sub->Src[free_source];
553
554 /* srcp needs src0 and src1 to be the same */
555 if (free_source < srcp_src) {
556 if (!temp.Used)
557 continue;
558 free_source = rc_pair_alloc_source(dst_full, is_rgb,
559 is_alpha, temp.File, temp.Index);
560 if (free_source < 0)
561 return 0;
562 one_way = 1;
563 } else {
564 dst_sub->Src[free_source] = temp;
565 }
566
567 /* If free_source == srcp_src, then the presubtract
568 * source is already in the correct place. */
569 if (free_source == srcp_src)
570 continue;
571
572 /* Shuffle the sources, so we can put the
573 * presubtract source in the correct place. */
574 for(arg = 0; arg < info->NumSrcRegs; arg++) {
575 /*If this arg does not read from an rgb source,
576 * do nothing. */
577 if (!(rc_source_type_swz(dst_full->RGB.Arg[arg].Swizzle)
578 & type)) {
579 continue;
580 }
581
582 if (dst_full->RGB.Arg[arg].Source == srcp_src)
583 dst_full->RGB.Arg[arg].Source = free_source;
584 /* We need to do this just in case register
585 * is one of the sources already, but in the
586 * wrong spot. */
587 else if(dst_full->RGB.Arg[arg].Source == free_source
588 && !one_way) {
589 dst_full->RGB.Arg[arg].Source = srcp_src;
590 }
591 }
592 }
593 return 1;
594 }
595
596
597 /* This function assumes that rgb.Alpha and alpha.RGB are unused */
598 static int destructive_merge_instructions(
599 struct rc_pair_instruction * rgb,
600 struct rc_pair_instruction * alpha)
601 {
602 const struct rc_opcode_info * opcode;
603
604 assert(rgb->Alpha.Opcode == RC_OPCODE_NOP);
605 assert(alpha->RGB.Opcode == RC_OPCODE_NOP);
606
607 /* Presubtract registers need to be merged first so that registers
608 * needed by the presubtract operation can be placed in src0 and/or
609 * src1. */
610
611 /* Merge the rgb presubtract registers. */
612 if (alpha->RGB.Src[RC_PAIR_PRESUB_SRC].Used) {
613 if (!merge_presub_sources(rgb, alpha->RGB, RC_SOURCE_RGB)) {
614 return 0;
615 }
616 }
617 /* Merge the alpha presubtract registers */
618 if (alpha->Alpha.Src[RC_PAIR_PRESUB_SRC].Used) {
619 if(!merge_presub_sources(rgb, alpha->Alpha, RC_SOURCE_ALPHA)){
620 return 0;
621 }
622 }
623
624 /* Copy alpha args into rgb */
625 opcode = rc_get_opcode_info(alpha->Alpha.Opcode);
626
627 for(unsigned int arg = 0; arg < opcode->NumSrcRegs; ++arg) {
628 unsigned int srcrgb = 0;
629 unsigned int srcalpha = 0;
630 unsigned int oldsrc = alpha->Alpha.Arg[arg].Source;
631 rc_register_file file = 0;
632 unsigned int index = 0;
633 int source;
634
635 if (GET_SWZ(alpha->Alpha.Arg[arg].Swizzle, 0) < 3) {
636 srcrgb = 1;
637 file = alpha->RGB.Src[oldsrc].File;
638 index = alpha->RGB.Src[oldsrc].Index;
639 } else if (GET_SWZ(alpha->Alpha.Arg[arg].Swizzle, 0) < 4) {
640 srcalpha = 1;
641 file = alpha->Alpha.Src[oldsrc].File;
642 index = alpha->Alpha.Src[oldsrc].Index;
643 }
644
645 source = rc_pair_alloc_source(rgb, srcrgb, srcalpha, file, index);
646 if (source < 0)
647 return 0;
648
649 rgb->Alpha.Arg[arg].Source = source;
650 rgb->Alpha.Arg[arg].Swizzle = alpha->Alpha.Arg[arg].Swizzle;
651 rgb->Alpha.Arg[arg].Abs = alpha->Alpha.Arg[arg].Abs;
652 rgb->Alpha.Arg[arg].Negate = alpha->Alpha.Arg[arg].Negate;
653 }
654
655 /* Copy alpha opcode into rgb */
656 rgb->Alpha.Opcode = alpha->Alpha.Opcode;
657 rgb->Alpha.DestIndex = alpha->Alpha.DestIndex;
658 rgb->Alpha.WriteMask = alpha->Alpha.WriteMask;
659 rgb->Alpha.OutputWriteMask = alpha->Alpha.OutputWriteMask;
660 rgb->Alpha.DepthWriteMask = alpha->Alpha.DepthWriteMask;
661 rgb->Alpha.Saturate = alpha->Alpha.Saturate;
662 rgb->Alpha.Omod = alpha->Alpha.Omod;
663
664 /* Merge ALU result writing */
665 if (alpha->WriteALUResult) {
666 if (rgb->WriteALUResult)
667 return 0;
668
669 rgb->WriteALUResult = alpha->WriteALUResult;
670 rgb->ALUResultCompare = alpha->ALUResultCompare;
671 }
672
673 /* Copy SemWait */
674 rgb->SemWait |= alpha->SemWait;
675
676 return 1;
677 }
678
679 /**
680 * Try to merge the given instructions into the rgb instructions.
681 *
682 * Return true on success; on failure, return false, and keep
683 * the instructions untouched.
684 */
685 static int merge_instructions(struct rc_pair_instruction * rgb, struct rc_pair_instruction * alpha)
686 {
687 struct rc_pair_instruction backup;
688
689 /*Instructions can't write output registers and ALU result at the
690 * same time. */
691 if ((rgb->WriteALUResult && alpha->Alpha.OutputWriteMask)
692 || (rgb->RGB.OutputWriteMask && alpha->WriteALUResult)) {
693 return 0;
694 }
695
696 /* Writing output registers in the middle of shaders is slow, so
697 * we don't want to pair output writes with temp writes. */
698 if ((rgb->RGB.OutputWriteMask && !alpha->Alpha.OutputWriteMask)
699 || (!rgb->RGB.OutputWriteMask && alpha->Alpha.OutputWriteMask)) {
700 return 0;
701 }
702
703 memcpy(&backup, rgb, sizeof(struct rc_pair_instruction));
704
705 if (destructive_merge_instructions(rgb, alpha))
706 return 1;
707
708 memcpy(rgb, &backup, sizeof(struct rc_pair_instruction));
709 return 0;
710 }
711
712 static void presub_nop(struct rc_instruction * emitted) {
713 int prev_rgb_index, prev_alpha_index, i, num_src;
714
715 /* We don't need a nop if the previous instruction is a TEX. */
716 if (emitted->Prev->Type != RC_INSTRUCTION_PAIR) {
717 return;
718 }
719 if (emitted->Prev->U.P.RGB.WriteMask)
720 prev_rgb_index = emitted->Prev->U.P.RGB.DestIndex;
721 else
722 prev_rgb_index = -1;
723 if (emitted->Prev->U.P.Alpha.WriteMask)
724 prev_alpha_index = emitted->Prev->U.P.Alpha.DestIndex;
725 else
726 prev_alpha_index = 1;
727
728 /* Check the previous rgb instruction */
729 if (emitted->U.P.RGB.Src[RC_PAIR_PRESUB_SRC].Used) {
730 num_src = rc_presubtract_src_reg_count(
731 emitted->U.P.RGB.Src[RC_PAIR_PRESUB_SRC].Index);
732 for (i = 0; i < num_src; i++) {
733 unsigned int index = emitted->U.P.RGB.Src[i].Index;
734 if (emitted->U.P.RGB.Src[i].File == RC_FILE_TEMPORARY
735 && (index == prev_rgb_index
736 || index == prev_alpha_index)) {
737 emitted->Prev->U.P.Nop = 1;
738 return;
739 }
740 }
741 }
742
743 /* Check the previous alpha instruction. */
744 if (!emitted->U.P.Alpha.Src[RC_PAIR_PRESUB_SRC].Used)
745 return;
746
747 num_src = rc_presubtract_src_reg_count(
748 emitted->U.P.Alpha.Src[RC_PAIR_PRESUB_SRC].Index);
749 for (i = 0; i < num_src; i++) {
750 unsigned int index = emitted->U.P.Alpha.Src[i].Index;
751 if(emitted->U.P.Alpha.Src[i].File == RC_FILE_TEMPORARY
752 && (index == prev_rgb_index || index == prev_alpha_index)) {
753 emitted->Prev->U.P.Nop = 1;
754 return;
755 }
756 }
757 }
758
759 static void rgb_to_alpha_remap (
760 struct rc_instruction * inst,
761 struct rc_pair_instruction_arg * arg,
762 rc_register_file old_file,
763 rc_swizzle old_swz,
764 unsigned int new_index)
765 {
766 int new_src_index;
767 unsigned int i;
768
769 for (i = 0; i < 3; i++) {
770 if (get_swz(arg->Swizzle, i) == old_swz) {
771 SET_SWZ(arg->Swizzle, i, RC_SWIZZLE_W);
772 }
773 }
774 new_src_index = rc_pair_alloc_source(&inst->U.P, 0, 1,
775 old_file, new_index);
776 /* This conversion is not possible, we must have made a mistake in
777 * is_rgb_to_alpha_possible. */
778 if (new_src_index < 0) {
779 assert(0);
780 return;
781 }
782
783 arg->Source = new_src_index;
784 }
785
786 static int can_remap(unsigned int opcode)
787 {
788 switch(opcode) {
789 case RC_OPCODE_DDX:
790 case RC_OPCODE_DDY:
791 return 0;
792 default:
793 return 1;
794 }
795 }
796
797 static int can_convert_opcode_to_alpha(unsigned int opcode)
798 {
799 switch(opcode) {
800 case RC_OPCODE_DDX:
801 case RC_OPCODE_DDY:
802 case RC_OPCODE_DP2:
803 case RC_OPCODE_DP3:
804 case RC_OPCODE_DP4:
805 case RC_OPCODE_DPH:
806 return 0;
807 default:
808 return 1;
809 }
810 }
811
812 static void is_rgb_to_alpha_possible(
813 void * userdata,
814 struct rc_instruction * inst,
815 struct rc_pair_instruction_arg * arg,
816 struct rc_pair_instruction_source * src)
817 {
818 unsigned int read_chan = RC_SWIZZLE_UNUSED;
819 unsigned int alpha_sources = 0;
820 unsigned int i;
821 struct rc_reader_data * reader_data = userdata;
822
823 if (!can_remap(inst->U.P.RGB.Opcode)
824 || !can_remap(inst->U.P.Alpha.Opcode)) {
825 reader_data->Abort = 1;
826 return;
827 }
828
829 if (!src)
830 return;
831
832 /* XXX There are some cases where we can still do the conversion if
833 * a reader reads from a presubtract source, but for now we'll prevent
834 * it. */
835 if (arg->Source == RC_PAIR_PRESUB_SRC) {
836 reader_data->Abort = 1;
837 return;
838 }
839
840 /* Make sure the source only reads the register component that we
841 * are going to be convering from. It is OK if the instruction uses
842 * this component more than once.
843 * XXX If the index we will be converting to is the same as the
844 * current index, then it is OK to read from more than one component.
845 */
846 for (i = 0; i < 3; i++) {
847 rc_swizzle swz = get_swz(arg->Swizzle, i);
848 switch(swz) {
849 case RC_SWIZZLE_X:
850 case RC_SWIZZLE_Y:
851 case RC_SWIZZLE_Z:
852 case RC_SWIZZLE_W:
853 if (read_chan == RC_SWIZZLE_UNUSED) {
854 read_chan = swz;
855 } else if (read_chan != swz) {
856 reader_data->Abort = 1;
857 return;
858 }
859 break;
860 default:
861 break;
862 }
863 }
864
865 /* Make sure there are enough alpha sources.
866 * XXX If we know what register all the readers are going
867 * to be remapped to, then in some situations we can still do
868 * the subsitution, even if all 3 alpha sources are being used.*/
869 for (i = 0; i < 3; i++) {
870 if (inst->U.P.Alpha.Src[i].Used) {
871 alpha_sources++;
872 }
873 }
874 if (alpha_sources > 2) {
875 reader_data->Abort = 1;
876 return;
877 }
878 }
879
880 static int convert_rgb_to_alpha(
881 struct schedule_state * s,
882 struct schedule_instruction * sched_inst)
883 {
884 struct rc_pair_instruction * pair_inst = &sched_inst->Instruction->U.P;
885 unsigned int old_mask = pair_inst->RGB.WriteMask;
886 unsigned int old_swz = rc_mask_to_swizzle(old_mask);
887 const struct rc_opcode_info * info =
888 rc_get_opcode_info(pair_inst->RGB.Opcode);
889 int new_index = -1;
890 unsigned int i;
891
892 if (sched_inst->GlobalReaders.Abort)
893 return 0;
894
895 if (!pair_inst->RGB.WriteMask)
896 return 0;
897
898 if (!can_convert_opcode_to_alpha(pair_inst->RGB.Opcode)
899 || !can_convert_opcode_to_alpha(pair_inst->Alpha.Opcode)) {
900 return 0;
901 }
902
903 assert(sched_inst->NumWriteValues == 1);
904
905 if (!sched_inst->WriteValues[0]) {
906 assert(0);
907 return 0;
908 }
909
910 /* We start at the old index, because if we can reuse the same
911 * register and just change the swizzle then it is more likely we
912 * will be able to convert all the readers. */
913 for (i = pair_inst->RGB.DestIndex; i < RC_REGISTER_MAX_INDEX; i++) {
914 struct reg_value ** new_regvalp = get_reg_valuep(
915 s, RC_FILE_TEMPORARY, i, 3);
916 if (!*new_regvalp) {
917 struct reg_value ** old_regvalp =
918 get_reg_valuep(s,
919 RC_FILE_TEMPORARY,
920 pair_inst->RGB.DestIndex,
921 rc_mask_to_swizzle(old_mask));
922 new_index = i;
923 *new_regvalp = *old_regvalp;
924 *old_regvalp = NULL;
925 new_regvalp = get_reg_valuep(s, RC_FILE_TEMPORARY, i, 3);
926 break;
927 }
928 }
929 if (new_index < 0) {
930 return 0;
931 }
932
933 /* If we are converting a full instruction with RC_OPCODE_REPL_ALPHA
934 * as the RGB opcode, then the Alpha instruction will already contain
935 * the correct opcode and instruction args, so we do not want to
936 * overwrite them.
937 */
938 if (pair_inst->RGB.Opcode != RC_OPCODE_REPL_ALPHA) {
939 pair_inst->Alpha.Opcode = pair_inst->RGB.Opcode;
940 memcpy(pair_inst->Alpha.Arg, pair_inst->RGB.Arg,
941 sizeof(pair_inst->Alpha.Arg));
942 }
943 pair_inst->Alpha.DestIndex = new_index;
944 pair_inst->Alpha.WriteMask = RC_MASK_W;
945 pair_inst->Alpha.Target = pair_inst->RGB.Target;
946 pair_inst->Alpha.OutputWriteMask = pair_inst->RGB.OutputWriteMask;
947 pair_inst->Alpha.DepthWriteMask = pair_inst->RGB.DepthWriteMask;
948 pair_inst->Alpha.Saturate = pair_inst->RGB.Saturate;
949 pair_inst->Alpha.Omod = pair_inst->RGB.Omod;
950 /* Move the swizzles into the first chan */
951 for (i = 0; i < info->NumSrcRegs; i++) {
952 unsigned int j;
953 for (j = 0; j < 3; j++) {
954 unsigned int swz = get_swz(pair_inst->Alpha.Arg[i].Swizzle, j);
955 if (swz != RC_SWIZZLE_UNUSED) {
956 pair_inst->Alpha.Arg[i].Swizzle =
957 rc_init_swizzle(swz, 1);
958 break;
959 }
960 }
961 }
962 pair_inst->RGB.Opcode = RC_OPCODE_NOP;
963 pair_inst->RGB.DestIndex = 0;
964 pair_inst->RGB.WriteMask = 0;
965 pair_inst->RGB.Target = 0;
966 pair_inst->RGB.OutputWriteMask = 0;
967 pair_inst->RGB.DepthWriteMask = 0;
968 pair_inst->RGB.Saturate = 0;
969 memset(pair_inst->RGB.Arg, 0, sizeof(pair_inst->RGB.Arg));
970
971 for(i = 0; i < sched_inst->GlobalReaders.ReaderCount; i++) {
972 struct rc_reader reader = sched_inst->GlobalReaders.Readers[i];
973 rgb_to_alpha_remap(reader.Inst, reader.U.P.Arg,
974 RC_FILE_TEMPORARY, old_swz, new_index);
975 }
976 return 1;
977 }
978
979 static void try_convert_and_pair(
980 struct schedule_state *s,
981 struct schedule_instruction ** inst_list)
982 {
983 struct schedule_instruction * list_ptr = *inst_list;
984 while (list_ptr && *inst_list && (*inst_list)->NextReady) {
985 int paired = 0;
986 if (list_ptr->Instruction->U.P.Alpha.Opcode != RC_OPCODE_NOP
987 && list_ptr->Instruction->U.P.RGB.Opcode
988 != RC_OPCODE_REPL_ALPHA) {
989 goto next;
990 }
991 if (list_ptr->NumWriteValues == 1
992 && convert_rgb_to_alpha(s, list_ptr)) {
993
994 struct schedule_instruction * pair_ptr;
995 remove_inst_from_list(inst_list, list_ptr);
996 add_inst_to_list_score(&s->ReadyAlpha, list_ptr);
997
998 for (pair_ptr = s->ReadyRGB; pair_ptr;
999 pair_ptr = pair_ptr->NextReady) {
1000 if (merge_instructions(&pair_ptr->Instruction->U.P,
1001 &list_ptr->Instruction->U.P)) {
1002 remove_inst_from_list(&s->ReadyAlpha, list_ptr);
1003 remove_inst_from_list(&s->ReadyRGB, pair_ptr);
1004 pair_ptr->PairedInst = list_ptr;
1005
1006 add_inst_to_list(&s->ReadyFullALU, pair_ptr);
1007 list_ptr = *inst_list;
1008 paired = 1;
1009 break;
1010 }
1011
1012 }
1013 }
1014 if (!paired) {
1015 next:
1016 list_ptr = list_ptr->NextReady;
1017 }
1018 }
1019 }
1020
1021 /**
1022 * This function attempts to merge RGB and Alpha instructions together.
1023 */
1024 static void pair_instructions(struct schedule_state * s)
1025 {
1026 struct schedule_instruction *rgb_ptr;
1027 struct schedule_instruction *alpha_ptr;
1028
1029 /* Some pairings might fail because they require too
1030 * many source slots; try all possible pairings if necessary */
1031 rgb_ptr = s->ReadyRGB;
1032 while(rgb_ptr) {
1033 struct schedule_instruction * rgb_next = rgb_ptr->NextReady;
1034 alpha_ptr = s->ReadyAlpha;
1035 while(alpha_ptr) {
1036 struct schedule_instruction * alpha_next = alpha_ptr->NextReady;
1037 if (merge_instructions(&rgb_ptr->Instruction->U.P, &alpha_ptr->Instruction->U.P)) {
1038 /* Remove RGB and Alpha from their ready lists.
1039 */
1040 remove_inst_from_list(&s->ReadyRGB, rgb_ptr);
1041 remove_inst_from_list(&s->ReadyAlpha, alpha_ptr);
1042 rgb_ptr->PairedInst = alpha_ptr;
1043 add_inst_to_list(&s->ReadyFullALU, rgb_ptr);
1044 break;
1045 }
1046 alpha_ptr = alpha_next;
1047 }
1048 rgb_ptr = rgb_next;
1049 }
1050
1051 if (!s->Opt) {
1052 return;
1053 }
1054
1055 /* Full instructions that have RC_OPCODE_REPL_ALPHA in the RGB
1056 * slot can be converted into Alpha instructions. */
1057 try_convert_and_pair(s, &s->ReadyFullALU);
1058
1059 /* Try to convert some of the RGB instructions to Alpha and
1060 * try to pair it with another RGB. */
1061 try_convert_and_pair(s, &s->ReadyRGB);
1062 }
1063
1064 static void update_max_score(
1065 struct schedule_state * s,
1066 struct schedule_instruction ** list,
1067 int * max_score,
1068 struct schedule_instruction ** max_inst_out,
1069 struct schedule_instruction *** list_out)
1070 {
1071 struct schedule_instruction * list_ptr;
1072 for (list_ptr = *list; list_ptr; list_ptr = list_ptr->NextReady) {
1073 int score;
1074 s->CalcScore(list_ptr);
1075 score = list_ptr->Score;
1076 if (!*max_inst_out || score > *max_score) {
1077 *max_score = score;
1078 *max_inst_out = list_ptr;
1079 *list_out = list;
1080 }
1081 }
1082 }
1083
1084 static void emit_instruction(
1085 struct schedule_state * s,
1086 struct rc_instruction * before)
1087 {
1088 int max_score = -1;
1089 struct schedule_instruction * max_inst = NULL;
1090 struct schedule_instruction ** max_list = NULL;
1091 unsigned tex_count = 0;
1092 struct schedule_instruction * tex_ptr;
1093
1094 pair_instructions(s);
1095 #if VERBOSE
1096 fprintf(stderr, "Full:\n");
1097 print_list(s->ReadyFullALU);
1098 fprintf(stderr, "RGB:\n");
1099 print_list(s->ReadyRGB);
1100 fprintf(stderr, "Alpha:\n");
1101 print_list(s->ReadyAlpha);
1102 fprintf(stderr, "TEX:\n");
1103 print_list(s->ReadyTEX);
1104 #endif
1105
1106 for (tex_ptr = s->ReadyTEX; tex_ptr; tex_ptr = tex_ptr->NextReady) {
1107 if (tex_ptr->Instruction->U.I.Opcode == RC_OPCODE_KIL) {
1108 emit_all_tex(s, before);
1109 return;
1110 }
1111 tex_count++;
1112 }
1113 update_max_score(s, &s->ReadyFullALU, &max_score, &max_inst, &max_list);
1114 update_max_score(s, &s->ReadyRGB, &max_score, &max_inst, &max_list);
1115 update_max_score(s, &s->ReadyAlpha, &max_score, &max_inst, &max_list);
1116
1117 if (tex_count >= s->max_tex_group || max_score == -1
1118 || (s->TEXCount > 0 && tex_count == s->TEXCount)
1119 || (!s->C->is_r500 && tex_count > 0 && max_score == -1)) {
1120 emit_all_tex(s, before);
1121 } else {
1122
1123
1124 remove_inst_from_list(max_list, max_inst);
1125 rc_insert_instruction(before->Prev, max_inst->Instruction);
1126 commit_alu_instruction(s, max_inst);
1127
1128 presub_nop(before->Prev);
1129 }
1130 }
1131
1132 static void add_tex_reader(
1133 struct schedule_state * s,
1134 struct schedule_instruction * writer,
1135 struct schedule_instruction * reader)
1136 {
1137 if (!writer || writer->Instruction->Type != RC_INSTRUCTION_NORMAL) {
1138 /*Not a TEX instructions */
1139 return;
1140 }
1141 reader->TexReadCount++;
1142 rc_list_add(&writer->TexReaders, rc_list(&s->C->Pool, reader));
1143 }
1144
1145 static void scan_read(void * data, struct rc_instruction * inst,
1146 rc_register_file file, unsigned int index, unsigned int chan)
1147 {
1148 struct schedule_state * s = data;
1149 struct reg_value ** v = get_reg_valuep(s, file, index, chan);
1150 struct reg_value_reader * reader;
1151
1152 if (!v)
1153 return;
1154
1155 if (*v && (*v)->Writer == s->Current) {
1156 /* The instruction reads and writes to a register component.
1157 * In this case, we only want to increment dependencies by one.
1158 * Why?
1159 * Because each instruction depends on the writers of its source
1160 * registers _and_ the most recent writer of its destination
1161 * register. In this case, the current instruction (s->Current)
1162 * has a dependency that both writes to one of its source
1163 * registers and was the most recent writer to its destination
1164 * register. We have already marked this dependency in
1165 * scan_write(), so we don't need to do it again.
1166 */
1167
1168 /* We need to make sure we are adding s->Current to the
1169 * previous writer's list of TexReaders, if the previous writer
1170 * was a TEX instruction.
1171 */
1172 add_tex_reader(s, s->PrevWriter[chan], s->Current);
1173
1174 return;
1175 }
1176
1177 DBG("%i: read %i[%i] chan %i\n", s->Current->Instruction->IP, file, index, chan);
1178
1179 reader = memory_pool_malloc(&s->C->Pool, sizeof(*reader));
1180 reader->Reader = s->Current;
1181 if (!*v) {
1182 /* In this situation, the instruction reads from a register
1183 * that hasn't been written to or read from in the current
1184 * block. */
1185 *v = memory_pool_malloc(&s->C->Pool, sizeof(struct reg_value));
1186 memset(*v, 0, sizeof(struct reg_value));
1187 (*v)->Readers = reader;
1188 } else {
1189 reader->Next = (*v)->Readers;
1190 (*v)->Readers = reader;
1191 /* Only update the current instruction's dependencies if the
1192 * register it reads from has been written to in this block. */
1193 if ((*v)->Writer) {
1194 add_tex_reader(s, (*v)->Writer, s->Current);
1195 s->Current->NumDependencies++;
1196 }
1197 }
1198 (*v)->NumReaders++;
1199
1200 if (s->Current->NumReadValues >= 12) {
1201 rc_error(s->C, "%s: NumReadValues overflow\n", __FUNCTION__);
1202 } else {
1203 s->Current->ReadValues[s->Current->NumReadValues++] = *v;
1204 }
1205 }
1206
1207 static void scan_write(void * data, struct rc_instruction * inst,
1208 rc_register_file file, unsigned int index, unsigned int chan)
1209 {
1210 struct schedule_state * s = data;
1211 struct reg_value ** pv = get_reg_valuep(s, file, index, chan);
1212 struct reg_value * newv;
1213
1214 if (!pv)
1215 return;
1216
1217 DBG("%i: write %i[%i] chan %i\n", s->Current->Instruction->IP, file, index, chan);
1218
1219 newv = memory_pool_malloc(&s->C->Pool, sizeof(*newv));
1220 memset(newv, 0, sizeof(*newv));
1221
1222 newv->Writer = s->Current;
1223
1224 if (*pv) {
1225 (*pv)->Next = newv;
1226 s->Current->NumDependencies++;
1227 /* Keep track of the previous writer to s->Current's destination
1228 * register */
1229 s->PrevWriter[chan] = (*pv)->Writer;
1230 }
1231
1232 *pv = newv;
1233
1234 if (s->Current->NumWriteValues >= 4) {
1235 rc_error(s->C, "%s: NumWriteValues overflow\n", __FUNCTION__);
1236 } else {
1237 s->Current->WriteValues[s->Current->NumWriteValues++] = newv;
1238 }
1239 }
1240
1241 static void is_rgb_to_alpha_possible_normal(
1242 void * userdata,
1243 struct rc_instruction * inst,
1244 struct rc_src_register * src)
1245 {
1246 struct rc_reader_data * reader_data = userdata;
1247 reader_data->Abort = 1;
1248
1249 }
1250
1251 static void schedule_block(struct schedule_state * s,
1252 struct rc_instruction * begin, struct rc_instruction * end)
1253 {
1254 unsigned int ip;
1255
1256 /* Scan instructions for data dependencies */
1257 ip = 0;
1258 for(struct rc_instruction * inst = begin; inst != end; inst = inst->Next) {
1259 s->Current = memory_pool_malloc(&s->C->Pool, sizeof(*s->Current));
1260 memset(s->Current, 0, sizeof(struct schedule_instruction));
1261
1262 if (inst->Type == RC_INSTRUCTION_NORMAL) {
1263 const struct rc_opcode_info * info =
1264 rc_get_opcode_info(inst->U.I.Opcode);
1265 if (info->HasTexture) {
1266 s->TEXCount++;
1267 }
1268 }
1269
1270 /* XXX: This causes SemWait to be set for all instructions in
1271 * a block if the previous block contained a TEX instruction.
1272 * We can do better here, but it will take a lot of work. */
1273 if (s->PrevBlockHasTex) {
1274 s->Current->TexReadCount = 1;
1275 }
1276
1277 s->Current->Instruction = inst;
1278 inst->IP = ip++;
1279
1280 DBG("%i: Scanning\n", inst->IP);
1281
1282 /* The order of things here is subtle and maybe slightly
1283 * counter-intuitive, to account for the case where an
1284 * instruction writes to the same register as it reads
1285 * from. */
1286 rc_for_all_writes_chan(inst, &scan_write, s);
1287 rc_for_all_reads_chan(inst, &scan_read, s);
1288
1289 DBG("%i: Has %i dependencies\n", inst->IP, s->Current->NumDependencies);
1290
1291 if (!s->Current->NumDependencies) {
1292 instruction_ready(s, s->Current);
1293 }
1294
1295 /* Get global readers for possible RGB->Alpha conversion. */
1296 s->Current->GlobalReaders.ExitOnAbort = 1;
1297 rc_get_readers(s->C, inst, &s->Current->GlobalReaders,
1298 is_rgb_to_alpha_possible_normal,
1299 is_rgb_to_alpha_possible, NULL);
1300 }
1301
1302 /* Temporarily unlink all instructions */
1303 begin->Prev->Next = end;
1304 end->Prev = begin->Prev;
1305
1306 /* Schedule instructions back */
1307 while(!s->C->Error &&
1308 (s->ReadyTEX || s->ReadyRGB || s->ReadyAlpha || s->ReadyFullALU)) {
1309 emit_instruction(s, end);
1310 }
1311 }
1312
1313 static int is_controlflow(struct rc_instruction * inst)
1314 {
1315 if (inst->Type == RC_INSTRUCTION_NORMAL) {
1316 const struct rc_opcode_info * opcode = rc_get_opcode_info(inst->U.I.Opcode);
1317 return opcode->IsFlowControl;
1318 }
1319 return 0;
1320 }
1321
1322 void rc_pair_schedule(struct radeon_compiler *cc, void *user)
1323 {
1324 struct r300_fragment_program_compiler *c = (struct r300_fragment_program_compiler*)cc;
1325 struct schedule_state s;
1326 struct rc_instruction * inst = c->Base.Program.Instructions.Next;
1327 unsigned int * opt = user;
1328
1329 memset(&s, 0, sizeof(s));
1330 s.Opt = *opt;
1331 s.C = &c->Base;
1332 if (s.C->is_r500) {
1333 s.CalcScore = calc_score_readers;
1334 } else {
1335 s.CalcScore = calc_score_r300;
1336 }
1337 s.max_tex_group = debug_get_num_option("RADEON_TEX_GROUP", 8);
1338 while(inst != &c->Base.Program.Instructions) {
1339 struct rc_instruction * first;
1340
1341 if (is_controlflow(inst)) {
1342 inst = inst->Next;
1343 continue;
1344 }
1345
1346 first = inst;
1347
1348 while(inst != &c->Base.Program.Instructions && !is_controlflow(inst))
1349 inst = inst->Next;
1350
1351 DBG("Schedule one block\n");
1352 memset(s.Temporary, 0, sizeof(s.Temporary));
1353 s.TEXCount = 0;
1354 schedule_block(&s, first, inst);
1355 if (s.PendingTEX) {
1356 s.PrevBlockHasTex = 1;
1357 }
1358 }
1359 }