r300g: fix reference counting when translating indices
[mesa.git] / src / gallium / drivers / r300 / r300_emit.c
1 /*
2 * Copyright 2008 Corbin Simpson <MostAwesomeDude@gmail.com>
3 * Copyright 2009 Marek Olšák <maraeo@gmail.com>
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * on the rights to use, copy, modify, merge, publish, distribute, sub
9 * license, and/or sell copies of the Software, and to permit persons to whom
10 * the Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE. */
23
24 /* r300_emit: Functions for emitting state. */
25
26 #include "util/u_format.h"
27 #include "util/u_math.h"
28 #include "util/u_mm.h"
29
30 #include "r300_context.h"
31 #include "r300_cb.h"
32 #include "r300_cs.h"
33 #include "r300_emit.h"
34 #include "r300_fs.h"
35 #include "r300_screen.h"
36 #include "r300_screen_buffer.h"
37 #include "r300_vs.h"
38
39 void r300_emit_blend_state(struct r300_context* r300,
40 unsigned size, void* state)
41 {
42 struct r300_blend_state* blend = (struct r300_blend_state*)state;
43 struct pipe_framebuffer_state* fb =
44 (struct pipe_framebuffer_state*)r300->fb_state.state;
45 CS_LOCALS(r300);
46
47 if (fb->nr_cbufs) {
48 WRITE_CS_TABLE(blend->cb, size);
49 } else {
50 WRITE_CS_TABLE(blend->cb_no_readwrite, size);
51 }
52 }
53
54 void r300_emit_blend_color_state(struct r300_context* r300,
55 unsigned size, void* state)
56 {
57 struct r300_blend_color_state* bc = (struct r300_blend_color_state*)state;
58 CS_LOCALS(r300);
59
60 WRITE_CS_TABLE(bc->cb, size);
61 }
62
63 void r300_emit_clip_state(struct r300_context* r300,
64 unsigned size, void* state)
65 {
66 struct r300_clip_state* clip = (struct r300_clip_state*)state;
67 CS_LOCALS(r300);
68
69 WRITE_CS_TABLE(clip->cb, size);
70 }
71
72 void r300_emit_dsa_state(struct r300_context* r300, unsigned size, void* state)
73 {
74 struct r300_dsa_state* dsa = (struct r300_dsa_state*)state;
75 struct pipe_framebuffer_state* fb =
76 (struct pipe_framebuffer_state*)r300->fb_state.state;
77 CS_LOCALS(r300);
78
79 if (fb->zsbuf) {
80 WRITE_CS_TABLE(&dsa->cb_begin, size);
81 } else {
82 WRITE_CS_TABLE(dsa->cb_no_readwrite, size);
83 }
84 }
85
86 static void get_rc_constant_state(
87 float vec[4],
88 struct r300_context * r300,
89 struct rc_constant * constant)
90 {
91 struct r300_textures_state* texstate = r300->textures_state.state;
92 struct r300_resource *tex;
93
94 assert(constant->Type == RC_CONSTANT_STATE);
95
96 /* vec should either be (0, 0, 0, 1), which should be a relatively safe
97 * RGBA or STRQ value, or it could be one of the RC_CONSTANT_STATE
98 * state factors. */
99
100 switch (constant->u.State[0]) {
101 /* Factor for converting rectangle coords to
102 * normalized coords. Should only show up on non-r500. */
103 case RC_STATE_R300_TEXRECT_FACTOR:
104 tex = r300_resource(texstate->sampler_views[constant->u.State[1]]->base.texture);
105 vec[0] = 1.0 / tex->tex.width0;
106 vec[1] = 1.0 / tex->tex.height0;
107 vec[2] = 0;
108 vec[3] = 1;
109 break;
110
111 case RC_STATE_R300_TEXSCALE_FACTOR:
112 tex = r300_resource(texstate->sampler_views[constant->u.State[1]]->base.texture);
113 /* Add a small number to the texture size to work around rounding errors in hw. */
114 vec[0] = tex->b.b.b.width0 / (tex->tex.width0 + 0.001f);
115 vec[1] = tex->b.b.b.height0 / (tex->tex.height0 + 0.001f);
116 vec[2] = tex->b.b.b.depth0 / (tex->tex.depth0 + 0.001f);
117 vec[3] = 1;
118 break;
119
120 case RC_STATE_R300_VIEWPORT_SCALE:
121 vec[0] = r300->viewport.scale[0];
122 vec[1] = r300->viewport.scale[1];
123 vec[2] = r300->viewport.scale[2];
124 vec[3] = 1;
125 break;
126
127 case RC_STATE_R300_VIEWPORT_OFFSET:
128 vec[0] = r300->viewport.translate[0];
129 vec[1] = r300->viewport.translate[1];
130 vec[2] = r300->viewport.translate[2];
131 vec[3] = 1;
132 break;
133
134 default:
135 fprintf(stderr, "r300: Implementation error: "
136 "Unknown RC_CONSTANT type %d\n", constant->u.State[0]);
137 vec[0] = 0;
138 vec[1] = 0;
139 vec[2] = 0;
140 vec[3] = 1;
141 }
142 }
143
144 /* Convert a normal single-precision float into the 7.16 format
145 * used by the R300 fragment shader.
146 */
147 uint32_t pack_float24(float f)
148 {
149 union {
150 float fl;
151 uint32_t u;
152 } u;
153 float mantissa;
154 int exponent;
155 uint32_t float24 = 0;
156
157 if (f == 0.0)
158 return 0;
159
160 u.fl = f;
161
162 mantissa = frexpf(f, &exponent);
163
164 /* Handle -ve */
165 if (mantissa < 0) {
166 float24 |= (1 << 23);
167 mantissa = mantissa * -1.0;
168 }
169 /* Handle exponent, bias of 63 */
170 exponent += 62;
171 float24 |= (exponent << 16);
172 /* Kill 7 LSB of mantissa */
173 float24 |= (u.u & 0x7FFFFF) >> 7;
174
175 return float24;
176 }
177
178 void r300_emit_fs(struct r300_context* r300, unsigned size, void *state)
179 {
180 struct r300_fragment_shader *fs = r300_fs(r300);
181 CS_LOCALS(r300);
182
183 WRITE_CS_TABLE(fs->shader->cb_code, fs->shader->cb_code_size);
184 }
185
186 void r300_emit_fs_constants(struct r300_context* r300, unsigned size, void *state)
187 {
188 struct r300_fragment_shader *fs = r300_fs(r300);
189 struct r300_constant_buffer *buf = (struct r300_constant_buffer*)state;
190 unsigned count = fs->shader->externals_count;
191 unsigned i, j;
192 CS_LOCALS(r300);
193
194 if (count == 0)
195 return;
196
197 BEGIN_CS(size);
198 OUT_CS_REG_SEQ(R300_PFS_PARAM_0_X, count * 4);
199 if (buf->remap_table){
200 for (i = 0; i < count; i++) {
201 float *data = (float*)&buf->ptr[buf->remap_table[i]*4];
202 for (j = 0; j < 4; j++)
203 OUT_CS(pack_float24(data[j]));
204 }
205 } else {
206 for (i = 0; i < count; i++)
207 for (j = 0; j < 4; j++)
208 OUT_CS(pack_float24(*(float*)&buf->ptr[i*4+j]));
209 }
210
211 END_CS;
212 }
213
214 void r300_emit_fs_rc_constant_state(struct r300_context* r300, unsigned size, void *state)
215 {
216 struct r300_fragment_shader *fs = r300_fs(r300);
217 struct rc_constant_list *constants = &fs->shader->code.constants;
218 unsigned i;
219 unsigned count = fs->shader->rc_state_count;
220 unsigned first = fs->shader->externals_count;
221 unsigned end = constants->Count;
222 unsigned j;
223 CS_LOCALS(r300);
224
225 if (count == 0)
226 return;
227
228 BEGIN_CS(size);
229 for(i = first; i < end; ++i) {
230 if (constants->Constants[i].Type == RC_CONSTANT_STATE) {
231 float data[4];
232
233 get_rc_constant_state(data, r300, &constants->Constants[i]);
234
235 OUT_CS_REG_SEQ(R300_PFS_PARAM_0_X + i * 16, 4);
236 for (j = 0; j < 4; j++)
237 OUT_CS(pack_float24(data[j]));
238 }
239 }
240 END_CS;
241 }
242
243 void r500_emit_fs(struct r300_context* r300, unsigned size, void *state)
244 {
245 struct r300_fragment_shader *fs = r300_fs(r300);
246 CS_LOCALS(r300);
247
248 WRITE_CS_TABLE(fs->shader->cb_code, fs->shader->cb_code_size);
249 }
250
251 void r500_emit_fs_constants(struct r300_context* r300, unsigned size, void *state)
252 {
253 struct r300_fragment_shader *fs = r300_fs(r300);
254 struct r300_constant_buffer *buf = (struct r300_constant_buffer*)state;
255 unsigned count = fs->shader->externals_count;
256 CS_LOCALS(r300);
257
258 if (count == 0)
259 return;
260
261 BEGIN_CS(size);
262 OUT_CS_REG(R500_GA_US_VECTOR_INDEX, R500_GA_US_VECTOR_INDEX_TYPE_CONST);
263 OUT_CS_ONE_REG(R500_GA_US_VECTOR_DATA, count * 4);
264 if (buf->remap_table){
265 for (unsigned i = 0; i < count; i++) {
266 uint32_t *data = &buf->ptr[buf->remap_table[i]*4];
267 OUT_CS_TABLE(data, 4);
268 }
269 } else {
270 OUT_CS_TABLE(buf->ptr, count * 4);
271 }
272 END_CS;
273 }
274
275 void r500_emit_fs_rc_constant_state(struct r300_context* r300, unsigned size, void *state)
276 {
277 struct r300_fragment_shader *fs = r300_fs(r300);
278 struct rc_constant_list *constants = &fs->shader->code.constants;
279 unsigned i;
280 unsigned count = fs->shader->rc_state_count;
281 unsigned first = fs->shader->externals_count;
282 unsigned end = constants->Count;
283 CS_LOCALS(r300);
284
285 if (count == 0)
286 return;
287
288 BEGIN_CS(size);
289 for(i = first; i < end; ++i) {
290 if (constants->Constants[i].Type == RC_CONSTANT_STATE) {
291 float data[4];
292
293 get_rc_constant_state(data, r300, &constants->Constants[i]);
294
295 OUT_CS_REG(R500_GA_US_VECTOR_INDEX,
296 R500_GA_US_VECTOR_INDEX_TYPE_CONST |
297 (i & R500_GA_US_VECTOR_INDEX_MASK));
298 OUT_CS_ONE_REG(R500_GA_US_VECTOR_DATA, 4);
299 OUT_CS_TABLE(data, 4);
300 }
301 }
302 END_CS;
303 }
304
305 void r300_emit_gpu_flush(struct r300_context *r300, unsigned size, void *state)
306 {
307 struct r300_gpu_flush *gpuflush = (struct r300_gpu_flush*)state;
308 struct pipe_framebuffer_state* fb =
309 (struct pipe_framebuffer_state*)r300->fb_state.state;
310 uint32_t height = fb->height;
311 uint32_t width = fb->width;
312 CS_LOCALS(r300);
313
314 if (r300->cbzb_clear) {
315 struct r300_surface *surf = r300_surface(fb->cbufs[0]);
316
317 height = surf->cbzb_height;
318 width = surf->cbzb_width;
319 }
320
321 DBG(r300, DBG_SCISSOR,
322 "r300: Scissor width: %i, height: %i, CBZB clear: %s\n",
323 width, height, r300->cbzb_clear ? "YES" : "NO");
324
325 BEGIN_CS(size);
326
327 /* Set up scissors.
328 * By writing to the SC registers, SC & US assert idle. */
329 OUT_CS_REG_SEQ(R300_SC_SCISSORS_TL, 2);
330 if (r300->screen->caps.is_r500) {
331 OUT_CS(0);
332 OUT_CS(((width - 1) << R300_SCISSORS_X_SHIFT) |
333 ((height - 1) << R300_SCISSORS_Y_SHIFT));
334 } else {
335 OUT_CS((1440 << R300_SCISSORS_X_SHIFT) |
336 (1440 << R300_SCISSORS_Y_SHIFT));
337 OUT_CS(((width + 1440-1) << R300_SCISSORS_X_SHIFT) |
338 ((height + 1440-1) << R300_SCISSORS_Y_SHIFT));
339 }
340
341 /* Flush CB & ZB caches and wait until the 3D engine is idle and clean. */
342 OUT_CS_TABLE(gpuflush->cb_flush_clean, 6);
343 END_CS;
344 }
345
346 void r300_emit_aa_state(struct r300_context *r300, unsigned size, void *state)
347 {
348 struct r300_aa_state *aa = (struct r300_aa_state*)state;
349 CS_LOCALS(r300);
350
351 BEGIN_CS(size);
352 OUT_CS_REG(R300_GB_AA_CONFIG, aa->aa_config);
353
354 if (aa->dest) {
355 OUT_CS_REG(R300_RB3D_AARESOLVE_OFFSET, aa->dest->offset);
356 OUT_CS_RELOC(aa->dest);
357 OUT_CS_REG(R300_RB3D_AARESOLVE_PITCH, aa->dest->pitch);
358 }
359
360 OUT_CS_REG(R300_RB3D_AARESOLVE_CTL, aa->aaresolve_ctl);
361 END_CS;
362 }
363
364 void r300_emit_fb_state(struct r300_context* r300, unsigned size, void* state)
365 {
366 struct pipe_framebuffer_state* fb = (struct pipe_framebuffer_state*)state;
367 struct r300_surface* surf;
368 unsigned i;
369 boolean can_hyperz = r300->rws->get_value(r300->rws, R300_CAN_HYPERZ);
370 uint32_t rb3d_cctl = 0;
371
372 CS_LOCALS(r300);
373
374 BEGIN_CS(size);
375
376 /* NUM_MULTIWRITES replicates COLOR[0] to all colorbuffers, which is not
377 * what we usually want. */
378 if (r300->screen->caps.is_r500) {
379 rb3d_cctl = R300_RB3D_CCTL_INDEPENDENT_COLORFORMAT_ENABLE_ENABLE;
380 }
381 if (fb->nr_cbufs &&
382 r300_fragment_shader_writes_all(r300_fs(r300))) {
383 rb3d_cctl |= R300_RB3D_CCTL_NUM_MULTIWRITES(fb->nr_cbufs);
384 }
385
386 OUT_CS_REG(R300_RB3D_CCTL, rb3d_cctl);
387
388 /* Set up colorbuffers. */
389 for (i = 0; i < fb->nr_cbufs; i++) {
390 surf = r300_surface(fb->cbufs[i]);
391
392 OUT_CS_REG(R300_RB3D_COLOROFFSET0 + (4 * i), surf->offset);
393 OUT_CS_RELOC(surf);
394
395 OUT_CS_REG(R300_RB3D_COLORPITCH0 + (4 * i), surf->pitch);
396 OUT_CS_RELOC(surf);
397 }
398
399 /* Set up the ZB part of the CBZB clear. */
400 if (r300->cbzb_clear) {
401 surf = r300_surface(fb->cbufs[0]);
402
403 OUT_CS_REG(R300_ZB_FORMAT, surf->cbzb_format);
404
405 OUT_CS_REG(R300_ZB_DEPTHOFFSET, surf->cbzb_midpoint_offset);
406 OUT_CS_RELOC(surf);
407
408 OUT_CS_REG(R300_ZB_DEPTHPITCH, surf->cbzb_pitch);
409 OUT_CS_RELOC(surf);
410
411 DBG(r300, DBG_CBZB,
412 "CBZB clearing cbuf %08x %08x\n", surf->cbzb_format,
413 surf->cbzb_pitch);
414 }
415 /* Set up a zbuffer. */
416 else if (fb->zsbuf) {
417 surf = r300_surface(fb->zsbuf);
418
419 OUT_CS_REG(R300_ZB_FORMAT, surf->format);
420
421 OUT_CS_REG(R300_ZB_DEPTHOFFSET, surf->offset);
422 OUT_CS_RELOC(surf);
423
424 OUT_CS_REG(R300_ZB_DEPTHPITCH, surf->pitch);
425 OUT_CS_RELOC(surf);
426
427 if (can_hyperz) {
428 uint32_t surf_pitch;
429 struct r300_resource *tex;
430 int level = surf->base.u.tex.level;
431 tex = r300_resource(surf->base.texture);
432
433 surf_pitch = surf->pitch & R300_DEPTHPITCH_MASK;
434
435 /* HiZ RAM. */
436 if (r300->screen->caps.hiz_ram) {
437 if (tex->hiz_mem[level]) {
438 OUT_CS_REG(R300_ZB_HIZ_OFFSET, tex->hiz_mem[level]->ofs << 2);
439 OUT_CS_REG(R300_ZB_HIZ_PITCH, surf_pitch);
440 } else {
441 OUT_CS_REG(R300_ZB_HIZ_OFFSET, 0);
442 OUT_CS_REG(R300_ZB_HIZ_PITCH, 0);
443 }
444 }
445
446 /* Z Mask RAM. (compressed zbuffer) */
447 OUT_CS_REG(R300_ZB_ZMASK_OFFSET, 0);
448 OUT_CS_REG(R300_ZB_ZMASK_PITCH, surf_pitch);
449 }
450 }
451
452 END_CS;
453 }
454
455 void r300_emit_hyperz_state(struct r300_context *r300,
456 unsigned size, void *state)
457 {
458 struct r300_hyperz_state *z = state;
459 CS_LOCALS(r300);
460
461 if (z->flush)
462 WRITE_CS_TABLE(&z->cb_flush_begin, size);
463 else
464 WRITE_CS_TABLE(&z->cb_begin, size - 2);
465 }
466
467 void r300_emit_hyperz_end(struct r300_context *r300)
468 {
469 struct r300_hyperz_state z =
470 *(struct r300_hyperz_state*)r300->hyperz_state.state;
471
472 z.flush = 1;
473 z.zb_bw_cntl = 0;
474 z.zb_depthclearvalue = 0;
475 z.sc_hyperz = R300_SC_HYPERZ_ADJ_2;
476 z.gb_z_peq_config = 0;
477
478 r300_emit_hyperz_state(r300, r300->hyperz_state.size, &z);
479 }
480
481 void r300_emit_fb_state_pipelined(struct r300_context *r300,
482 unsigned size, void *state)
483 {
484 struct pipe_framebuffer_state* fb =
485 (struct pipe_framebuffer_state*)r300->fb_state.state;
486 unsigned i, num_cbufs = fb->nr_cbufs;
487 CS_LOCALS(r300);
488
489 /* If we use the multiwrite feature, the colorbuffers 2,3,4 must be
490 * marked as UNUSED in the US block. */
491 if (r300_fragment_shader_writes_all(r300_fs(r300))) {
492 num_cbufs = MIN2(num_cbufs, 1);
493 }
494
495 BEGIN_CS(size);
496
497 /* Colorbuffer format in the US block.
498 * (must be written after unpipelined regs) */
499 OUT_CS_REG_SEQ(R300_US_OUT_FMT_0, 4);
500 for (i = 0; i < num_cbufs; i++) {
501 OUT_CS(r300_surface(fb->cbufs[i])->format);
502 }
503 for (; i < 4; i++) {
504 OUT_CS(R300_US_OUT_FMT_UNUSED);
505 }
506
507 /* Multisampling. Depends on framebuffer sample count.
508 * These are pipelined regs and as such cannot be moved
509 * to the AA state. */
510 if (r300->rws->get_value(r300->rws, R300_VID_DRM_2_3_0)) {
511 unsigned mspos0 = 0x66666666;
512 unsigned mspos1 = 0x6666666;
513
514 if (fb->nr_cbufs && fb->cbufs[0]->texture->nr_samples > 1) {
515 /* Subsample placement. These may not be optimal. */
516 switch (fb->cbufs[0]->texture->nr_samples) {
517 case 2:
518 mspos0 = 0x33996633;
519 mspos1 = 0x6666663;
520 break;
521 case 3:
522 mspos0 = 0x33936933;
523 mspos1 = 0x6666663;
524 break;
525 case 4:
526 mspos0 = 0x33939933;
527 mspos1 = 0x3966663;
528 break;
529 case 6:
530 mspos0 = 0x22a2aa22;
531 mspos1 = 0x2a65672;
532 break;
533 default:
534 debug_printf("r300: Bad number of multisamples!\n");
535 }
536 }
537
538 OUT_CS_REG_SEQ(R300_GB_MSPOS0, 2);
539 OUT_CS(mspos0);
540 OUT_CS(mspos1);
541 }
542 END_CS;
543 }
544
545 void r300_emit_query_start(struct r300_context *r300, unsigned size, void*state)
546 {
547 struct r300_query *query = r300->query_current;
548 CS_LOCALS(r300);
549
550 if (!query)
551 return;
552
553 BEGIN_CS(size);
554 if (r300->screen->caps.family == CHIP_FAMILY_RV530) {
555 OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_ALL);
556 } else {
557 OUT_CS_REG(R300_SU_REG_DEST, R300_RASTER_PIPE_SELECT_ALL);
558 }
559 OUT_CS_REG(R300_ZB_ZPASS_DATA, 0);
560 END_CS;
561 query->begin_emitted = TRUE;
562 query->flushed = FALSE;
563 }
564
565 static void r300_emit_query_end_frag_pipes(struct r300_context *r300,
566 struct r300_query *query)
567 {
568 struct r300_capabilities* caps = &r300->screen->caps;
569 CS_LOCALS(r300);
570
571 assert(caps->num_frag_pipes);
572
573 BEGIN_CS(6 * caps->num_frag_pipes + 2);
574 /* I'm not so sure I like this switch, but it's hard to be elegant
575 * when there's so many special cases...
576 *
577 * So here's the basic idea. For each pipe, enable writes to it only,
578 * then put out the relocation for ZPASS_ADDR, taking into account a
579 * 4-byte offset for each pipe. RV380 and older are special; they have
580 * only two pipes, and the second pipe's enable is on bit 3, not bit 1,
581 * so there's a chipset cap for that. */
582 switch (caps->num_frag_pipes) {
583 case 4:
584 /* pipe 3 only */
585 OUT_CS_REG(R300_SU_REG_DEST, 1 << 3);
586 OUT_CS_REG(R300_ZB_ZPASS_ADDR, (query->num_results + 3) * 4);
587 OUT_CS_RELOC(r300->query_current);
588 case 3:
589 /* pipe 2 only */
590 OUT_CS_REG(R300_SU_REG_DEST, 1 << 2);
591 OUT_CS_REG(R300_ZB_ZPASS_ADDR, (query->num_results + 2) * 4);
592 OUT_CS_RELOC(r300->query_current);
593 case 2:
594 /* pipe 1 only */
595 /* As mentioned above, accomodate RV380 and older. */
596 OUT_CS_REG(R300_SU_REG_DEST,
597 1 << (caps->high_second_pipe ? 3 : 1));
598 OUT_CS_REG(R300_ZB_ZPASS_ADDR, (query->num_results + 1) * 4);
599 OUT_CS_RELOC(r300->query_current);
600 case 1:
601 /* pipe 0 only */
602 OUT_CS_REG(R300_SU_REG_DEST, 1 << 0);
603 OUT_CS_REG(R300_ZB_ZPASS_ADDR, (query->num_results + 0) * 4);
604 OUT_CS_RELOC(r300->query_current);
605 break;
606 default:
607 fprintf(stderr, "r300: Implementation error: Chipset reports %d"
608 " pixel pipes!\n", caps->num_frag_pipes);
609 abort();
610 }
611
612 /* And, finally, reset it to normal... */
613 OUT_CS_REG(R300_SU_REG_DEST, 0xF);
614 END_CS;
615 }
616
617 static void rv530_emit_query_end_single_z(struct r300_context *r300,
618 struct r300_query *query)
619 {
620 CS_LOCALS(r300);
621
622 BEGIN_CS(8);
623 OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_0);
624 OUT_CS_REG(R300_ZB_ZPASS_ADDR, query->num_results * 4);
625 OUT_CS_RELOC(r300->query_current);
626 OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_ALL);
627 END_CS;
628 }
629
630 static void rv530_emit_query_end_double_z(struct r300_context *r300,
631 struct r300_query *query)
632 {
633 CS_LOCALS(r300);
634
635 BEGIN_CS(14);
636 OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_0);
637 OUT_CS_REG(R300_ZB_ZPASS_ADDR, (query->num_results + 0) * 4);
638 OUT_CS_RELOC(r300->query_current);
639 OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_1);
640 OUT_CS_REG(R300_ZB_ZPASS_ADDR, (query->num_results + 1) * 4);
641 OUT_CS_RELOC(r300->query_current);
642 OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_ALL);
643 END_CS;
644 }
645
646 void r300_emit_query_end(struct r300_context* r300)
647 {
648 struct r300_capabilities *caps = &r300->screen->caps;
649 struct r300_query *query = r300->query_current;
650
651 if (!query)
652 return;
653
654 if (query->begin_emitted == FALSE)
655 return;
656
657 if (caps->family == CHIP_FAMILY_RV530) {
658 if (caps->num_z_pipes == 2)
659 rv530_emit_query_end_double_z(r300, query);
660 else
661 rv530_emit_query_end_single_z(r300, query);
662 } else
663 r300_emit_query_end_frag_pipes(r300, query);
664
665 query->begin_emitted = FALSE;
666 query->num_results += query->num_pipes;
667
668 /* XXX grab all the results and reset the counter. */
669 if (query->num_results >= query->buffer_size / 4 - 4) {
670 query->num_results = (query->buffer_size / 4) / 2;
671 fprintf(stderr, "r300: Rewinding OQBO...\n");
672 }
673 }
674
675 void r300_emit_invariant_state(struct r300_context *r300,
676 unsigned size, void *state)
677 {
678 CS_LOCALS(r300);
679 WRITE_CS_TABLE(state, size);
680 }
681
682 void r300_emit_rs_state(struct r300_context* r300, unsigned size, void* state)
683 {
684 struct r300_rs_state* rs = state;
685 CS_LOCALS(r300);
686
687 BEGIN_CS(size);
688 OUT_CS_TABLE(rs->cb_main, RS_STATE_MAIN_SIZE);
689 if (rs->polygon_offset_enable) {
690 if (r300->zbuffer_bpp == 16) {
691 OUT_CS_TABLE(rs->cb_poly_offset_zb16, 5);
692 } else {
693 OUT_CS_TABLE(rs->cb_poly_offset_zb24, 5);
694 }
695 }
696 END_CS;
697 }
698
699 void r300_emit_rs_block_state(struct r300_context* r300,
700 unsigned size, void* state)
701 {
702 struct r300_rs_block* rs = (struct r300_rs_block*)state;
703 unsigned i;
704 /* It's the same for both INST and IP tables */
705 unsigned count = (rs->inst_count & R300_RS_INST_COUNT_MASK) + 1;
706 CS_LOCALS(r300);
707
708 if (DBG_ON(r300, DBG_RS_BLOCK)) {
709 r500_dump_rs_block(rs);
710
711 fprintf(stderr, "r300: RS emit:\n");
712
713 for (i = 0; i < count; i++)
714 fprintf(stderr, " : ip %d: 0x%08x\n", i, rs->ip[i]);
715
716 for (i = 0; i < count; i++)
717 fprintf(stderr, " : inst %d: 0x%08x\n", i, rs->inst[i]);
718
719 fprintf(stderr, " : count: 0x%08x inst_count: 0x%08x\n",
720 rs->count, rs->inst_count);
721 }
722
723 BEGIN_CS(size);
724 OUT_CS_REG_SEQ(R300_VAP_VTX_STATE_CNTL, 2);
725 OUT_CS(rs->vap_vtx_state_cntl);
726 OUT_CS(rs->vap_vsm_vtx_assm);
727 OUT_CS_REG_SEQ(R300_VAP_OUTPUT_VTX_FMT_0, 2);
728 OUT_CS(rs->vap_out_vtx_fmt[0]);
729 OUT_CS(rs->vap_out_vtx_fmt[1]);
730 OUT_CS_REG_SEQ(R300_GB_ENABLE, 1);
731 OUT_CS(rs->gb_enable);
732
733 if (r300->screen->caps.is_r500) {
734 OUT_CS_REG_SEQ(R500_RS_IP_0, count);
735 } else {
736 OUT_CS_REG_SEQ(R300_RS_IP_0, count);
737 }
738 OUT_CS_TABLE(rs->ip, count);
739
740 OUT_CS_REG_SEQ(R300_RS_COUNT, 2);
741 OUT_CS(rs->count);
742 OUT_CS(rs->inst_count);
743
744 if (r300->screen->caps.is_r500) {
745 OUT_CS_REG_SEQ(R500_RS_INST_0, count);
746 } else {
747 OUT_CS_REG_SEQ(R300_RS_INST_0, count);
748 }
749 OUT_CS_TABLE(rs->inst, count);
750 END_CS;
751 }
752
753 void r300_emit_scissor_state(struct r300_context* r300,
754 unsigned size, void* state)
755 {
756 struct pipe_scissor_state* scissor = (struct pipe_scissor_state*)state;
757 CS_LOCALS(r300);
758
759 BEGIN_CS(size);
760 OUT_CS_REG_SEQ(R300_SC_CLIPRECT_TL_0, 2);
761 if (r300->screen->caps.is_r500) {
762 OUT_CS((scissor->minx << R300_CLIPRECT_X_SHIFT) |
763 (scissor->miny << R300_CLIPRECT_Y_SHIFT));
764 OUT_CS(((scissor->maxx - 1) << R300_CLIPRECT_X_SHIFT) |
765 ((scissor->maxy - 1) << R300_CLIPRECT_Y_SHIFT));
766 } else {
767 OUT_CS(((scissor->minx + 1440) << R300_CLIPRECT_X_SHIFT) |
768 ((scissor->miny + 1440) << R300_CLIPRECT_Y_SHIFT));
769 OUT_CS(((scissor->maxx + 1440-1) << R300_CLIPRECT_X_SHIFT) |
770 ((scissor->maxy + 1440-1) << R300_CLIPRECT_Y_SHIFT));
771 }
772 END_CS;
773 }
774
775 void r300_emit_textures_state(struct r300_context *r300,
776 unsigned size, void *state)
777 {
778 struct r300_textures_state *allstate = (struct r300_textures_state*)state;
779 struct r300_texture_sampler_state *texstate;
780 struct r300_resource *tex;
781 unsigned i;
782 CS_LOCALS(r300);
783
784 BEGIN_CS(size);
785 OUT_CS_REG(R300_TX_ENABLE, allstate->tx_enable);
786
787 for (i = 0; i < allstate->count; i++) {
788 if ((1 << i) & allstate->tx_enable) {
789 texstate = &allstate->regs[i];
790 tex = r300_resource(allstate->sampler_views[i]->base.texture);
791
792 OUT_CS_REG(R300_TX_FILTER0_0 + (i * 4), texstate->filter0);
793 OUT_CS_REG(R300_TX_FILTER1_0 + (i * 4), texstate->filter1);
794 OUT_CS_REG(R300_TX_BORDER_COLOR_0 + (i * 4),
795 texstate->border_color);
796
797 OUT_CS_REG(R300_TX_FORMAT0_0 + (i * 4), texstate->format.format0);
798 OUT_CS_REG(R300_TX_FORMAT1_0 + (i * 4), texstate->format.format1);
799 OUT_CS_REG(R300_TX_FORMAT2_0 + (i * 4), texstate->format.format2);
800
801 OUT_CS_REG(R300_TX_OFFSET_0 + (i * 4), texstate->format.tile_config);
802 OUT_CS_RELOC(tex);
803 }
804 }
805 END_CS;
806 }
807
808 static void r300_update_vertex_arrays_cb(struct r300_context *r300, unsigned packet_size)
809 {
810 struct pipe_vertex_buffer *vb1, *vb2, *vbuf = r300->vbuf_mgr->vertex_buffer;
811 struct pipe_vertex_element *velem = r300->velems->velem;
812 unsigned *hw_format_size = r300->velems->format_size;
813 unsigned size1, size2, vertex_array_count = r300->velems->count;
814 int i;
815 CB_LOCALS;
816
817 BEGIN_CB(r300->vertex_arrays_cb, packet_size);
818 for (i = 0; i < vertex_array_count - 1; i += 2) {
819 vb1 = &vbuf[velem[i].vertex_buffer_index];
820 vb2 = &vbuf[velem[i+1].vertex_buffer_index];
821 size1 = hw_format_size[i];
822 size2 = hw_format_size[i+1];
823
824 OUT_CB(R300_VBPNTR_SIZE0(size1) | R300_VBPNTR_STRIDE0(vb1->stride) |
825 R300_VBPNTR_SIZE1(size2) | R300_VBPNTR_STRIDE1(vb2->stride));
826 OUT_CB(vb1->buffer_offset + velem[i].src_offset);
827 OUT_CB(vb2->buffer_offset + velem[i+1].src_offset);
828 }
829
830 if (vertex_array_count & 1) {
831 vb1 = &vbuf[velem[i].vertex_buffer_index];
832 size1 = hw_format_size[i];
833
834 OUT_CB(R300_VBPNTR_SIZE0(size1) | R300_VBPNTR_STRIDE0(vb1->stride));
835 OUT_CB(vb1->buffer_offset + velem[i].src_offset);
836 }
837 END_CB;
838
839 r300->vertex_arrays_dirty = FALSE;
840 }
841
842 void r300_emit_vertex_arrays(struct r300_context* r300, int offset, boolean indexed)
843 {
844 struct pipe_vertex_buffer *vbuf = r300->vbuf_mgr->vertex_buffer;
845 struct pipe_resource **valid_vbuf = r300->vbuf_mgr->real_vertex_buffer;
846 struct pipe_vertex_element *velem = r300->velems->velem;
847 struct r300_resource *buf;
848 int i;
849 unsigned vertex_array_count = r300->velems->count;
850 unsigned packet_size = (vertex_array_count * 3 + 1) / 2;
851 CS_LOCALS(r300);
852
853 BEGIN_CS(2 + packet_size + vertex_array_count * 2);
854 OUT_CS_PKT3(R300_PACKET3_3D_LOAD_VBPNTR, packet_size);
855 OUT_CS(vertex_array_count | (!indexed ? R300_VC_FORCE_PREFETCH : 0));
856
857 if (!offset) {
858 if (r300->vertex_arrays_dirty) {
859 r300_update_vertex_arrays_cb(r300, packet_size);
860 }
861 OUT_CS_TABLE(r300->vertex_arrays_cb, packet_size);
862 } else {
863 struct pipe_vertex_buffer *vb1, *vb2;
864 unsigned *hw_format_size = r300->velems->format_size;
865 unsigned size1, size2;
866
867 for (i = 0; i < vertex_array_count - 1; i += 2) {
868 vb1 = &vbuf[velem[i].vertex_buffer_index];
869 vb2 = &vbuf[velem[i+1].vertex_buffer_index];
870 size1 = hw_format_size[i];
871 size2 = hw_format_size[i+1];
872
873 OUT_CS(R300_VBPNTR_SIZE0(size1) | R300_VBPNTR_STRIDE0(vb1->stride) |
874 R300_VBPNTR_SIZE1(size2) | R300_VBPNTR_STRIDE1(vb2->stride));
875 OUT_CS(vb1->buffer_offset + velem[i].src_offset + offset * vb1->stride);
876 OUT_CS(vb2->buffer_offset + velem[i+1].src_offset + offset * vb2->stride);
877 }
878
879 if (vertex_array_count & 1) {
880 vb1 = &vbuf[velem[i].vertex_buffer_index];
881 size1 = hw_format_size[i];
882
883 OUT_CS(R300_VBPNTR_SIZE0(size1) | R300_VBPNTR_STRIDE0(vb1->stride));
884 OUT_CS(vb1->buffer_offset + velem[i].src_offset + offset * vb1->stride);
885 }
886 }
887
888 for (i = 0; i < vertex_array_count; i++) {
889 buf = r300_resource(valid_vbuf[velem[i].vertex_buffer_index]);
890 OUT_CS_RELOC(buf);
891 }
892 END_CS;
893 }
894
895 void r300_emit_vertex_arrays_swtcl(struct r300_context *r300, boolean indexed)
896 {
897 CS_LOCALS(r300);
898
899 DBG(r300, DBG_SWTCL, "r300: Preparing vertex buffer %p for render, "
900 "vertex size %d\n", r300->vbo,
901 r300->vertex_info.size);
902 /* Set the pointer to our vertex buffer. The emitted values are this:
903 * PACKET3 [3D_LOAD_VBPNTR]
904 * COUNT [1]
905 * FORMAT [size | stride << 8]
906 * OFFSET [offset into BO]
907 * VBPNTR [relocated BO]
908 */
909 BEGIN_CS(7);
910 OUT_CS_PKT3(R300_PACKET3_3D_LOAD_VBPNTR, 3);
911 OUT_CS(1 | (!indexed ? R300_VC_FORCE_PREFETCH : 0));
912 OUT_CS(r300->vertex_info.size |
913 (r300->vertex_info.size << 8));
914 OUT_CS(r300->draw_vbo_offset);
915 OUT_CS(0);
916 OUT_CS_RELOC(r300_resource(r300->vbo));
917 END_CS;
918 }
919
920 void r300_emit_vertex_stream_state(struct r300_context* r300,
921 unsigned size, void* state)
922 {
923 struct r300_vertex_stream_state *streams =
924 (struct r300_vertex_stream_state*)state;
925 unsigned i;
926 CS_LOCALS(r300);
927
928 if (DBG_ON(r300, DBG_PSC)) {
929 fprintf(stderr, "r300: PSC emit:\n");
930
931 for (i = 0; i < streams->count; i++) {
932 fprintf(stderr, " : prog_stream_cntl%d: 0x%08x\n", i,
933 streams->vap_prog_stream_cntl[i]);
934 }
935
936 for (i = 0; i < streams->count; i++) {
937 fprintf(stderr, " : prog_stream_cntl_ext%d: 0x%08x\n", i,
938 streams->vap_prog_stream_cntl_ext[i]);
939 }
940 }
941
942 BEGIN_CS(size);
943 OUT_CS_REG_SEQ(R300_VAP_PROG_STREAM_CNTL_0, streams->count);
944 OUT_CS_TABLE(streams->vap_prog_stream_cntl, streams->count);
945 OUT_CS_REG_SEQ(R300_VAP_PROG_STREAM_CNTL_EXT_0, streams->count);
946 OUT_CS_TABLE(streams->vap_prog_stream_cntl_ext, streams->count);
947 END_CS;
948 }
949
950 void r300_emit_pvs_flush(struct r300_context* r300, unsigned size, void* state)
951 {
952 CS_LOCALS(r300);
953
954 BEGIN_CS(size);
955 OUT_CS_REG(R300_VAP_PVS_STATE_FLUSH_REG, 0x0);
956 END_CS;
957 }
958
959 void r300_emit_vap_invariant_state(struct r300_context *r300,
960 unsigned size, void *state)
961 {
962 CS_LOCALS(r300);
963 WRITE_CS_TABLE(state, size);
964 }
965
966 void r300_emit_vs_state(struct r300_context* r300, unsigned size, void* state)
967 {
968 struct r300_vertex_shader* vs = (struct r300_vertex_shader*)state;
969 struct r300_vertex_program_code* code = &vs->code;
970 struct r300_screen* r300screen = r300->screen;
971 unsigned instruction_count = code->length / 4;
972
973 unsigned vtx_mem_size = r300screen->caps.is_r500 ? 128 : 72;
974 unsigned input_count = MAX2(util_bitcount(code->InputsRead), 1);
975 unsigned output_count = MAX2(util_bitcount(code->OutputsWritten), 1);
976 unsigned temp_count = MAX2(code->num_temporaries, 1);
977
978 unsigned pvs_num_slots = MIN3(vtx_mem_size / input_count,
979 vtx_mem_size / output_count, 10);
980 unsigned pvs_num_controllers = MIN2(vtx_mem_size / temp_count, 5);
981
982 CS_LOCALS(r300);
983
984 BEGIN_CS(size);
985
986 /* R300_VAP_PVS_CODE_CNTL_0
987 * R300_VAP_PVS_CONST_CNTL
988 * R300_VAP_PVS_CODE_CNTL_1
989 * See the r5xx docs for instructions on how to use these. */
990 OUT_CS_REG(R300_VAP_PVS_CODE_CNTL_0, R300_PVS_FIRST_INST(0) |
991 R300_PVS_XYZW_VALID_INST(instruction_count - 1) |
992 R300_PVS_LAST_INST(instruction_count - 1));
993 OUT_CS_REG(R300_VAP_PVS_CODE_CNTL_1, instruction_count - 1);
994
995 OUT_CS_REG(R300_VAP_PVS_VECTOR_INDX_REG, 0);
996 OUT_CS_ONE_REG(R300_VAP_PVS_UPLOAD_DATA, code->length);
997 OUT_CS_TABLE(code->body.d, code->length);
998
999 OUT_CS_REG(R300_VAP_CNTL, R300_PVS_NUM_SLOTS(pvs_num_slots) |
1000 R300_PVS_NUM_CNTLRS(pvs_num_controllers) |
1001 R300_PVS_NUM_FPUS(r300screen->caps.num_vert_fpus) |
1002 R300_PVS_VF_MAX_VTX_NUM(12) |
1003 (r300screen->caps.is_r500 ? R500_TCL_STATE_OPTIMIZATION : 0));
1004
1005 /* Emit flow control instructions. */
1006 if (code->num_fc_ops) {
1007
1008 OUT_CS_REG(R300_VAP_PVS_FLOW_CNTL_OPC, code->fc_ops);
1009 if (r300screen->caps.is_r500) {
1010 OUT_CS_REG_SEQ(R500_VAP_PVS_FLOW_CNTL_ADDRS_LW_0, code->num_fc_ops * 2);
1011 OUT_CS_TABLE(code->fc_op_addrs.r500, code->num_fc_ops * 2);
1012 } else {
1013 OUT_CS_REG_SEQ(R300_VAP_PVS_FLOW_CNTL_ADDRS_0, code->num_fc_ops);
1014 OUT_CS_TABLE(code->fc_op_addrs.r300, code->num_fc_ops);
1015 }
1016 OUT_CS_REG_SEQ(R300_VAP_PVS_FLOW_CNTL_LOOP_INDEX_0, code->num_fc_ops);
1017 OUT_CS_TABLE(code->fc_loop_index, code->num_fc_ops);
1018 }
1019
1020 END_CS;
1021 }
1022
1023 void r300_emit_vs_constants(struct r300_context* r300,
1024 unsigned size, void *state)
1025 {
1026 unsigned count =
1027 ((struct r300_vertex_shader*)r300->vs_state.state)->externals_count;
1028 struct r300_constant_buffer *buf = (struct r300_constant_buffer*)state;
1029 struct r300_vertex_shader *vs = (struct r300_vertex_shader*)r300->vs_state.state;
1030 unsigned i;
1031 int imm_first = vs->externals_count;
1032 int imm_end = vs->code.constants.Count;
1033 int imm_count = vs->immediates_count;
1034 CS_LOCALS(r300);
1035
1036 BEGIN_CS(size);
1037 OUT_CS_REG(R300_VAP_PVS_CONST_CNTL,
1038 R300_PVS_CONST_BASE_OFFSET(buf->buffer_base) |
1039 R300_PVS_MAX_CONST_ADDR(MAX2(imm_end - 1, 0)));
1040 if (vs->externals_count) {
1041 OUT_CS_REG(R300_VAP_PVS_VECTOR_INDX_REG,
1042 (r300->screen->caps.is_r500 ?
1043 R500_PVS_CONST_START : R300_PVS_CONST_START) + buf->buffer_base);
1044 OUT_CS_ONE_REG(R300_VAP_PVS_UPLOAD_DATA, count * 4);
1045 if (buf->remap_table){
1046 for (i = 0; i < count; i++) {
1047 uint32_t *data = &buf->ptr[buf->remap_table[i]*4];
1048 OUT_CS_TABLE(data, 4);
1049 }
1050 } else {
1051 OUT_CS_TABLE(buf->ptr, count * 4);
1052 }
1053 }
1054
1055 /* Emit immediates. */
1056 if (imm_count) {
1057 OUT_CS_REG(R300_VAP_PVS_VECTOR_INDX_REG,
1058 (r300->screen->caps.is_r500 ?
1059 R500_PVS_CONST_START : R300_PVS_CONST_START) +
1060 buf->buffer_base + imm_first);
1061 OUT_CS_ONE_REG(R300_VAP_PVS_UPLOAD_DATA, imm_count * 4);
1062 for (i = imm_first; i < imm_end; i++) {
1063 const float *data = vs->code.constants.Constants[i].u.Immediate;
1064 OUT_CS_TABLE(data, 4);
1065 }
1066 }
1067 END_CS;
1068 }
1069
1070 void r300_emit_viewport_state(struct r300_context* r300,
1071 unsigned size, void* state)
1072 {
1073 struct r300_viewport_state* viewport = (struct r300_viewport_state*)state;
1074 CS_LOCALS(r300);
1075
1076 BEGIN_CS(size);
1077 OUT_CS_REG_SEQ(R300_SE_VPORT_XSCALE, 6);
1078 OUT_CS_TABLE(&viewport->xscale, 6);
1079 OUT_CS_REG(R300_VAP_VTE_CNTL, viewport->vte_control);
1080 END_CS;
1081 }
1082
1083 static void r300_emit_hiz_line_clear(struct r300_context *r300, int start, uint16_t count, uint32_t val)
1084 {
1085 CS_LOCALS(r300);
1086 BEGIN_CS(4);
1087 OUT_CS_PKT3(R300_PACKET3_3D_CLEAR_HIZ, 2);
1088 OUT_CS(start);
1089 OUT_CS(count);
1090 OUT_CS(val);
1091 END_CS;
1092 }
1093
1094 #define ALIGN_DIVUP(x, y) (((x) + (y) - 1) / (y))
1095
1096 void r300_emit_hiz_clear(struct r300_context *r300, unsigned size, void *state)
1097 {
1098 struct pipe_framebuffer_state *fb =
1099 (struct pipe_framebuffer_state*)r300->fb_state.state;
1100 struct r300_hyperz_state *z =
1101 (struct r300_hyperz_state*)r300->hyperz_state.state;
1102 struct r300_screen* r300screen = r300->screen;
1103 uint32_t stride, offset = 0, height, offset_shift;
1104 struct r300_resource* tex;
1105 int i;
1106
1107 tex = r300_resource(fb->zsbuf->texture);
1108
1109 offset = tex->hiz_mem[fb->zsbuf->u.tex.level]->ofs;
1110 stride = tex->tex.stride_in_pixels[fb->zsbuf->u.tex.level];
1111
1112 /* convert from pixels to 4x4 blocks */
1113 stride = ALIGN_DIVUP(stride, 4);
1114
1115 stride = ALIGN_DIVUP(stride, r300screen->caps.num_frag_pipes);
1116 /* there are 4 blocks per dwords */
1117 stride = ALIGN_DIVUP(stride, 4);
1118
1119 height = ALIGN_DIVUP(fb->zsbuf->height, 4);
1120
1121 offset_shift = 2;
1122 offset_shift += (r300screen->caps.num_frag_pipes / 2);
1123
1124 for (i = 0; i < height; i++) {
1125 offset = i * stride;
1126 offset <<= offset_shift;
1127 r300_emit_hiz_line_clear(r300, offset, stride, 0xffffffff);
1128 }
1129 z->current_func = -1;
1130
1131 /* Mark the current zbuffer's hiz ram as in use. */
1132 tex->hiz_in_use[fb->zsbuf->u.tex.level] = TRUE;
1133 }
1134
1135 void r300_emit_zmask_clear(struct r300_context *r300, unsigned size, void *state)
1136 {
1137 struct pipe_framebuffer_state *fb =
1138 (struct pipe_framebuffer_state*)r300->fb_state.state;
1139 struct r300_resource *tex;
1140 CS_LOCALS(r300);
1141
1142 tex = r300_resource(fb->zsbuf->texture);
1143
1144 BEGIN_CS(size);
1145 OUT_CS_PKT3(R300_PACKET3_3D_CLEAR_ZMASK, 2);
1146 OUT_CS(0);
1147 OUT_CS(tex->tex.zmask_dwords[fb->zsbuf->u.tex.level]);
1148 OUT_CS(0);
1149 END_CS;
1150
1151 /* Mark the current zbuffer's zmask as in use. */
1152 r300->zmask_in_use = TRUE;
1153 r300_mark_atom_dirty(r300, &r300->hyperz_state);
1154 }
1155
1156 void r300_emit_ztop_state(struct r300_context* r300,
1157 unsigned size, void* state)
1158 {
1159 struct r300_ztop_state* ztop = (struct r300_ztop_state*)state;
1160 CS_LOCALS(r300);
1161
1162 BEGIN_CS(size);
1163 OUT_CS_REG(R300_ZB_ZTOP, ztop->z_buffer_top);
1164 END_CS;
1165 }
1166
1167 void r300_emit_texture_cache_inval(struct r300_context* r300, unsigned size, void* state)
1168 {
1169 CS_LOCALS(r300);
1170
1171 BEGIN_CS(size);
1172 OUT_CS_REG(R300_TX_INVALTAGS, 0);
1173 END_CS;
1174 }
1175
1176 boolean r300_emit_buffer_validate(struct r300_context *r300,
1177 boolean do_validate_vertex_buffers,
1178 struct pipe_resource *index_buffer)
1179 {
1180 struct pipe_framebuffer_state *fb =
1181 (struct pipe_framebuffer_state*)r300->fb_state.state;
1182 struct r300_textures_state *texstate =
1183 (struct r300_textures_state*)r300->textures_state.state;
1184 struct r300_resource *tex;
1185 unsigned i;
1186 boolean flushed = FALSE;
1187
1188 validate:
1189 if (r300->fb_state.dirty) {
1190 /* Color buffers... */
1191 for (i = 0; i < fb->nr_cbufs; i++) {
1192 tex = r300_resource(fb->cbufs[i]->texture);
1193 assert(tex && tex->buf && "cbuf is marked, but NULL!");
1194 r300->rws->cs_add_reloc(r300->cs, tex->cs_buf, 0,
1195 r300_surface(fb->cbufs[i])->domain);
1196 }
1197 /* ...depth buffer... */
1198 if (fb->zsbuf) {
1199 tex = r300_resource(fb->zsbuf->texture);
1200 assert(tex && tex->buf && "zsbuf is marked, but NULL!");
1201 r300->rws->cs_add_reloc(r300->cs, tex->cs_buf, 0,
1202 r300_surface(fb->zsbuf)->domain);
1203 }
1204 }
1205 if (r300->textures_state.dirty) {
1206 /* ...textures... */
1207 for (i = 0; i < texstate->count; i++) {
1208 if (!(texstate->tx_enable & (1 << i))) {
1209 continue;
1210 }
1211
1212 tex = r300_resource(texstate->sampler_views[i]->base.texture);
1213 r300->rws->cs_add_reloc(r300->cs, tex->cs_buf, tex->domain, 0);
1214 }
1215 }
1216 /* ...occlusion query buffer... */
1217 if (r300->query_current)
1218 r300->rws->cs_add_reloc(r300->cs, r300->query_current->cs_buf,
1219 0, r300->query_current->domain);
1220 /* ...vertex buffer for SWTCL path... */
1221 if (r300->vbo)
1222 r300->rws->cs_add_reloc(r300->cs, r300_resource(r300->vbo)->cs_buf,
1223 r300_resource(r300->vbo)->domain, 0);
1224 /* ...vertex buffers for HWTCL path... */
1225 if (do_validate_vertex_buffers) {
1226 struct pipe_resource **buf = r300->vbuf_mgr->real_vertex_buffer;
1227 struct pipe_resource **last = r300->vbuf_mgr->real_vertex_buffer +
1228 r300->vbuf_mgr->nr_real_vertex_buffers;
1229 for (; buf != last; buf++) {
1230 if (!*buf)
1231 continue;
1232
1233 r300->rws->cs_add_reloc(r300->cs, r300_resource(*buf)->cs_buf,
1234 r300_resource(*buf)->domain, 0);
1235 }
1236 }
1237 /* ...and index buffer for HWTCL path. */
1238 if (index_buffer)
1239 r300->rws->cs_add_reloc(r300->cs, r300_resource(index_buffer)->cs_buf,
1240 r300_resource(index_buffer)->domain, 0);
1241
1242 /* Now do the validation. */
1243 if (!r300->rws->cs_validate(r300->cs)) {
1244 /* Ooops, an infinite loop, give up. */
1245 if (flushed)
1246 return FALSE;
1247
1248 r300->context.flush(&r300->context, 0, NULL);
1249 flushed = TRUE;
1250 goto validate;
1251 }
1252
1253 return TRUE;
1254 }
1255
1256 unsigned r300_get_num_dirty_dwords(struct r300_context *r300)
1257 {
1258 struct r300_atom* atom;
1259 unsigned dwords = 0;
1260
1261 foreach_dirty_atom(r300, atom) {
1262 if (atom->dirty) {
1263 dwords += atom->size;
1264 }
1265 }
1266
1267 /* let's reserve some more, just in case */
1268 dwords += 32;
1269
1270 return dwords;
1271 }
1272
1273 unsigned r300_get_num_cs_end_dwords(struct r300_context *r300)
1274 {
1275 unsigned dwords = 0;
1276
1277 /* Emitted in flush. */
1278 dwords += 26; /* emit_query_end */
1279 dwords += r300->hyperz_state.size + 2; /* emit_hyperz_end + zcache flush */
1280 if (r300->screen->caps.index_bias_supported)
1281 dwords += 2;
1282
1283 return dwords;
1284 }
1285
1286 /* Emit all dirty state. */
1287 void r300_emit_dirty_state(struct r300_context* r300)
1288 {
1289 struct r300_atom *atom;
1290
1291 foreach_dirty_atom(r300, atom) {
1292 if (atom->dirty) {
1293 atom->emit(r300, atom->size, atom->state);
1294 atom->dirty = FALSE;
1295 }
1296 }
1297
1298 r300->first_dirty = NULL;
1299 r300->last_dirty = NULL;
1300 r300->dirty_hw++;
1301 }