Added few more stubs so that control reaches to DestroyDevice().
[mesa.git] / src / gallium / drivers / r300 / r300_emit.c
1 /*
2 * Copyright 2008 Corbin Simpson <MostAwesomeDude@gmail.com>
3 * Copyright 2009 Marek Olšák <maraeo@gmail.com>
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * on the rights to use, copy, modify, merge, publish, distribute, sub
9 * license, and/or sell copies of the Software, and to permit persons to whom
10 * the Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE. */
23
24 /* r300_emit: Functions for emitting state. */
25
26 #include "util/format/u_format.h"
27 #include "util/u_math.h"
28
29 #include "r300_context.h"
30 #include "r300_cb.h"
31 #include "r300_cs.h"
32 #include "r300_emit.h"
33 #include "r300_fs.h"
34 #include "r300_screen.h"
35 #include "r300_screen_buffer.h"
36 #include "r300_vs.h"
37
38 void r300_emit_blend_state(struct r300_context* r300,
39 unsigned size, void* state)
40 {
41 struct r300_blend_state* blend = (struct r300_blend_state*)state;
42 struct pipe_framebuffer_state* fb =
43 (struct pipe_framebuffer_state*)r300->fb_state.state;
44 struct pipe_surface *cb;
45 CS_LOCALS(r300);
46
47 cb = fb->nr_cbufs ? r300_get_nonnull_cb(fb, 0) : NULL;
48
49 if (cb) {
50 if (cb->format == PIPE_FORMAT_R16G16B16A16_FLOAT) {
51 WRITE_CS_TABLE(blend->cb_noclamp, size);
52 } else if (cb->format == PIPE_FORMAT_R16G16B16X16_FLOAT) {
53 WRITE_CS_TABLE(blend->cb_noclamp_noalpha, size);
54 } else {
55 unsigned swz = r300_surface(cb)->colormask_swizzle;
56 WRITE_CS_TABLE(blend->cb_clamp[swz], size);
57 }
58 } else {
59 WRITE_CS_TABLE(blend->cb_no_readwrite, size);
60 }
61 }
62
63 void r300_emit_blend_color_state(struct r300_context* r300,
64 unsigned size, void* state)
65 {
66 struct r300_blend_color_state* bc = (struct r300_blend_color_state*)state;
67 CS_LOCALS(r300);
68
69 WRITE_CS_TABLE(bc->cb, size);
70 }
71
72 void r300_emit_clip_state(struct r300_context* r300,
73 unsigned size, void* state)
74 {
75 struct r300_clip_state* clip = (struct r300_clip_state*)state;
76 CS_LOCALS(r300);
77
78 WRITE_CS_TABLE(clip->cb, size);
79 }
80
81 void r300_emit_dsa_state(struct r300_context* r300, unsigned size, void* state)
82 {
83 struct r300_dsa_state* dsa = (struct r300_dsa_state*)state;
84 struct pipe_framebuffer_state* fb =
85 (struct pipe_framebuffer_state*)r300->fb_state.state;
86 boolean is_r500 = r300->screen->caps.is_r500;
87 CS_LOCALS(r300);
88 uint32_t alpha_func = dsa->alpha_function;
89
90 /* Choose the alpha ref value between 8-bit (FG_ALPHA_FUNC.AM_VAL) and
91 * 16-bit (FG_ALPHA_VALUE). */
92 if (is_r500 && (alpha_func & R300_FG_ALPHA_FUNC_ENABLE)) {
93 struct pipe_surface *cb = fb->nr_cbufs ? r300_get_nonnull_cb(fb, 0) : NULL;
94
95 if (cb &&
96 (cb->format == PIPE_FORMAT_R16G16B16A16_FLOAT ||
97 cb->format == PIPE_FORMAT_R16G16B16X16_FLOAT)) {
98 alpha_func |= R500_FG_ALPHA_FUNC_FP16_ENABLE;
99 } else {
100 alpha_func |= R500_FG_ALPHA_FUNC_8BIT;
101 }
102 }
103
104 /* Setup alpha-to-coverage. */
105 if (r300->alpha_to_coverage && r300->msaa_enable) {
106 /* Always set 3/6, it improves precision even for 2x and 4x MSAA. */
107 alpha_func |= R300_FG_ALPHA_FUNC_MASK_ENABLE |
108 R300_FG_ALPHA_FUNC_CFG_3_OF_6;
109 }
110
111 BEGIN_CS(size);
112 OUT_CS_REG(R300_FG_ALPHA_FUNC, alpha_func);
113 OUT_CS_TABLE(fb->zsbuf ? &dsa->cb_begin : dsa->cb_zb_no_readwrite, size-2);
114 END_CS;
115 }
116
117 static void get_rc_constant_state(
118 float vec[4],
119 struct r300_context * r300,
120 struct rc_constant * constant)
121 {
122 struct r300_textures_state* texstate = r300->textures_state.state;
123 struct r300_resource *tex;
124
125 assert(constant->Type == RC_CONSTANT_STATE);
126
127 /* vec should either be (0, 0, 0, 1), which should be a relatively safe
128 * RGBA or STRQ value, or it could be one of the RC_CONSTANT_STATE
129 * state factors. */
130
131 switch (constant->u.State[0]) {
132 /* Factor for converting rectangle coords to
133 * normalized coords. Should only show up on non-r500. */
134 case RC_STATE_R300_TEXRECT_FACTOR:
135 tex = r300_resource(texstate->sampler_views[constant->u.State[1]]->base.texture);
136 vec[0] = 1.0 / tex->tex.width0;
137 vec[1] = 1.0 / tex->tex.height0;
138 vec[2] = 0;
139 vec[3] = 1;
140 break;
141
142 case RC_STATE_R300_TEXSCALE_FACTOR:
143 tex = r300_resource(texstate->sampler_views[constant->u.State[1]]->base.texture);
144 /* Add a small number to the texture size to work around rounding errors in hw. */
145 vec[0] = tex->b.b.width0 / (tex->tex.width0 + 0.001f);
146 vec[1] = tex->b.b.height0 / (tex->tex.height0 + 0.001f);
147 vec[2] = tex->b.b.depth0 / (tex->tex.depth0 + 0.001f);
148 vec[3] = 1;
149 break;
150
151 case RC_STATE_R300_VIEWPORT_SCALE:
152 vec[0] = r300->viewport.scale[0];
153 vec[1] = r300->viewport.scale[1];
154 vec[2] = r300->viewport.scale[2];
155 vec[3] = 1;
156 break;
157
158 case RC_STATE_R300_VIEWPORT_OFFSET:
159 vec[0] = r300->viewport.translate[0];
160 vec[1] = r300->viewport.translate[1];
161 vec[2] = r300->viewport.translate[2];
162 vec[3] = 1;
163 break;
164
165 default:
166 fprintf(stderr, "r300: Implementation error: "
167 "Unknown RC_CONSTANT type %d\n", constant->u.State[0]);
168 vec[0] = 0;
169 vec[1] = 0;
170 vec[2] = 0;
171 vec[3] = 1;
172 }
173 }
174
175 /* Convert a normal single-precision float into the 7.16 format
176 * used by the R300 fragment shader.
177 */
178 uint32_t pack_float24(float f)
179 {
180 union {
181 float fl;
182 uint32_t u;
183 } u;
184 float mantissa;
185 int exponent;
186 uint32_t float24 = 0;
187
188 if (f == 0.0)
189 return 0;
190
191 u.fl = f;
192
193 mantissa = frexpf(f, &exponent);
194
195 /* Handle -ve */
196 if (mantissa < 0) {
197 float24 |= (1 << 23);
198 mantissa = mantissa * -1.0;
199 }
200 /* Handle exponent, bias of 63 */
201 exponent += 62;
202 float24 |= (exponent << 16);
203 /* Kill 7 LSB of mantissa */
204 float24 |= (u.u & 0x7FFFFF) >> 7;
205
206 return float24;
207 }
208
209 void r300_emit_fs(struct r300_context* r300, unsigned size, void *state)
210 {
211 struct r300_fragment_shader *fs = r300_fs(r300);
212 CS_LOCALS(r300);
213
214 WRITE_CS_TABLE(fs->shader->cb_code, fs->shader->cb_code_size);
215 }
216
217 void r300_emit_fs_constants(struct r300_context* r300, unsigned size, void *state)
218 {
219 struct r300_fragment_shader *fs = r300_fs(r300);
220 struct r300_constant_buffer *buf = (struct r300_constant_buffer*)state;
221 unsigned count = fs->shader->externals_count;
222 unsigned i, j;
223 CS_LOCALS(r300);
224
225 if (count == 0)
226 return;
227
228 BEGIN_CS(size);
229 OUT_CS_REG_SEQ(R300_PFS_PARAM_0_X, count * 4);
230 if (buf->remap_table){
231 for (i = 0; i < count; i++) {
232 float *data = (float*)&buf->ptr[buf->remap_table[i]*4];
233 for (j = 0; j < 4; j++)
234 OUT_CS(pack_float24(data[j]));
235 }
236 } else {
237 for (i = 0; i < count; i++)
238 for (j = 0; j < 4; j++)
239 OUT_CS(pack_float24(*(float*)&buf->ptr[i*4+j]));
240 }
241
242 END_CS;
243 }
244
245 void r300_emit_fs_rc_constant_state(struct r300_context* r300, unsigned size, void *state)
246 {
247 struct r300_fragment_shader *fs = r300_fs(r300);
248 struct rc_constant_list *constants = &fs->shader->code.constants;
249 unsigned i;
250 unsigned count = fs->shader->rc_state_count;
251 unsigned first = fs->shader->externals_count;
252 unsigned end = constants->Count;
253 unsigned j;
254 CS_LOCALS(r300);
255
256 if (count == 0)
257 return;
258
259 BEGIN_CS(size);
260 for(i = first; i < end; ++i) {
261 if (constants->Constants[i].Type == RC_CONSTANT_STATE) {
262 float data[4];
263
264 get_rc_constant_state(data, r300, &constants->Constants[i]);
265
266 OUT_CS_REG_SEQ(R300_PFS_PARAM_0_X + i * 16, 4);
267 for (j = 0; j < 4; j++)
268 OUT_CS(pack_float24(data[j]));
269 }
270 }
271 END_CS;
272 }
273
274 void r500_emit_fs(struct r300_context* r300, unsigned size, void *state)
275 {
276 struct r300_fragment_shader *fs = r300_fs(r300);
277 CS_LOCALS(r300);
278
279 WRITE_CS_TABLE(fs->shader->cb_code, fs->shader->cb_code_size);
280 }
281
282 void r500_emit_fs_constants(struct r300_context* r300, unsigned size, void *state)
283 {
284 struct r300_fragment_shader *fs = r300_fs(r300);
285 struct r300_constant_buffer *buf = (struct r300_constant_buffer*)state;
286 unsigned count = fs->shader->externals_count;
287 CS_LOCALS(r300);
288
289 if (count == 0)
290 return;
291
292 BEGIN_CS(size);
293 OUT_CS_REG(R500_GA_US_VECTOR_INDEX, R500_GA_US_VECTOR_INDEX_TYPE_CONST);
294 OUT_CS_ONE_REG(R500_GA_US_VECTOR_DATA, count * 4);
295 if (buf->remap_table){
296 for (unsigned i = 0; i < count; i++) {
297 uint32_t *data = &buf->ptr[buf->remap_table[i]*4];
298 OUT_CS_TABLE(data, 4);
299 }
300 } else {
301 OUT_CS_TABLE(buf->ptr, count * 4);
302 }
303 END_CS;
304 }
305
306 void r500_emit_fs_rc_constant_state(struct r300_context* r300, unsigned size, void *state)
307 {
308 struct r300_fragment_shader *fs = r300_fs(r300);
309 struct rc_constant_list *constants = &fs->shader->code.constants;
310 unsigned i;
311 unsigned count = fs->shader->rc_state_count;
312 unsigned first = fs->shader->externals_count;
313 unsigned end = constants->Count;
314 CS_LOCALS(r300);
315
316 if (count == 0)
317 return;
318
319 BEGIN_CS(size);
320 for(i = first; i < end; ++i) {
321 if (constants->Constants[i].Type == RC_CONSTANT_STATE) {
322 float data[4];
323
324 get_rc_constant_state(data, r300, &constants->Constants[i]);
325
326 OUT_CS_REG(R500_GA_US_VECTOR_INDEX,
327 R500_GA_US_VECTOR_INDEX_TYPE_CONST |
328 (i & R500_GA_US_VECTOR_INDEX_MASK));
329 OUT_CS_ONE_REG(R500_GA_US_VECTOR_DATA, 4);
330 OUT_CS_TABLE(data, 4);
331 }
332 }
333 END_CS;
334 }
335
336 void r300_emit_gpu_flush(struct r300_context *r300, unsigned size, void *state)
337 {
338 struct r300_gpu_flush *gpuflush = (struct r300_gpu_flush*)state;
339 struct pipe_framebuffer_state* fb =
340 (struct pipe_framebuffer_state*)r300->fb_state.state;
341 uint32_t height = fb->height;
342 uint32_t width = fb->width;
343 CS_LOCALS(r300);
344
345 if (r300->cbzb_clear) {
346 struct r300_surface *surf = r300_surface(fb->cbufs[0]);
347
348 height = surf->cbzb_height;
349 width = surf->cbzb_width;
350 }
351
352 DBG(r300, DBG_SCISSOR,
353 "r300: Scissor width: %i, height: %i, CBZB clear: %s\n",
354 width, height, r300->cbzb_clear ? "YES" : "NO");
355
356 BEGIN_CS(size);
357
358 /* Set up scissors.
359 * By writing to the SC registers, SC & US assert idle. */
360 OUT_CS_REG_SEQ(R300_SC_SCISSORS_TL, 2);
361 if (r300->screen->caps.is_r500) {
362 OUT_CS(0);
363 OUT_CS(((width - 1) << R300_SCISSORS_X_SHIFT) |
364 ((height - 1) << R300_SCISSORS_Y_SHIFT));
365 } else {
366 OUT_CS((1440 << R300_SCISSORS_X_SHIFT) |
367 (1440 << R300_SCISSORS_Y_SHIFT));
368 OUT_CS(((width + 1440-1) << R300_SCISSORS_X_SHIFT) |
369 ((height + 1440-1) << R300_SCISSORS_Y_SHIFT));
370 }
371
372 /* Flush CB & ZB caches and wait until the 3D engine is idle and clean. */
373 OUT_CS_TABLE(gpuflush->cb_flush_clean, 6);
374 END_CS;
375 }
376
377 void r300_emit_aa_state(struct r300_context *r300, unsigned size, void *state)
378 {
379 struct r300_aa_state *aa = (struct r300_aa_state*)state;
380 CS_LOCALS(r300);
381
382 BEGIN_CS(size);
383 OUT_CS_REG(R300_GB_AA_CONFIG, aa->aa_config);
384
385 if (aa->dest) {
386 OUT_CS_REG_SEQ(R300_RB3D_AARESOLVE_OFFSET, 3);
387 OUT_CS(aa->dest->offset);
388 OUT_CS(aa->dest->pitch & R300_RB3D_AARESOLVE_PITCH_MASK);
389 OUT_CS(R300_RB3D_AARESOLVE_CTL_AARESOLVE_MODE_RESOLVE |
390 R300_RB3D_AARESOLVE_CTL_AARESOLVE_ALPHA_AVERAGE);
391 OUT_CS_RELOC(aa->dest);
392 } else {
393 OUT_CS_REG(R300_RB3D_AARESOLVE_CTL, 0);
394 }
395
396 END_CS;
397 }
398
399 void r300_emit_fb_state(struct r300_context* r300, unsigned size, void* state)
400 {
401 struct pipe_framebuffer_state* fb = (struct pipe_framebuffer_state*)state;
402 struct r300_surface* surf;
403 unsigned i;
404 uint32_t rb3d_cctl = 0;
405
406 CS_LOCALS(r300);
407
408 BEGIN_CS(size);
409
410 if (r300->screen->caps.is_r500) {
411 rb3d_cctl = R300_RB3D_CCTL_INDEPENDENT_COLORFORMAT_ENABLE_ENABLE;
412 }
413 /* NUM_MULTIWRITES replicates COLOR[0] to all colorbuffers. */
414 if (fb->nr_cbufs && r300->fb_multiwrite) {
415 rb3d_cctl |= R300_RB3D_CCTL_NUM_MULTIWRITES(fb->nr_cbufs);
416 }
417 if (r300->cmask_in_use) {
418 rb3d_cctl |= R300_RB3D_CCTL_AA_COMPRESSION_ENABLE |
419 R300_RB3D_CCTL_CMASK_ENABLE;
420 }
421
422 OUT_CS_REG(R300_RB3D_CCTL, rb3d_cctl);
423
424 /* Set up colorbuffers. */
425 for (i = 0; i < fb->nr_cbufs; i++) {
426 surf = r300_surface(r300_get_nonnull_cb(fb, i));
427
428 OUT_CS_REG(R300_RB3D_COLOROFFSET0 + (4 * i), surf->offset);
429 OUT_CS_RELOC(surf);
430
431 OUT_CS_REG(R300_RB3D_COLORPITCH0 + (4 * i), surf->pitch);
432 OUT_CS_RELOC(surf);
433
434 if (r300->cmask_in_use && i == 0) {
435 OUT_CS_REG(R300_RB3D_CMASK_OFFSET0, 0);
436 OUT_CS_REG(R300_RB3D_CMASK_PITCH0, surf->pitch_cmask);
437 OUT_CS_REG(R300_RB3D_COLOR_CLEAR_VALUE, r300->color_clear_value);
438 if (r300->screen->caps.is_r500 && r300->screen->info.drm_minor >= 29) {
439 OUT_CS_REG_SEQ(R500_RB3D_COLOR_CLEAR_VALUE_AR, 2);
440 OUT_CS(r300->color_clear_value_ar);
441 OUT_CS(r300->color_clear_value_gb);
442 }
443 }
444 }
445
446 /* Set up the ZB part of the CBZB clear. */
447 if (r300->cbzb_clear) {
448 surf = r300_surface(fb->cbufs[0]);
449
450 OUT_CS_REG(R300_ZB_FORMAT, surf->cbzb_format);
451
452 OUT_CS_REG(R300_ZB_DEPTHOFFSET, surf->cbzb_midpoint_offset);
453 OUT_CS_RELOC(surf);
454
455 OUT_CS_REG(R300_ZB_DEPTHPITCH, surf->cbzb_pitch);
456 OUT_CS_RELOC(surf);
457
458 DBG(r300, DBG_CBZB,
459 "CBZB clearing cbuf %08x %08x\n", surf->cbzb_format,
460 surf->cbzb_pitch);
461 }
462 /* Set up a zbuffer. */
463 else if (fb->zsbuf) {
464 surf = r300_surface(fb->zsbuf);
465
466 OUT_CS_REG(R300_ZB_FORMAT, surf->format);
467
468 OUT_CS_REG(R300_ZB_DEPTHOFFSET, surf->offset);
469 OUT_CS_RELOC(surf);
470
471 OUT_CS_REG(R300_ZB_DEPTHPITCH, surf->pitch);
472 OUT_CS_RELOC(surf);
473
474 if (r300->hyperz_enabled) {
475 /* HiZ RAM. */
476 OUT_CS_REG(R300_ZB_HIZ_OFFSET, 0);
477 OUT_CS_REG(R300_ZB_HIZ_PITCH, surf->pitch_hiz);
478 /* Z Mask RAM. (compressed zbuffer) */
479 OUT_CS_REG(R300_ZB_ZMASK_OFFSET, 0);
480 OUT_CS_REG(R300_ZB_ZMASK_PITCH, surf->pitch_zmask);
481 }
482 }
483
484 END_CS;
485 }
486
487 void r300_emit_hyperz_state(struct r300_context *r300,
488 unsigned size, void *state)
489 {
490 struct r300_hyperz_state *z = state;
491 CS_LOCALS(r300);
492
493 if (z->flush)
494 WRITE_CS_TABLE(&z->cb_flush_begin, size);
495 else
496 WRITE_CS_TABLE(&z->cb_begin, size - 2);
497 }
498
499 void r300_emit_hyperz_end(struct r300_context *r300)
500 {
501 struct r300_hyperz_state z =
502 *(struct r300_hyperz_state*)r300->hyperz_state.state;
503
504 z.flush = 1;
505 z.zb_bw_cntl = 0;
506 z.zb_depthclearvalue = 0;
507 z.sc_hyperz = R300_SC_HYPERZ_ADJ_2;
508 z.gb_z_peq_config = 0;
509
510 r300_emit_hyperz_state(r300, r300->hyperz_state.size, &z);
511 }
512
513 #define R300_NIBBLES(x0, y0, x1, y1, x2, y2, d0y, d0x) \
514 (((x0) & 0xf) | (((y0) & 0xf) << 4) | \
515 (((x1) & 0xf) << 8) | (((y1) & 0xf) << 12) | \
516 (((x2) & 0xf) << 16) | (((y2) & 0xf) << 20) | \
517 (((d0y) & 0xf) << 24) | (((d0x) & 0xf) << 28))
518
519 static unsigned r300_get_mspos(int index, unsigned *p)
520 {
521 unsigned reg, i, distx, disty, dist;
522
523 if (index == 0) {
524 /* MSPOS0 contains positions for samples 0,1,2 as (X,Y) pairs of nibbles,
525 * followed by a (Y,X) pair containing the minimum distance from the pixel
526 * edge:
527 * X0, Y0, X1, Y1, X2, Y2, D0_Y, D0_X
528 *
529 * There is a quirk when setting D0_X. The value represents the distance
530 * from the left edge of the pixel quad to the first sample in subpixels.
531 * All values less than eight should use the actual value, but „7‟ should
532 * be used for the distance „8‟. The hardware will convert 7 into 8 internally.
533 */
534 distx = 11;
535 for (i = 0; i < 12; i += 2) {
536 if (p[i] < distx)
537 distx = p[i];
538 }
539
540 disty = 11;
541 for (i = 1; i < 12; i += 2) {
542 if (p[i] < disty)
543 disty = p[i];
544 }
545
546 if (distx == 8)
547 distx = 7;
548
549 reg = R300_NIBBLES(p[0], p[1], p[2], p[3], p[4], p[5], disty, distx);
550 } else {
551 /* MSPOS1 contains positions for samples 3,4,5 as (X,Y) pairs of nibbles,
552 * followed by the minimum distance from the pixel edge (not sure if X or Y):
553 * X3, Y3, X4, Y4, X5, Y5, D1
554 */
555 dist = 11;
556 for (i = 0; i < 12; i++) {
557 if (p[i] < dist)
558 dist = p[i];
559 }
560
561 reg = R300_NIBBLES(p[6], p[7], p[8], p[9], p[10], p[11], dist, 0);
562 }
563 return reg;
564 }
565
566 void r300_emit_fb_state_pipelined(struct r300_context *r300,
567 unsigned size, void *state)
568 {
569 /* The sample coordinates are in the range [0,11], because
570 * GB_TILE_CONFIG.SUBPIXEL is set to the 1/12 subpixel precision.
571 *
572 * Some sample coordinates reach to neighboring pixels and should not be used.
573 * (e.g. Y=11)
574 *
575 * The unused samples must be set to the positions of other valid samples. */
576 static unsigned sample_locs_1x[12] = {
577 6,6, 6,6, 6,6, 6,6, 6,6, 6,6
578 };
579 static unsigned sample_locs_2x[12] = {
580 3,9, 9,3, 9,3, 9,3, 9,3, 9,3
581 };
582 static unsigned sample_locs_4x[12] = {
583 4,4, 8,8, 2,10, 10,2, 10,2, 10,2
584 };
585 static unsigned sample_locs_6x[12] = {
586 3,1, 7,3, 11,5, 1,7, 5,9, 9,10
587 };
588
589 struct pipe_framebuffer_state* fb =
590 (struct pipe_framebuffer_state*)r300->fb_state.state;
591 unsigned i, num_cbufs = fb->nr_cbufs;
592 unsigned mspos0, mspos1;
593 CS_LOCALS(r300);
594
595 /* If we use the multiwrite feature, the colorbuffers 2,3,4 must be
596 * marked as UNUSED in the US block. */
597 if (r300->fb_multiwrite) {
598 num_cbufs = MIN2(num_cbufs, 1);
599 }
600
601 BEGIN_CS(size);
602
603 /* Colorbuffer format in the US block.
604 * (must be written after unpipelined regs) */
605 OUT_CS_REG_SEQ(R300_US_OUT_FMT_0, 4);
606 for (i = 0; i < num_cbufs; i++) {
607 OUT_CS(r300_surface(r300_get_nonnull_cb(fb, i))->format);
608 }
609 for (; i < 1; i++) {
610 OUT_CS(R300_US_OUT_FMT_C4_8 |
611 R300_C0_SEL_B | R300_C1_SEL_G |
612 R300_C2_SEL_R | R300_C3_SEL_A);
613 }
614 for (; i < 4; i++) {
615 OUT_CS(R300_US_OUT_FMT_UNUSED);
616 }
617
618 /* Set sample positions. It depends on the framebuffer sample count.
619 * These are pipelined regs and as such cannot be moved to the AA state.
620 */
621 switch (r300->num_samples) {
622 default:
623 mspos0 = r300_get_mspos(0, sample_locs_1x);
624 mspos1 = r300_get_mspos(1, sample_locs_1x);
625 break;
626 case 2:
627 mspos0 = r300_get_mspos(0, sample_locs_2x);
628 mspos1 = r300_get_mspos(1, sample_locs_2x);
629 break;
630 case 4:
631 mspos0 = r300_get_mspos(0, sample_locs_4x);
632 mspos1 = r300_get_mspos(1, sample_locs_4x);
633 break;
634 case 6:
635 mspos0 = r300_get_mspos(0, sample_locs_6x);
636 mspos1 = r300_get_mspos(1, sample_locs_6x);
637 break;
638 }
639
640 OUT_CS_REG_SEQ(R300_GB_MSPOS0, 2);
641 OUT_CS(mspos0);
642 OUT_CS(mspos1);
643 END_CS;
644 }
645
646 void r300_emit_query_start(struct r300_context *r300, unsigned size, void*state)
647 {
648 struct r300_query *query = r300->query_current;
649 CS_LOCALS(r300);
650
651 if (!query)
652 return;
653
654 BEGIN_CS(size);
655 if (r300->screen->caps.family == CHIP_RV530) {
656 OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_ALL);
657 } else {
658 OUT_CS_REG(R300_SU_REG_DEST, R300_RASTER_PIPE_SELECT_ALL);
659 }
660 OUT_CS_REG(R300_ZB_ZPASS_DATA, 0);
661 END_CS;
662 query->begin_emitted = TRUE;
663 }
664
665 static void r300_emit_query_end_frag_pipes(struct r300_context *r300,
666 struct r300_query *query)
667 {
668 struct r300_capabilities* caps = &r300->screen->caps;
669 uint32_t gb_pipes = r300->screen->info.r300_num_gb_pipes;
670 CS_LOCALS(r300);
671
672 assert(gb_pipes);
673
674 BEGIN_CS(6 * gb_pipes + 2);
675 /* I'm not so sure I like this switch, but it's hard to be elegant
676 * when there's so many special cases...
677 *
678 * So here's the basic idea. For each pipe, enable writes to it only,
679 * then put out the relocation for ZPASS_ADDR, taking into account a
680 * 4-byte offset for each pipe. RV380 and older are special; they have
681 * only two pipes, and the second pipe's enable is on bit 3, not bit 1,
682 * so there's a chipset cap for that. */
683 switch (gb_pipes) {
684 case 4:
685 /* pipe 3 only */
686 OUT_CS_REG(R300_SU_REG_DEST, 1 << 3);
687 OUT_CS_REG(R300_ZB_ZPASS_ADDR, (query->num_results + 3) * 4);
688 OUT_CS_RELOC(r300->query_current);
689 /* fallthrough */
690 case 3:
691 /* pipe 2 only */
692 OUT_CS_REG(R300_SU_REG_DEST, 1 << 2);
693 OUT_CS_REG(R300_ZB_ZPASS_ADDR, (query->num_results + 2) * 4);
694 OUT_CS_RELOC(r300->query_current);
695 /* fallthrough */
696 case 2:
697 /* pipe 1 only */
698 /* As mentioned above, accommodate RV380 and older. */
699 OUT_CS_REG(R300_SU_REG_DEST,
700 1 << (caps->high_second_pipe ? 3 : 1));
701 OUT_CS_REG(R300_ZB_ZPASS_ADDR, (query->num_results + 1) * 4);
702 OUT_CS_RELOC(r300->query_current);
703 /* fallthrough */
704 case 1:
705 /* pipe 0 only */
706 OUT_CS_REG(R300_SU_REG_DEST, 1 << 0);
707 OUT_CS_REG(R300_ZB_ZPASS_ADDR, (query->num_results + 0) * 4);
708 OUT_CS_RELOC(r300->query_current);
709 break;
710 default:
711 fprintf(stderr, "r300: Implementation error: Chipset reports %d"
712 " pixel pipes!\n", gb_pipes);
713 abort();
714 }
715
716 /* And, finally, reset it to normal... */
717 OUT_CS_REG(R300_SU_REG_DEST, 0xF);
718 END_CS;
719 }
720
721 static void rv530_emit_query_end_single_z(struct r300_context *r300,
722 struct r300_query *query)
723 {
724 CS_LOCALS(r300);
725
726 BEGIN_CS(8);
727 OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_0);
728 OUT_CS_REG(R300_ZB_ZPASS_ADDR, query->num_results * 4);
729 OUT_CS_RELOC(r300->query_current);
730 OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_ALL);
731 END_CS;
732 }
733
734 static void rv530_emit_query_end_double_z(struct r300_context *r300,
735 struct r300_query *query)
736 {
737 CS_LOCALS(r300);
738
739 BEGIN_CS(14);
740 OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_0);
741 OUT_CS_REG(R300_ZB_ZPASS_ADDR, (query->num_results + 0) * 4);
742 OUT_CS_RELOC(r300->query_current);
743 OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_1);
744 OUT_CS_REG(R300_ZB_ZPASS_ADDR, (query->num_results + 1) * 4);
745 OUT_CS_RELOC(r300->query_current);
746 OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_ALL);
747 END_CS;
748 }
749
750 void r300_emit_query_end(struct r300_context* r300)
751 {
752 struct r300_capabilities *caps = &r300->screen->caps;
753 struct r300_query *query = r300->query_current;
754
755 if (!query)
756 return;
757
758 if (query->begin_emitted == FALSE)
759 return;
760
761 if (caps->family == CHIP_RV530) {
762 if (r300->screen->info.r300_num_z_pipes == 2)
763 rv530_emit_query_end_double_z(r300, query);
764 else
765 rv530_emit_query_end_single_z(r300, query);
766 } else
767 r300_emit_query_end_frag_pipes(r300, query);
768
769 query->begin_emitted = FALSE;
770 query->num_results += query->num_pipes;
771
772 /* XXX grab all the results and reset the counter. */
773 if (query->num_results >= query->buf->size / 4 - 4) {
774 query->num_results = (query->buf->size / 4) / 2;
775 fprintf(stderr, "r300: Rewinding OQBO...\n");
776 }
777 }
778
779 void r300_emit_invariant_state(struct r300_context *r300,
780 unsigned size, void *state)
781 {
782 CS_LOCALS(r300);
783 WRITE_CS_TABLE(state, size);
784 }
785
786 void r300_emit_rs_state(struct r300_context* r300, unsigned size, void* state)
787 {
788 struct r300_rs_state* rs = state;
789 CS_LOCALS(r300);
790
791 BEGIN_CS(size);
792 OUT_CS_TABLE(rs->cb_main, RS_STATE_MAIN_SIZE);
793 if (rs->polygon_offset_enable) {
794 if (r300->zbuffer_bpp == 16) {
795 OUT_CS_TABLE(rs->cb_poly_offset_zb16, 5);
796 } else {
797 OUT_CS_TABLE(rs->cb_poly_offset_zb24, 5);
798 }
799 }
800 END_CS;
801 }
802
803 void r300_emit_rs_block_state(struct r300_context* r300,
804 unsigned size, void* state)
805 {
806 struct r300_rs_block* rs = (struct r300_rs_block*)state;
807 unsigned i;
808 /* It's the same for both INST and IP tables */
809 unsigned count = (rs->inst_count & R300_RS_INST_COUNT_MASK) + 1;
810 CS_LOCALS(r300);
811
812 if (DBG_ON(r300, DBG_RS_BLOCK)) {
813 r500_dump_rs_block(rs);
814
815 fprintf(stderr, "r300: RS emit:\n");
816
817 for (i = 0; i < count; i++)
818 fprintf(stderr, " : ip %d: 0x%08x\n", i, rs->ip[i]);
819
820 for (i = 0; i < count; i++)
821 fprintf(stderr, " : inst %d: 0x%08x\n", i, rs->inst[i]);
822
823 fprintf(stderr, " : count: 0x%08x inst_count: 0x%08x\n",
824 rs->count, rs->inst_count);
825 }
826
827 BEGIN_CS(size);
828 OUT_CS_REG_SEQ(R300_VAP_VTX_STATE_CNTL, 2);
829 OUT_CS(rs->vap_vtx_state_cntl);
830 OUT_CS(rs->vap_vsm_vtx_assm);
831 OUT_CS_REG_SEQ(R300_VAP_OUTPUT_VTX_FMT_0, 2);
832 OUT_CS(rs->vap_out_vtx_fmt[0]);
833 OUT_CS(rs->vap_out_vtx_fmt[1]);
834 OUT_CS_REG_SEQ(R300_GB_ENABLE, 1);
835 OUT_CS(rs->gb_enable);
836
837 if (r300->screen->caps.is_r500) {
838 OUT_CS_REG_SEQ(R500_RS_IP_0, count);
839 } else {
840 OUT_CS_REG_SEQ(R300_RS_IP_0, count);
841 }
842 OUT_CS_TABLE(rs->ip, count);
843
844 OUT_CS_REG_SEQ(R300_RS_COUNT, 2);
845 OUT_CS(rs->count);
846 OUT_CS(rs->inst_count);
847
848 if (r300->screen->caps.is_r500) {
849 OUT_CS_REG_SEQ(R500_RS_INST_0, count);
850 } else {
851 OUT_CS_REG_SEQ(R300_RS_INST_0, count);
852 }
853 OUT_CS_TABLE(rs->inst, count);
854 END_CS;
855 }
856
857 void r300_emit_sample_mask(struct r300_context *r300,
858 unsigned size, void *state)
859 {
860 unsigned mask = (*(unsigned*)state) & ((1 << 6)-1);
861 CS_LOCALS(r300);
862
863 BEGIN_CS(size);
864 OUT_CS_REG(R300_SC_SCREENDOOR,
865 mask | (mask << 6) | (mask << 12) | (mask << 18));
866 END_CS;
867 }
868
869 void r300_emit_scissor_state(struct r300_context* r300,
870 unsigned size, void* state)
871 {
872 struct pipe_scissor_state* scissor = (struct pipe_scissor_state*)state;
873 CS_LOCALS(r300);
874
875 BEGIN_CS(size);
876 OUT_CS_REG_SEQ(R300_SC_CLIPRECT_TL_0, 2);
877 if (r300->screen->caps.is_r500) {
878 OUT_CS((scissor->minx << R300_CLIPRECT_X_SHIFT) |
879 (scissor->miny << R300_CLIPRECT_Y_SHIFT));
880 OUT_CS(((scissor->maxx - 1) << R300_CLIPRECT_X_SHIFT) |
881 ((scissor->maxy - 1) << R300_CLIPRECT_Y_SHIFT));
882 } else {
883 OUT_CS(((scissor->minx + 1440) << R300_CLIPRECT_X_SHIFT) |
884 ((scissor->miny + 1440) << R300_CLIPRECT_Y_SHIFT));
885 OUT_CS(((scissor->maxx + 1440-1) << R300_CLIPRECT_X_SHIFT) |
886 ((scissor->maxy + 1440-1) << R300_CLIPRECT_Y_SHIFT));
887 }
888 END_CS;
889 }
890
891 void r300_emit_textures_state(struct r300_context *r300,
892 unsigned size, void *state)
893 {
894 struct r300_textures_state *allstate = (struct r300_textures_state*)state;
895 struct r300_texture_sampler_state *texstate;
896 struct r300_resource *tex;
897 unsigned i;
898 boolean has_us_format = r300->screen->caps.has_us_format;
899 CS_LOCALS(r300);
900
901 BEGIN_CS(size);
902 OUT_CS_REG(R300_TX_ENABLE, allstate->tx_enable);
903
904 for (i = 0; i < allstate->count; i++) {
905 if ((1 << i) & allstate->tx_enable) {
906 texstate = &allstate->regs[i];
907 tex = r300_resource(allstate->sampler_views[i]->base.texture);
908
909 OUT_CS_REG(R300_TX_FILTER0_0 + (i * 4), texstate->filter0);
910 OUT_CS_REG(R300_TX_FILTER1_0 + (i * 4), texstate->filter1);
911 OUT_CS_REG(R300_TX_BORDER_COLOR_0 + (i * 4),
912 texstate->border_color);
913
914 OUT_CS_REG(R300_TX_FORMAT0_0 + (i * 4), texstate->format.format0);
915 OUT_CS_REG(R300_TX_FORMAT1_0 + (i * 4), texstate->format.format1);
916 OUT_CS_REG(R300_TX_FORMAT2_0 + (i * 4), texstate->format.format2);
917
918 OUT_CS_REG(R300_TX_OFFSET_0 + (i * 4), texstate->format.tile_config);
919 OUT_CS_RELOC(tex);
920
921 if (has_us_format) {
922 OUT_CS_REG(R500_US_FORMAT0_0 + (i * 4),
923 texstate->format.us_format0);
924 }
925 }
926 }
927 END_CS;
928 }
929
930 void r300_emit_vertex_arrays(struct r300_context* r300, int offset,
931 boolean indexed, int instance_id)
932 {
933 struct pipe_vertex_buffer *vbuf = r300->vertex_buffer;
934 struct pipe_vertex_element *velem = r300->velems->velem;
935 struct r300_resource *buf;
936 int i;
937 unsigned vertex_array_count = r300->velems->count;
938 unsigned packet_size = (vertex_array_count * 3 + 1) / 2;
939 struct pipe_vertex_buffer *vb1, *vb2;
940 unsigned *hw_format_size = r300->velems->format_size;
941 unsigned size1, size2, offset1, offset2, stride1, stride2;
942 CS_LOCALS(r300);
943
944 BEGIN_CS(2 + packet_size + vertex_array_count * 2);
945 OUT_CS_PKT3(R300_PACKET3_3D_LOAD_VBPNTR, packet_size);
946 OUT_CS(vertex_array_count | (!indexed ? R300_VC_FORCE_PREFETCH : 0));
947
948 if (instance_id == -1) {
949 /* Non-instanced arrays. This ignores instance_divisor and instance_id. */
950 for (i = 0; i < vertex_array_count - 1; i += 2) {
951 vb1 = &vbuf[velem[i].vertex_buffer_index];
952 vb2 = &vbuf[velem[i+1].vertex_buffer_index];
953 size1 = hw_format_size[i];
954 size2 = hw_format_size[i+1];
955
956 OUT_CS(R300_VBPNTR_SIZE0(size1) | R300_VBPNTR_STRIDE0(vb1->stride) |
957 R300_VBPNTR_SIZE1(size2) | R300_VBPNTR_STRIDE1(vb2->stride));
958 OUT_CS(vb1->buffer_offset + velem[i].src_offset + offset * vb1->stride);
959 OUT_CS(vb2->buffer_offset + velem[i+1].src_offset + offset * vb2->stride);
960 }
961
962 if (vertex_array_count & 1) {
963 vb1 = &vbuf[velem[i].vertex_buffer_index];
964 size1 = hw_format_size[i];
965
966 OUT_CS(R300_VBPNTR_SIZE0(size1) | R300_VBPNTR_STRIDE0(vb1->stride));
967 OUT_CS(vb1->buffer_offset + velem[i].src_offset + offset * vb1->stride);
968 }
969
970 for (i = 0; i < vertex_array_count; i++) {
971 buf = r300_resource(vbuf[velem[i].vertex_buffer_index].buffer.resource);
972 OUT_CS_RELOC(buf);
973 }
974 } else {
975 /* Instanced arrays. */
976 for (i = 0; i < vertex_array_count - 1; i += 2) {
977 vb1 = &vbuf[velem[i].vertex_buffer_index];
978 vb2 = &vbuf[velem[i+1].vertex_buffer_index];
979 size1 = hw_format_size[i];
980 size2 = hw_format_size[i+1];
981
982 if (velem[i].instance_divisor) {
983 stride1 = 0;
984 offset1 = vb1->buffer_offset + velem[i].src_offset +
985 (instance_id / velem[i].instance_divisor) * vb1->stride;
986 } else {
987 stride1 = vb1->stride;
988 offset1 = vb1->buffer_offset + velem[i].src_offset + offset * vb1->stride;
989 }
990 if (velem[i+1].instance_divisor) {
991 stride2 = 0;
992 offset2 = vb2->buffer_offset + velem[i+1].src_offset +
993 (instance_id / velem[i+1].instance_divisor) * vb2->stride;
994 } else {
995 stride2 = vb2->stride;
996 offset2 = vb2->buffer_offset + velem[i+1].src_offset + offset * vb2->stride;
997 }
998
999 OUT_CS(R300_VBPNTR_SIZE0(size1) | R300_VBPNTR_STRIDE0(stride1) |
1000 R300_VBPNTR_SIZE1(size2) | R300_VBPNTR_STRIDE1(stride2));
1001 OUT_CS(offset1);
1002 OUT_CS(offset2);
1003 }
1004
1005 if (vertex_array_count & 1) {
1006 vb1 = &vbuf[velem[i].vertex_buffer_index];
1007 size1 = hw_format_size[i];
1008
1009 if (velem[i].instance_divisor) {
1010 stride1 = 0;
1011 offset1 = vb1->buffer_offset + velem[i].src_offset +
1012 (instance_id / velem[i].instance_divisor) * vb1->stride;
1013 } else {
1014 stride1 = vb1->stride;
1015 offset1 = vb1->buffer_offset + velem[i].src_offset + offset * vb1->stride;
1016 }
1017
1018 OUT_CS(R300_VBPNTR_SIZE0(size1) | R300_VBPNTR_STRIDE0(stride1));
1019 OUT_CS(offset1);
1020 }
1021
1022 for (i = 0; i < vertex_array_count; i++) {
1023 buf = r300_resource(vbuf[velem[i].vertex_buffer_index].buffer.resource);
1024 OUT_CS_RELOC(buf);
1025 }
1026 }
1027 END_CS;
1028 }
1029
1030 void r300_emit_vertex_arrays_swtcl(struct r300_context *r300, boolean indexed)
1031 {
1032 CS_LOCALS(r300);
1033
1034 DBG(r300, DBG_SWTCL, "r300: Preparing vertex buffer %p for render, "
1035 "vertex size %d\n", r300->vbo,
1036 r300->vertex_info.size);
1037 /* Set the pointer to our vertex buffer. The emitted values are this:
1038 * PACKET3 [3D_LOAD_VBPNTR]
1039 * COUNT [1]
1040 * FORMAT [size | stride << 8]
1041 * OFFSET [offset into BO]
1042 * VBPNTR [relocated BO]
1043 */
1044 BEGIN_CS(7);
1045 OUT_CS_PKT3(R300_PACKET3_3D_LOAD_VBPNTR, 3);
1046 OUT_CS(1 | (!indexed ? R300_VC_FORCE_PREFETCH : 0));
1047 OUT_CS(r300->vertex_info.size |
1048 (r300->vertex_info.size << 8));
1049 OUT_CS(r300->draw_vbo_offset);
1050 OUT_CS(0);
1051
1052 assert(r300->vbo);
1053 OUT_CS(0xc0001000); /* PKT3_NOP */
1054 OUT_CS(r300->rws->cs_lookup_buffer(r300->cs, r300->vbo) * 4);
1055 END_CS;
1056 }
1057
1058 void r300_emit_vertex_stream_state(struct r300_context* r300,
1059 unsigned size, void* state)
1060 {
1061 struct r300_vertex_stream_state *streams =
1062 (struct r300_vertex_stream_state*)state;
1063 unsigned i;
1064 CS_LOCALS(r300);
1065
1066 if (DBG_ON(r300, DBG_PSC)) {
1067 fprintf(stderr, "r300: PSC emit:\n");
1068
1069 for (i = 0; i < streams->count; i++) {
1070 fprintf(stderr, " : prog_stream_cntl%d: 0x%08x\n", i,
1071 streams->vap_prog_stream_cntl[i]);
1072 }
1073
1074 for (i = 0; i < streams->count; i++) {
1075 fprintf(stderr, " : prog_stream_cntl_ext%d: 0x%08x\n", i,
1076 streams->vap_prog_stream_cntl_ext[i]);
1077 }
1078 }
1079
1080 BEGIN_CS(size);
1081 OUT_CS_REG_SEQ(R300_VAP_PROG_STREAM_CNTL_0, streams->count);
1082 OUT_CS_TABLE(streams->vap_prog_stream_cntl, streams->count);
1083 OUT_CS_REG_SEQ(R300_VAP_PROG_STREAM_CNTL_EXT_0, streams->count);
1084 OUT_CS_TABLE(streams->vap_prog_stream_cntl_ext, streams->count);
1085 END_CS;
1086 }
1087
1088 void r300_emit_pvs_flush(struct r300_context* r300, unsigned size, void* state)
1089 {
1090 CS_LOCALS(r300);
1091
1092 BEGIN_CS(size);
1093 OUT_CS_REG(R300_VAP_PVS_STATE_FLUSH_REG, 0x0);
1094 END_CS;
1095 }
1096
1097 void r300_emit_vap_invariant_state(struct r300_context *r300,
1098 unsigned size, void *state)
1099 {
1100 CS_LOCALS(r300);
1101 WRITE_CS_TABLE(state, size);
1102 }
1103
1104 void r300_emit_vs_state(struct r300_context* r300, unsigned size, void* state)
1105 {
1106 struct r300_vertex_shader* vs = (struct r300_vertex_shader*)state;
1107 struct r300_vertex_program_code* code = &vs->code;
1108 struct r300_screen* r300screen = r300->screen;
1109 unsigned instruction_count = code->length / 4;
1110
1111 unsigned vtx_mem_size = r300screen->caps.is_r500 ? 128 : 72;
1112 unsigned input_count = MAX2(util_bitcount(code->InputsRead), 1);
1113 unsigned output_count = MAX2(util_bitcount(code->OutputsWritten), 1);
1114 unsigned temp_count = MAX2(code->num_temporaries, 1);
1115
1116 unsigned pvs_num_slots = MIN3(vtx_mem_size / input_count,
1117 vtx_mem_size / output_count, 10);
1118 unsigned pvs_num_controllers = MIN2(vtx_mem_size / temp_count, 5);
1119
1120 CS_LOCALS(r300);
1121
1122 BEGIN_CS(size);
1123
1124 /* R300_VAP_PVS_CODE_CNTL_0
1125 * R300_VAP_PVS_CONST_CNTL
1126 * R300_VAP_PVS_CODE_CNTL_1
1127 * See the r5xx docs for instructions on how to use these. */
1128 OUT_CS_REG(R300_VAP_PVS_CODE_CNTL_0, R300_PVS_FIRST_INST(0) |
1129 R300_PVS_XYZW_VALID_INST(instruction_count - 1) |
1130 R300_PVS_LAST_INST(instruction_count - 1));
1131 OUT_CS_REG(R300_VAP_PVS_CODE_CNTL_1, instruction_count - 1);
1132
1133 OUT_CS_REG(R300_VAP_PVS_VECTOR_INDX_REG, 0);
1134 OUT_CS_ONE_REG(R300_VAP_PVS_UPLOAD_DATA, code->length);
1135 OUT_CS_TABLE(code->body.d, code->length);
1136
1137 OUT_CS_REG(R300_VAP_CNTL, R300_PVS_NUM_SLOTS(pvs_num_slots) |
1138 R300_PVS_NUM_CNTLRS(pvs_num_controllers) |
1139 R300_PVS_NUM_FPUS(r300screen->caps.num_vert_fpus) |
1140 R300_PVS_VF_MAX_VTX_NUM(12) |
1141 (r300->clip_halfz ? R300_DX_CLIP_SPACE_DEF : 0) |
1142 (r300screen->caps.is_r500 ? R500_TCL_STATE_OPTIMIZATION : 0));
1143
1144 /* Emit flow control instructions. Even if there are no fc instructions,
1145 * we still need to write the registers to make sure they are cleared. */
1146 OUT_CS_REG(R300_VAP_PVS_FLOW_CNTL_OPC, code->fc_ops);
1147 if (r300screen->caps.is_r500) {
1148 OUT_CS_REG_SEQ(R500_VAP_PVS_FLOW_CNTL_ADDRS_LW_0, R300_VS_MAX_FC_OPS * 2);
1149 OUT_CS_TABLE(code->fc_op_addrs.r500, R300_VS_MAX_FC_OPS * 2);
1150 } else {
1151 OUT_CS_REG_SEQ(R300_VAP_PVS_FLOW_CNTL_ADDRS_0, R300_VS_MAX_FC_OPS);
1152 OUT_CS_TABLE(code->fc_op_addrs.r300, R300_VS_MAX_FC_OPS);
1153 }
1154 OUT_CS_REG_SEQ(R300_VAP_PVS_FLOW_CNTL_LOOP_INDEX_0, R300_VS_MAX_FC_OPS);
1155 OUT_CS_TABLE(code->fc_loop_index, R300_VS_MAX_FC_OPS);
1156
1157 END_CS;
1158 }
1159
1160 void r300_emit_vs_constants(struct r300_context* r300,
1161 unsigned size, void *state)
1162 {
1163 unsigned count =
1164 ((struct r300_vertex_shader*)r300->vs_state.state)->externals_count;
1165 struct r300_constant_buffer *buf = (struct r300_constant_buffer*)state;
1166 struct r300_vertex_shader *vs = (struct r300_vertex_shader*)r300->vs_state.state;
1167 unsigned i;
1168 int imm_first = vs->externals_count;
1169 int imm_end = vs->code.constants.Count;
1170 int imm_count = vs->immediates_count;
1171 CS_LOCALS(r300);
1172
1173 BEGIN_CS(size);
1174 OUT_CS_REG(R300_VAP_PVS_CONST_CNTL,
1175 R300_PVS_CONST_BASE_OFFSET(buf->buffer_base) |
1176 R300_PVS_MAX_CONST_ADDR(MAX2(imm_end - 1, 0)));
1177 if (vs->externals_count) {
1178 OUT_CS_REG(R300_VAP_PVS_VECTOR_INDX_REG,
1179 (r300->screen->caps.is_r500 ?
1180 R500_PVS_CONST_START : R300_PVS_CONST_START) + buf->buffer_base);
1181 OUT_CS_ONE_REG(R300_VAP_PVS_UPLOAD_DATA, count * 4);
1182 if (buf->remap_table){
1183 for (i = 0; i < count; i++) {
1184 uint32_t *data = &buf->ptr[buf->remap_table[i]*4];
1185 OUT_CS_TABLE(data, 4);
1186 }
1187 } else {
1188 OUT_CS_TABLE(buf->ptr, count * 4);
1189 }
1190 }
1191
1192 /* Emit immediates. */
1193 if (imm_count) {
1194 OUT_CS_REG(R300_VAP_PVS_VECTOR_INDX_REG,
1195 (r300->screen->caps.is_r500 ?
1196 R500_PVS_CONST_START : R300_PVS_CONST_START) +
1197 buf->buffer_base + imm_first);
1198 OUT_CS_ONE_REG(R300_VAP_PVS_UPLOAD_DATA, imm_count * 4);
1199 for (i = imm_first; i < imm_end; i++) {
1200 const float *data = vs->code.constants.Constants[i].u.Immediate;
1201 OUT_CS_TABLE(data, 4);
1202 }
1203 }
1204 END_CS;
1205 }
1206
1207 void r300_emit_viewport_state(struct r300_context* r300,
1208 unsigned size, void* state)
1209 {
1210 struct r300_viewport_state* viewport = (struct r300_viewport_state*)state;
1211 CS_LOCALS(r300);
1212
1213 BEGIN_CS(size);
1214 OUT_CS_REG_SEQ(R300_SE_VPORT_XSCALE, 6);
1215 OUT_CS_TABLE(&viewport->xscale, 6);
1216 OUT_CS_REG(R300_VAP_VTE_CNTL, viewport->vte_control);
1217 END_CS;
1218 }
1219
1220 void r300_emit_hiz_clear(struct r300_context *r300, unsigned size, void *state)
1221 {
1222 struct pipe_framebuffer_state *fb =
1223 (struct pipe_framebuffer_state*)r300->fb_state.state;
1224 struct r300_resource* tex;
1225 CS_LOCALS(r300);
1226
1227 tex = r300_resource(fb->zsbuf->texture);
1228
1229 BEGIN_CS(size);
1230 OUT_CS_PKT3(R300_PACKET3_3D_CLEAR_HIZ, 2);
1231 OUT_CS(0);
1232 OUT_CS(tex->tex.hiz_dwords[fb->zsbuf->u.tex.level]);
1233 OUT_CS(r300->hiz_clear_value);
1234 END_CS;
1235
1236 /* Mark the current zbuffer's hiz ram as in use. */
1237 r300->hiz_in_use = TRUE;
1238 r300->hiz_func = HIZ_FUNC_NONE;
1239 r300_mark_atom_dirty(r300, &r300->hyperz_state);
1240 }
1241
1242 void r300_emit_zmask_clear(struct r300_context *r300, unsigned size, void *state)
1243 {
1244 struct pipe_framebuffer_state *fb =
1245 (struct pipe_framebuffer_state*)r300->fb_state.state;
1246 struct r300_resource *tex;
1247 CS_LOCALS(r300);
1248
1249 tex = r300_resource(fb->zsbuf->texture);
1250
1251 BEGIN_CS(size);
1252 OUT_CS_PKT3(R300_PACKET3_3D_CLEAR_ZMASK, 2);
1253 OUT_CS(0);
1254 OUT_CS(tex->tex.zmask_dwords[fb->zsbuf->u.tex.level]);
1255 OUT_CS(0);
1256 END_CS;
1257
1258 /* Mark the current zbuffer's zmask as in use. */
1259 r300->zmask_in_use = TRUE;
1260 r300_mark_atom_dirty(r300, &r300->hyperz_state);
1261 }
1262
1263 void r300_emit_cmask_clear(struct r300_context *r300, unsigned size, void *state)
1264 {
1265 struct pipe_framebuffer_state *fb =
1266 (struct pipe_framebuffer_state*)r300->fb_state.state;
1267 struct r300_resource *tex;
1268 CS_LOCALS(r300);
1269
1270 tex = r300_resource(fb->cbufs[0]->texture);
1271
1272 BEGIN_CS(size);
1273 OUT_CS_PKT3(R300_PACKET3_3D_CLEAR_CMASK, 2);
1274 OUT_CS(0);
1275 OUT_CS(tex->tex.cmask_dwords);
1276 OUT_CS(0);
1277 END_CS;
1278
1279 /* Mark the current zbuffer's zmask as in use. */
1280 r300->cmask_in_use = TRUE;
1281 r300_mark_fb_state_dirty(r300, R300_CHANGED_CMASK_ENABLE);
1282 }
1283
1284 void r300_emit_ztop_state(struct r300_context* r300,
1285 unsigned size, void* state)
1286 {
1287 struct r300_ztop_state* ztop = (struct r300_ztop_state*)state;
1288 CS_LOCALS(r300);
1289
1290 BEGIN_CS(size);
1291 OUT_CS_REG(R300_ZB_ZTOP, ztop->z_buffer_top);
1292 END_CS;
1293 }
1294
1295 void r300_emit_texture_cache_inval(struct r300_context* r300, unsigned size, void* state)
1296 {
1297 CS_LOCALS(r300);
1298
1299 BEGIN_CS(size);
1300 OUT_CS_REG(R300_TX_INVALTAGS, 0);
1301 END_CS;
1302 }
1303
1304 boolean r300_emit_buffer_validate(struct r300_context *r300,
1305 boolean do_validate_vertex_buffers,
1306 struct pipe_resource *index_buffer)
1307 {
1308 struct pipe_framebuffer_state *fb =
1309 (struct pipe_framebuffer_state*)r300->fb_state.state;
1310 struct r300_aa_state *aa = (struct r300_aa_state*)r300->aa_state.state;
1311 struct r300_textures_state *texstate =
1312 (struct r300_textures_state*)r300->textures_state.state;
1313 struct r300_resource *tex;
1314 unsigned i;
1315 boolean flushed = FALSE;
1316
1317 validate:
1318 if (r300->fb_state.dirty) {
1319 /* Color buffers... */
1320 for (i = 0; i < fb->nr_cbufs; i++) {
1321 if (!fb->cbufs[i])
1322 continue;
1323 tex = r300_resource(fb->cbufs[i]->texture);
1324 assert(tex && tex->buf && "cbuf is marked, but NULL!");
1325 r300->rws->cs_add_buffer(r300->cs, tex->buf,
1326 RADEON_USAGE_READWRITE | RADEON_USAGE_SYNCHRONIZED,
1327 r300_surface(fb->cbufs[i])->domain,
1328 tex->b.b.nr_samples > 1 ?
1329 RADEON_PRIO_COLOR_BUFFER_MSAA :
1330 RADEON_PRIO_COLOR_BUFFER);
1331 }
1332 /* ...depth buffer... */
1333 if (fb->zsbuf) {
1334 tex = r300_resource(fb->zsbuf->texture);
1335 assert(tex && tex->buf && "zsbuf is marked, but NULL!");
1336 r300->rws->cs_add_buffer(r300->cs, tex->buf,
1337 RADEON_USAGE_READWRITE | RADEON_USAGE_SYNCHRONIZED,
1338 r300_surface(fb->zsbuf)->domain,
1339 tex->b.b.nr_samples > 1 ?
1340 RADEON_PRIO_DEPTH_BUFFER_MSAA :
1341 RADEON_PRIO_DEPTH_BUFFER);
1342 }
1343 }
1344 /* The AA resolve buffer. */
1345 if (r300->aa_state.dirty) {
1346 if (aa->dest) {
1347 r300->rws->cs_add_buffer(r300->cs, aa->dest->buf,
1348 RADEON_USAGE_WRITE | RADEON_USAGE_SYNCHRONIZED,
1349 aa->dest->domain,
1350 RADEON_PRIO_COLOR_BUFFER);
1351 }
1352 }
1353 if (r300->textures_state.dirty) {
1354 /* ...textures... */
1355 for (i = 0; i < texstate->count; i++) {
1356 if (!(texstate->tx_enable & (1 << i))) {
1357 continue;
1358 }
1359
1360 tex = r300_resource(texstate->sampler_views[i]->base.texture);
1361 r300->rws->cs_add_buffer(r300->cs, tex->buf,
1362 RADEON_USAGE_READ | RADEON_USAGE_SYNCHRONIZED,
1363 tex->domain, RADEON_PRIO_SAMPLER_TEXTURE);
1364 }
1365 }
1366 /* ...occlusion query buffer... */
1367 if (r300->query_current)
1368 r300->rws->cs_add_buffer(r300->cs, r300->query_current->buf,
1369 RADEON_USAGE_WRITE | RADEON_USAGE_SYNCHRONIZED,
1370 RADEON_DOMAIN_GTT,
1371 RADEON_PRIO_QUERY);
1372 /* ...vertex buffer for SWTCL path... */
1373 if (r300->vbo)
1374 r300->rws->cs_add_buffer(r300->cs, r300->vbo,
1375 RADEON_USAGE_READ | RADEON_USAGE_SYNCHRONIZED,
1376 RADEON_DOMAIN_GTT,
1377 RADEON_PRIO_VERTEX_BUFFER);
1378 /* ...vertex buffers for HWTCL path... */
1379 if (do_validate_vertex_buffers && r300->vertex_arrays_dirty) {
1380 struct pipe_vertex_buffer *vbuf = r300->vertex_buffer;
1381 struct pipe_vertex_buffer *last = r300->vertex_buffer +
1382 r300->nr_vertex_buffers;
1383 struct pipe_resource *buf;
1384
1385 for (; vbuf != last; vbuf++) {
1386 buf = vbuf->buffer.resource;
1387 if (!buf)
1388 continue;
1389
1390 r300->rws->cs_add_buffer(r300->cs, r300_resource(buf)->buf,
1391 RADEON_USAGE_READ | RADEON_USAGE_SYNCHRONIZED,
1392 r300_resource(buf)->domain,
1393 RADEON_PRIO_SAMPLER_BUFFER);
1394 }
1395 }
1396 /* ...and index buffer for HWTCL path. */
1397 if (index_buffer)
1398 r300->rws->cs_add_buffer(r300->cs, r300_resource(index_buffer)->buf,
1399 RADEON_USAGE_READ | RADEON_USAGE_SYNCHRONIZED,
1400 r300_resource(index_buffer)->domain,
1401 RADEON_PRIO_INDEX_BUFFER);
1402
1403 /* Now do the validation (flush is called inside cs_validate on failure). */
1404 if (!r300->rws->cs_validate(r300->cs)) {
1405 /* Ooops, an infinite loop, give up. */
1406 if (flushed)
1407 return FALSE;
1408
1409 flushed = TRUE;
1410 goto validate;
1411 }
1412
1413 return TRUE;
1414 }
1415
1416 unsigned r300_get_num_dirty_dwords(struct r300_context *r300)
1417 {
1418 struct r300_atom* atom;
1419 unsigned dwords = 0;
1420
1421 foreach_dirty_atom(r300, atom) {
1422 if (atom->dirty) {
1423 dwords += atom->size;
1424 }
1425 }
1426
1427 /* let's reserve some more, just in case */
1428 dwords += 32;
1429
1430 return dwords;
1431 }
1432
1433 unsigned r300_get_num_cs_end_dwords(struct r300_context *r300)
1434 {
1435 unsigned dwords = 0;
1436
1437 /* Emitted in flush. */
1438 dwords += 26; /* emit_query_end */
1439 dwords += r300->hyperz_state.size + 2; /* emit_hyperz_end + zcache flush */
1440 if (r300->screen->caps.is_r500)
1441 dwords += 2; /* emit_index_bias */
1442 dwords += 3; /* MSPOS */
1443
1444 return dwords;
1445 }
1446
1447 /* Emit all dirty state. */
1448 void r300_emit_dirty_state(struct r300_context* r300)
1449 {
1450 struct r300_atom *atom;
1451
1452 foreach_dirty_atom(r300, atom) {
1453 if (atom->dirty) {
1454 atom->emit(r300, atom->size, atom->state);
1455 atom->dirty = FALSE;
1456 }
1457 }
1458
1459 r300->first_dirty = NULL;
1460 r300->last_dirty = NULL;
1461 r300->dirty_hw++;
1462 }