r300g: do not track whether occlusion queries have been flushed
[mesa.git] / src / gallium / drivers / r300 / r300_emit.c
1 /*
2 * Copyright 2008 Corbin Simpson <MostAwesomeDude@gmail.com>
3 * Copyright 2009 Marek Olšák <maraeo@gmail.com>
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * on the rights to use, copy, modify, merge, publish, distribute, sub
9 * license, and/or sell copies of the Software, and to permit persons to whom
10 * the Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE. */
23
24 /* r300_emit: Functions for emitting state. */
25
26 #include "util/u_format.h"
27 #include "util/u_math.h"
28 #include "util/u_mm.h"
29
30 #include "r300_context.h"
31 #include "r300_cb.h"
32 #include "r300_cs.h"
33 #include "r300_emit.h"
34 #include "r300_fs.h"
35 #include "r300_screen.h"
36 #include "r300_screen_buffer.h"
37 #include "r300_vs.h"
38
39 void r300_emit_blend_state(struct r300_context* r300,
40 unsigned size, void* state)
41 {
42 struct r300_blend_state* blend = (struct r300_blend_state*)state;
43 struct pipe_framebuffer_state* fb =
44 (struct pipe_framebuffer_state*)r300->fb_state.state;
45 CS_LOCALS(r300);
46
47 if (fb->nr_cbufs) {
48 WRITE_CS_TABLE(blend->cb, size);
49 } else {
50 WRITE_CS_TABLE(blend->cb_no_readwrite, size);
51 }
52 }
53
54 void r300_emit_blend_color_state(struct r300_context* r300,
55 unsigned size, void* state)
56 {
57 struct r300_blend_color_state* bc = (struct r300_blend_color_state*)state;
58 CS_LOCALS(r300);
59
60 WRITE_CS_TABLE(bc->cb, size);
61 }
62
63 void r300_emit_clip_state(struct r300_context* r300,
64 unsigned size, void* state)
65 {
66 struct r300_clip_state* clip = (struct r300_clip_state*)state;
67 CS_LOCALS(r300);
68
69 WRITE_CS_TABLE(clip->cb, size);
70 }
71
72 void r300_emit_dsa_state(struct r300_context* r300, unsigned size, void* state)
73 {
74 struct r300_dsa_state* dsa = (struct r300_dsa_state*)state;
75 struct pipe_framebuffer_state* fb =
76 (struct pipe_framebuffer_state*)r300->fb_state.state;
77 CS_LOCALS(r300);
78
79 if (fb->zsbuf) {
80 WRITE_CS_TABLE(&dsa->cb_begin, size);
81 } else {
82 WRITE_CS_TABLE(dsa->cb_no_readwrite, size);
83 }
84 }
85
86 static void get_rc_constant_state(
87 float vec[4],
88 struct r300_context * r300,
89 struct rc_constant * constant)
90 {
91 struct r300_textures_state* texstate = r300->textures_state.state;
92 struct r300_resource *tex;
93
94 assert(constant->Type == RC_CONSTANT_STATE);
95
96 /* vec should either be (0, 0, 0, 1), which should be a relatively safe
97 * RGBA or STRQ value, or it could be one of the RC_CONSTANT_STATE
98 * state factors. */
99
100 switch (constant->u.State[0]) {
101 /* Factor for converting rectangle coords to
102 * normalized coords. Should only show up on non-r500. */
103 case RC_STATE_R300_TEXRECT_FACTOR:
104 tex = r300_resource(texstate->sampler_views[constant->u.State[1]]->base.texture);
105 vec[0] = 1.0 / tex->tex.width0;
106 vec[1] = 1.0 / tex->tex.height0;
107 vec[2] = 0;
108 vec[3] = 1;
109 break;
110
111 case RC_STATE_R300_TEXSCALE_FACTOR:
112 tex = r300_resource(texstate->sampler_views[constant->u.State[1]]->base.texture);
113 /* Add a small number to the texture size to work around rounding errors in hw. */
114 vec[0] = tex->b.b.b.width0 / (tex->tex.width0 + 0.001f);
115 vec[1] = tex->b.b.b.height0 / (tex->tex.height0 + 0.001f);
116 vec[2] = tex->b.b.b.depth0 / (tex->tex.depth0 + 0.001f);
117 vec[3] = 1;
118 break;
119
120 case RC_STATE_R300_VIEWPORT_SCALE:
121 vec[0] = r300->viewport.scale[0];
122 vec[1] = r300->viewport.scale[1];
123 vec[2] = r300->viewport.scale[2];
124 vec[3] = 1;
125 break;
126
127 case RC_STATE_R300_VIEWPORT_OFFSET:
128 vec[0] = r300->viewport.translate[0];
129 vec[1] = r300->viewport.translate[1];
130 vec[2] = r300->viewport.translate[2];
131 vec[3] = 1;
132 break;
133
134 default:
135 fprintf(stderr, "r300: Implementation error: "
136 "Unknown RC_CONSTANT type %d\n", constant->u.State[0]);
137 vec[0] = 0;
138 vec[1] = 0;
139 vec[2] = 0;
140 vec[3] = 1;
141 }
142 }
143
144 /* Convert a normal single-precision float into the 7.16 format
145 * used by the R300 fragment shader.
146 */
147 uint32_t pack_float24(float f)
148 {
149 union {
150 float fl;
151 uint32_t u;
152 } u;
153 float mantissa;
154 int exponent;
155 uint32_t float24 = 0;
156
157 if (f == 0.0)
158 return 0;
159
160 u.fl = f;
161
162 mantissa = frexpf(f, &exponent);
163
164 /* Handle -ve */
165 if (mantissa < 0) {
166 float24 |= (1 << 23);
167 mantissa = mantissa * -1.0;
168 }
169 /* Handle exponent, bias of 63 */
170 exponent += 62;
171 float24 |= (exponent << 16);
172 /* Kill 7 LSB of mantissa */
173 float24 |= (u.u & 0x7FFFFF) >> 7;
174
175 return float24;
176 }
177
178 void r300_emit_fs(struct r300_context* r300, unsigned size, void *state)
179 {
180 struct r300_fragment_shader *fs = r300_fs(r300);
181 CS_LOCALS(r300);
182
183 WRITE_CS_TABLE(fs->shader->cb_code, fs->shader->cb_code_size);
184 }
185
186 void r300_emit_fs_constants(struct r300_context* r300, unsigned size, void *state)
187 {
188 struct r300_fragment_shader *fs = r300_fs(r300);
189 struct r300_constant_buffer *buf = (struct r300_constant_buffer*)state;
190 unsigned count = fs->shader->externals_count;
191 unsigned i, j;
192 CS_LOCALS(r300);
193
194 if (count == 0)
195 return;
196
197 BEGIN_CS(size);
198 OUT_CS_REG_SEQ(R300_PFS_PARAM_0_X, count * 4);
199 if (buf->remap_table){
200 for (i = 0; i < count; i++) {
201 float *data = (float*)&buf->ptr[buf->remap_table[i]*4];
202 for (j = 0; j < 4; j++)
203 OUT_CS(pack_float24(data[j]));
204 }
205 } else {
206 for (i = 0; i < count; i++)
207 for (j = 0; j < 4; j++)
208 OUT_CS(pack_float24(*(float*)&buf->ptr[i*4+j]));
209 }
210
211 END_CS;
212 }
213
214 void r300_emit_fs_rc_constant_state(struct r300_context* r300, unsigned size, void *state)
215 {
216 struct r300_fragment_shader *fs = r300_fs(r300);
217 struct rc_constant_list *constants = &fs->shader->code.constants;
218 unsigned i;
219 unsigned count = fs->shader->rc_state_count;
220 unsigned first = fs->shader->externals_count;
221 unsigned end = constants->Count;
222 unsigned j;
223 CS_LOCALS(r300);
224
225 if (count == 0)
226 return;
227
228 BEGIN_CS(size);
229 for(i = first; i < end; ++i) {
230 if (constants->Constants[i].Type == RC_CONSTANT_STATE) {
231 float data[4];
232
233 get_rc_constant_state(data, r300, &constants->Constants[i]);
234
235 OUT_CS_REG_SEQ(R300_PFS_PARAM_0_X + i * 16, 4);
236 for (j = 0; j < 4; j++)
237 OUT_CS(pack_float24(data[j]));
238 }
239 }
240 END_CS;
241 }
242
243 void r500_emit_fs(struct r300_context* r300, unsigned size, void *state)
244 {
245 struct r300_fragment_shader *fs = r300_fs(r300);
246 CS_LOCALS(r300);
247
248 WRITE_CS_TABLE(fs->shader->cb_code, fs->shader->cb_code_size);
249 }
250
251 void r500_emit_fs_constants(struct r300_context* r300, unsigned size, void *state)
252 {
253 struct r300_fragment_shader *fs = r300_fs(r300);
254 struct r300_constant_buffer *buf = (struct r300_constant_buffer*)state;
255 unsigned count = fs->shader->externals_count;
256 CS_LOCALS(r300);
257
258 if (count == 0)
259 return;
260
261 BEGIN_CS(size);
262 OUT_CS_REG(R500_GA_US_VECTOR_INDEX, R500_GA_US_VECTOR_INDEX_TYPE_CONST);
263 OUT_CS_ONE_REG(R500_GA_US_VECTOR_DATA, count * 4);
264 if (buf->remap_table){
265 for (unsigned i = 0; i < count; i++) {
266 uint32_t *data = &buf->ptr[buf->remap_table[i]*4];
267 OUT_CS_TABLE(data, 4);
268 }
269 } else {
270 OUT_CS_TABLE(buf->ptr, count * 4);
271 }
272 END_CS;
273 }
274
275 void r500_emit_fs_rc_constant_state(struct r300_context* r300, unsigned size, void *state)
276 {
277 struct r300_fragment_shader *fs = r300_fs(r300);
278 struct rc_constant_list *constants = &fs->shader->code.constants;
279 unsigned i;
280 unsigned count = fs->shader->rc_state_count;
281 unsigned first = fs->shader->externals_count;
282 unsigned end = constants->Count;
283 CS_LOCALS(r300);
284
285 if (count == 0)
286 return;
287
288 BEGIN_CS(size);
289 for(i = first; i < end; ++i) {
290 if (constants->Constants[i].Type == RC_CONSTANT_STATE) {
291 float data[4];
292
293 get_rc_constant_state(data, r300, &constants->Constants[i]);
294
295 OUT_CS_REG(R500_GA_US_VECTOR_INDEX,
296 R500_GA_US_VECTOR_INDEX_TYPE_CONST |
297 (i & R500_GA_US_VECTOR_INDEX_MASK));
298 OUT_CS_ONE_REG(R500_GA_US_VECTOR_DATA, 4);
299 OUT_CS_TABLE(data, 4);
300 }
301 }
302 END_CS;
303 }
304
305 void r300_emit_gpu_flush(struct r300_context *r300, unsigned size, void *state)
306 {
307 struct r300_gpu_flush *gpuflush = (struct r300_gpu_flush*)state;
308 struct pipe_framebuffer_state* fb =
309 (struct pipe_framebuffer_state*)r300->fb_state.state;
310 uint32_t height = fb->height;
311 uint32_t width = fb->width;
312 CS_LOCALS(r300);
313
314 if (r300->cbzb_clear) {
315 struct r300_surface *surf = r300_surface(fb->cbufs[0]);
316
317 height = surf->cbzb_height;
318 width = surf->cbzb_width;
319 }
320
321 DBG(r300, DBG_SCISSOR,
322 "r300: Scissor width: %i, height: %i, CBZB clear: %s\n",
323 width, height, r300->cbzb_clear ? "YES" : "NO");
324
325 BEGIN_CS(size);
326
327 /* Set up scissors.
328 * By writing to the SC registers, SC & US assert idle. */
329 OUT_CS_REG_SEQ(R300_SC_SCISSORS_TL, 2);
330 if (r300->screen->caps.is_r500) {
331 OUT_CS(0);
332 OUT_CS(((width - 1) << R300_SCISSORS_X_SHIFT) |
333 ((height - 1) << R300_SCISSORS_Y_SHIFT));
334 } else {
335 OUT_CS((1440 << R300_SCISSORS_X_SHIFT) |
336 (1440 << R300_SCISSORS_Y_SHIFT));
337 OUT_CS(((width + 1440-1) << R300_SCISSORS_X_SHIFT) |
338 ((height + 1440-1) << R300_SCISSORS_Y_SHIFT));
339 }
340
341 /* Flush CB & ZB caches and wait until the 3D engine is idle and clean. */
342 OUT_CS_TABLE(gpuflush->cb_flush_clean, 6);
343 END_CS;
344 }
345
346 void r300_emit_aa_state(struct r300_context *r300, unsigned size, void *state)
347 {
348 struct r300_aa_state *aa = (struct r300_aa_state*)state;
349 CS_LOCALS(r300);
350
351 BEGIN_CS(size);
352 OUT_CS_REG(R300_GB_AA_CONFIG, aa->aa_config);
353
354 if (aa->dest) {
355 OUT_CS_REG(R300_RB3D_AARESOLVE_OFFSET, aa->dest->offset);
356 OUT_CS_RELOC(aa->dest);
357 OUT_CS_REG(R300_RB3D_AARESOLVE_PITCH, aa->dest->pitch);
358 }
359
360 OUT_CS_REG(R300_RB3D_AARESOLVE_CTL, aa->aaresolve_ctl);
361 END_CS;
362 }
363
364 void r300_emit_fb_state(struct r300_context* r300, unsigned size, void* state)
365 {
366 struct pipe_framebuffer_state* fb = (struct pipe_framebuffer_state*)state;
367 struct r300_surface* surf;
368 unsigned i;
369 boolean can_hyperz = r300->rws->get_value(r300->rws, R300_CAN_HYPERZ);
370 uint32_t rb3d_cctl = 0;
371
372 CS_LOCALS(r300);
373
374 BEGIN_CS(size);
375
376 /* NUM_MULTIWRITES replicates COLOR[0] to all colorbuffers, which is not
377 * what we usually want. */
378 if (r300->screen->caps.is_r500) {
379 rb3d_cctl = R300_RB3D_CCTL_INDEPENDENT_COLORFORMAT_ENABLE_ENABLE;
380 }
381 if (fb->nr_cbufs &&
382 r300_fragment_shader_writes_all(r300_fs(r300))) {
383 rb3d_cctl |= R300_RB3D_CCTL_NUM_MULTIWRITES(fb->nr_cbufs);
384 }
385
386 OUT_CS_REG(R300_RB3D_CCTL, rb3d_cctl);
387
388 /* Set up colorbuffers. */
389 for (i = 0; i < fb->nr_cbufs; i++) {
390 surf = r300_surface(fb->cbufs[i]);
391
392 OUT_CS_REG(R300_RB3D_COLOROFFSET0 + (4 * i), surf->offset);
393 OUT_CS_RELOC(surf);
394
395 OUT_CS_REG(R300_RB3D_COLORPITCH0 + (4 * i), surf->pitch);
396 OUT_CS_RELOC(surf);
397 }
398
399 /* Set up the ZB part of the CBZB clear. */
400 if (r300->cbzb_clear) {
401 surf = r300_surface(fb->cbufs[0]);
402
403 OUT_CS_REG(R300_ZB_FORMAT, surf->cbzb_format);
404
405 OUT_CS_REG(R300_ZB_DEPTHOFFSET, surf->cbzb_midpoint_offset);
406 OUT_CS_RELOC(surf);
407
408 OUT_CS_REG(R300_ZB_DEPTHPITCH, surf->cbzb_pitch);
409 OUT_CS_RELOC(surf);
410
411 DBG(r300, DBG_CBZB,
412 "CBZB clearing cbuf %08x %08x\n", surf->cbzb_format,
413 surf->cbzb_pitch);
414 }
415 /* Set up a zbuffer. */
416 else if (fb->zsbuf) {
417 surf = r300_surface(fb->zsbuf);
418
419 OUT_CS_REG(R300_ZB_FORMAT, surf->format);
420
421 OUT_CS_REG(R300_ZB_DEPTHOFFSET, surf->offset);
422 OUT_CS_RELOC(surf);
423
424 OUT_CS_REG(R300_ZB_DEPTHPITCH, surf->pitch);
425 OUT_CS_RELOC(surf);
426
427 if (can_hyperz) {
428 uint32_t surf_pitch;
429 struct r300_resource *tex;
430 int level = surf->base.u.tex.level;
431 tex = r300_resource(surf->base.texture);
432
433 surf_pitch = surf->pitch & R300_DEPTHPITCH_MASK;
434
435 /* HiZ RAM. */
436 if (r300->screen->caps.hiz_ram) {
437 if (tex->hiz_mem[level]) {
438 OUT_CS_REG(R300_ZB_HIZ_OFFSET, tex->hiz_mem[level]->ofs << 2);
439 OUT_CS_REG(R300_ZB_HIZ_PITCH, surf_pitch);
440 } else {
441 OUT_CS_REG(R300_ZB_HIZ_OFFSET, 0);
442 OUT_CS_REG(R300_ZB_HIZ_PITCH, 0);
443 }
444 }
445
446 /* Z Mask RAM. (compressed zbuffer) */
447 OUT_CS_REG(R300_ZB_ZMASK_OFFSET, 0);
448 OUT_CS_REG(R300_ZB_ZMASK_PITCH, surf_pitch);
449 }
450 }
451
452 END_CS;
453 }
454
455 void r300_emit_hyperz_state(struct r300_context *r300,
456 unsigned size, void *state)
457 {
458 struct r300_hyperz_state *z = state;
459 CS_LOCALS(r300);
460
461 if (z->flush)
462 WRITE_CS_TABLE(&z->cb_flush_begin, size);
463 else
464 WRITE_CS_TABLE(&z->cb_begin, size - 2);
465 }
466
467 void r300_emit_hyperz_end(struct r300_context *r300)
468 {
469 struct r300_hyperz_state z =
470 *(struct r300_hyperz_state*)r300->hyperz_state.state;
471
472 z.flush = 1;
473 z.zb_bw_cntl = 0;
474 z.zb_depthclearvalue = 0;
475 z.sc_hyperz = R300_SC_HYPERZ_ADJ_2;
476 z.gb_z_peq_config = 0;
477
478 r300_emit_hyperz_state(r300, r300->hyperz_state.size, &z);
479 }
480
481 void r300_emit_fb_state_pipelined(struct r300_context *r300,
482 unsigned size, void *state)
483 {
484 struct pipe_framebuffer_state* fb =
485 (struct pipe_framebuffer_state*)r300->fb_state.state;
486 unsigned i, num_cbufs = fb->nr_cbufs;
487 CS_LOCALS(r300);
488
489 /* If we use the multiwrite feature, the colorbuffers 2,3,4 must be
490 * marked as UNUSED in the US block. */
491 if (r300_fragment_shader_writes_all(r300_fs(r300))) {
492 num_cbufs = MIN2(num_cbufs, 1);
493 }
494
495 BEGIN_CS(size);
496
497 /* Colorbuffer format in the US block.
498 * (must be written after unpipelined regs) */
499 OUT_CS_REG_SEQ(R300_US_OUT_FMT_0, 4);
500 for (i = 0; i < num_cbufs; i++) {
501 OUT_CS(r300_surface(fb->cbufs[i])->format);
502 }
503 for (; i < 4; i++) {
504 OUT_CS(R300_US_OUT_FMT_UNUSED);
505 }
506
507 /* Multisampling. Depends on framebuffer sample count.
508 * These are pipelined regs and as such cannot be moved
509 * to the AA state. */
510 if (r300->rws->get_value(r300->rws, R300_VID_DRM_2_3_0)) {
511 unsigned mspos0 = 0x66666666;
512 unsigned mspos1 = 0x6666666;
513
514 if (fb->nr_cbufs && fb->cbufs[0]->texture->nr_samples > 1) {
515 /* Subsample placement. These may not be optimal. */
516 switch (fb->cbufs[0]->texture->nr_samples) {
517 case 2:
518 mspos0 = 0x33996633;
519 mspos1 = 0x6666663;
520 break;
521 case 3:
522 mspos0 = 0x33936933;
523 mspos1 = 0x6666663;
524 break;
525 case 4:
526 mspos0 = 0x33939933;
527 mspos1 = 0x3966663;
528 break;
529 case 6:
530 mspos0 = 0x22a2aa22;
531 mspos1 = 0x2a65672;
532 break;
533 default:
534 debug_printf("r300: Bad number of multisamples!\n");
535 }
536 }
537
538 OUT_CS_REG_SEQ(R300_GB_MSPOS0, 2);
539 OUT_CS(mspos0);
540 OUT_CS(mspos1);
541 }
542 END_CS;
543 }
544
545 void r300_emit_query_start(struct r300_context *r300, unsigned size, void*state)
546 {
547 struct r300_query *query = r300->query_current;
548 CS_LOCALS(r300);
549
550 if (!query)
551 return;
552
553 BEGIN_CS(size);
554 if (r300->screen->caps.family == CHIP_FAMILY_RV530) {
555 OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_ALL);
556 } else {
557 OUT_CS_REG(R300_SU_REG_DEST, R300_RASTER_PIPE_SELECT_ALL);
558 }
559 OUT_CS_REG(R300_ZB_ZPASS_DATA, 0);
560 END_CS;
561 query->begin_emitted = TRUE;
562 }
563
564 static void r300_emit_query_end_frag_pipes(struct r300_context *r300,
565 struct r300_query *query)
566 {
567 struct r300_capabilities* caps = &r300->screen->caps;
568 CS_LOCALS(r300);
569
570 assert(caps->num_frag_pipes);
571
572 BEGIN_CS(6 * caps->num_frag_pipes + 2);
573 /* I'm not so sure I like this switch, but it's hard to be elegant
574 * when there's so many special cases...
575 *
576 * So here's the basic idea. For each pipe, enable writes to it only,
577 * then put out the relocation for ZPASS_ADDR, taking into account a
578 * 4-byte offset for each pipe. RV380 and older are special; they have
579 * only two pipes, and the second pipe's enable is on bit 3, not bit 1,
580 * so there's a chipset cap for that. */
581 switch (caps->num_frag_pipes) {
582 case 4:
583 /* pipe 3 only */
584 OUT_CS_REG(R300_SU_REG_DEST, 1 << 3);
585 OUT_CS_REG(R300_ZB_ZPASS_ADDR, (query->num_results + 3) * 4);
586 OUT_CS_RELOC(r300->query_current);
587 case 3:
588 /* pipe 2 only */
589 OUT_CS_REG(R300_SU_REG_DEST, 1 << 2);
590 OUT_CS_REG(R300_ZB_ZPASS_ADDR, (query->num_results + 2) * 4);
591 OUT_CS_RELOC(r300->query_current);
592 case 2:
593 /* pipe 1 only */
594 /* As mentioned above, accomodate RV380 and older. */
595 OUT_CS_REG(R300_SU_REG_DEST,
596 1 << (caps->high_second_pipe ? 3 : 1));
597 OUT_CS_REG(R300_ZB_ZPASS_ADDR, (query->num_results + 1) * 4);
598 OUT_CS_RELOC(r300->query_current);
599 case 1:
600 /* pipe 0 only */
601 OUT_CS_REG(R300_SU_REG_DEST, 1 << 0);
602 OUT_CS_REG(R300_ZB_ZPASS_ADDR, (query->num_results + 0) * 4);
603 OUT_CS_RELOC(r300->query_current);
604 break;
605 default:
606 fprintf(stderr, "r300: Implementation error: Chipset reports %d"
607 " pixel pipes!\n", caps->num_frag_pipes);
608 abort();
609 }
610
611 /* And, finally, reset it to normal... */
612 OUT_CS_REG(R300_SU_REG_DEST, 0xF);
613 END_CS;
614 }
615
616 static void rv530_emit_query_end_single_z(struct r300_context *r300,
617 struct r300_query *query)
618 {
619 CS_LOCALS(r300);
620
621 BEGIN_CS(8);
622 OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_0);
623 OUT_CS_REG(R300_ZB_ZPASS_ADDR, query->num_results * 4);
624 OUT_CS_RELOC(r300->query_current);
625 OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_ALL);
626 END_CS;
627 }
628
629 static void rv530_emit_query_end_double_z(struct r300_context *r300,
630 struct r300_query *query)
631 {
632 CS_LOCALS(r300);
633
634 BEGIN_CS(14);
635 OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_0);
636 OUT_CS_REG(R300_ZB_ZPASS_ADDR, (query->num_results + 0) * 4);
637 OUT_CS_RELOC(r300->query_current);
638 OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_1);
639 OUT_CS_REG(R300_ZB_ZPASS_ADDR, (query->num_results + 1) * 4);
640 OUT_CS_RELOC(r300->query_current);
641 OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_ALL);
642 END_CS;
643 }
644
645 void r300_emit_query_end(struct r300_context* r300)
646 {
647 struct r300_capabilities *caps = &r300->screen->caps;
648 struct r300_query *query = r300->query_current;
649
650 if (!query)
651 return;
652
653 if (query->begin_emitted == FALSE)
654 return;
655
656 if (caps->family == CHIP_FAMILY_RV530) {
657 if (caps->num_z_pipes == 2)
658 rv530_emit_query_end_double_z(r300, query);
659 else
660 rv530_emit_query_end_single_z(r300, query);
661 } else
662 r300_emit_query_end_frag_pipes(r300, query);
663
664 query->begin_emitted = FALSE;
665 query->num_results += query->num_pipes;
666
667 /* XXX grab all the results and reset the counter. */
668 if (query->num_results >= query->buffer_size / 4 - 4) {
669 query->num_results = (query->buffer_size / 4) / 2;
670 fprintf(stderr, "r300: Rewinding OQBO...\n");
671 }
672 }
673
674 void r300_emit_invariant_state(struct r300_context *r300,
675 unsigned size, void *state)
676 {
677 CS_LOCALS(r300);
678 WRITE_CS_TABLE(state, size);
679 }
680
681 void r300_emit_rs_state(struct r300_context* r300, unsigned size, void* state)
682 {
683 struct r300_rs_state* rs = state;
684 CS_LOCALS(r300);
685
686 BEGIN_CS(size);
687 OUT_CS_TABLE(rs->cb_main, RS_STATE_MAIN_SIZE);
688 if (rs->polygon_offset_enable) {
689 if (r300->zbuffer_bpp == 16) {
690 OUT_CS_TABLE(rs->cb_poly_offset_zb16, 5);
691 } else {
692 OUT_CS_TABLE(rs->cb_poly_offset_zb24, 5);
693 }
694 }
695 END_CS;
696 }
697
698 void r300_emit_rs_block_state(struct r300_context* r300,
699 unsigned size, void* state)
700 {
701 struct r300_rs_block* rs = (struct r300_rs_block*)state;
702 unsigned i;
703 /* It's the same for both INST and IP tables */
704 unsigned count = (rs->inst_count & R300_RS_INST_COUNT_MASK) + 1;
705 CS_LOCALS(r300);
706
707 if (DBG_ON(r300, DBG_RS_BLOCK)) {
708 r500_dump_rs_block(rs);
709
710 fprintf(stderr, "r300: RS emit:\n");
711
712 for (i = 0; i < count; i++)
713 fprintf(stderr, " : ip %d: 0x%08x\n", i, rs->ip[i]);
714
715 for (i = 0; i < count; i++)
716 fprintf(stderr, " : inst %d: 0x%08x\n", i, rs->inst[i]);
717
718 fprintf(stderr, " : count: 0x%08x inst_count: 0x%08x\n",
719 rs->count, rs->inst_count);
720 }
721
722 BEGIN_CS(size);
723 OUT_CS_REG_SEQ(R300_VAP_VTX_STATE_CNTL, 2);
724 OUT_CS(rs->vap_vtx_state_cntl);
725 OUT_CS(rs->vap_vsm_vtx_assm);
726 OUT_CS_REG_SEQ(R300_VAP_OUTPUT_VTX_FMT_0, 2);
727 OUT_CS(rs->vap_out_vtx_fmt[0]);
728 OUT_CS(rs->vap_out_vtx_fmt[1]);
729 OUT_CS_REG_SEQ(R300_GB_ENABLE, 1);
730 OUT_CS(rs->gb_enable);
731
732 if (r300->screen->caps.is_r500) {
733 OUT_CS_REG_SEQ(R500_RS_IP_0, count);
734 } else {
735 OUT_CS_REG_SEQ(R300_RS_IP_0, count);
736 }
737 OUT_CS_TABLE(rs->ip, count);
738
739 OUT_CS_REG_SEQ(R300_RS_COUNT, 2);
740 OUT_CS(rs->count);
741 OUT_CS(rs->inst_count);
742
743 if (r300->screen->caps.is_r500) {
744 OUT_CS_REG_SEQ(R500_RS_INST_0, count);
745 } else {
746 OUT_CS_REG_SEQ(R300_RS_INST_0, count);
747 }
748 OUT_CS_TABLE(rs->inst, count);
749 END_CS;
750 }
751
752 void r300_emit_scissor_state(struct r300_context* r300,
753 unsigned size, void* state)
754 {
755 struct pipe_scissor_state* scissor = (struct pipe_scissor_state*)state;
756 CS_LOCALS(r300);
757
758 BEGIN_CS(size);
759 OUT_CS_REG_SEQ(R300_SC_CLIPRECT_TL_0, 2);
760 if (r300->screen->caps.is_r500) {
761 OUT_CS((scissor->minx << R300_CLIPRECT_X_SHIFT) |
762 (scissor->miny << R300_CLIPRECT_Y_SHIFT));
763 OUT_CS(((scissor->maxx - 1) << R300_CLIPRECT_X_SHIFT) |
764 ((scissor->maxy - 1) << R300_CLIPRECT_Y_SHIFT));
765 } else {
766 OUT_CS(((scissor->minx + 1440) << R300_CLIPRECT_X_SHIFT) |
767 ((scissor->miny + 1440) << R300_CLIPRECT_Y_SHIFT));
768 OUT_CS(((scissor->maxx + 1440-1) << R300_CLIPRECT_X_SHIFT) |
769 ((scissor->maxy + 1440-1) << R300_CLIPRECT_Y_SHIFT));
770 }
771 END_CS;
772 }
773
774 void r300_emit_textures_state(struct r300_context *r300,
775 unsigned size, void *state)
776 {
777 struct r300_textures_state *allstate = (struct r300_textures_state*)state;
778 struct r300_texture_sampler_state *texstate;
779 struct r300_resource *tex;
780 unsigned i;
781 CS_LOCALS(r300);
782
783 BEGIN_CS(size);
784 OUT_CS_REG(R300_TX_ENABLE, allstate->tx_enable);
785
786 for (i = 0; i < allstate->count; i++) {
787 if ((1 << i) & allstate->tx_enable) {
788 texstate = &allstate->regs[i];
789 tex = r300_resource(allstate->sampler_views[i]->base.texture);
790
791 OUT_CS_REG(R300_TX_FILTER0_0 + (i * 4), texstate->filter0);
792 OUT_CS_REG(R300_TX_FILTER1_0 + (i * 4), texstate->filter1);
793 OUT_CS_REG(R300_TX_BORDER_COLOR_0 + (i * 4),
794 texstate->border_color);
795
796 OUT_CS_REG(R300_TX_FORMAT0_0 + (i * 4), texstate->format.format0);
797 OUT_CS_REG(R300_TX_FORMAT1_0 + (i * 4), texstate->format.format1);
798 OUT_CS_REG(R300_TX_FORMAT2_0 + (i * 4), texstate->format.format2);
799
800 OUT_CS_REG(R300_TX_OFFSET_0 + (i * 4), texstate->format.tile_config);
801 OUT_CS_RELOC(tex);
802 }
803 }
804 END_CS;
805 }
806
807 void r300_emit_vertex_arrays(struct r300_context* r300, int offset, boolean indexed)
808 {
809 struct pipe_vertex_buffer *vbuf = r300->vbuf_mgr->vertex_buffer;
810 struct pipe_resource **valid_vbuf = r300->vbuf_mgr->real_vertex_buffer;
811 struct pipe_vertex_element *velem = r300->velems->velem;
812 struct r300_resource *buf;
813 int i;
814 unsigned vertex_array_count = r300->velems->count;
815 unsigned packet_size = (vertex_array_count * 3 + 1) / 2;
816 struct pipe_vertex_buffer *vb1, *vb2;
817 unsigned *hw_format_size;
818 unsigned size1, size2;
819 CS_LOCALS(r300);
820
821 BEGIN_CS(2 + packet_size + vertex_array_count * 2);
822 OUT_CS_PKT3(R300_PACKET3_3D_LOAD_VBPNTR, packet_size);
823 OUT_CS(vertex_array_count | (!indexed ? R300_VC_FORCE_PREFETCH : 0));
824
825 hw_format_size = r300->velems->format_size;
826
827 for (i = 0; i < vertex_array_count - 1; i += 2) {
828 vb1 = &vbuf[velem[i].vertex_buffer_index];
829 vb2 = &vbuf[velem[i+1].vertex_buffer_index];
830 size1 = hw_format_size[i];
831 size2 = hw_format_size[i+1];
832
833 OUT_CS(R300_VBPNTR_SIZE0(size1) | R300_VBPNTR_STRIDE0(vb1->stride) |
834 R300_VBPNTR_SIZE1(size2) | R300_VBPNTR_STRIDE1(vb2->stride));
835 OUT_CS(vb1->buffer_offset + velem[i].src_offset + offset * vb1->stride);
836 OUT_CS(vb2->buffer_offset + velem[i+1].src_offset + offset * vb2->stride);
837 }
838
839 if (vertex_array_count & 1) {
840 vb1 = &vbuf[velem[i].vertex_buffer_index];
841 size1 = hw_format_size[i];
842
843 OUT_CS(R300_VBPNTR_SIZE0(size1) | R300_VBPNTR_STRIDE0(vb1->stride));
844 OUT_CS(vb1->buffer_offset + velem[i].src_offset + offset * vb1->stride);
845 }
846
847 for (i = 0; i < vertex_array_count; i++) {
848 buf = r300_resource(valid_vbuf[velem[i].vertex_buffer_index]);
849 OUT_CS_RELOC(buf);
850 }
851 END_CS;
852 }
853
854 void r300_emit_vertex_arrays_swtcl(struct r300_context *r300, boolean indexed)
855 {
856 CS_LOCALS(r300);
857
858 DBG(r300, DBG_SWTCL, "r300: Preparing vertex buffer %p for render, "
859 "vertex size %d\n", r300->vbo,
860 r300->vertex_info.size);
861 /* Set the pointer to our vertex buffer. The emitted values are this:
862 * PACKET3 [3D_LOAD_VBPNTR]
863 * COUNT [1]
864 * FORMAT [size | stride << 8]
865 * OFFSET [offset into BO]
866 * VBPNTR [relocated BO]
867 */
868 BEGIN_CS(7);
869 OUT_CS_PKT3(R300_PACKET3_3D_LOAD_VBPNTR, 3);
870 OUT_CS(1 | (!indexed ? R300_VC_FORCE_PREFETCH : 0));
871 OUT_CS(r300->vertex_info.size |
872 (r300->vertex_info.size << 8));
873 OUT_CS(r300->draw_vbo_offset);
874 OUT_CS(0);
875 OUT_CS_RELOC(r300_resource(r300->vbo));
876 END_CS;
877 }
878
879 void r300_emit_vertex_stream_state(struct r300_context* r300,
880 unsigned size, void* state)
881 {
882 struct r300_vertex_stream_state *streams =
883 (struct r300_vertex_stream_state*)state;
884 unsigned i;
885 CS_LOCALS(r300);
886
887 if (DBG_ON(r300, DBG_PSC)) {
888 fprintf(stderr, "r300: PSC emit:\n");
889
890 for (i = 0; i < streams->count; i++) {
891 fprintf(stderr, " : prog_stream_cntl%d: 0x%08x\n", i,
892 streams->vap_prog_stream_cntl[i]);
893 }
894
895 for (i = 0; i < streams->count; i++) {
896 fprintf(stderr, " : prog_stream_cntl_ext%d: 0x%08x\n", i,
897 streams->vap_prog_stream_cntl_ext[i]);
898 }
899 }
900
901 BEGIN_CS(size);
902 OUT_CS_REG_SEQ(R300_VAP_PROG_STREAM_CNTL_0, streams->count);
903 OUT_CS_TABLE(streams->vap_prog_stream_cntl, streams->count);
904 OUT_CS_REG_SEQ(R300_VAP_PROG_STREAM_CNTL_EXT_0, streams->count);
905 OUT_CS_TABLE(streams->vap_prog_stream_cntl_ext, streams->count);
906 END_CS;
907 }
908
909 void r300_emit_pvs_flush(struct r300_context* r300, unsigned size, void* state)
910 {
911 CS_LOCALS(r300);
912
913 BEGIN_CS(size);
914 OUT_CS_REG(R300_VAP_PVS_STATE_FLUSH_REG, 0x0);
915 END_CS;
916 }
917
918 void r300_emit_vap_invariant_state(struct r300_context *r300,
919 unsigned size, void *state)
920 {
921 CS_LOCALS(r300);
922 WRITE_CS_TABLE(state, size);
923 }
924
925 void r300_emit_vs_state(struct r300_context* r300, unsigned size, void* state)
926 {
927 struct r300_vertex_shader* vs = (struct r300_vertex_shader*)state;
928 struct r300_vertex_program_code* code = &vs->code;
929 struct r300_screen* r300screen = r300->screen;
930 unsigned instruction_count = code->length / 4;
931
932 unsigned vtx_mem_size = r300screen->caps.is_r500 ? 128 : 72;
933 unsigned input_count = MAX2(util_bitcount(code->InputsRead), 1);
934 unsigned output_count = MAX2(util_bitcount(code->OutputsWritten), 1);
935 unsigned temp_count = MAX2(code->num_temporaries, 1);
936
937 unsigned pvs_num_slots = MIN3(vtx_mem_size / input_count,
938 vtx_mem_size / output_count, 10);
939 unsigned pvs_num_controllers = MIN2(vtx_mem_size / temp_count, 5);
940
941 CS_LOCALS(r300);
942
943 BEGIN_CS(size);
944
945 /* R300_VAP_PVS_CODE_CNTL_0
946 * R300_VAP_PVS_CONST_CNTL
947 * R300_VAP_PVS_CODE_CNTL_1
948 * See the r5xx docs for instructions on how to use these. */
949 OUT_CS_REG(R300_VAP_PVS_CODE_CNTL_0, R300_PVS_FIRST_INST(0) |
950 R300_PVS_XYZW_VALID_INST(instruction_count - 1) |
951 R300_PVS_LAST_INST(instruction_count - 1));
952 OUT_CS_REG(R300_VAP_PVS_CODE_CNTL_1, instruction_count - 1);
953
954 OUT_CS_REG(R300_VAP_PVS_VECTOR_INDX_REG, 0);
955 OUT_CS_ONE_REG(R300_VAP_PVS_UPLOAD_DATA, code->length);
956 OUT_CS_TABLE(code->body.d, code->length);
957
958 OUT_CS_REG(R300_VAP_CNTL, R300_PVS_NUM_SLOTS(pvs_num_slots) |
959 R300_PVS_NUM_CNTLRS(pvs_num_controllers) |
960 R300_PVS_NUM_FPUS(r300screen->caps.num_vert_fpus) |
961 R300_PVS_VF_MAX_VTX_NUM(12) |
962 (r300screen->caps.is_r500 ? R500_TCL_STATE_OPTIMIZATION : 0));
963
964 /* Emit flow control instructions. */
965 if (code->num_fc_ops) {
966
967 OUT_CS_REG(R300_VAP_PVS_FLOW_CNTL_OPC, code->fc_ops);
968 if (r300screen->caps.is_r500) {
969 OUT_CS_REG_SEQ(R500_VAP_PVS_FLOW_CNTL_ADDRS_LW_0, code->num_fc_ops * 2);
970 OUT_CS_TABLE(code->fc_op_addrs.r500, code->num_fc_ops * 2);
971 } else {
972 OUT_CS_REG_SEQ(R300_VAP_PVS_FLOW_CNTL_ADDRS_0, code->num_fc_ops);
973 OUT_CS_TABLE(code->fc_op_addrs.r300, code->num_fc_ops);
974 }
975 OUT_CS_REG_SEQ(R300_VAP_PVS_FLOW_CNTL_LOOP_INDEX_0, code->num_fc_ops);
976 OUT_CS_TABLE(code->fc_loop_index, code->num_fc_ops);
977 }
978
979 END_CS;
980 }
981
982 void r300_emit_vs_constants(struct r300_context* r300,
983 unsigned size, void *state)
984 {
985 unsigned count =
986 ((struct r300_vertex_shader*)r300->vs_state.state)->externals_count;
987 struct r300_constant_buffer *buf = (struct r300_constant_buffer*)state;
988 struct r300_vertex_shader *vs = (struct r300_vertex_shader*)r300->vs_state.state;
989 unsigned i;
990 int imm_first = vs->externals_count;
991 int imm_end = vs->code.constants.Count;
992 int imm_count = vs->immediates_count;
993 CS_LOCALS(r300);
994
995 BEGIN_CS(size);
996 OUT_CS_REG(R300_VAP_PVS_CONST_CNTL,
997 R300_PVS_CONST_BASE_OFFSET(buf->buffer_base) |
998 R300_PVS_MAX_CONST_ADDR(MAX2(imm_end - 1, 0)));
999 if (vs->externals_count) {
1000 OUT_CS_REG(R300_VAP_PVS_VECTOR_INDX_REG,
1001 (r300->screen->caps.is_r500 ?
1002 R500_PVS_CONST_START : R300_PVS_CONST_START) + buf->buffer_base);
1003 OUT_CS_ONE_REG(R300_VAP_PVS_UPLOAD_DATA, count * 4);
1004 if (buf->remap_table){
1005 for (i = 0; i < count; i++) {
1006 uint32_t *data = &buf->ptr[buf->remap_table[i]*4];
1007 OUT_CS_TABLE(data, 4);
1008 }
1009 } else {
1010 OUT_CS_TABLE(buf->ptr, count * 4);
1011 }
1012 }
1013
1014 /* Emit immediates. */
1015 if (imm_count) {
1016 OUT_CS_REG(R300_VAP_PVS_VECTOR_INDX_REG,
1017 (r300->screen->caps.is_r500 ?
1018 R500_PVS_CONST_START : R300_PVS_CONST_START) +
1019 buf->buffer_base + imm_first);
1020 OUT_CS_ONE_REG(R300_VAP_PVS_UPLOAD_DATA, imm_count * 4);
1021 for (i = imm_first; i < imm_end; i++) {
1022 const float *data = vs->code.constants.Constants[i].u.Immediate;
1023 OUT_CS_TABLE(data, 4);
1024 }
1025 }
1026 END_CS;
1027 }
1028
1029 void r300_emit_viewport_state(struct r300_context* r300,
1030 unsigned size, void* state)
1031 {
1032 struct r300_viewport_state* viewport = (struct r300_viewport_state*)state;
1033 CS_LOCALS(r300);
1034
1035 BEGIN_CS(size);
1036 OUT_CS_REG_SEQ(R300_SE_VPORT_XSCALE, 6);
1037 OUT_CS_TABLE(&viewport->xscale, 6);
1038 OUT_CS_REG(R300_VAP_VTE_CNTL, viewport->vte_control);
1039 END_CS;
1040 }
1041
1042 static void r300_emit_hiz_line_clear(struct r300_context *r300, int start, uint16_t count, uint32_t val)
1043 {
1044 CS_LOCALS(r300);
1045 BEGIN_CS(4);
1046 OUT_CS_PKT3(R300_PACKET3_3D_CLEAR_HIZ, 2);
1047 OUT_CS(start);
1048 OUT_CS(count);
1049 OUT_CS(val);
1050 END_CS;
1051 }
1052
1053 #define ALIGN_DIVUP(x, y) (((x) + (y) - 1) / (y))
1054
1055 void r300_emit_hiz_clear(struct r300_context *r300, unsigned size, void *state)
1056 {
1057 struct pipe_framebuffer_state *fb =
1058 (struct pipe_framebuffer_state*)r300->fb_state.state;
1059 struct r300_hyperz_state *z =
1060 (struct r300_hyperz_state*)r300->hyperz_state.state;
1061 struct r300_screen* r300screen = r300->screen;
1062 uint32_t stride, offset = 0, height, offset_shift;
1063 struct r300_resource* tex;
1064 int i;
1065
1066 tex = r300_resource(fb->zsbuf->texture);
1067
1068 offset = tex->hiz_mem[fb->zsbuf->u.tex.level]->ofs;
1069 stride = tex->tex.stride_in_pixels[fb->zsbuf->u.tex.level];
1070
1071 /* convert from pixels to 4x4 blocks */
1072 stride = ALIGN_DIVUP(stride, 4);
1073
1074 stride = ALIGN_DIVUP(stride, r300screen->caps.num_frag_pipes);
1075 /* there are 4 blocks per dwords */
1076 stride = ALIGN_DIVUP(stride, 4);
1077
1078 height = ALIGN_DIVUP(fb->zsbuf->height, 4);
1079
1080 offset_shift = 2;
1081 offset_shift += (r300screen->caps.num_frag_pipes / 2);
1082
1083 for (i = 0; i < height; i++) {
1084 offset = i * stride;
1085 offset <<= offset_shift;
1086 r300_emit_hiz_line_clear(r300, offset, stride, 0xffffffff);
1087 }
1088 z->current_func = -1;
1089
1090 /* Mark the current zbuffer's hiz ram as in use. */
1091 tex->hiz_in_use[fb->zsbuf->u.tex.level] = TRUE;
1092 }
1093
1094 void r300_emit_zmask_clear(struct r300_context *r300, unsigned size, void *state)
1095 {
1096 struct pipe_framebuffer_state *fb =
1097 (struct pipe_framebuffer_state*)r300->fb_state.state;
1098 struct r300_resource *tex;
1099 CS_LOCALS(r300);
1100
1101 tex = r300_resource(fb->zsbuf->texture);
1102
1103 BEGIN_CS(size);
1104 OUT_CS_PKT3(R300_PACKET3_3D_CLEAR_ZMASK, 2);
1105 OUT_CS(0);
1106 OUT_CS(tex->tex.zmask_dwords[fb->zsbuf->u.tex.level]);
1107 OUT_CS(0);
1108 END_CS;
1109
1110 /* Mark the current zbuffer's zmask as in use. */
1111 r300->zmask_in_use = TRUE;
1112 r300_mark_atom_dirty(r300, &r300->hyperz_state);
1113 }
1114
1115 void r300_emit_ztop_state(struct r300_context* r300,
1116 unsigned size, void* state)
1117 {
1118 struct r300_ztop_state* ztop = (struct r300_ztop_state*)state;
1119 CS_LOCALS(r300);
1120
1121 BEGIN_CS(size);
1122 OUT_CS_REG(R300_ZB_ZTOP, ztop->z_buffer_top);
1123 END_CS;
1124 }
1125
1126 void r300_emit_texture_cache_inval(struct r300_context* r300, unsigned size, void* state)
1127 {
1128 CS_LOCALS(r300);
1129
1130 BEGIN_CS(size);
1131 OUT_CS_REG(R300_TX_INVALTAGS, 0);
1132 END_CS;
1133 }
1134
1135 boolean r300_emit_buffer_validate(struct r300_context *r300,
1136 boolean do_validate_vertex_buffers,
1137 struct pipe_resource *index_buffer)
1138 {
1139 struct pipe_framebuffer_state *fb =
1140 (struct pipe_framebuffer_state*)r300->fb_state.state;
1141 struct r300_textures_state *texstate =
1142 (struct r300_textures_state*)r300->textures_state.state;
1143 struct r300_resource *tex;
1144 unsigned i;
1145 boolean flushed = FALSE;
1146
1147 validate:
1148 if (r300->fb_state.dirty) {
1149 /* Color buffers... */
1150 for (i = 0; i < fb->nr_cbufs; i++) {
1151 tex = r300_resource(fb->cbufs[i]->texture);
1152 assert(tex && tex->buf && "cbuf is marked, but NULL!");
1153 r300->rws->cs_add_reloc(r300->cs, tex->cs_buf, 0,
1154 r300_surface(fb->cbufs[i])->domain);
1155 }
1156 /* ...depth buffer... */
1157 if (fb->zsbuf) {
1158 tex = r300_resource(fb->zsbuf->texture);
1159 assert(tex && tex->buf && "zsbuf is marked, but NULL!");
1160 r300->rws->cs_add_reloc(r300->cs, tex->cs_buf, 0,
1161 r300_surface(fb->zsbuf)->domain);
1162 }
1163 }
1164 if (r300->textures_state.dirty) {
1165 /* ...textures... */
1166 for (i = 0; i < texstate->count; i++) {
1167 if (!(texstate->tx_enable & (1 << i))) {
1168 continue;
1169 }
1170
1171 tex = r300_resource(texstate->sampler_views[i]->base.texture);
1172 r300->rws->cs_add_reloc(r300->cs, tex->cs_buf, tex->domain, 0);
1173 }
1174 }
1175 /* ...occlusion query buffer... */
1176 if (r300->query_current)
1177 r300->rws->cs_add_reloc(r300->cs, r300->query_current->cs_buf,
1178 0, r300->query_current->domain);
1179 /* ...vertex buffer for SWTCL path... */
1180 if (r300->vbo)
1181 r300->rws->cs_add_reloc(r300->cs, r300_resource(r300->vbo)->cs_buf,
1182 r300_resource(r300->vbo)->domain, 0);
1183 /* ...vertex buffers for HWTCL path... */
1184 if (do_validate_vertex_buffers) {
1185 struct pipe_resource **buf = r300->vbuf_mgr->real_vertex_buffer;
1186 struct pipe_resource **last = r300->vbuf_mgr->real_vertex_buffer +
1187 r300->vbuf_mgr->nr_real_vertex_buffers;
1188 for (; buf != last; buf++) {
1189 if (!*buf)
1190 continue;
1191
1192 r300->rws->cs_add_reloc(r300->cs, r300_resource(*buf)->cs_buf,
1193 r300_resource(*buf)->domain, 0);
1194 }
1195 }
1196 /* ...and index buffer for HWTCL path. */
1197 if (index_buffer)
1198 r300->rws->cs_add_reloc(r300->cs, r300_resource(index_buffer)->cs_buf,
1199 r300_resource(index_buffer)->domain, 0);
1200
1201 /* Now do the validation. */
1202 if (!r300->rws->cs_validate(r300->cs)) {
1203 /* Ooops, an infinite loop, give up. */
1204 if (flushed)
1205 return FALSE;
1206
1207 r300->context.flush(&r300->context, 0, NULL);
1208 flushed = TRUE;
1209 goto validate;
1210 }
1211
1212 return TRUE;
1213 }
1214
1215 unsigned r300_get_num_dirty_dwords(struct r300_context *r300)
1216 {
1217 struct r300_atom* atom;
1218 unsigned dwords = 0;
1219
1220 foreach_dirty_atom(r300, atom) {
1221 if (atom->dirty) {
1222 dwords += atom->size;
1223 }
1224 }
1225
1226 /* let's reserve some more, just in case */
1227 dwords += 32;
1228
1229 return dwords;
1230 }
1231
1232 unsigned r300_get_num_cs_end_dwords(struct r300_context *r300)
1233 {
1234 unsigned dwords = 0;
1235
1236 /* Emitted in flush. */
1237 dwords += 26; /* emit_query_end */
1238 dwords += r300->hyperz_state.size + 2; /* emit_hyperz_end + zcache flush */
1239 if (r300->screen->caps.index_bias_supported)
1240 dwords += 2;
1241
1242 return dwords;
1243 }
1244
1245 /* Emit all dirty state. */
1246 void r300_emit_dirty_state(struct r300_context* r300)
1247 {
1248 struct r300_atom *atom;
1249
1250 foreach_dirty_atom(r300, atom) {
1251 if (atom->dirty) {
1252 atom->emit(r300, atom->size, atom->state);
1253 atom->dirty = FALSE;
1254 }
1255 }
1256
1257 r300->first_dirty = NULL;
1258 r300->last_dirty = NULL;
1259 r300->dirty_hw++;
1260 }