r300g: consolidate buffers and textures to r300_resource
[mesa.git] / src / gallium / drivers / r300 / r300_emit.c
1 /*
2 * Copyright 2008 Corbin Simpson <MostAwesomeDude@gmail.com>
3 * Copyright 2009 Marek Olšák <maraeo@gmail.com>
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * on the rights to use, copy, modify, merge, publish, distribute, sub
9 * license, and/or sell copies of the Software, and to permit persons to whom
10 * the Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE. */
23
24 /* r300_emit: Functions for emitting state. */
25
26 #include "util/u_format.h"
27 #include "util/u_math.h"
28 #include "util/u_mm.h"
29
30 #include "r300_context.h"
31 #include "r300_cb.h"
32 #include "r300_cs.h"
33 #include "r300_emit.h"
34 #include "r300_fs.h"
35 #include "r300_screen.h"
36 #include "r300_screen_buffer.h"
37 #include "r300_vs.h"
38
39 void r300_emit_blend_state(struct r300_context* r300,
40 unsigned size, void* state)
41 {
42 struct r300_blend_state* blend = (struct r300_blend_state*)state;
43 struct pipe_framebuffer_state* fb =
44 (struct pipe_framebuffer_state*)r300->fb_state.state;
45 CS_LOCALS(r300);
46
47 if (fb->nr_cbufs) {
48 WRITE_CS_TABLE(blend->cb, size);
49 } else {
50 WRITE_CS_TABLE(blend->cb_no_readwrite, size);
51 }
52 }
53
54 void r300_emit_blend_color_state(struct r300_context* r300,
55 unsigned size, void* state)
56 {
57 struct r300_blend_color_state* bc = (struct r300_blend_color_state*)state;
58 CS_LOCALS(r300);
59
60 WRITE_CS_TABLE(bc->cb, size);
61 }
62
63 void r300_emit_clip_state(struct r300_context* r300,
64 unsigned size, void* state)
65 {
66 struct r300_clip_state* clip = (struct r300_clip_state*)state;
67 CS_LOCALS(r300);
68
69 WRITE_CS_TABLE(clip->cb, size);
70 }
71
72 void r300_emit_dsa_state(struct r300_context* r300, unsigned size, void* state)
73 {
74 struct r300_dsa_state* dsa = (struct r300_dsa_state*)state;
75 struct pipe_framebuffer_state* fb =
76 (struct pipe_framebuffer_state*)r300->fb_state.state;
77 CS_LOCALS(r300);
78
79 if (fb->zsbuf) {
80 WRITE_CS_TABLE(&dsa->cb_begin, size);
81 } else {
82 WRITE_CS_TABLE(dsa->cb_no_readwrite, size);
83 }
84 }
85
86 static void get_rc_constant_state(
87 float vec[4],
88 struct r300_context * r300,
89 struct rc_constant * constant)
90 {
91 struct r300_textures_state* texstate = r300->textures_state.state;
92 struct r300_resource *tex;
93
94 assert(constant->Type == RC_CONSTANT_STATE);
95
96 /* vec should either be (0, 0, 0, 1), which should be a relatively safe
97 * RGBA or STRQ value, or it could be one of the RC_CONSTANT_STATE
98 * state factors. */
99
100 switch (constant->u.State[0]) {
101 /* Factor for converting rectangle coords to
102 * normalized coords. Should only show up on non-r500. */
103 case RC_STATE_R300_TEXRECT_FACTOR:
104 tex = r300_resource(texstate->sampler_views[constant->u.State[1]]->base.texture);
105 vec[0] = 1.0 / tex->tex.width0;
106 vec[1] = 1.0 / tex->tex.height0;
107 vec[2] = 0;
108 vec[3] = 1;
109 break;
110
111 case RC_STATE_R300_TEXSCALE_FACTOR:
112 tex = r300_resource(texstate->sampler_views[constant->u.State[1]]->base.texture);
113 /* Add a small number to the texture size to work around rounding errors in hw. */
114 vec[0] = tex->b.b.b.width0 / (tex->tex.width0 + 0.001f);
115 vec[1] = tex->b.b.b.height0 / (tex->tex.height0 + 0.001f);
116 vec[2] = tex->b.b.b.depth0 / (tex->tex.depth0 + 0.001f);
117 vec[3] = 1;
118 break;
119
120 case RC_STATE_R300_VIEWPORT_SCALE:
121 vec[0] = r300->viewport.scale[0];
122 vec[1] = r300->viewport.scale[1];
123 vec[2] = r300->viewport.scale[2];
124 vec[3] = 1;
125 break;
126
127 case RC_STATE_R300_VIEWPORT_OFFSET:
128 vec[0] = r300->viewport.translate[0];
129 vec[1] = r300->viewport.translate[1];
130 vec[2] = r300->viewport.translate[2];
131 vec[3] = 1;
132 break;
133
134 default:
135 fprintf(stderr, "r300: Implementation error: "
136 "Unknown RC_CONSTANT type %d\n", constant->u.State[0]);
137 vec[0] = 0;
138 vec[1] = 0;
139 vec[2] = 0;
140 vec[3] = 1;
141 }
142 }
143
144 /* Convert a normal single-precision float into the 7.16 format
145 * used by the R300 fragment shader.
146 */
147 uint32_t pack_float24(float f)
148 {
149 union {
150 float fl;
151 uint32_t u;
152 } u;
153 float mantissa;
154 int exponent;
155 uint32_t float24 = 0;
156
157 if (f == 0.0)
158 return 0;
159
160 u.fl = f;
161
162 mantissa = frexpf(f, &exponent);
163
164 /* Handle -ve */
165 if (mantissa < 0) {
166 float24 |= (1 << 23);
167 mantissa = mantissa * -1.0;
168 }
169 /* Handle exponent, bias of 63 */
170 exponent += 62;
171 float24 |= (exponent << 16);
172 /* Kill 7 LSB of mantissa */
173 float24 |= (u.u & 0x7FFFFF) >> 7;
174
175 return float24;
176 }
177
178 void r300_emit_fs(struct r300_context* r300, unsigned size, void *state)
179 {
180 struct r300_fragment_shader *fs = r300_fs(r300);
181 CS_LOCALS(r300);
182
183 WRITE_CS_TABLE(fs->shader->cb_code, fs->shader->cb_code_size);
184 }
185
186 void r300_emit_fs_constants(struct r300_context* r300, unsigned size, void *state)
187 {
188 struct r300_fragment_shader *fs = r300_fs(r300);
189 struct r300_constant_buffer *buf = (struct r300_constant_buffer*)state;
190 unsigned count = fs->shader->externals_count;
191 unsigned i, j;
192 CS_LOCALS(r300);
193
194 if (count == 0)
195 return;
196
197 BEGIN_CS(size);
198 OUT_CS_REG_SEQ(R300_PFS_PARAM_0_X, count * 4);
199 if (buf->remap_table){
200 for (i = 0; i < count; i++) {
201 float *data = (float*)&buf->ptr[buf->remap_table[i]*4];
202 for (j = 0; j < 4; j++)
203 OUT_CS(pack_float24(data[j]));
204 }
205 } else {
206 for (i = 0; i < count; i++)
207 for (j = 0; j < 4; j++)
208 OUT_CS(pack_float24(*(float*)&buf->ptr[i*4+j]));
209 }
210
211 END_CS;
212 }
213
214 void r300_emit_fs_rc_constant_state(struct r300_context* r300, unsigned size, void *state)
215 {
216 struct r300_fragment_shader *fs = r300_fs(r300);
217 struct rc_constant_list *constants = &fs->shader->code.constants;
218 unsigned i;
219 unsigned count = fs->shader->rc_state_count;
220 unsigned first = fs->shader->externals_count;
221 unsigned end = constants->Count;
222 unsigned j;
223 CS_LOCALS(r300);
224
225 if (count == 0)
226 return;
227
228 BEGIN_CS(size);
229 for(i = first; i < end; ++i) {
230 if (constants->Constants[i].Type == RC_CONSTANT_STATE) {
231 float data[4];
232
233 get_rc_constant_state(data, r300, &constants->Constants[i]);
234
235 OUT_CS_REG_SEQ(R300_PFS_PARAM_0_X + i * 16, 4);
236 for (j = 0; j < 4; j++)
237 OUT_CS(pack_float24(data[j]));
238 }
239 }
240 END_CS;
241 }
242
243 void r500_emit_fs(struct r300_context* r300, unsigned size, void *state)
244 {
245 struct r300_fragment_shader *fs = r300_fs(r300);
246 CS_LOCALS(r300);
247
248 WRITE_CS_TABLE(fs->shader->cb_code, fs->shader->cb_code_size);
249 }
250
251 void r500_emit_fs_constants(struct r300_context* r300, unsigned size, void *state)
252 {
253 struct r300_fragment_shader *fs = r300_fs(r300);
254 struct r300_constant_buffer *buf = (struct r300_constant_buffer*)state;
255 unsigned count = fs->shader->externals_count;
256 CS_LOCALS(r300);
257
258 if (count == 0)
259 return;
260
261 BEGIN_CS(size);
262 OUT_CS_REG(R500_GA_US_VECTOR_INDEX, R500_GA_US_VECTOR_INDEX_TYPE_CONST);
263 OUT_CS_ONE_REG(R500_GA_US_VECTOR_DATA, count * 4);
264 if (buf->remap_table){
265 for (unsigned i = 0; i < count; i++) {
266 uint32_t *data = &buf->ptr[buf->remap_table[i]*4];
267 OUT_CS_TABLE(data, 4);
268 }
269 } else {
270 OUT_CS_TABLE(buf->ptr, count * 4);
271 }
272 END_CS;
273 }
274
275 void r500_emit_fs_rc_constant_state(struct r300_context* r300, unsigned size, void *state)
276 {
277 struct r300_fragment_shader *fs = r300_fs(r300);
278 struct rc_constant_list *constants = &fs->shader->code.constants;
279 unsigned i;
280 unsigned count = fs->shader->rc_state_count;
281 unsigned first = fs->shader->externals_count;
282 unsigned end = constants->Count;
283 CS_LOCALS(r300);
284
285 if (count == 0)
286 return;
287
288 BEGIN_CS(size);
289 for(i = first; i < end; ++i) {
290 if (constants->Constants[i].Type == RC_CONSTANT_STATE) {
291 float data[4];
292
293 get_rc_constant_state(data, r300, &constants->Constants[i]);
294
295 OUT_CS_REG(R500_GA_US_VECTOR_INDEX,
296 R500_GA_US_VECTOR_INDEX_TYPE_CONST |
297 (i & R500_GA_US_VECTOR_INDEX_MASK));
298 OUT_CS_ONE_REG(R500_GA_US_VECTOR_DATA, 4);
299 OUT_CS_TABLE(data, 4);
300 }
301 }
302 END_CS;
303 }
304
305 void r300_emit_gpu_flush(struct r300_context *r300, unsigned size, void *state)
306 {
307 struct r300_gpu_flush *gpuflush = (struct r300_gpu_flush*)state;
308 struct pipe_framebuffer_state* fb =
309 (struct pipe_framebuffer_state*)r300->fb_state.state;
310 uint32_t height = fb->height;
311 uint32_t width = fb->width;
312 CS_LOCALS(r300);
313
314 if (r300->cbzb_clear) {
315 struct r300_surface *surf = r300_surface(fb->cbufs[0]);
316
317 height = surf->cbzb_height;
318 width = surf->cbzb_width;
319 }
320
321 DBG(r300, DBG_SCISSOR,
322 "r300: Scissor width: %i, height: %i, CBZB clear: %s\n",
323 width, height, r300->cbzb_clear ? "YES" : "NO");
324
325 BEGIN_CS(size);
326
327 /* Set up scissors.
328 * By writing to the SC registers, SC & US assert idle. */
329 OUT_CS_REG_SEQ(R300_SC_SCISSORS_TL, 2);
330 if (r300->screen->caps.is_r500) {
331 OUT_CS(0);
332 OUT_CS(((width - 1) << R300_SCISSORS_X_SHIFT) |
333 ((height - 1) << R300_SCISSORS_Y_SHIFT));
334 } else {
335 OUT_CS((1440 << R300_SCISSORS_X_SHIFT) |
336 (1440 << R300_SCISSORS_Y_SHIFT));
337 OUT_CS(((width + 1440-1) << R300_SCISSORS_X_SHIFT) |
338 ((height + 1440-1) << R300_SCISSORS_Y_SHIFT));
339 }
340
341 /* Flush CB & ZB caches and wait until the 3D engine is idle and clean. */
342 OUT_CS_TABLE(gpuflush->cb_flush_clean, 6);
343 END_CS;
344 }
345
346 void r300_emit_aa_state(struct r300_context *r300, unsigned size, void *state)
347 {
348 struct r300_aa_state *aa = (struct r300_aa_state*)state;
349 CS_LOCALS(r300);
350
351 BEGIN_CS(size);
352 OUT_CS_REG(R300_GB_AA_CONFIG, aa->aa_config);
353
354 if (aa->dest) {
355 OUT_CS_REG(R300_RB3D_AARESOLVE_OFFSET, aa->dest->offset);
356 OUT_CS_RELOC(aa->dest);
357
358 OUT_CS_REG(R300_RB3D_AARESOLVE_PITCH, aa->dest->pitch);
359 OUT_CS_RELOC(aa->dest);
360 }
361
362 OUT_CS_REG(R300_RB3D_AARESOLVE_CTL, aa->aaresolve_ctl);
363 END_CS;
364 }
365
366 void r300_emit_fb_state(struct r300_context* r300, unsigned size, void* state)
367 {
368 struct pipe_framebuffer_state* fb = (struct pipe_framebuffer_state*)state;
369 struct r300_surface* surf;
370 unsigned i;
371 boolean can_hyperz = r300->rws->get_value(r300->rws, R300_CAN_HYPERZ);
372 uint32_t rb3d_cctl = 0;
373
374 CS_LOCALS(r300);
375
376 BEGIN_CS(size);
377
378 /* NUM_MULTIWRITES replicates COLOR[0] to all colorbuffers, which is not
379 * what we usually want. */
380 if (r300->screen->caps.is_r500) {
381 rb3d_cctl = R300_RB3D_CCTL_INDEPENDENT_COLORFORMAT_ENABLE_ENABLE;
382 }
383 if (fb->nr_cbufs &&
384 r300_fragment_shader_writes_all(r300_fs(r300))) {
385 rb3d_cctl |= R300_RB3D_CCTL_NUM_MULTIWRITES(fb->nr_cbufs);
386 }
387
388 OUT_CS_REG(R300_RB3D_CCTL, rb3d_cctl);
389
390 /* Set up colorbuffers. */
391 for (i = 0; i < fb->nr_cbufs; i++) {
392 surf = r300_surface(fb->cbufs[i]);
393
394 OUT_CS_REG(R300_RB3D_COLOROFFSET0 + (4 * i), surf->offset);
395 OUT_CS_RELOC(surf);
396
397 OUT_CS_REG(R300_RB3D_COLORPITCH0 + (4 * i), surf->pitch);
398 OUT_CS_RELOC(surf);
399 }
400
401 /* Set up the ZB part of the CBZB clear. */
402 if (r300->cbzb_clear) {
403 surf = r300_surface(fb->cbufs[0]);
404
405 OUT_CS_REG(R300_ZB_FORMAT, surf->cbzb_format);
406
407 OUT_CS_REG(R300_ZB_DEPTHOFFSET, surf->cbzb_midpoint_offset);
408 OUT_CS_RELOC(surf);
409
410 OUT_CS_REG(R300_ZB_DEPTHPITCH, surf->cbzb_pitch);
411 OUT_CS_RELOC(surf);
412
413 DBG(r300, DBG_CBZB,
414 "CBZB clearing cbuf %08x %08x\n", surf->cbzb_format,
415 surf->cbzb_pitch);
416 }
417 /* Set up a zbuffer. */
418 else if (fb->zsbuf) {
419 surf = r300_surface(fb->zsbuf);
420
421 OUT_CS_REG(R300_ZB_FORMAT, surf->format);
422
423 OUT_CS_REG(R300_ZB_DEPTHOFFSET, surf->offset);
424 OUT_CS_RELOC(surf);
425
426 OUT_CS_REG(R300_ZB_DEPTHPITCH, surf->pitch);
427 OUT_CS_RELOC(surf);
428
429 if (can_hyperz) {
430 uint32_t surf_pitch;
431 struct r300_resource *tex;
432 int level = surf->base.u.tex.level;
433 tex = r300_resource(surf->base.texture);
434
435 surf_pitch = surf->pitch & R300_DEPTHPITCH_MASK;
436
437 /* HiZ RAM. */
438 if (r300->screen->caps.hiz_ram) {
439 if (tex->hiz_mem[level]) {
440 OUT_CS_REG(R300_ZB_HIZ_OFFSET, tex->hiz_mem[level]->ofs << 2);
441 OUT_CS_REG(R300_ZB_HIZ_PITCH, surf_pitch);
442 } else {
443 OUT_CS_REG(R300_ZB_HIZ_OFFSET, 0);
444 OUT_CS_REG(R300_ZB_HIZ_PITCH, 0);
445 }
446 }
447
448 /* Z Mask RAM. (compressed zbuffer) */
449 OUT_CS_REG(R300_ZB_ZMASK_OFFSET, 0);
450 OUT_CS_REG(R300_ZB_ZMASK_PITCH, surf_pitch);
451 }
452 }
453
454 END_CS;
455 }
456
457 void r300_emit_hyperz_state(struct r300_context *r300,
458 unsigned size, void *state)
459 {
460 struct r300_hyperz_state *z = state;
461 CS_LOCALS(r300);
462
463 if (z->flush)
464 WRITE_CS_TABLE(&z->cb_flush_begin, size);
465 else
466 WRITE_CS_TABLE(&z->cb_begin, size - 2);
467 }
468
469 void r300_emit_hyperz_end(struct r300_context *r300)
470 {
471 struct r300_hyperz_state z =
472 *(struct r300_hyperz_state*)r300->hyperz_state.state;
473
474 z.flush = 1;
475 z.zb_bw_cntl = 0;
476 z.zb_depthclearvalue = 0;
477 z.sc_hyperz = R300_SC_HYPERZ_ADJ_2;
478 z.gb_z_peq_config = 0;
479
480 r300_emit_hyperz_state(r300, r300->hyperz_state.size, &z);
481 }
482
483 void r300_emit_fb_state_pipelined(struct r300_context *r300,
484 unsigned size, void *state)
485 {
486 struct pipe_framebuffer_state* fb =
487 (struct pipe_framebuffer_state*)r300->fb_state.state;
488 unsigned i, num_cbufs = fb->nr_cbufs;
489 CS_LOCALS(r300);
490
491 /* If we use the multiwrite feature, the colorbuffers 2,3,4 must be
492 * marked as UNUSED in the US block. */
493 if (r300_fragment_shader_writes_all(r300_fs(r300))) {
494 num_cbufs = MIN2(num_cbufs, 1);
495 }
496
497 BEGIN_CS(size);
498
499 /* Colorbuffer format in the US block.
500 * (must be written after unpipelined regs) */
501 OUT_CS_REG_SEQ(R300_US_OUT_FMT_0, 4);
502 for (i = 0; i < num_cbufs; i++) {
503 OUT_CS(r300_surface(fb->cbufs[i])->format);
504 }
505 for (; i < 4; i++) {
506 OUT_CS(R300_US_OUT_FMT_UNUSED);
507 }
508
509 /* Multisampling. Depends on framebuffer sample count.
510 * These are pipelined regs and as such cannot be moved
511 * to the AA state. */
512 if (r300->rws->get_value(r300->rws, R300_VID_DRM_2_3_0)) {
513 unsigned mspos0 = 0x66666666;
514 unsigned mspos1 = 0x6666666;
515
516 if (fb->nr_cbufs && fb->cbufs[0]->texture->nr_samples > 1) {
517 /* Subsample placement. These may not be optimal. */
518 switch (fb->cbufs[0]->texture->nr_samples) {
519 case 2:
520 mspos0 = 0x33996633;
521 mspos1 = 0x6666663;
522 break;
523 case 3:
524 mspos0 = 0x33936933;
525 mspos1 = 0x6666663;
526 break;
527 case 4:
528 mspos0 = 0x33939933;
529 mspos1 = 0x3966663;
530 break;
531 case 6:
532 mspos0 = 0x22a2aa22;
533 mspos1 = 0x2a65672;
534 break;
535 default:
536 debug_printf("r300: Bad number of multisamples!\n");
537 }
538 }
539
540 OUT_CS_REG_SEQ(R300_GB_MSPOS0, 2);
541 OUT_CS(mspos0);
542 OUT_CS(mspos1);
543 }
544 END_CS;
545 }
546
547 void r300_emit_query_start(struct r300_context *r300, unsigned size, void*state)
548 {
549 struct r300_query *query = r300->query_current;
550 CS_LOCALS(r300);
551
552 if (!query)
553 return;
554
555 BEGIN_CS(size);
556 if (r300->screen->caps.family == CHIP_FAMILY_RV530) {
557 OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_ALL);
558 } else {
559 OUT_CS_REG(R300_SU_REG_DEST, R300_RASTER_PIPE_SELECT_ALL);
560 }
561 OUT_CS_REG(R300_ZB_ZPASS_DATA, 0);
562 END_CS;
563 query->begin_emitted = TRUE;
564 query->flushed = FALSE;
565 }
566
567 static void r300_emit_query_end_frag_pipes(struct r300_context *r300,
568 struct r300_query *query)
569 {
570 struct r300_capabilities* caps = &r300->screen->caps;
571 CS_LOCALS(r300);
572
573 assert(caps->num_frag_pipes);
574
575 BEGIN_CS(6 * caps->num_frag_pipes + 2);
576 /* I'm not so sure I like this switch, but it's hard to be elegant
577 * when there's so many special cases...
578 *
579 * So here's the basic idea. For each pipe, enable writes to it only,
580 * then put out the relocation for ZPASS_ADDR, taking into account a
581 * 4-byte offset for each pipe. RV380 and older are special; they have
582 * only two pipes, and the second pipe's enable is on bit 3, not bit 1,
583 * so there's a chipset cap for that. */
584 switch (caps->num_frag_pipes) {
585 case 4:
586 /* pipe 3 only */
587 OUT_CS_REG(R300_SU_REG_DEST, 1 << 3);
588 OUT_CS_REG(R300_ZB_ZPASS_ADDR, (query->num_results + 3) * 4);
589 OUT_CS_RELOC(r300->query_current);
590 case 3:
591 /* pipe 2 only */
592 OUT_CS_REG(R300_SU_REG_DEST, 1 << 2);
593 OUT_CS_REG(R300_ZB_ZPASS_ADDR, (query->num_results + 2) * 4);
594 OUT_CS_RELOC(r300->query_current);
595 case 2:
596 /* pipe 1 only */
597 /* As mentioned above, accomodate RV380 and older. */
598 OUT_CS_REG(R300_SU_REG_DEST,
599 1 << (caps->high_second_pipe ? 3 : 1));
600 OUT_CS_REG(R300_ZB_ZPASS_ADDR, (query->num_results + 1) * 4);
601 OUT_CS_RELOC(r300->query_current);
602 case 1:
603 /* pipe 0 only */
604 OUT_CS_REG(R300_SU_REG_DEST, 1 << 0);
605 OUT_CS_REG(R300_ZB_ZPASS_ADDR, (query->num_results + 0) * 4);
606 OUT_CS_RELOC(r300->query_current);
607 break;
608 default:
609 fprintf(stderr, "r300: Implementation error: Chipset reports %d"
610 " pixel pipes!\n", caps->num_frag_pipes);
611 abort();
612 }
613
614 /* And, finally, reset it to normal... */
615 OUT_CS_REG(R300_SU_REG_DEST, 0xF);
616 END_CS;
617 }
618
619 static void rv530_emit_query_end_single_z(struct r300_context *r300,
620 struct r300_query *query)
621 {
622 CS_LOCALS(r300);
623
624 BEGIN_CS(8);
625 OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_0);
626 OUT_CS_REG(R300_ZB_ZPASS_ADDR, query->num_results * 4);
627 OUT_CS_RELOC(r300->query_current);
628 OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_ALL);
629 END_CS;
630 }
631
632 static void rv530_emit_query_end_double_z(struct r300_context *r300,
633 struct r300_query *query)
634 {
635 CS_LOCALS(r300);
636
637 BEGIN_CS(14);
638 OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_0);
639 OUT_CS_REG(R300_ZB_ZPASS_ADDR, (query->num_results + 0) * 4);
640 OUT_CS_RELOC(r300->query_current);
641 OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_1);
642 OUT_CS_REG(R300_ZB_ZPASS_ADDR, (query->num_results + 1) * 4);
643 OUT_CS_RELOC(r300->query_current);
644 OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_ALL);
645 END_CS;
646 }
647
648 void r300_emit_query_end(struct r300_context* r300)
649 {
650 struct r300_capabilities *caps = &r300->screen->caps;
651 struct r300_query *query = r300->query_current;
652
653 if (!query)
654 return;
655
656 if (query->begin_emitted == FALSE)
657 return;
658
659 if (caps->family == CHIP_FAMILY_RV530) {
660 if (caps->num_z_pipes == 2)
661 rv530_emit_query_end_double_z(r300, query);
662 else
663 rv530_emit_query_end_single_z(r300, query);
664 } else
665 r300_emit_query_end_frag_pipes(r300, query);
666
667 query->begin_emitted = FALSE;
668 query->num_results += query->num_pipes;
669
670 /* XXX grab all the results and reset the counter. */
671 if (query->num_results >= query->buffer_size / 4 - 4) {
672 query->num_results = (query->buffer_size / 4) / 2;
673 fprintf(stderr, "r300: Rewinding OQBO...\n");
674 }
675 }
676
677 void r300_emit_invariant_state(struct r300_context *r300,
678 unsigned size, void *state)
679 {
680 CS_LOCALS(r300);
681 WRITE_CS_TABLE(state, size);
682 }
683
684 void r300_emit_rs_state(struct r300_context* r300, unsigned size, void* state)
685 {
686 struct r300_rs_state* rs = state;
687 CS_LOCALS(r300);
688
689 BEGIN_CS(size);
690 OUT_CS_TABLE(rs->cb_main, RS_STATE_MAIN_SIZE);
691 if (rs->polygon_offset_enable) {
692 if (r300->zbuffer_bpp == 16) {
693 OUT_CS_TABLE(rs->cb_poly_offset_zb16, 5);
694 } else {
695 OUT_CS_TABLE(rs->cb_poly_offset_zb24, 5);
696 }
697 }
698 END_CS;
699 }
700
701 void r300_emit_rs_block_state(struct r300_context* r300,
702 unsigned size, void* state)
703 {
704 struct r300_rs_block* rs = (struct r300_rs_block*)state;
705 unsigned i;
706 /* It's the same for both INST and IP tables */
707 unsigned count = (rs->inst_count & R300_RS_INST_COUNT_MASK) + 1;
708 CS_LOCALS(r300);
709
710 if (DBG_ON(r300, DBG_RS_BLOCK)) {
711 r500_dump_rs_block(rs);
712
713 fprintf(stderr, "r300: RS emit:\n");
714
715 for (i = 0; i < count; i++)
716 fprintf(stderr, " : ip %d: 0x%08x\n", i, rs->ip[i]);
717
718 for (i = 0; i < count; i++)
719 fprintf(stderr, " : inst %d: 0x%08x\n", i, rs->inst[i]);
720
721 fprintf(stderr, " : count: 0x%08x inst_count: 0x%08x\n",
722 rs->count, rs->inst_count);
723 }
724
725 BEGIN_CS(size);
726 OUT_CS_REG_SEQ(R300_VAP_VTX_STATE_CNTL, 2);
727 OUT_CS(rs->vap_vtx_state_cntl);
728 OUT_CS(rs->vap_vsm_vtx_assm);
729 OUT_CS_REG_SEQ(R300_VAP_OUTPUT_VTX_FMT_0, 2);
730 OUT_CS(rs->vap_out_vtx_fmt[0]);
731 OUT_CS(rs->vap_out_vtx_fmt[1]);
732 OUT_CS_REG_SEQ(R300_GB_ENABLE, 1);
733 OUT_CS(rs->gb_enable);
734
735 if (r300->screen->caps.is_r500) {
736 OUT_CS_REG_SEQ(R500_RS_IP_0, count);
737 } else {
738 OUT_CS_REG_SEQ(R300_RS_IP_0, count);
739 }
740 OUT_CS_TABLE(rs->ip, count);
741
742 OUT_CS_REG_SEQ(R300_RS_COUNT, 2);
743 OUT_CS(rs->count);
744 OUT_CS(rs->inst_count);
745
746 if (r300->screen->caps.is_r500) {
747 OUT_CS_REG_SEQ(R500_RS_INST_0, count);
748 } else {
749 OUT_CS_REG_SEQ(R300_RS_INST_0, count);
750 }
751 OUT_CS_TABLE(rs->inst, count);
752 END_CS;
753 }
754
755 void r300_emit_scissor_state(struct r300_context* r300,
756 unsigned size, void* state)
757 {
758 struct pipe_scissor_state* scissor = (struct pipe_scissor_state*)state;
759 CS_LOCALS(r300);
760
761 BEGIN_CS(size);
762 OUT_CS_REG_SEQ(R300_SC_CLIPRECT_TL_0, 2);
763 if (r300->screen->caps.is_r500) {
764 OUT_CS((scissor->minx << R300_CLIPRECT_X_SHIFT) |
765 (scissor->miny << R300_CLIPRECT_Y_SHIFT));
766 OUT_CS(((scissor->maxx - 1) << R300_CLIPRECT_X_SHIFT) |
767 ((scissor->maxy - 1) << R300_CLIPRECT_Y_SHIFT));
768 } else {
769 OUT_CS(((scissor->minx + 1440) << R300_CLIPRECT_X_SHIFT) |
770 ((scissor->miny + 1440) << R300_CLIPRECT_Y_SHIFT));
771 OUT_CS(((scissor->maxx + 1440-1) << R300_CLIPRECT_X_SHIFT) |
772 ((scissor->maxy + 1440-1) << R300_CLIPRECT_Y_SHIFT));
773 }
774 END_CS;
775 }
776
777 void r300_emit_textures_state(struct r300_context *r300,
778 unsigned size, void *state)
779 {
780 struct r300_textures_state *allstate = (struct r300_textures_state*)state;
781 struct r300_texture_sampler_state *texstate;
782 struct r300_resource *tex;
783 unsigned i;
784 CS_LOCALS(r300);
785
786 BEGIN_CS(size);
787 OUT_CS_REG(R300_TX_ENABLE, allstate->tx_enable);
788
789 for (i = 0; i < allstate->count; i++) {
790 if ((1 << i) & allstate->tx_enable) {
791 texstate = &allstate->regs[i];
792 tex = r300_resource(allstate->sampler_views[i]->base.texture);
793
794 OUT_CS_REG(R300_TX_FILTER0_0 + (i * 4), texstate->filter0);
795 OUT_CS_REG(R300_TX_FILTER1_0 + (i * 4), texstate->filter1);
796 OUT_CS_REG(R300_TX_BORDER_COLOR_0 + (i * 4),
797 texstate->border_color);
798
799 OUT_CS_REG(R300_TX_FORMAT0_0 + (i * 4), texstate->format.format0);
800 OUT_CS_REG(R300_TX_FORMAT1_0 + (i * 4), texstate->format.format1);
801 OUT_CS_REG(R300_TX_FORMAT2_0 + (i * 4), texstate->format.format2);
802
803 OUT_CS_REG(R300_TX_OFFSET_0 + (i * 4), texstate->format.tile_config);
804 OUT_CS_RELOC(tex);
805 }
806 }
807 END_CS;
808 }
809
810 static void r300_update_vertex_arrays_cb(struct r300_context *r300, unsigned packet_size)
811 {
812 struct pipe_vertex_buffer *vb1, *vb2, *vbuf = r300->vbuf_mgr->vertex_buffer;
813 struct pipe_vertex_element *velem = r300->velems->velem;
814 unsigned *hw_format_size = r300->velems->format_size;
815 unsigned size1, size2, vertex_array_count = r300->velems->count;
816 int i;
817 CB_LOCALS;
818
819 BEGIN_CB(r300->vertex_arrays_cb, packet_size);
820 for (i = 0; i < vertex_array_count - 1; i += 2) {
821 vb1 = &vbuf[velem[i].vertex_buffer_index];
822 vb2 = &vbuf[velem[i+1].vertex_buffer_index];
823 size1 = hw_format_size[i];
824 size2 = hw_format_size[i+1];
825
826 OUT_CB(R300_VBPNTR_SIZE0(size1) | R300_VBPNTR_STRIDE0(vb1->stride) |
827 R300_VBPNTR_SIZE1(size2) | R300_VBPNTR_STRIDE1(vb2->stride));
828 OUT_CB(vb1->buffer_offset + velem[i].src_offset);
829 OUT_CB(vb2->buffer_offset + velem[i+1].src_offset);
830 }
831
832 if (vertex_array_count & 1) {
833 vb1 = &vbuf[velem[i].vertex_buffer_index];
834 size1 = hw_format_size[i];
835
836 OUT_CB(R300_VBPNTR_SIZE0(size1) | R300_VBPNTR_STRIDE0(vb1->stride));
837 OUT_CB(vb1->buffer_offset + velem[i].src_offset);
838 }
839 END_CB;
840
841 r300->vertex_arrays_dirty = FALSE;
842 }
843
844 void r300_emit_vertex_arrays(struct r300_context* r300, int offset, boolean indexed)
845 {
846 struct pipe_vertex_buffer *vbuf = r300->vbuf_mgr->vertex_buffer;
847 struct pipe_resource **valid_vbuf = r300->vbuf_mgr->real_vertex_buffer;
848 struct pipe_vertex_element *velem = r300->velems->velem;
849 struct r300_resource *buf;
850 int i;
851 unsigned vertex_array_count = r300->velems->count;
852 unsigned packet_size = (vertex_array_count * 3 + 1) / 2;
853 CS_LOCALS(r300);
854
855 BEGIN_CS(2 + packet_size + vertex_array_count * 2);
856 OUT_CS_PKT3(R300_PACKET3_3D_LOAD_VBPNTR, packet_size);
857 OUT_CS(vertex_array_count | (!indexed ? R300_VC_FORCE_PREFETCH : 0));
858
859 if (!offset) {
860 if (r300->vertex_arrays_dirty) {
861 r300_update_vertex_arrays_cb(r300, packet_size);
862 }
863 OUT_CS_TABLE(r300->vertex_arrays_cb, packet_size);
864 } else {
865 struct pipe_vertex_buffer *vb1, *vb2;
866 unsigned *hw_format_size = r300->velems->format_size;
867 unsigned size1, size2;
868
869 for (i = 0; i < vertex_array_count - 1; i += 2) {
870 vb1 = &vbuf[velem[i].vertex_buffer_index];
871 vb2 = &vbuf[velem[i+1].vertex_buffer_index];
872 size1 = hw_format_size[i];
873 size2 = hw_format_size[i+1];
874
875 OUT_CS(R300_VBPNTR_SIZE0(size1) | R300_VBPNTR_STRIDE0(vb1->stride) |
876 R300_VBPNTR_SIZE1(size2) | R300_VBPNTR_STRIDE1(vb2->stride));
877 OUT_CS(vb1->buffer_offset + velem[i].src_offset + offset * vb1->stride);
878 OUT_CS(vb2->buffer_offset + velem[i+1].src_offset + offset * vb2->stride);
879 }
880
881 if (vertex_array_count & 1) {
882 vb1 = &vbuf[velem[i].vertex_buffer_index];
883 size1 = hw_format_size[i];
884
885 OUT_CS(R300_VBPNTR_SIZE0(size1) | R300_VBPNTR_STRIDE0(vb1->stride));
886 OUT_CS(vb1->buffer_offset + velem[i].src_offset + offset * vb1->stride);
887 }
888 }
889
890 for (i = 0; i < vertex_array_count; i++) {
891 buf = r300_resource(valid_vbuf[velem[i].vertex_buffer_index]);
892 OUT_CS_RELOC(buf);
893 }
894 END_CS;
895 }
896
897 void r300_emit_vertex_arrays_swtcl(struct r300_context *r300, boolean indexed)
898 {
899 CS_LOCALS(r300);
900
901 DBG(r300, DBG_SWTCL, "r300: Preparing vertex buffer %p for render, "
902 "vertex size %d\n", r300->vbo,
903 r300->vertex_info.size);
904 /* Set the pointer to our vertex buffer. The emitted values are this:
905 * PACKET3 [3D_LOAD_VBPNTR]
906 * COUNT [1]
907 * FORMAT [size | stride << 8]
908 * OFFSET [offset into BO]
909 * VBPNTR [relocated BO]
910 */
911 BEGIN_CS(7);
912 OUT_CS_PKT3(R300_PACKET3_3D_LOAD_VBPNTR, 3);
913 OUT_CS(1 | (!indexed ? R300_VC_FORCE_PREFETCH : 0));
914 OUT_CS(r300->vertex_info.size |
915 (r300->vertex_info.size << 8));
916 OUT_CS(r300->draw_vbo_offset);
917 OUT_CS(0);
918 OUT_CS_RELOC(r300_resource(r300->vbo));
919 END_CS;
920 }
921
922 void r300_emit_vertex_stream_state(struct r300_context* r300,
923 unsigned size, void* state)
924 {
925 struct r300_vertex_stream_state *streams =
926 (struct r300_vertex_stream_state*)state;
927 unsigned i;
928 CS_LOCALS(r300);
929
930 if (DBG_ON(r300, DBG_PSC)) {
931 fprintf(stderr, "r300: PSC emit:\n");
932
933 for (i = 0; i < streams->count; i++) {
934 fprintf(stderr, " : prog_stream_cntl%d: 0x%08x\n", i,
935 streams->vap_prog_stream_cntl[i]);
936 }
937
938 for (i = 0; i < streams->count; i++) {
939 fprintf(stderr, " : prog_stream_cntl_ext%d: 0x%08x\n", i,
940 streams->vap_prog_stream_cntl_ext[i]);
941 }
942 }
943
944 BEGIN_CS(size);
945 OUT_CS_REG_SEQ(R300_VAP_PROG_STREAM_CNTL_0, streams->count);
946 OUT_CS_TABLE(streams->vap_prog_stream_cntl, streams->count);
947 OUT_CS_REG_SEQ(R300_VAP_PROG_STREAM_CNTL_EXT_0, streams->count);
948 OUT_CS_TABLE(streams->vap_prog_stream_cntl_ext, streams->count);
949 END_CS;
950 }
951
952 void r300_emit_pvs_flush(struct r300_context* r300, unsigned size, void* state)
953 {
954 CS_LOCALS(r300);
955
956 BEGIN_CS(size);
957 OUT_CS_REG(R300_VAP_PVS_STATE_FLUSH_REG, 0x0);
958 END_CS;
959 }
960
961 void r300_emit_vap_invariant_state(struct r300_context *r300,
962 unsigned size, void *state)
963 {
964 CS_LOCALS(r300);
965 WRITE_CS_TABLE(state, size);
966 }
967
968 void r300_emit_vs_state(struct r300_context* r300, unsigned size, void* state)
969 {
970 struct r300_vertex_shader* vs = (struct r300_vertex_shader*)state;
971 struct r300_vertex_program_code* code = &vs->code;
972 struct r300_screen* r300screen = r300->screen;
973 unsigned instruction_count = code->length / 4;
974
975 unsigned vtx_mem_size = r300screen->caps.is_r500 ? 128 : 72;
976 unsigned input_count = MAX2(util_bitcount(code->InputsRead), 1);
977 unsigned output_count = MAX2(util_bitcount(code->OutputsWritten), 1);
978 unsigned temp_count = MAX2(code->num_temporaries, 1);
979
980 unsigned pvs_num_slots = MIN3(vtx_mem_size / input_count,
981 vtx_mem_size / output_count, 10);
982 unsigned pvs_num_controllers = MIN2(vtx_mem_size / temp_count, 5);
983
984 CS_LOCALS(r300);
985
986 BEGIN_CS(size);
987
988 /* R300_VAP_PVS_CODE_CNTL_0
989 * R300_VAP_PVS_CONST_CNTL
990 * R300_VAP_PVS_CODE_CNTL_1
991 * See the r5xx docs for instructions on how to use these. */
992 OUT_CS_REG(R300_VAP_PVS_CODE_CNTL_0, R300_PVS_FIRST_INST(0) |
993 R300_PVS_XYZW_VALID_INST(instruction_count - 1) |
994 R300_PVS_LAST_INST(instruction_count - 1));
995 OUT_CS_REG(R300_VAP_PVS_CODE_CNTL_1, instruction_count - 1);
996
997 OUT_CS_REG(R300_VAP_PVS_VECTOR_INDX_REG, 0);
998 OUT_CS_ONE_REG(R300_VAP_PVS_UPLOAD_DATA, code->length);
999 OUT_CS_TABLE(code->body.d, code->length);
1000
1001 OUT_CS_REG(R300_VAP_CNTL, R300_PVS_NUM_SLOTS(pvs_num_slots) |
1002 R300_PVS_NUM_CNTLRS(pvs_num_controllers) |
1003 R300_PVS_NUM_FPUS(r300screen->caps.num_vert_fpus) |
1004 R300_PVS_VF_MAX_VTX_NUM(12) |
1005 (r300screen->caps.is_r500 ? R500_TCL_STATE_OPTIMIZATION : 0));
1006
1007 /* Emit flow control instructions. */
1008 if (code->num_fc_ops) {
1009
1010 OUT_CS_REG(R300_VAP_PVS_FLOW_CNTL_OPC, code->fc_ops);
1011 if (r300screen->caps.is_r500) {
1012 OUT_CS_REG_SEQ(R500_VAP_PVS_FLOW_CNTL_ADDRS_LW_0, code->num_fc_ops * 2);
1013 OUT_CS_TABLE(code->fc_op_addrs.r500, code->num_fc_ops * 2);
1014 } else {
1015 OUT_CS_REG_SEQ(R300_VAP_PVS_FLOW_CNTL_ADDRS_0, code->num_fc_ops);
1016 OUT_CS_TABLE(code->fc_op_addrs.r300, code->num_fc_ops);
1017 }
1018 OUT_CS_REG_SEQ(R300_VAP_PVS_FLOW_CNTL_LOOP_INDEX_0, code->num_fc_ops);
1019 OUT_CS_TABLE(code->fc_loop_index, code->num_fc_ops);
1020 }
1021
1022 END_CS;
1023 }
1024
1025 void r300_emit_vs_constants(struct r300_context* r300,
1026 unsigned size, void *state)
1027 {
1028 unsigned count =
1029 ((struct r300_vertex_shader*)r300->vs_state.state)->externals_count;
1030 struct r300_constant_buffer *buf = (struct r300_constant_buffer*)state;
1031 struct r300_vertex_shader *vs = (struct r300_vertex_shader*)r300->vs_state.state;
1032 unsigned i;
1033 int imm_first = vs->externals_count;
1034 int imm_end = vs->code.constants.Count;
1035 int imm_count = vs->immediates_count;
1036 CS_LOCALS(r300);
1037
1038 BEGIN_CS(size);
1039 OUT_CS_REG(R300_VAP_PVS_CONST_CNTL,
1040 R300_PVS_CONST_BASE_OFFSET(buf->buffer_base) |
1041 R300_PVS_MAX_CONST_ADDR(MAX2(imm_end - 1, 0)));
1042 if (vs->externals_count) {
1043 OUT_CS_REG(R300_VAP_PVS_VECTOR_INDX_REG,
1044 (r300->screen->caps.is_r500 ?
1045 R500_PVS_CONST_START : R300_PVS_CONST_START) + buf->buffer_base);
1046 OUT_CS_ONE_REG(R300_VAP_PVS_UPLOAD_DATA, count * 4);
1047 if (buf->remap_table){
1048 for (i = 0; i < count; i++) {
1049 uint32_t *data = &buf->ptr[buf->remap_table[i]*4];
1050 OUT_CS_TABLE(data, 4);
1051 }
1052 } else {
1053 OUT_CS_TABLE(buf->ptr, count * 4);
1054 }
1055 }
1056
1057 /* Emit immediates. */
1058 if (imm_count) {
1059 OUT_CS_REG(R300_VAP_PVS_VECTOR_INDX_REG,
1060 (r300->screen->caps.is_r500 ?
1061 R500_PVS_CONST_START : R300_PVS_CONST_START) +
1062 buf->buffer_base + imm_first);
1063 OUT_CS_ONE_REG(R300_VAP_PVS_UPLOAD_DATA, imm_count * 4);
1064 for (i = imm_first; i < imm_end; i++) {
1065 const float *data = vs->code.constants.Constants[i].u.Immediate;
1066 OUT_CS_TABLE(data, 4);
1067 }
1068 }
1069 END_CS;
1070 }
1071
1072 void r300_emit_viewport_state(struct r300_context* r300,
1073 unsigned size, void* state)
1074 {
1075 struct r300_viewport_state* viewport = (struct r300_viewport_state*)state;
1076 CS_LOCALS(r300);
1077
1078 BEGIN_CS(size);
1079 OUT_CS_REG_SEQ(R300_SE_VPORT_XSCALE, 6);
1080 OUT_CS_TABLE(&viewport->xscale, 6);
1081 OUT_CS_REG(R300_VAP_VTE_CNTL, viewport->vte_control);
1082 END_CS;
1083 }
1084
1085 static void r300_emit_hiz_line_clear(struct r300_context *r300, int start, uint16_t count, uint32_t val)
1086 {
1087 CS_LOCALS(r300);
1088 BEGIN_CS(4);
1089 OUT_CS_PKT3(R300_PACKET3_3D_CLEAR_HIZ, 2);
1090 OUT_CS(start);
1091 OUT_CS(count);
1092 OUT_CS(val);
1093 END_CS;
1094 }
1095
1096 #define ALIGN_DIVUP(x, y) (((x) + (y) - 1) / (y))
1097
1098 void r300_emit_hiz_clear(struct r300_context *r300, unsigned size, void *state)
1099 {
1100 struct pipe_framebuffer_state *fb =
1101 (struct pipe_framebuffer_state*)r300->fb_state.state;
1102 struct r300_hyperz_state *z =
1103 (struct r300_hyperz_state*)r300->hyperz_state.state;
1104 struct r300_screen* r300screen = r300->screen;
1105 uint32_t stride, offset = 0, height, offset_shift;
1106 struct r300_resource* tex;
1107 int i;
1108
1109 tex = r300_resource(fb->zsbuf->texture);
1110
1111 offset = tex->hiz_mem[fb->zsbuf->u.tex.level]->ofs;
1112 stride = tex->tex.stride_in_pixels[fb->zsbuf->u.tex.level];
1113
1114 /* convert from pixels to 4x4 blocks */
1115 stride = ALIGN_DIVUP(stride, 4);
1116
1117 stride = ALIGN_DIVUP(stride, r300screen->caps.num_frag_pipes);
1118 /* there are 4 blocks per dwords */
1119 stride = ALIGN_DIVUP(stride, 4);
1120
1121 height = ALIGN_DIVUP(fb->zsbuf->height, 4);
1122
1123 offset_shift = 2;
1124 offset_shift += (r300screen->caps.num_frag_pipes / 2);
1125
1126 for (i = 0; i < height; i++) {
1127 offset = i * stride;
1128 offset <<= offset_shift;
1129 r300_emit_hiz_line_clear(r300, offset, stride, 0xffffffff);
1130 }
1131 z->current_func = -1;
1132
1133 /* Mark the current zbuffer's hiz ram as in use. */
1134 tex->hiz_in_use[fb->zsbuf->u.tex.level] = TRUE;
1135 }
1136
1137 void r300_emit_zmask_clear(struct r300_context *r300, unsigned size, void *state)
1138 {
1139 struct pipe_framebuffer_state *fb =
1140 (struct pipe_framebuffer_state*)r300->fb_state.state;
1141 struct r300_resource *tex;
1142 CS_LOCALS(r300);
1143
1144 tex = r300_resource(fb->zsbuf->texture);
1145
1146 BEGIN_CS(size);
1147 OUT_CS_PKT3(R300_PACKET3_3D_CLEAR_ZMASK, 2);
1148 OUT_CS(0);
1149 OUT_CS(tex->tex.zmask_dwords[fb->zsbuf->u.tex.level]);
1150 OUT_CS(0);
1151 END_CS;
1152
1153 /* Mark the current zbuffer's zmask as in use. */
1154 r300->zmask_in_use = TRUE;
1155 r300_mark_atom_dirty(r300, &r300->hyperz_state);
1156 }
1157
1158 void r300_emit_ztop_state(struct r300_context* r300,
1159 unsigned size, void* state)
1160 {
1161 struct r300_ztop_state* ztop = (struct r300_ztop_state*)state;
1162 CS_LOCALS(r300);
1163
1164 BEGIN_CS(size);
1165 OUT_CS_REG(R300_ZB_ZTOP, ztop->z_buffer_top);
1166 END_CS;
1167 }
1168
1169 void r300_emit_texture_cache_inval(struct r300_context* r300, unsigned size, void* state)
1170 {
1171 CS_LOCALS(r300);
1172
1173 BEGIN_CS(size);
1174 OUT_CS_REG(R300_TX_INVALTAGS, 0);
1175 END_CS;
1176 }
1177
1178 boolean r300_emit_buffer_validate(struct r300_context *r300,
1179 boolean do_validate_vertex_buffers,
1180 struct pipe_resource *index_buffer)
1181 {
1182 struct pipe_framebuffer_state *fb =
1183 (struct pipe_framebuffer_state*)r300->fb_state.state;
1184 struct r300_textures_state *texstate =
1185 (struct r300_textures_state*)r300->textures_state.state;
1186 struct r300_resource *tex;
1187 unsigned i;
1188 boolean flushed = FALSE;
1189
1190 validate:
1191 if (r300->fb_state.dirty) {
1192 /* Color buffers... */
1193 for (i = 0; i < fb->nr_cbufs; i++) {
1194 tex = r300_resource(fb->cbufs[i]->texture);
1195 assert(tex && tex->buf && "cbuf is marked, but NULL!");
1196 r300->rws->cs_add_reloc(r300->cs, tex->cs_buf, 0,
1197 r300_surface(fb->cbufs[i])->domain);
1198 }
1199 /* ...depth buffer... */
1200 if (fb->zsbuf) {
1201 tex = r300_resource(fb->zsbuf->texture);
1202 assert(tex && tex->buf && "zsbuf is marked, but NULL!");
1203 r300->rws->cs_add_reloc(r300->cs, tex->cs_buf, 0,
1204 r300_surface(fb->zsbuf)->domain);
1205 }
1206 }
1207 if (r300->textures_state.dirty) {
1208 /* ...textures... */
1209 for (i = 0; i < texstate->count; i++) {
1210 if (!(texstate->tx_enable & (1 << i))) {
1211 continue;
1212 }
1213
1214 tex = r300_resource(texstate->sampler_views[i]->base.texture);
1215 r300->rws->cs_add_reloc(r300->cs, tex->cs_buf, tex->domain, 0);
1216 }
1217 }
1218 /* ...occlusion query buffer... */
1219 if (r300->query_current)
1220 r300->rws->cs_add_reloc(r300->cs, r300->query_current->cs_buf,
1221 0, r300->query_current->domain);
1222 /* ...vertex buffer for SWTCL path... */
1223 if (r300->vbo)
1224 r300->rws->cs_add_reloc(r300->cs, r300_resource(r300->vbo)->cs_buf,
1225 r300_resource(r300->vbo)->domain, 0);
1226 /* ...vertex buffers for HWTCL path... */
1227 if (do_validate_vertex_buffers) {
1228 struct pipe_resource **buf = r300->vbuf_mgr->real_vertex_buffer;
1229 struct pipe_resource **last = r300->vbuf_mgr->real_vertex_buffer +
1230 r300->vbuf_mgr->nr_real_vertex_buffers;
1231 for (; buf != last; buf++) {
1232 if (!*buf)
1233 continue;
1234
1235 r300->rws->cs_add_reloc(r300->cs, r300_resource(*buf)->cs_buf,
1236 r300_resource(*buf)->domain, 0);
1237 }
1238 }
1239 /* ...and index buffer for HWTCL path. */
1240 if (index_buffer)
1241 r300->rws->cs_add_reloc(r300->cs, r300_resource(index_buffer)->cs_buf,
1242 r300_resource(index_buffer)->domain, 0);
1243
1244 /* Now do the validation. */
1245 if (!r300->rws->cs_validate(r300->cs)) {
1246 /* Ooops, an infinite loop, give up. */
1247 if (flushed)
1248 return FALSE;
1249
1250 r300->context.flush(&r300->context, 0, NULL);
1251 flushed = TRUE;
1252 goto validate;
1253 }
1254
1255 return TRUE;
1256 }
1257
1258 unsigned r300_get_num_dirty_dwords(struct r300_context *r300)
1259 {
1260 struct r300_atom* atom;
1261 unsigned dwords = 0;
1262
1263 foreach_dirty_atom(r300, atom) {
1264 if (atom->dirty) {
1265 dwords += atom->size;
1266 }
1267 }
1268
1269 /* let's reserve some more, just in case */
1270 dwords += 32;
1271
1272 return dwords;
1273 }
1274
1275 unsigned r300_get_num_cs_end_dwords(struct r300_context *r300)
1276 {
1277 unsigned dwords = 0;
1278
1279 /* Emitted in flush. */
1280 dwords += 26; /* emit_query_end */
1281 dwords += r300->hyperz_state.size + 2; /* emit_hyperz_end + zcache flush */
1282 if (r300->screen->caps.index_bias_supported)
1283 dwords += 2;
1284
1285 return dwords;
1286 }
1287
1288 /* Emit all dirty state. */
1289 void r300_emit_dirty_state(struct r300_context* r300)
1290 {
1291 struct r300_atom *atom;
1292
1293 foreach_dirty_atom(r300, atom) {
1294 if (atom->dirty) {
1295 atom->emit(r300, atom->size, atom->state);
1296 atom->dirty = FALSE;
1297 }
1298 }
1299
1300 r300->first_dirty = NULL;
1301 r300->last_dirty = NULL;
1302 r300->dirty_hw++;
1303 }