winsys/radeon: remove cs_write_reloc, add simpler cs_get_reloc
[mesa.git] / src / gallium / drivers / r300 / r300_emit.c
1 /*
2 * Copyright 2008 Corbin Simpson <MostAwesomeDude@gmail.com>
3 * Copyright 2009 Marek Olšák <maraeo@gmail.com>
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * on the rights to use, copy, modify, merge, publish, distribute, sub
9 * license, and/or sell copies of the Software, and to permit persons to whom
10 * the Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE. */
23
24 /* r300_emit: Functions for emitting state. */
25
26 #include "util/u_format.h"
27 #include "util/u_math.h"
28 #include "util/u_mm.h"
29
30 #include "r300_context.h"
31 #include "r300_cb.h"
32 #include "r300_cs.h"
33 #include "r300_emit.h"
34 #include "r300_fs.h"
35 #include "r300_screen.h"
36 #include "r300_screen_buffer.h"
37 #include "r300_vs.h"
38
39 void r300_emit_blend_state(struct r300_context* r300,
40 unsigned size, void* state)
41 {
42 struct r300_blend_state* blend = (struct r300_blend_state*)state;
43 struct pipe_framebuffer_state* fb =
44 (struct pipe_framebuffer_state*)r300->fb_state.state;
45 CS_LOCALS(r300);
46
47 if (fb->nr_cbufs) {
48 if (fb->cbufs[0]->format == PIPE_FORMAT_R16G16B16A16_FLOAT) {
49 WRITE_CS_TABLE(blend->cb_noclamp, size);
50 } else if (fb->cbufs[0]->format == PIPE_FORMAT_R16G16B16X16_FLOAT) {
51 WRITE_CS_TABLE(blend->cb_noclamp_noalpha, size);
52 } else {
53 unsigned swz = r300_surface(fb->cbufs[0])->colormask_swizzle;
54 WRITE_CS_TABLE(blend->cb_clamp[swz], size);
55 }
56 } else {
57 WRITE_CS_TABLE(blend->cb_no_readwrite, size);
58 }
59 }
60
61 void r300_emit_blend_color_state(struct r300_context* r300,
62 unsigned size, void* state)
63 {
64 struct r300_blend_color_state* bc = (struct r300_blend_color_state*)state;
65 CS_LOCALS(r300);
66
67 WRITE_CS_TABLE(bc->cb, size);
68 }
69
70 void r300_emit_clip_state(struct r300_context* r300,
71 unsigned size, void* state)
72 {
73 struct r300_clip_state* clip = (struct r300_clip_state*)state;
74 CS_LOCALS(r300);
75
76 WRITE_CS_TABLE(clip->cb, size);
77 }
78
79 void r300_emit_dsa_state(struct r300_context* r300, unsigned size, void* state)
80 {
81 struct r300_dsa_state* dsa = (struct r300_dsa_state*)state;
82 struct pipe_framebuffer_state* fb =
83 (struct pipe_framebuffer_state*)r300->fb_state.state;
84 boolean is_r500 = r300->screen->caps.is_r500;
85 CS_LOCALS(r300);
86 uint32_t alpha_func = dsa->alpha_function;
87
88 /* Choose the alpha ref value between 8-bit (FG_ALPHA_FUNC.AM_VAL) and
89 * 16-bit (FG_ALPHA_VALUE). */
90 if (is_r500 && (alpha_func & R300_FG_ALPHA_FUNC_ENABLE)) {
91 if (fb->nr_cbufs &&
92 (fb->cbufs[0]->format == PIPE_FORMAT_R16G16B16A16_FLOAT ||
93 fb->cbufs[0]->format == PIPE_FORMAT_R16G16B16X16_FLOAT)) {
94 alpha_func |= R500_FG_ALPHA_FUNC_FP16_ENABLE;
95 } else {
96 alpha_func |= R500_FG_ALPHA_FUNC_8BIT;
97 }
98 }
99
100 /* Setup alpha-to-coverage. */
101 if (r300->alpha_to_coverage && r300->msaa_enable) {
102 /* Always set 3/6, it improves precision even for 2x and 4x MSAA. */
103 alpha_func |= R300_FG_ALPHA_FUNC_MASK_ENABLE |
104 R300_FG_ALPHA_FUNC_CFG_3_OF_6;
105 }
106
107 BEGIN_CS(size);
108 OUT_CS_REG(R300_FG_ALPHA_FUNC, alpha_func);
109 OUT_CS_TABLE(fb->zsbuf ? &dsa->cb_begin : dsa->cb_zb_no_readwrite, size-2);
110 END_CS;
111 }
112
113 static void get_rc_constant_state(
114 float vec[4],
115 struct r300_context * r300,
116 struct rc_constant * constant)
117 {
118 struct r300_textures_state* texstate = r300->textures_state.state;
119 struct r300_resource *tex;
120
121 assert(constant->Type == RC_CONSTANT_STATE);
122
123 /* vec should either be (0, 0, 0, 1), which should be a relatively safe
124 * RGBA or STRQ value, or it could be one of the RC_CONSTANT_STATE
125 * state factors. */
126
127 switch (constant->u.State[0]) {
128 /* Factor for converting rectangle coords to
129 * normalized coords. Should only show up on non-r500. */
130 case RC_STATE_R300_TEXRECT_FACTOR:
131 tex = r300_resource(texstate->sampler_views[constant->u.State[1]]->base.texture);
132 vec[0] = 1.0 / tex->tex.width0;
133 vec[1] = 1.0 / tex->tex.height0;
134 vec[2] = 0;
135 vec[3] = 1;
136 break;
137
138 case RC_STATE_R300_TEXSCALE_FACTOR:
139 tex = r300_resource(texstate->sampler_views[constant->u.State[1]]->base.texture);
140 /* Add a small number to the texture size to work around rounding errors in hw. */
141 vec[0] = tex->b.b.width0 / (tex->tex.width0 + 0.001f);
142 vec[1] = tex->b.b.height0 / (tex->tex.height0 + 0.001f);
143 vec[2] = tex->b.b.depth0 / (tex->tex.depth0 + 0.001f);
144 vec[3] = 1;
145 break;
146
147 case RC_STATE_R300_VIEWPORT_SCALE:
148 vec[0] = r300->viewport.scale[0];
149 vec[1] = r300->viewport.scale[1];
150 vec[2] = r300->viewport.scale[2];
151 vec[3] = 1;
152 break;
153
154 case RC_STATE_R300_VIEWPORT_OFFSET:
155 vec[0] = r300->viewport.translate[0];
156 vec[1] = r300->viewport.translate[1];
157 vec[2] = r300->viewport.translate[2];
158 vec[3] = 1;
159 break;
160
161 default:
162 fprintf(stderr, "r300: Implementation error: "
163 "Unknown RC_CONSTANT type %d\n", constant->u.State[0]);
164 vec[0] = 0;
165 vec[1] = 0;
166 vec[2] = 0;
167 vec[3] = 1;
168 }
169 }
170
171 /* Convert a normal single-precision float into the 7.16 format
172 * used by the R300 fragment shader.
173 */
174 uint32_t pack_float24(float f)
175 {
176 union {
177 float fl;
178 uint32_t u;
179 } u;
180 float mantissa;
181 int exponent;
182 uint32_t float24 = 0;
183
184 if (f == 0.0)
185 return 0;
186
187 u.fl = f;
188
189 mantissa = frexpf(f, &exponent);
190
191 /* Handle -ve */
192 if (mantissa < 0) {
193 float24 |= (1 << 23);
194 mantissa = mantissa * -1.0;
195 }
196 /* Handle exponent, bias of 63 */
197 exponent += 62;
198 float24 |= (exponent << 16);
199 /* Kill 7 LSB of mantissa */
200 float24 |= (u.u & 0x7FFFFF) >> 7;
201
202 return float24;
203 }
204
205 void r300_emit_fs(struct r300_context* r300, unsigned size, void *state)
206 {
207 struct r300_fragment_shader *fs = r300_fs(r300);
208 CS_LOCALS(r300);
209
210 WRITE_CS_TABLE(fs->shader->cb_code, fs->shader->cb_code_size);
211 }
212
213 void r300_emit_fs_constants(struct r300_context* r300, unsigned size, void *state)
214 {
215 struct r300_fragment_shader *fs = r300_fs(r300);
216 struct r300_constant_buffer *buf = (struct r300_constant_buffer*)state;
217 unsigned count = fs->shader->externals_count;
218 unsigned i, j;
219 CS_LOCALS(r300);
220
221 if (count == 0)
222 return;
223
224 BEGIN_CS(size);
225 OUT_CS_REG_SEQ(R300_PFS_PARAM_0_X, count * 4);
226 if (buf->remap_table){
227 for (i = 0; i < count; i++) {
228 float *data = (float*)&buf->ptr[buf->remap_table[i]*4];
229 for (j = 0; j < 4; j++)
230 OUT_CS(pack_float24(data[j]));
231 }
232 } else {
233 for (i = 0; i < count; i++)
234 for (j = 0; j < 4; j++)
235 OUT_CS(pack_float24(*(float*)&buf->ptr[i*4+j]));
236 }
237
238 END_CS;
239 }
240
241 void r300_emit_fs_rc_constant_state(struct r300_context* r300, unsigned size, void *state)
242 {
243 struct r300_fragment_shader *fs = r300_fs(r300);
244 struct rc_constant_list *constants = &fs->shader->code.constants;
245 unsigned i;
246 unsigned count = fs->shader->rc_state_count;
247 unsigned first = fs->shader->externals_count;
248 unsigned end = constants->Count;
249 unsigned j;
250 CS_LOCALS(r300);
251
252 if (count == 0)
253 return;
254
255 BEGIN_CS(size);
256 for(i = first; i < end; ++i) {
257 if (constants->Constants[i].Type == RC_CONSTANT_STATE) {
258 float data[4];
259
260 get_rc_constant_state(data, r300, &constants->Constants[i]);
261
262 OUT_CS_REG_SEQ(R300_PFS_PARAM_0_X + i * 16, 4);
263 for (j = 0; j < 4; j++)
264 OUT_CS(pack_float24(data[j]));
265 }
266 }
267 END_CS;
268 }
269
270 void r500_emit_fs(struct r300_context* r300, unsigned size, void *state)
271 {
272 struct r300_fragment_shader *fs = r300_fs(r300);
273 CS_LOCALS(r300);
274
275 WRITE_CS_TABLE(fs->shader->cb_code, fs->shader->cb_code_size);
276 }
277
278 void r500_emit_fs_constants(struct r300_context* r300, unsigned size, void *state)
279 {
280 struct r300_fragment_shader *fs = r300_fs(r300);
281 struct r300_constant_buffer *buf = (struct r300_constant_buffer*)state;
282 unsigned count = fs->shader->externals_count;
283 CS_LOCALS(r300);
284
285 if (count == 0)
286 return;
287
288 BEGIN_CS(size);
289 OUT_CS_REG(R500_GA_US_VECTOR_INDEX, R500_GA_US_VECTOR_INDEX_TYPE_CONST);
290 OUT_CS_ONE_REG(R500_GA_US_VECTOR_DATA, count * 4);
291 if (buf->remap_table){
292 for (unsigned i = 0; i < count; i++) {
293 uint32_t *data = &buf->ptr[buf->remap_table[i]*4];
294 OUT_CS_TABLE(data, 4);
295 }
296 } else {
297 OUT_CS_TABLE(buf->ptr, count * 4);
298 }
299 END_CS;
300 }
301
302 void r500_emit_fs_rc_constant_state(struct r300_context* r300, unsigned size, void *state)
303 {
304 struct r300_fragment_shader *fs = r300_fs(r300);
305 struct rc_constant_list *constants = &fs->shader->code.constants;
306 unsigned i;
307 unsigned count = fs->shader->rc_state_count;
308 unsigned first = fs->shader->externals_count;
309 unsigned end = constants->Count;
310 CS_LOCALS(r300);
311
312 if (count == 0)
313 return;
314
315 BEGIN_CS(size);
316 for(i = first; i < end; ++i) {
317 if (constants->Constants[i].Type == RC_CONSTANT_STATE) {
318 float data[4];
319
320 get_rc_constant_state(data, r300, &constants->Constants[i]);
321
322 OUT_CS_REG(R500_GA_US_VECTOR_INDEX,
323 R500_GA_US_VECTOR_INDEX_TYPE_CONST |
324 (i & R500_GA_US_VECTOR_INDEX_MASK));
325 OUT_CS_ONE_REG(R500_GA_US_VECTOR_DATA, 4);
326 OUT_CS_TABLE(data, 4);
327 }
328 }
329 END_CS;
330 }
331
332 void r300_emit_gpu_flush(struct r300_context *r300, unsigned size, void *state)
333 {
334 struct r300_gpu_flush *gpuflush = (struct r300_gpu_flush*)state;
335 struct pipe_framebuffer_state* fb =
336 (struct pipe_framebuffer_state*)r300->fb_state.state;
337 uint32_t height = fb->height;
338 uint32_t width = fb->width;
339 CS_LOCALS(r300);
340
341 if (r300->cbzb_clear) {
342 struct r300_surface *surf = r300_surface(fb->cbufs[0]);
343
344 height = surf->cbzb_height;
345 width = surf->cbzb_width;
346 }
347
348 DBG(r300, DBG_SCISSOR,
349 "r300: Scissor width: %i, height: %i, CBZB clear: %s\n",
350 width, height, r300->cbzb_clear ? "YES" : "NO");
351
352 BEGIN_CS(size);
353
354 /* Set up scissors.
355 * By writing to the SC registers, SC & US assert idle. */
356 OUT_CS_REG_SEQ(R300_SC_SCISSORS_TL, 2);
357 if (r300->screen->caps.is_r500) {
358 OUT_CS(0);
359 OUT_CS(((width - 1) << R300_SCISSORS_X_SHIFT) |
360 ((height - 1) << R300_SCISSORS_Y_SHIFT));
361 } else {
362 OUT_CS((1440 << R300_SCISSORS_X_SHIFT) |
363 (1440 << R300_SCISSORS_Y_SHIFT));
364 OUT_CS(((width + 1440-1) << R300_SCISSORS_X_SHIFT) |
365 ((height + 1440-1) << R300_SCISSORS_Y_SHIFT));
366 }
367
368 /* Flush CB & ZB caches and wait until the 3D engine is idle and clean. */
369 OUT_CS_TABLE(gpuflush->cb_flush_clean, 6);
370 END_CS;
371 }
372
373 void r300_emit_aa_state(struct r300_context *r300, unsigned size, void *state)
374 {
375 struct r300_aa_state *aa = (struct r300_aa_state*)state;
376 CS_LOCALS(r300);
377
378 BEGIN_CS(size);
379 OUT_CS_REG(R300_GB_AA_CONFIG, aa->aa_config);
380
381 if (aa->dest) {
382 OUT_CS_REG_SEQ(R300_RB3D_AARESOLVE_OFFSET, 3);
383 OUT_CS(aa->dest->offset);
384 OUT_CS(aa->dest->pitch & R300_RB3D_AARESOLVE_PITCH_MASK);
385 OUT_CS(R300_RB3D_AARESOLVE_CTL_AARESOLVE_MODE_RESOLVE |
386 R300_RB3D_AARESOLVE_CTL_AARESOLVE_ALPHA_AVERAGE);
387 OUT_CS_RELOC(aa->dest);
388 } else {
389 OUT_CS_REG(R300_RB3D_AARESOLVE_CTL, 0);
390 }
391
392 END_CS;
393 }
394
395 void r300_emit_fb_state(struct r300_context* r300, unsigned size, void* state)
396 {
397 struct pipe_framebuffer_state* fb = (struct pipe_framebuffer_state*)state;
398 struct r300_surface* surf;
399 unsigned i;
400 uint32_t rb3d_cctl = 0;
401
402 CS_LOCALS(r300);
403
404 BEGIN_CS(size);
405
406 if (r300->screen->caps.is_r500) {
407 rb3d_cctl = R300_RB3D_CCTL_INDEPENDENT_COLORFORMAT_ENABLE_ENABLE;
408 }
409 /* NUM_MULTIWRITES replicates COLOR[0] to all colorbuffers. */
410 if (fb->nr_cbufs && r300->fb_multiwrite) {
411 rb3d_cctl |= R300_RB3D_CCTL_NUM_MULTIWRITES(fb->nr_cbufs);
412 }
413 if (r300->cmask_in_use) {
414 rb3d_cctl |= R300_RB3D_CCTL_AA_COMPRESSION_ENABLE |
415 R300_RB3D_CCTL_CMASK_ENABLE;
416 }
417
418 OUT_CS_REG(R300_RB3D_CCTL, rb3d_cctl);
419
420 /* Set up colorbuffers. */
421 for (i = 0; i < fb->nr_cbufs; i++) {
422 surf = r300_surface(fb->cbufs[i]);
423
424 OUT_CS_REG(R300_RB3D_COLOROFFSET0 + (4 * i), surf->offset);
425 OUT_CS_RELOC(surf);
426
427 OUT_CS_REG(R300_RB3D_COLORPITCH0 + (4 * i), surf->pitch);
428 OUT_CS_RELOC(surf);
429
430 if (r300->cmask_in_use && i == 0) {
431 OUT_CS_REG(R300_RB3D_CMASK_OFFSET0, 0);
432 OUT_CS_REG(R300_RB3D_CMASK_PITCH0, surf->pitch_cmask);
433 OUT_CS_REG(R300_RB3D_COLOR_CLEAR_VALUE, r300->color_clear_value);
434 if (r300->screen->caps.is_r500 && r300->screen->info.drm_minor >= 29) {
435 OUT_CS_REG_SEQ(R500_RB3D_COLOR_CLEAR_VALUE_AR, 2);
436 OUT_CS(r300->color_clear_value_ar);
437 OUT_CS(r300->color_clear_value_gb);
438 }
439 }
440 }
441
442 /* Set up the ZB part of the CBZB clear. */
443 if (r300->cbzb_clear) {
444 surf = r300_surface(fb->cbufs[0]);
445
446 OUT_CS_REG(R300_ZB_FORMAT, surf->cbzb_format);
447
448 OUT_CS_REG(R300_ZB_DEPTHOFFSET, surf->cbzb_midpoint_offset);
449 OUT_CS_RELOC(surf);
450
451 OUT_CS_REG(R300_ZB_DEPTHPITCH, surf->cbzb_pitch);
452 OUT_CS_RELOC(surf);
453
454 DBG(r300, DBG_CBZB,
455 "CBZB clearing cbuf %08x %08x\n", surf->cbzb_format,
456 surf->cbzb_pitch);
457 }
458 /* Set up a zbuffer. */
459 else if (fb->zsbuf) {
460 surf = r300_surface(fb->zsbuf);
461
462 OUT_CS_REG(R300_ZB_FORMAT, surf->format);
463
464 OUT_CS_REG(R300_ZB_DEPTHOFFSET, surf->offset);
465 OUT_CS_RELOC(surf);
466
467 OUT_CS_REG(R300_ZB_DEPTHPITCH, surf->pitch);
468 OUT_CS_RELOC(surf);
469
470 if (r300->hyperz_enabled) {
471 /* HiZ RAM. */
472 OUT_CS_REG(R300_ZB_HIZ_OFFSET, 0);
473 OUT_CS_REG(R300_ZB_HIZ_PITCH, surf->pitch_hiz);
474 /* Z Mask RAM. (compressed zbuffer) */
475 OUT_CS_REG(R300_ZB_ZMASK_OFFSET, 0);
476 OUT_CS_REG(R300_ZB_ZMASK_PITCH, surf->pitch_zmask);
477 }
478 }
479
480 END_CS;
481 }
482
483 void r300_emit_hyperz_state(struct r300_context *r300,
484 unsigned size, void *state)
485 {
486 struct r300_hyperz_state *z = state;
487 CS_LOCALS(r300);
488
489 if (z->flush)
490 WRITE_CS_TABLE(&z->cb_flush_begin, size);
491 else
492 WRITE_CS_TABLE(&z->cb_begin, size - 2);
493 }
494
495 void r300_emit_hyperz_end(struct r300_context *r300)
496 {
497 struct r300_hyperz_state z =
498 *(struct r300_hyperz_state*)r300->hyperz_state.state;
499
500 z.flush = 1;
501 z.zb_bw_cntl = 0;
502 z.zb_depthclearvalue = 0;
503 z.sc_hyperz = R300_SC_HYPERZ_ADJ_2;
504 z.gb_z_peq_config = 0;
505
506 r300_emit_hyperz_state(r300, r300->hyperz_state.size, &z);
507 }
508
509 #define R300_NIBBLES(x0, y0, x1, y1, x2, y2, d0y, d0x) \
510 (((x0) & 0xf) | (((y0) & 0xf) << 4) | \
511 (((x1) & 0xf) << 8) | (((y1) & 0xf) << 12) | \
512 (((x2) & 0xf) << 16) | (((y2) & 0xf) << 20) | \
513 (((d0y) & 0xf) << 24) | (((d0x) & 0xf) << 28))
514
515 static unsigned r300_get_mspos(int index, unsigned *p)
516 {
517 unsigned reg, i, distx, disty, dist;
518
519 if (index == 0) {
520 /* MSPOS0 contains positions for samples 0,1,2 as (X,Y) pairs of nibbles,
521 * followed by a (Y,X) pair containing the minimum distance from the pixel
522 * edge:
523 * X0, Y0, X1, Y1, X2, Y2, D0_Y, D0_X
524 *
525 * There is a quirk when setting D0_X. The value represents the distance
526 * from the left edge of the pixel quad to the first sample in subpixels.
527 * All values less than eight should use the actual value, but „7‟ should
528 * be used for the distance „8‟. The hardware will convert 7 into 8 internally.
529 */
530 distx = 11;
531 for (i = 0; i < 12; i += 2) {
532 if (p[i] < distx)
533 distx = p[i];
534 }
535
536 disty = 11;
537 for (i = 1; i < 12; i += 2) {
538 if (p[i] < disty)
539 disty = p[i];
540 }
541
542 if (distx == 8)
543 distx = 7;
544
545 reg = R300_NIBBLES(p[0], p[1], p[2], p[3], p[4], p[5], disty, distx);
546 } else {
547 /* MSPOS1 contains positions for samples 3,4,5 as (X,Y) pairs of nibbles,
548 * followed by the minimum distance from the pixel edge (not sure if X or Y):
549 * X3, Y3, X4, Y4, X5, Y5, D1
550 */
551 dist = 11;
552 for (i = 0; i < 12; i++) {
553 if (p[i] < dist)
554 dist = p[i];
555 }
556
557 reg = R300_NIBBLES(p[6], p[7], p[8], p[9], p[10], p[11], dist, 0);
558 }
559 return reg;
560 }
561
562 void r300_emit_fb_state_pipelined(struct r300_context *r300,
563 unsigned size, void *state)
564 {
565 /* The sample coordinates are in the range [0,11], because
566 * GB_TILE_CONFIG.SUBPIXEL is set to the 1/12 subpixel precision.
567 *
568 * Some sample coordinates reach to neighboring pixels and should not be used.
569 * (e.g. Y=11)
570 *
571 * The unused samples must be set to the positions of other valid samples. */
572 static unsigned sample_locs_1x[12] = {
573 6,6, 6,6, 6,6, 6,6, 6,6, 6,6
574 };
575 static unsigned sample_locs_2x[12] = {
576 3,9, 9,3, 9,3, 9,3, 9,3, 9,3
577 };
578 static unsigned sample_locs_4x[12] = {
579 4,4, 8,8, 2,10, 10,2, 10,2, 10,2
580 };
581 static unsigned sample_locs_6x[12] = {
582 3,1, 7,3, 11,5, 1,7, 5,9, 9,10
583 };
584
585 struct pipe_framebuffer_state* fb =
586 (struct pipe_framebuffer_state*)r300->fb_state.state;
587 unsigned i, num_cbufs = fb->nr_cbufs;
588 unsigned mspos0, mspos1;
589 CS_LOCALS(r300);
590
591 /* If we use the multiwrite feature, the colorbuffers 2,3,4 must be
592 * marked as UNUSED in the US block. */
593 if (r300->fb_multiwrite) {
594 num_cbufs = MIN2(num_cbufs, 1);
595 }
596
597 BEGIN_CS(size);
598
599 /* Colorbuffer format in the US block.
600 * (must be written after unpipelined regs) */
601 OUT_CS_REG_SEQ(R300_US_OUT_FMT_0, 4);
602 for (i = 0; i < num_cbufs; i++) {
603 OUT_CS(r300_surface(fb->cbufs[i])->format);
604 }
605 for (; i < 1; i++) {
606 OUT_CS(R300_US_OUT_FMT_C4_8 |
607 R300_C0_SEL_B | R300_C1_SEL_G |
608 R300_C2_SEL_R | R300_C3_SEL_A);
609 }
610 for (; i < 4; i++) {
611 OUT_CS(R300_US_OUT_FMT_UNUSED);
612 }
613
614 /* Set sample positions. It depends on the framebuffer sample count.
615 * These are pipelined regs and as such cannot be moved to the AA state.
616 */
617 switch (r300->num_samples) {
618 default:
619 mspos0 = r300_get_mspos(0, sample_locs_1x);
620 mspos1 = r300_get_mspos(1, sample_locs_1x);
621 break;
622 case 2:
623 mspos0 = r300_get_mspos(0, sample_locs_2x);
624 mspos1 = r300_get_mspos(1, sample_locs_2x);
625 break;
626 case 4:
627 mspos0 = r300_get_mspos(0, sample_locs_4x);
628 mspos1 = r300_get_mspos(1, sample_locs_4x);
629 break;
630 case 6:
631 mspos0 = r300_get_mspos(0, sample_locs_6x);
632 mspos1 = r300_get_mspos(1, sample_locs_6x);
633 break;
634 }
635
636 OUT_CS_REG_SEQ(R300_GB_MSPOS0, 2);
637 OUT_CS(mspos0);
638 OUT_CS(mspos1);
639 END_CS;
640 }
641
642 void r300_emit_query_start(struct r300_context *r300, unsigned size, void*state)
643 {
644 struct r300_query *query = r300->query_current;
645 CS_LOCALS(r300);
646
647 if (!query)
648 return;
649
650 BEGIN_CS(size);
651 if (r300->screen->caps.family == CHIP_RV530) {
652 OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_ALL);
653 } else {
654 OUT_CS_REG(R300_SU_REG_DEST, R300_RASTER_PIPE_SELECT_ALL);
655 }
656 OUT_CS_REG(R300_ZB_ZPASS_DATA, 0);
657 END_CS;
658 query->begin_emitted = TRUE;
659 }
660
661 static void r300_emit_query_end_frag_pipes(struct r300_context *r300,
662 struct r300_query *query)
663 {
664 struct r300_capabilities* caps = &r300->screen->caps;
665 uint32_t gb_pipes = r300->screen->info.r300_num_gb_pipes;
666 CS_LOCALS(r300);
667
668 assert(gb_pipes);
669
670 BEGIN_CS(6 * gb_pipes + 2);
671 /* I'm not so sure I like this switch, but it's hard to be elegant
672 * when there's so many special cases...
673 *
674 * So here's the basic idea. For each pipe, enable writes to it only,
675 * then put out the relocation for ZPASS_ADDR, taking into account a
676 * 4-byte offset for each pipe. RV380 and older are special; they have
677 * only two pipes, and the second pipe's enable is on bit 3, not bit 1,
678 * so there's a chipset cap for that. */
679 switch (gb_pipes) {
680 case 4:
681 /* pipe 3 only */
682 OUT_CS_REG(R300_SU_REG_DEST, 1 << 3);
683 OUT_CS_REG(R300_ZB_ZPASS_ADDR, (query->num_results + 3) * 4);
684 OUT_CS_RELOC(r300->query_current);
685 case 3:
686 /* pipe 2 only */
687 OUT_CS_REG(R300_SU_REG_DEST, 1 << 2);
688 OUT_CS_REG(R300_ZB_ZPASS_ADDR, (query->num_results + 2) * 4);
689 OUT_CS_RELOC(r300->query_current);
690 case 2:
691 /* pipe 1 only */
692 /* As mentioned above, accomodate RV380 and older. */
693 OUT_CS_REG(R300_SU_REG_DEST,
694 1 << (caps->high_second_pipe ? 3 : 1));
695 OUT_CS_REG(R300_ZB_ZPASS_ADDR, (query->num_results + 1) * 4);
696 OUT_CS_RELOC(r300->query_current);
697 case 1:
698 /* pipe 0 only */
699 OUT_CS_REG(R300_SU_REG_DEST, 1 << 0);
700 OUT_CS_REG(R300_ZB_ZPASS_ADDR, (query->num_results + 0) * 4);
701 OUT_CS_RELOC(r300->query_current);
702 break;
703 default:
704 fprintf(stderr, "r300: Implementation error: Chipset reports %d"
705 " pixel pipes!\n", gb_pipes);
706 abort();
707 }
708
709 /* And, finally, reset it to normal... */
710 OUT_CS_REG(R300_SU_REG_DEST, 0xF);
711 END_CS;
712 }
713
714 static void rv530_emit_query_end_single_z(struct r300_context *r300,
715 struct r300_query *query)
716 {
717 CS_LOCALS(r300);
718
719 BEGIN_CS(8);
720 OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_0);
721 OUT_CS_REG(R300_ZB_ZPASS_ADDR, query->num_results * 4);
722 OUT_CS_RELOC(r300->query_current);
723 OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_ALL);
724 END_CS;
725 }
726
727 static void rv530_emit_query_end_double_z(struct r300_context *r300,
728 struct r300_query *query)
729 {
730 CS_LOCALS(r300);
731
732 BEGIN_CS(14);
733 OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_0);
734 OUT_CS_REG(R300_ZB_ZPASS_ADDR, (query->num_results + 0) * 4);
735 OUT_CS_RELOC(r300->query_current);
736 OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_1);
737 OUT_CS_REG(R300_ZB_ZPASS_ADDR, (query->num_results + 1) * 4);
738 OUT_CS_RELOC(r300->query_current);
739 OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_ALL);
740 END_CS;
741 }
742
743 void r300_emit_query_end(struct r300_context* r300)
744 {
745 struct r300_capabilities *caps = &r300->screen->caps;
746 struct r300_query *query = r300->query_current;
747
748 if (!query)
749 return;
750
751 if (query->begin_emitted == FALSE)
752 return;
753
754 if (caps->family == CHIP_RV530) {
755 if (r300->screen->info.r300_num_z_pipes == 2)
756 rv530_emit_query_end_double_z(r300, query);
757 else
758 rv530_emit_query_end_single_z(r300, query);
759 } else
760 r300_emit_query_end_frag_pipes(r300, query);
761
762 query->begin_emitted = FALSE;
763 query->num_results += query->num_pipes;
764
765 /* XXX grab all the results and reset the counter. */
766 if (query->num_results >= query->buf->size / 4 - 4) {
767 query->num_results = (query->buf->size / 4) / 2;
768 fprintf(stderr, "r300: Rewinding OQBO...\n");
769 }
770 }
771
772 void r300_emit_invariant_state(struct r300_context *r300,
773 unsigned size, void *state)
774 {
775 CS_LOCALS(r300);
776 WRITE_CS_TABLE(state, size);
777 }
778
779 void r300_emit_rs_state(struct r300_context* r300, unsigned size, void* state)
780 {
781 struct r300_rs_state* rs = state;
782 CS_LOCALS(r300);
783
784 BEGIN_CS(size);
785 OUT_CS_TABLE(rs->cb_main, RS_STATE_MAIN_SIZE);
786 if (rs->polygon_offset_enable) {
787 if (r300->zbuffer_bpp == 16) {
788 OUT_CS_TABLE(rs->cb_poly_offset_zb16, 5);
789 } else {
790 OUT_CS_TABLE(rs->cb_poly_offset_zb24, 5);
791 }
792 }
793 END_CS;
794 }
795
796 void r300_emit_rs_block_state(struct r300_context* r300,
797 unsigned size, void* state)
798 {
799 struct r300_rs_block* rs = (struct r300_rs_block*)state;
800 unsigned i;
801 /* It's the same for both INST and IP tables */
802 unsigned count = (rs->inst_count & R300_RS_INST_COUNT_MASK) + 1;
803 CS_LOCALS(r300);
804
805 if (DBG_ON(r300, DBG_RS_BLOCK)) {
806 r500_dump_rs_block(rs);
807
808 fprintf(stderr, "r300: RS emit:\n");
809
810 for (i = 0; i < count; i++)
811 fprintf(stderr, " : ip %d: 0x%08x\n", i, rs->ip[i]);
812
813 for (i = 0; i < count; i++)
814 fprintf(stderr, " : inst %d: 0x%08x\n", i, rs->inst[i]);
815
816 fprintf(stderr, " : count: 0x%08x inst_count: 0x%08x\n",
817 rs->count, rs->inst_count);
818 }
819
820 BEGIN_CS(size);
821 OUT_CS_REG_SEQ(R300_VAP_VTX_STATE_CNTL, 2);
822 OUT_CS(rs->vap_vtx_state_cntl);
823 OUT_CS(rs->vap_vsm_vtx_assm);
824 OUT_CS_REG_SEQ(R300_VAP_OUTPUT_VTX_FMT_0, 2);
825 OUT_CS(rs->vap_out_vtx_fmt[0]);
826 OUT_CS(rs->vap_out_vtx_fmt[1]);
827 OUT_CS_REG_SEQ(R300_GB_ENABLE, 1);
828 OUT_CS(rs->gb_enable);
829
830 if (r300->screen->caps.is_r500) {
831 OUT_CS_REG_SEQ(R500_RS_IP_0, count);
832 } else {
833 OUT_CS_REG_SEQ(R300_RS_IP_0, count);
834 }
835 OUT_CS_TABLE(rs->ip, count);
836
837 OUT_CS_REG_SEQ(R300_RS_COUNT, 2);
838 OUT_CS(rs->count);
839 OUT_CS(rs->inst_count);
840
841 if (r300->screen->caps.is_r500) {
842 OUT_CS_REG_SEQ(R500_RS_INST_0, count);
843 } else {
844 OUT_CS_REG_SEQ(R300_RS_INST_0, count);
845 }
846 OUT_CS_TABLE(rs->inst, count);
847 END_CS;
848 }
849
850 void r300_emit_sample_mask(struct r300_context *r300,
851 unsigned size, void *state)
852 {
853 unsigned mask = (*(unsigned*)state) & ((1 << 6)-1);
854 CS_LOCALS(r300);
855
856 BEGIN_CS(size);
857 OUT_CS_REG(R300_SC_SCREENDOOR,
858 mask | (mask << 6) | (mask << 12) | (mask << 18));
859 END_CS;
860 }
861
862 void r300_emit_scissor_state(struct r300_context* r300,
863 unsigned size, void* state)
864 {
865 struct pipe_scissor_state* scissor = (struct pipe_scissor_state*)state;
866 CS_LOCALS(r300);
867
868 BEGIN_CS(size);
869 OUT_CS_REG_SEQ(R300_SC_CLIPRECT_TL_0, 2);
870 if (r300->screen->caps.is_r500) {
871 OUT_CS((scissor->minx << R300_CLIPRECT_X_SHIFT) |
872 (scissor->miny << R300_CLIPRECT_Y_SHIFT));
873 OUT_CS(((scissor->maxx - 1) << R300_CLIPRECT_X_SHIFT) |
874 ((scissor->maxy - 1) << R300_CLIPRECT_Y_SHIFT));
875 } else {
876 OUT_CS(((scissor->minx + 1440) << R300_CLIPRECT_X_SHIFT) |
877 ((scissor->miny + 1440) << R300_CLIPRECT_Y_SHIFT));
878 OUT_CS(((scissor->maxx + 1440-1) << R300_CLIPRECT_X_SHIFT) |
879 ((scissor->maxy + 1440-1) << R300_CLIPRECT_Y_SHIFT));
880 }
881 END_CS;
882 }
883
884 void r300_emit_textures_state(struct r300_context *r300,
885 unsigned size, void *state)
886 {
887 struct r300_textures_state *allstate = (struct r300_textures_state*)state;
888 struct r300_texture_sampler_state *texstate;
889 struct r300_resource *tex;
890 unsigned i;
891 boolean has_us_format = r300->screen->caps.has_us_format;
892 CS_LOCALS(r300);
893
894 BEGIN_CS(size);
895 OUT_CS_REG(R300_TX_ENABLE, allstate->tx_enable);
896
897 for (i = 0; i < allstate->count; i++) {
898 if ((1 << i) & allstate->tx_enable) {
899 texstate = &allstate->regs[i];
900 tex = r300_resource(allstate->sampler_views[i]->base.texture);
901
902 OUT_CS_REG(R300_TX_FILTER0_0 + (i * 4), texstate->filter0);
903 OUT_CS_REG(R300_TX_FILTER1_0 + (i * 4), texstate->filter1);
904 OUT_CS_REG(R300_TX_BORDER_COLOR_0 + (i * 4),
905 texstate->border_color);
906
907 OUT_CS_REG(R300_TX_FORMAT0_0 + (i * 4), texstate->format.format0);
908 OUT_CS_REG(R300_TX_FORMAT1_0 + (i * 4), texstate->format.format1);
909 OUT_CS_REG(R300_TX_FORMAT2_0 + (i * 4), texstate->format.format2);
910
911 OUT_CS_REG(R300_TX_OFFSET_0 + (i * 4), texstate->format.tile_config);
912 OUT_CS_RELOC(tex);
913
914 if (has_us_format) {
915 OUT_CS_REG(R500_US_FORMAT0_0 + (i * 4),
916 texstate->format.us_format0);
917 }
918 }
919 }
920 END_CS;
921 }
922
923 void r300_emit_vertex_arrays(struct r300_context* r300, int offset,
924 boolean indexed, int instance_id)
925 {
926 struct pipe_vertex_buffer *vbuf = r300->vertex_buffer;
927 struct pipe_vertex_element *velem = r300->velems->velem;
928 struct r300_resource *buf;
929 int i;
930 unsigned vertex_array_count = r300->velems->count;
931 unsigned packet_size = (vertex_array_count * 3 + 1) / 2;
932 struct pipe_vertex_buffer *vb1, *vb2;
933 unsigned *hw_format_size = r300->velems->format_size;
934 unsigned size1, size2, offset1, offset2, stride1, stride2;
935 CS_LOCALS(r300);
936
937 BEGIN_CS(2 + packet_size + vertex_array_count * 2);
938 OUT_CS_PKT3(R300_PACKET3_3D_LOAD_VBPNTR, packet_size);
939 OUT_CS(vertex_array_count | (!indexed ? R300_VC_FORCE_PREFETCH : 0));
940
941 if (instance_id == -1) {
942 /* Non-instanced arrays. This ignores instance_divisor and instance_id. */
943 for (i = 0; i < vertex_array_count - 1; i += 2) {
944 vb1 = &vbuf[velem[i].vertex_buffer_index];
945 vb2 = &vbuf[velem[i+1].vertex_buffer_index];
946 size1 = hw_format_size[i];
947 size2 = hw_format_size[i+1];
948
949 OUT_CS(R300_VBPNTR_SIZE0(size1) | R300_VBPNTR_STRIDE0(vb1->stride) |
950 R300_VBPNTR_SIZE1(size2) | R300_VBPNTR_STRIDE1(vb2->stride));
951 OUT_CS(vb1->buffer_offset + velem[i].src_offset + offset * vb1->stride);
952 OUT_CS(vb2->buffer_offset + velem[i+1].src_offset + offset * vb2->stride);
953 }
954
955 if (vertex_array_count & 1) {
956 vb1 = &vbuf[velem[i].vertex_buffer_index];
957 size1 = hw_format_size[i];
958
959 OUT_CS(R300_VBPNTR_SIZE0(size1) | R300_VBPNTR_STRIDE0(vb1->stride));
960 OUT_CS(vb1->buffer_offset + velem[i].src_offset + offset * vb1->stride);
961 }
962
963 for (i = 0; i < vertex_array_count; i++) {
964 buf = r300_resource(vbuf[velem[i].vertex_buffer_index].buffer);
965 OUT_CS_RELOC(buf);
966 }
967 } else {
968 /* Instanced arrays. */
969 for (i = 0; i < vertex_array_count - 1; i += 2) {
970 vb1 = &vbuf[velem[i].vertex_buffer_index];
971 vb2 = &vbuf[velem[i+1].vertex_buffer_index];
972 size1 = hw_format_size[i];
973 size2 = hw_format_size[i+1];
974
975 if (velem[i].instance_divisor) {
976 stride1 = 0;
977 offset1 = vb1->buffer_offset + velem[i].src_offset +
978 (instance_id / velem[i].instance_divisor) * vb1->stride;
979 } else {
980 stride1 = vb1->stride;
981 offset1 = vb1->buffer_offset + velem[i].src_offset + offset * vb1->stride;
982 }
983 if (velem[i+1].instance_divisor) {
984 stride2 = 0;
985 offset2 = vb2->buffer_offset + velem[i+1].src_offset +
986 (instance_id / velem[i+1].instance_divisor) * vb2->stride;
987 } else {
988 stride2 = vb2->stride;
989 offset2 = vb2->buffer_offset + velem[i+1].src_offset + offset * vb2->stride;
990 }
991
992 OUT_CS(R300_VBPNTR_SIZE0(size1) | R300_VBPNTR_STRIDE0(stride1) |
993 R300_VBPNTR_SIZE1(size2) | R300_VBPNTR_STRIDE1(stride2));
994 OUT_CS(offset1);
995 OUT_CS(offset2);
996 }
997
998 if (vertex_array_count & 1) {
999 vb1 = &vbuf[velem[i].vertex_buffer_index];
1000 size1 = hw_format_size[i];
1001
1002 if (velem[i].instance_divisor) {
1003 stride1 = 0;
1004 offset1 = vb1->buffer_offset + velem[i].src_offset +
1005 (instance_id / velem[i].instance_divisor) * vb1->stride;
1006 } else {
1007 stride1 = vb1->stride;
1008 offset1 = vb1->buffer_offset + velem[i].src_offset + offset * vb1->stride;
1009 }
1010
1011 OUT_CS(R300_VBPNTR_SIZE0(size1) | R300_VBPNTR_STRIDE0(stride1));
1012 OUT_CS(offset1);
1013 }
1014
1015 for (i = 0; i < vertex_array_count; i++) {
1016 buf = r300_resource(vbuf[velem[i].vertex_buffer_index].buffer);
1017 OUT_CS_RELOC(buf);
1018 }
1019 }
1020 END_CS;
1021 }
1022
1023 void r300_emit_vertex_arrays_swtcl(struct r300_context *r300, boolean indexed)
1024 {
1025 CS_LOCALS(r300);
1026
1027 DBG(r300, DBG_SWTCL, "r300: Preparing vertex buffer %p for render, "
1028 "vertex size %d\n", r300->vbo,
1029 r300->vertex_info.size);
1030 /* Set the pointer to our vertex buffer. The emitted values are this:
1031 * PACKET3 [3D_LOAD_VBPNTR]
1032 * COUNT [1]
1033 * FORMAT [size | stride << 8]
1034 * OFFSET [offset into BO]
1035 * VBPNTR [relocated BO]
1036 */
1037 BEGIN_CS(7);
1038 OUT_CS_PKT3(R300_PACKET3_3D_LOAD_VBPNTR, 3);
1039 OUT_CS(1 | (!indexed ? R300_VC_FORCE_PREFETCH : 0));
1040 OUT_CS(r300->vertex_info.size |
1041 (r300->vertex_info.size << 8));
1042 OUT_CS(r300->draw_vbo_offset);
1043 OUT_CS(0);
1044
1045 assert(r300->vbo_cs);
1046 OUT_CS(0xc0001000); /* PKT3_NOP */
1047 OUT_CS(r300->rws->cs_get_reloc(r300->cs, r300->vbo_cs) * 4);
1048 END_CS;
1049 }
1050
1051 void r300_emit_vertex_stream_state(struct r300_context* r300,
1052 unsigned size, void* state)
1053 {
1054 struct r300_vertex_stream_state *streams =
1055 (struct r300_vertex_stream_state*)state;
1056 unsigned i;
1057 CS_LOCALS(r300);
1058
1059 if (DBG_ON(r300, DBG_PSC)) {
1060 fprintf(stderr, "r300: PSC emit:\n");
1061
1062 for (i = 0; i < streams->count; i++) {
1063 fprintf(stderr, " : prog_stream_cntl%d: 0x%08x\n", i,
1064 streams->vap_prog_stream_cntl[i]);
1065 }
1066
1067 for (i = 0; i < streams->count; i++) {
1068 fprintf(stderr, " : prog_stream_cntl_ext%d: 0x%08x\n", i,
1069 streams->vap_prog_stream_cntl_ext[i]);
1070 }
1071 }
1072
1073 BEGIN_CS(size);
1074 OUT_CS_REG_SEQ(R300_VAP_PROG_STREAM_CNTL_0, streams->count);
1075 OUT_CS_TABLE(streams->vap_prog_stream_cntl, streams->count);
1076 OUT_CS_REG_SEQ(R300_VAP_PROG_STREAM_CNTL_EXT_0, streams->count);
1077 OUT_CS_TABLE(streams->vap_prog_stream_cntl_ext, streams->count);
1078 END_CS;
1079 }
1080
1081 void r300_emit_pvs_flush(struct r300_context* r300, unsigned size, void* state)
1082 {
1083 CS_LOCALS(r300);
1084
1085 BEGIN_CS(size);
1086 OUT_CS_REG(R300_VAP_PVS_STATE_FLUSH_REG, 0x0);
1087 END_CS;
1088 }
1089
1090 void r300_emit_vap_invariant_state(struct r300_context *r300,
1091 unsigned size, void *state)
1092 {
1093 CS_LOCALS(r300);
1094 WRITE_CS_TABLE(state, size);
1095 }
1096
1097 void r300_emit_vs_state(struct r300_context* r300, unsigned size, void* state)
1098 {
1099 struct r300_vertex_shader* vs = (struct r300_vertex_shader*)state;
1100 struct r300_vertex_program_code* code = &vs->code;
1101 struct r300_screen* r300screen = r300->screen;
1102 unsigned instruction_count = code->length / 4;
1103
1104 unsigned vtx_mem_size = r300screen->caps.is_r500 ? 128 : 72;
1105 unsigned input_count = MAX2(util_bitcount(code->InputsRead), 1);
1106 unsigned output_count = MAX2(util_bitcount(code->OutputsWritten), 1);
1107 unsigned temp_count = MAX2(code->num_temporaries, 1);
1108
1109 unsigned pvs_num_slots = MIN3(vtx_mem_size / input_count,
1110 vtx_mem_size / output_count, 10);
1111 unsigned pvs_num_controllers = MIN2(vtx_mem_size / temp_count, 5);
1112
1113 CS_LOCALS(r300);
1114
1115 BEGIN_CS(size);
1116
1117 /* R300_VAP_PVS_CODE_CNTL_0
1118 * R300_VAP_PVS_CONST_CNTL
1119 * R300_VAP_PVS_CODE_CNTL_1
1120 * See the r5xx docs for instructions on how to use these. */
1121 OUT_CS_REG(R300_VAP_PVS_CODE_CNTL_0, R300_PVS_FIRST_INST(0) |
1122 R300_PVS_XYZW_VALID_INST(instruction_count - 1) |
1123 R300_PVS_LAST_INST(instruction_count - 1));
1124 OUT_CS_REG(R300_VAP_PVS_CODE_CNTL_1, instruction_count - 1);
1125
1126 OUT_CS_REG(R300_VAP_PVS_VECTOR_INDX_REG, 0);
1127 OUT_CS_ONE_REG(R300_VAP_PVS_UPLOAD_DATA, code->length);
1128 OUT_CS_TABLE(code->body.d, code->length);
1129
1130 OUT_CS_REG(R300_VAP_CNTL, R300_PVS_NUM_SLOTS(pvs_num_slots) |
1131 R300_PVS_NUM_CNTLRS(pvs_num_controllers) |
1132 R300_PVS_NUM_FPUS(r300screen->caps.num_vert_fpus) |
1133 R300_PVS_VF_MAX_VTX_NUM(12) |
1134 (r300screen->caps.is_r500 ? R500_TCL_STATE_OPTIMIZATION : 0));
1135
1136 /* Emit flow control instructions. Even if there are no fc instructions,
1137 * we still need to write the registers to make sure they are cleared. */
1138 OUT_CS_REG(R300_VAP_PVS_FLOW_CNTL_OPC, code->fc_ops);
1139 if (r300screen->caps.is_r500) {
1140 OUT_CS_REG_SEQ(R500_VAP_PVS_FLOW_CNTL_ADDRS_LW_0, R300_VS_MAX_FC_OPS * 2);
1141 OUT_CS_TABLE(code->fc_op_addrs.r500, R300_VS_MAX_FC_OPS * 2);
1142 } else {
1143 OUT_CS_REG_SEQ(R300_VAP_PVS_FLOW_CNTL_ADDRS_0, R300_VS_MAX_FC_OPS);
1144 OUT_CS_TABLE(code->fc_op_addrs.r300, R300_VS_MAX_FC_OPS);
1145 }
1146 OUT_CS_REG_SEQ(R300_VAP_PVS_FLOW_CNTL_LOOP_INDEX_0, R300_VS_MAX_FC_OPS);
1147 OUT_CS_TABLE(code->fc_loop_index, R300_VS_MAX_FC_OPS);
1148
1149 END_CS;
1150 }
1151
1152 void r300_emit_vs_constants(struct r300_context* r300,
1153 unsigned size, void *state)
1154 {
1155 unsigned count =
1156 ((struct r300_vertex_shader*)r300->vs_state.state)->externals_count;
1157 struct r300_constant_buffer *buf = (struct r300_constant_buffer*)state;
1158 struct r300_vertex_shader *vs = (struct r300_vertex_shader*)r300->vs_state.state;
1159 unsigned i;
1160 int imm_first = vs->externals_count;
1161 int imm_end = vs->code.constants.Count;
1162 int imm_count = vs->immediates_count;
1163 CS_LOCALS(r300);
1164
1165 BEGIN_CS(size);
1166 OUT_CS_REG(R300_VAP_PVS_CONST_CNTL,
1167 R300_PVS_CONST_BASE_OFFSET(buf->buffer_base) |
1168 R300_PVS_MAX_CONST_ADDR(MAX2(imm_end - 1, 0)));
1169 if (vs->externals_count) {
1170 OUT_CS_REG(R300_VAP_PVS_VECTOR_INDX_REG,
1171 (r300->screen->caps.is_r500 ?
1172 R500_PVS_CONST_START : R300_PVS_CONST_START) + buf->buffer_base);
1173 OUT_CS_ONE_REG(R300_VAP_PVS_UPLOAD_DATA, count * 4);
1174 if (buf->remap_table){
1175 for (i = 0; i < count; i++) {
1176 uint32_t *data = &buf->ptr[buf->remap_table[i]*4];
1177 OUT_CS_TABLE(data, 4);
1178 }
1179 } else {
1180 OUT_CS_TABLE(buf->ptr, count * 4);
1181 }
1182 }
1183
1184 /* Emit immediates. */
1185 if (imm_count) {
1186 OUT_CS_REG(R300_VAP_PVS_VECTOR_INDX_REG,
1187 (r300->screen->caps.is_r500 ?
1188 R500_PVS_CONST_START : R300_PVS_CONST_START) +
1189 buf->buffer_base + imm_first);
1190 OUT_CS_ONE_REG(R300_VAP_PVS_UPLOAD_DATA, imm_count * 4);
1191 for (i = imm_first; i < imm_end; i++) {
1192 const float *data = vs->code.constants.Constants[i].u.Immediate;
1193 OUT_CS_TABLE(data, 4);
1194 }
1195 }
1196 END_CS;
1197 }
1198
1199 void r300_emit_viewport_state(struct r300_context* r300,
1200 unsigned size, void* state)
1201 {
1202 struct r300_viewport_state* viewport = (struct r300_viewport_state*)state;
1203 CS_LOCALS(r300);
1204
1205 BEGIN_CS(size);
1206 OUT_CS_REG_SEQ(R300_SE_VPORT_XSCALE, 6);
1207 OUT_CS_TABLE(&viewport->xscale, 6);
1208 OUT_CS_REG(R300_VAP_VTE_CNTL, viewport->vte_control);
1209 END_CS;
1210 }
1211
1212 void r300_emit_hiz_clear(struct r300_context *r300, unsigned size, void *state)
1213 {
1214 struct pipe_framebuffer_state *fb =
1215 (struct pipe_framebuffer_state*)r300->fb_state.state;
1216 struct r300_resource* tex;
1217 CS_LOCALS(r300);
1218
1219 tex = r300_resource(fb->zsbuf->texture);
1220
1221 BEGIN_CS(size);
1222 OUT_CS_PKT3(R300_PACKET3_3D_CLEAR_HIZ, 2);
1223 OUT_CS(0);
1224 OUT_CS(tex->tex.hiz_dwords[fb->zsbuf->u.tex.level]);
1225 OUT_CS(r300->hiz_clear_value);
1226 END_CS;
1227
1228 /* Mark the current zbuffer's hiz ram as in use. */
1229 r300->hiz_in_use = TRUE;
1230 r300->hiz_func = HIZ_FUNC_NONE;
1231 r300_mark_atom_dirty(r300, &r300->hyperz_state);
1232 }
1233
1234 void r300_emit_zmask_clear(struct r300_context *r300, unsigned size, void *state)
1235 {
1236 struct pipe_framebuffer_state *fb =
1237 (struct pipe_framebuffer_state*)r300->fb_state.state;
1238 struct r300_resource *tex;
1239 CS_LOCALS(r300);
1240
1241 tex = r300_resource(fb->zsbuf->texture);
1242
1243 BEGIN_CS(size);
1244 OUT_CS_PKT3(R300_PACKET3_3D_CLEAR_ZMASK, 2);
1245 OUT_CS(0);
1246 OUT_CS(tex->tex.zmask_dwords[fb->zsbuf->u.tex.level]);
1247 OUT_CS(0);
1248 END_CS;
1249
1250 /* Mark the current zbuffer's zmask as in use. */
1251 r300->zmask_in_use = TRUE;
1252 r300_mark_atom_dirty(r300, &r300->hyperz_state);
1253 }
1254
1255 void r300_emit_cmask_clear(struct r300_context *r300, unsigned size, void *state)
1256 {
1257 struct pipe_framebuffer_state *fb =
1258 (struct pipe_framebuffer_state*)r300->fb_state.state;
1259 struct r300_resource *tex;
1260 CS_LOCALS(r300);
1261
1262 tex = r300_resource(fb->cbufs[0]->texture);
1263
1264 BEGIN_CS(size);
1265 OUT_CS_PKT3(R300_PACKET3_3D_CLEAR_CMASK, 2);
1266 OUT_CS(0);
1267 OUT_CS(tex->tex.cmask_dwords);
1268 OUT_CS(0);
1269 END_CS;
1270
1271 /* Mark the current zbuffer's zmask as in use. */
1272 r300->cmask_in_use = TRUE;
1273 r300_mark_fb_state_dirty(r300, R300_CHANGED_CMASK_ENABLE);
1274 }
1275
1276 void r300_emit_ztop_state(struct r300_context* r300,
1277 unsigned size, void* state)
1278 {
1279 struct r300_ztop_state* ztop = (struct r300_ztop_state*)state;
1280 CS_LOCALS(r300);
1281
1282 BEGIN_CS(size);
1283 OUT_CS_REG(R300_ZB_ZTOP, ztop->z_buffer_top);
1284 END_CS;
1285 }
1286
1287 void r300_emit_texture_cache_inval(struct r300_context* r300, unsigned size, void* state)
1288 {
1289 CS_LOCALS(r300);
1290
1291 BEGIN_CS(size);
1292 OUT_CS_REG(R300_TX_INVALTAGS, 0);
1293 END_CS;
1294 }
1295
1296 boolean r300_emit_buffer_validate(struct r300_context *r300,
1297 boolean do_validate_vertex_buffers,
1298 struct pipe_resource *index_buffer)
1299 {
1300 struct pipe_framebuffer_state *fb =
1301 (struct pipe_framebuffer_state*)r300->fb_state.state;
1302 struct r300_aa_state *aa = (struct r300_aa_state*)r300->aa_state.state;
1303 struct r300_textures_state *texstate =
1304 (struct r300_textures_state*)r300->textures_state.state;
1305 struct r300_resource *tex;
1306 unsigned i;
1307 boolean flushed = FALSE;
1308
1309 validate:
1310 if (r300->fb_state.dirty) {
1311 /* Color buffers... */
1312 for (i = 0; i < fb->nr_cbufs; i++) {
1313 tex = r300_resource(fb->cbufs[i]->texture);
1314 assert(tex && tex->buf && "cbuf is marked, but NULL!");
1315 r300->rws->cs_add_reloc(r300->cs, tex->cs_buf,
1316 RADEON_USAGE_READWRITE,
1317 r300_surface(fb->cbufs[i])->domain,
1318 tex->b.b.nr_samples > 1 ?
1319 RADEON_PRIO_COLOR_BUFFER_MSAA :
1320 RADEON_PRIO_COLOR_BUFFER);
1321 }
1322 /* ...depth buffer... */
1323 if (fb->zsbuf) {
1324 tex = r300_resource(fb->zsbuf->texture);
1325 assert(tex && tex->buf && "zsbuf is marked, but NULL!");
1326 r300->rws->cs_add_reloc(r300->cs, tex->cs_buf,
1327 RADEON_USAGE_READWRITE,
1328 r300_surface(fb->zsbuf)->domain,
1329 tex->b.b.nr_samples > 1 ?
1330 RADEON_PRIO_DEPTH_BUFFER_MSAA :
1331 RADEON_PRIO_DEPTH_BUFFER);
1332 }
1333 }
1334 /* The AA resolve buffer. */
1335 if (r300->aa_state.dirty) {
1336 if (aa->dest) {
1337 r300->rws->cs_add_reloc(r300->cs, aa->dest->cs_buf,
1338 RADEON_USAGE_WRITE,
1339 aa->dest->domain,
1340 RADEON_PRIO_COLOR_BUFFER);
1341 }
1342 }
1343 if (r300->textures_state.dirty) {
1344 /* ...textures... */
1345 for (i = 0; i < texstate->count; i++) {
1346 if (!(texstate->tx_enable & (1 << i))) {
1347 continue;
1348 }
1349
1350 tex = r300_resource(texstate->sampler_views[i]->base.texture);
1351 r300->rws->cs_add_reloc(r300->cs, tex->cs_buf, RADEON_USAGE_READ,
1352 tex->domain, RADEON_PRIO_SHADER_TEXTURE_RO);
1353 }
1354 }
1355 /* ...occlusion query buffer... */
1356 if (r300->query_current)
1357 r300->rws->cs_add_reloc(r300->cs, r300->query_current->cs_buf,
1358 RADEON_USAGE_WRITE, RADEON_DOMAIN_GTT,
1359 RADEON_PRIO_MIN);
1360 /* ...vertex buffer for SWTCL path... */
1361 if (r300->vbo_cs)
1362 r300->rws->cs_add_reloc(r300->cs, r300->vbo_cs,
1363 RADEON_USAGE_READ, RADEON_DOMAIN_GTT,
1364 RADEON_PRIO_MIN);
1365 /* ...vertex buffers for HWTCL path... */
1366 if (do_validate_vertex_buffers && r300->vertex_arrays_dirty) {
1367 struct pipe_vertex_buffer *vbuf = r300->vertex_buffer;
1368 struct pipe_vertex_buffer *last = r300->vertex_buffer +
1369 r300->nr_vertex_buffers;
1370 struct pipe_resource *buf;
1371
1372 for (; vbuf != last; vbuf++) {
1373 buf = vbuf->buffer;
1374 if (!buf)
1375 continue;
1376
1377 r300->rws->cs_add_reloc(r300->cs, r300_resource(buf)->cs_buf,
1378 RADEON_USAGE_READ,
1379 r300_resource(buf)->domain,
1380 RADEON_PRIO_SHADER_BUFFER_RO);
1381 }
1382 }
1383 /* ...and index buffer for HWTCL path. */
1384 if (index_buffer)
1385 r300->rws->cs_add_reloc(r300->cs, r300_resource(index_buffer)->cs_buf,
1386 RADEON_USAGE_READ,
1387 r300_resource(index_buffer)->domain,
1388 RADEON_PRIO_MIN);
1389
1390 /* Now do the validation (flush is called inside cs_validate on failure). */
1391 if (!r300->rws->cs_validate(r300->cs)) {
1392 /* Ooops, an infinite loop, give up. */
1393 if (flushed)
1394 return FALSE;
1395
1396 flushed = TRUE;
1397 goto validate;
1398 }
1399
1400 return TRUE;
1401 }
1402
1403 unsigned r300_get_num_dirty_dwords(struct r300_context *r300)
1404 {
1405 struct r300_atom* atom;
1406 unsigned dwords = 0;
1407
1408 foreach_dirty_atom(r300, atom) {
1409 if (atom->dirty) {
1410 dwords += atom->size;
1411 }
1412 }
1413
1414 /* let's reserve some more, just in case */
1415 dwords += 32;
1416
1417 return dwords;
1418 }
1419
1420 unsigned r300_get_num_cs_end_dwords(struct r300_context *r300)
1421 {
1422 unsigned dwords = 0;
1423
1424 /* Emitted in flush. */
1425 dwords += 26; /* emit_query_end */
1426 dwords += r300->hyperz_state.size + 2; /* emit_hyperz_end + zcache flush */
1427 if (r300->screen->caps.is_r500)
1428 dwords += 2; /* emit_index_bias */
1429 if (r300->screen->info.drm_minor >= 6)
1430 dwords += 3; /* MSPOS */
1431
1432 return dwords;
1433 }
1434
1435 /* Emit all dirty state. */
1436 void r300_emit_dirty_state(struct r300_context* r300)
1437 {
1438 struct r300_atom *atom;
1439
1440 foreach_dirty_atom(r300, atom) {
1441 if (atom->dirty) {
1442 atom->emit(r300, atom->size, atom->state);
1443 atom->dirty = FALSE;
1444 }
1445 }
1446
1447 r300->first_dirty = NULL;
1448 r300->last_dirty = NULL;
1449 r300->dirty_hw++;
1450 }