r300g: enable AA optimizations for the RGBA16F format
[mesa.git] / src / gallium / drivers / r300 / r300_emit.c
1 /*
2 * Copyright 2008 Corbin Simpson <MostAwesomeDude@gmail.com>
3 * Copyright 2009 Marek Olšák <maraeo@gmail.com>
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * on the rights to use, copy, modify, merge, publish, distribute, sub
9 * license, and/or sell copies of the Software, and to permit persons to whom
10 * the Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE. */
23
24 /* r300_emit: Functions for emitting state. */
25
26 #include "util/u_format.h"
27 #include "util/u_math.h"
28 #include "util/u_mm.h"
29
30 #include "r300_context.h"
31 #include "r300_cb.h"
32 #include "r300_cs.h"
33 #include "r300_emit.h"
34 #include "r300_fs.h"
35 #include "r300_screen.h"
36 #include "r300_screen_buffer.h"
37 #include "r300_vs.h"
38
39 void r300_emit_blend_state(struct r300_context* r300,
40 unsigned size, void* state)
41 {
42 struct r300_blend_state* blend = (struct r300_blend_state*)state;
43 struct pipe_framebuffer_state* fb =
44 (struct pipe_framebuffer_state*)r300->fb_state.state;
45 CS_LOCALS(r300);
46
47 if (fb->nr_cbufs) {
48 if (fb->cbufs[0]->format == PIPE_FORMAT_R16G16B16A16_FLOAT) {
49 WRITE_CS_TABLE(blend->cb_noclamp, size);
50 } else {
51 unsigned swz = r300_surface(fb->cbufs[0])->colormask_swizzle;
52 WRITE_CS_TABLE(blend->cb_clamp[swz], size);
53 }
54 } else {
55 WRITE_CS_TABLE(blend->cb_no_readwrite, size);
56 }
57 }
58
59 void r300_emit_blend_color_state(struct r300_context* r300,
60 unsigned size, void* state)
61 {
62 struct r300_blend_color_state* bc = (struct r300_blend_color_state*)state;
63 CS_LOCALS(r300);
64
65 WRITE_CS_TABLE(bc->cb, size);
66 }
67
68 void r300_emit_clip_state(struct r300_context* r300,
69 unsigned size, void* state)
70 {
71 struct r300_clip_state* clip = (struct r300_clip_state*)state;
72 CS_LOCALS(r300);
73
74 WRITE_CS_TABLE(clip->cb, size);
75 }
76
77 void r300_emit_dsa_state(struct r300_context* r300, unsigned size, void* state)
78 {
79 struct r300_dsa_state* dsa = (struct r300_dsa_state*)state;
80 struct pipe_framebuffer_state* fb =
81 (struct pipe_framebuffer_state*)r300->fb_state.state;
82 boolean is_r500 = r300->screen->caps.is_r500;
83 CS_LOCALS(r300);
84 uint32_t alpha_func = dsa->alpha_function;
85
86 /* Choose the alpha ref value between 8-bit (FG_ALPHA_FUNC.AM_VAL) and
87 * 16-bit (FG_ALPHA_VALUE). */
88 if (is_r500 && (alpha_func & R300_FG_ALPHA_FUNC_ENABLE)) {
89 if (fb->nr_cbufs && fb->cbufs[0]->format == PIPE_FORMAT_R16G16B16A16_FLOAT) {
90 alpha_func |= R500_FG_ALPHA_FUNC_FP16_ENABLE;
91 } else {
92 alpha_func |= R500_FG_ALPHA_FUNC_8BIT;
93 }
94 }
95
96 /* Setup alpha-to-coverage. */
97 if (r300->alpha_to_coverage && r300->msaa_enable) {
98 /* Always set 3/6, it improves precision even for 2x and 4x MSAA. */
99 alpha_func |= R300_FG_ALPHA_FUNC_MASK_ENABLE |
100 R300_FG_ALPHA_FUNC_CFG_3_OF_6;
101 }
102
103 BEGIN_CS(size);
104 OUT_CS_REG(R300_FG_ALPHA_FUNC, alpha_func);
105 OUT_CS_TABLE(fb->zsbuf ? &dsa->cb_begin : dsa->cb_zb_no_readwrite, size-2);
106 END_CS;
107 }
108
109 static void get_rc_constant_state(
110 float vec[4],
111 struct r300_context * r300,
112 struct rc_constant * constant)
113 {
114 struct r300_textures_state* texstate = r300->textures_state.state;
115 struct r300_resource *tex;
116
117 assert(constant->Type == RC_CONSTANT_STATE);
118
119 /* vec should either be (0, 0, 0, 1), which should be a relatively safe
120 * RGBA or STRQ value, or it could be one of the RC_CONSTANT_STATE
121 * state factors. */
122
123 switch (constant->u.State[0]) {
124 /* Factor for converting rectangle coords to
125 * normalized coords. Should only show up on non-r500. */
126 case RC_STATE_R300_TEXRECT_FACTOR:
127 tex = r300_resource(texstate->sampler_views[constant->u.State[1]]->base.texture);
128 vec[0] = 1.0 / tex->tex.width0;
129 vec[1] = 1.0 / tex->tex.height0;
130 vec[2] = 0;
131 vec[3] = 1;
132 break;
133
134 case RC_STATE_R300_TEXSCALE_FACTOR:
135 tex = r300_resource(texstate->sampler_views[constant->u.State[1]]->base.texture);
136 /* Add a small number to the texture size to work around rounding errors in hw. */
137 vec[0] = tex->b.b.width0 / (tex->tex.width0 + 0.001f);
138 vec[1] = tex->b.b.height0 / (tex->tex.height0 + 0.001f);
139 vec[2] = tex->b.b.depth0 / (tex->tex.depth0 + 0.001f);
140 vec[3] = 1;
141 break;
142
143 case RC_STATE_R300_VIEWPORT_SCALE:
144 vec[0] = r300->viewport.scale[0];
145 vec[1] = r300->viewport.scale[1];
146 vec[2] = r300->viewport.scale[2];
147 vec[3] = 1;
148 break;
149
150 case RC_STATE_R300_VIEWPORT_OFFSET:
151 vec[0] = r300->viewport.translate[0];
152 vec[1] = r300->viewport.translate[1];
153 vec[2] = r300->viewport.translate[2];
154 vec[3] = 1;
155 break;
156
157 default:
158 fprintf(stderr, "r300: Implementation error: "
159 "Unknown RC_CONSTANT type %d\n", constant->u.State[0]);
160 vec[0] = 0;
161 vec[1] = 0;
162 vec[2] = 0;
163 vec[3] = 1;
164 }
165 }
166
167 /* Convert a normal single-precision float into the 7.16 format
168 * used by the R300 fragment shader.
169 */
170 uint32_t pack_float24(float f)
171 {
172 union {
173 float fl;
174 uint32_t u;
175 } u;
176 float mantissa;
177 int exponent;
178 uint32_t float24 = 0;
179
180 if (f == 0.0)
181 return 0;
182
183 u.fl = f;
184
185 mantissa = frexpf(f, &exponent);
186
187 /* Handle -ve */
188 if (mantissa < 0) {
189 float24 |= (1 << 23);
190 mantissa = mantissa * -1.0;
191 }
192 /* Handle exponent, bias of 63 */
193 exponent += 62;
194 float24 |= (exponent << 16);
195 /* Kill 7 LSB of mantissa */
196 float24 |= (u.u & 0x7FFFFF) >> 7;
197
198 return float24;
199 }
200
201 void r300_emit_fs(struct r300_context* r300, unsigned size, void *state)
202 {
203 struct r300_fragment_shader *fs = r300_fs(r300);
204 CS_LOCALS(r300);
205
206 WRITE_CS_TABLE(fs->shader->cb_code, fs->shader->cb_code_size);
207 }
208
209 void r300_emit_fs_constants(struct r300_context* r300, unsigned size, void *state)
210 {
211 struct r300_fragment_shader *fs = r300_fs(r300);
212 struct r300_constant_buffer *buf = (struct r300_constant_buffer*)state;
213 unsigned count = fs->shader->externals_count;
214 unsigned i, j;
215 CS_LOCALS(r300);
216
217 if (count == 0)
218 return;
219
220 BEGIN_CS(size);
221 OUT_CS_REG_SEQ(R300_PFS_PARAM_0_X, count * 4);
222 if (buf->remap_table){
223 for (i = 0; i < count; i++) {
224 float *data = (float*)&buf->ptr[buf->remap_table[i]*4];
225 for (j = 0; j < 4; j++)
226 OUT_CS(pack_float24(data[j]));
227 }
228 } else {
229 for (i = 0; i < count; i++)
230 for (j = 0; j < 4; j++)
231 OUT_CS(pack_float24(*(float*)&buf->ptr[i*4+j]));
232 }
233
234 END_CS;
235 }
236
237 void r300_emit_fs_rc_constant_state(struct r300_context* r300, unsigned size, void *state)
238 {
239 struct r300_fragment_shader *fs = r300_fs(r300);
240 struct rc_constant_list *constants = &fs->shader->code.constants;
241 unsigned i;
242 unsigned count = fs->shader->rc_state_count;
243 unsigned first = fs->shader->externals_count;
244 unsigned end = constants->Count;
245 unsigned j;
246 CS_LOCALS(r300);
247
248 if (count == 0)
249 return;
250
251 BEGIN_CS(size);
252 for(i = first; i < end; ++i) {
253 if (constants->Constants[i].Type == RC_CONSTANT_STATE) {
254 float data[4];
255
256 get_rc_constant_state(data, r300, &constants->Constants[i]);
257
258 OUT_CS_REG_SEQ(R300_PFS_PARAM_0_X + i * 16, 4);
259 for (j = 0; j < 4; j++)
260 OUT_CS(pack_float24(data[j]));
261 }
262 }
263 END_CS;
264 }
265
266 void r500_emit_fs(struct r300_context* r300, unsigned size, void *state)
267 {
268 struct r300_fragment_shader *fs = r300_fs(r300);
269 CS_LOCALS(r300);
270
271 WRITE_CS_TABLE(fs->shader->cb_code, fs->shader->cb_code_size);
272 }
273
274 void r500_emit_fs_constants(struct r300_context* r300, unsigned size, void *state)
275 {
276 struct r300_fragment_shader *fs = r300_fs(r300);
277 struct r300_constant_buffer *buf = (struct r300_constant_buffer*)state;
278 unsigned count = fs->shader->externals_count;
279 CS_LOCALS(r300);
280
281 if (count == 0)
282 return;
283
284 BEGIN_CS(size);
285 OUT_CS_REG(R500_GA_US_VECTOR_INDEX, R500_GA_US_VECTOR_INDEX_TYPE_CONST);
286 OUT_CS_ONE_REG(R500_GA_US_VECTOR_DATA, count * 4);
287 if (buf->remap_table){
288 for (unsigned i = 0; i < count; i++) {
289 uint32_t *data = &buf->ptr[buf->remap_table[i]*4];
290 OUT_CS_TABLE(data, 4);
291 }
292 } else {
293 OUT_CS_TABLE(buf->ptr, count * 4);
294 }
295 END_CS;
296 }
297
298 void r500_emit_fs_rc_constant_state(struct r300_context* r300, unsigned size, void *state)
299 {
300 struct r300_fragment_shader *fs = r300_fs(r300);
301 struct rc_constant_list *constants = &fs->shader->code.constants;
302 unsigned i;
303 unsigned count = fs->shader->rc_state_count;
304 unsigned first = fs->shader->externals_count;
305 unsigned end = constants->Count;
306 CS_LOCALS(r300);
307
308 if (count == 0)
309 return;
310
311 BEGIN_CS(size);
312 for(i = first; i < end; ++i) {
313 if (constants->Constants[i].Type == RC_CONSTANT_STATE) {
314 float data[4];
315
316 get_rc_constant_state(data, r300, &constants->Constants[i]);
317
318 OUT_CS_REG(R500_GA_US_VECTOR_INDEX,
319 R500_GA_US_VECTOR_INDEX_TYPE_CONST |
320 (i & R500_GA_US_VECTOR_INDEX_MASK));
321 OUT_CS_ONE_REG(R500_GA_US_VECTOR_DATA, 4);
322 OUT_CS_TABLE(data, 4);
323 }
324 }
325 END_CS;
326 }
327
328 void r300_emit_gpu_flush(struct r300_context *r300, unsigned size, void *state)
329 {
330 struct r300_gpu_flush *gpuflush = (struct r300_gpu_flush*)state;
331 struct pipe_framebuffer_state* fb =
332 (struct pipe_framebuffer_state*)r300->fb_state.state;
333 uint32_t height = fb->height;
334 uint32_t width = fb->width;
335 CS_LOCALS(r300);
336
337 if (r300->cbzb_clear) {
338 struct r300_surface *surf = r300_surface(fb->cbufs[0]);
339
340 height = surf->cbzb_height;
341 width = surf->cbzb_width;
342 }
343
344 DBG(r300, DBG_SCISSOR,
345 "r300: Scissor width: %i, height: %i, CBZB clear: %s\n",
346 width, height, r300->cbzb_clear ? "YES" : "NO");
347
348 BEGIN_CS(size);
349
350 /* Set up scissors.
351 * By writing to the SC registers, SC & US assert idle. */
352 OUT_CS_REG_SEQ(R300_SC_SCISSORS_TL, 2);
353 if (r300->screen->caps.is_r500) {
354 OUT_CS(0);
355 OUT_CS(((width - 1) << R300_SCISSORS_X_SHIFT) |
356 ((height - 1) << R300_SCISSORS_Y_SHIFT));
357 } else {
358 OUT_CS((1440 << R300_SCISSORS_X_SHIFT) |
359 (1440 << R300_SCISSORS_Y_SHIFT));
360 OUT_CS(((width + 1440-1) << R300_SCISSORS_X_SHIFT) |
361 ((height + 1440-1) << R300_SCISSORS_Y_SHIFT));
362 }
363
364 /* Flush CB & ZB caches and wait until the 3D engine is idle and clean. */
365 OUT_CS_TABLE(gpuflush->cb_flush_clean, 6);
366 END_CS;
367 }
368
369 void r300_emit_aa_state(struct r300_context *r300, unsigned size, void *state)
370 {
371 struct r300_aa_state *aa = (struct r300_aa_state*)state;
372 CS_LOCALS(r300);
373
374 BEGIN_CS(size);
375 OUT_CS_REG(R300_GB_AA_CONFIG, aa->aa_config);
376
377 if (aa->dest) {
378 OUT_CS_REG_SEQ(R300_RB3D_AARESOLVE_OFFSET, 3);
379 OUT_CS(aa->dest->offset);
380 OUT_CS(aa->dest->pitch & R300_RB3D_AARESOLVE_PITCH_MASK);
381 OUT_CS(R300_RB3D_AARESOLVE_CTL_AARESOLVE_MODE_RESOLVE |
382 R300_RB3D_AARESOLVE_CTL_AARESOLVE_ALPHA_AVERAGE);
383 OUT_CS_RELOC(aa->dest);
384 } else {
385 OUT_CS_REG(R300_RB3D_AARESOLVE_CTL, 0);
386 }
387
388 END_CS;
389 }
390
391 void r300_emit_fb_state(struct r300_context* r300, unsigned size, void* state)
392 {
393 struct pipe_framebuffer_state* fb = (struct pipe_framebuffer_state*)state;
394 struct r300_surface* surf;
395 unsigned i;
396 uint32_t rb3d_cctl = 0;
397
398 CS_LOCALS(r300);
399
400 BEGIN_CS(size);
401
402 if (r300->screen->caps.is_r500) {
403 rb3d_cctl = R300_RB3D_CCTL_INDEPENDENT_COLORFORMAT_ENABLE_ENABLE;
404 }
405 /* NUM_MULTIWRITES replicates COLOR[0] to all colorbuffers. */
406 if (fb->nr_cbufs && r300->fb_multiwrite) {
407 rb3d_cctl |= R300_RB3D_CCTL_NUM_MULTIWRITES(fb->nr_cbufs);
408 }
409 if (r300->cmask_in_use) {
410 rb3d_cctl |= R300_RB3D_CCTL_AA_COMPRESSION_ENABLE |
411 R300_RB3D_CCTL_CMASK_ENABLE;
412 }
413
414 OUT_CS_REG(R300_RB3D_CCTL, rb3d_cctl);
415
416 /* Set up colorbuffers. */
417 for (i = 0; i < fb->nr_cbufs; i++) {
418 surf = r300_surface(fb->cbufs[i]);
419
420 OUT_CS_REG(R300_RB3D_COLOROFFSET0 + (4 * i), surf->offset);
421 OUT_CS_RELOC(surf);
422
423 OUT_CS_REG(R300_RB3D_COLORPITCH0 + (4 * i), surf->pitch);
424 OUT_CS_RELOC(surf);
425
426 if (r300->cmask_in_use && i == 0) {
427 OUT_CS_REG(R300_RB3D_CMASK_OFFSET0, 0);
428 OUT_CS_REG(R300_RB3D_CMASK_PITCH0, surf->pitch_cmask);
429 OUT_CS_REG(R300_RB3D_COLOR_CLEAR_VALUE, r300->color_clear_value);
430 if (r300->screen->caps.is_r500 && r300->screen->info.drm_minor >= 29) {
431 OUT_CS_REG_SEQ(R500_RB3D_COLOR_CLEAR_VALUE_AR, 2);
432 OUT_CS(r300->color_clear_value_ar);
433 OUT_CS(r300->color_clear_value_gb);
434 }
435 }
436 }
437
438 /* Set up the ZB part of the CBZB clear. */
439 if (r300->cbzb_clear) {
440 surf = r300_surface(fb->cbufs[0]);
441
442 OUT_CS_REG(R300_ZB_FORMAT, surf->cbzb_format);
443
444 OUT_CS_REG(R300_ZB_DEPTHOFFSET, surf->cbzb_midpoint_offset);
445 OUT_CS_RELOC(surf);
446
447 OUT_CS_REG(R300_ZB_DEPTHPITCH, surf->cbzb_pitch);
448 OUT_CS_RELOC(surf);
449
450 DBG(r300, DBG_CBZB,
451 "CBZB clearing cbuf %08x %08x\n", surf->cbzb_format,
452 surf->cbzb_pitch);
453 }
454 /* Set up a zbuffer. */
455 else if (fb->zsbuf) {
456 surf = r300_surface(fb->zsbuf);
457
458 OUT_CS_REG(R300_ZB_FORMAT, surf->format);
459
460 OUT_CS_REG(R300_ZB_DEPTHOFFSET, surf->offset);
461 OUT_CS_RELOC(surf);
462
463 OUT_CS_REG(R300_ZB_DEPTHPITCH, surf->pitch);
464 OUT_CS_RELOC(surf);
465
466 if (r300->hyperz_enabled) {
467 /* HiZ RAM. */
468 OUT_CS_REG(R300_ZB_HIZ_OFFSET, 0);
469 OUT_CS_REG(R300_ZB_HIZ_PITCH, surf->pitch_hiz);
470 /* Z Mask RAM. (compressed zbuffer) */
471 OUT_CS_REG(R300_ZB_ZMASK_OFFSET, 0);
472 OUT_CS_REG(R300_ZB_ZMASK_PITCH, surf->pitch_zmask);
473 }
474 }
475
476 END_CS;
477 }
478
479 void r300_emit_hyperz_state(struct r300_context *r300,
480 unsigned size, void *state)
481 {
482 struct r300_hyperz_state *z = state;
483 CS_LOCALS(r300);
484
485 if (z->flush)
486 WRITE_CS_TABLE(&z->cb_flush_begin, size);
487 else
488 WRITE_CS_TABLE(&z->cb_begin, size - 2);
489 }
490
491 void r300_emit_hyperz_end(struct r300_context *r300)
492 {
493 struct r300_hyperz_state z =
494 *(struct r300_hyperz_state*)r300->hyperz_state.state;
495
496 z.flush = 1;
497 z.zb_bw_cntl = 0;
498 z.zb_depthclearvalue = 0;
499 z.sc_hyperz = R300_SC_HYPERZ_ADJ_2;
500 z.gb_z_peq_config = 0;
501
502 r300_emit_hyperz_state(r300, r300->hyperz_state.size, &z);
503 }
504
505 #define R300_NIBBLES(x0, y0, x1, y1, x2, y2, d0y, d0x) \
506 (((x0) & 0xf) | (((y0) & 0xf) << 4) | \
507 (((x1) & 0xf) << 8) | (((y1) & 0xf) << 12) | \
508 (((x2) & 0xf) << 16) | (((y2) & 0xf) << 20) | \
509 (((d0y) & 0xf) << 24) | (((d0x) & 0xf) << 28))
510
511 static unsigned r300_get_mspos(int index, unsigned *p)
512 {
513 unsigned reg, i, distx, disty, dist;
514
515 if (index == 0) {
516 /* MSPOS0 contains positions for samples 0,1,2 as (X,Y) pairs of nibbles,
517 * followed by a (Y,X) pair containing the minimum distance from the pixel
518 * edge:
519 * X0, Y0, X1, Y1, X2, Y2, D0_Y, D0_X
520 *
521 * There is a quirk when setting D0_X. The value represents the distance
522 * from the left edge of the pixel quad to the first sample in subpixels.
523 * All values less than eight should use the actual value, but „7‟ should
524 * be used for the distance „8‟. The hardware will convert 7 into 8 internally.
525 */
526 distx = 11;
527 for (i = 0; i < 12; i += 2) {
528 if (p[i] < distx)
529 distx = p[i];
530 }
531
532 disty = 11;
533 for (i = 1; i < 12; i += 2) {
534 if (p[i] < disty)
535 disty = p[i];
536 }
537
538 if (distx == 8)
539 distx = 7;
540
541 reg = R300_NIBBLES(p[0], p[1], p[2], p[3], p[4], p[5], disty, distx);
542 } else {
543 /* MSPOS1 contains positions for samples 3,4,5 as (X,Y) pairs of nibbles,
544 * followed by the minimum distance from the pixel edge (not sure if X or Y):
545 * X3, Y3, X4, Y4, X5, Y5, D1
546 */
547 dist = 11;
548 for (i = 0; i < 12; i++) {
549 if (p[i] < dist)
550 dist = p[i];
551 }
552
553 reg = R300_NIBBLES(p[6], p[7], p[8], p[9], p[10], p[11], dist, 0);
554 }
555 return reg;
556 }
557
558 void r300_emit_fb_state_pipelined(struct r300_context *r300,
559 unsigned size, void *state)
560 {
561 /* The sample coordinates are in the range [0,11], because
562 * GB_TILE_CONFIG.SUBPIXEL is set to the 1/12 subpixel precision.
563 *
564 * Some sample coordinates reach to neighboring pixels and should not be used.
565 * (e.g. Y=11)
566 *
567 * The unused samples must be set to the positions of other valid samples. */
568 static unsigned sample_locs_1x[12] = {
569 6,6, 6,6, 6,6, 6,6, 6,6, 6,6
570 };
571 static unsigned sample_locs_2x[12] = {
572 3,9, 9,3, 9,3, 9,3, 9,3, 9,3
573 };
574 static unsigned sample_locs_4x[12] = {
575 4,4, 8,8, 2,10, 10,2, 10,2, 10,2
576 };
577 static unsigned sample_locs_6x[12] = {
578 3,1, 7,3, 11,5, 1,7, 5,9, 9,10
579 };
580
581 struct pipe_framebuffer_state* fb =
582 (struct pipe_framebuffer_state*)r300->fb_state.state;
583 unsigned i, num_cbufs = fb->nr_cbufs;
584 unsigned mspos0, mspos1;
585 CS_LOCALS(r300);
586
587 /* If we use the multiwrite feature, the colorbuffers 2,3,4 must be
588 * marked as UNUSED in the US block. */
589 if (r300->fb_multiwrite) {
590 num_cbufs = MIN2(num_cbufs, 1);
591 }
592
593 BEGIN_CS(size);
594
595 /* Colorbuffer format in the US block.
596 * (must be written after unpipelined regs) */
597 OUT_CS_REG_SEQ(R300_US_OUT_FMT_0, 4);
598 for (i = 0; i < num_cbufs; i++) {
599 OUT_CS(r300_surface(fb->cbufs[i])->format);
600 }
601 for (; i < 1; i++) {
602 OUT_CS(R300_US_OUT_FMT_C4_8 |
603 R300_C0_SEL_B | R300_C1_SEL_G |
604 R300_C2_SEL_R | R300_C3_SEL_A);
605 }
606 for (; i < 4; i++) {
607 OUT_CS(R300_US_OUT_FMT_UNUSED);
608 }
609
610 /* Set sample positions. It depends on the framebuffer sample count.
611 * These are pipelined regs and as such cannot be moved to the AA state.
612 */
613 switch (r300->num_samples) {
614 default:
615 mspos0 = r300_get_mspos(0, sample_locs_1x);
616 mspos1 = r300_get_mspos(1, sample_locs_1x);
617 break;
618 case 2:
619 mspos0 = r300_get_mspos(0, sample_locs_2x);
620 mspos1 = r300_get_mspos(1, sample_locs_2x);
621 break;
622 case 4:
623 mspos0 = r300_get_mspos(0, sample_locs_4x);
624 mspos1 = r300_get_mspos(1, sample_locs_4x);
625 break;
626 case 6:
627 mspos0 = r300_get_mspos(0, sample_locs_6x);
628 mspos1 = r300_get_mspos(1, sample_locs_6x);
629 break;
630 }
631
632 OUT_CS_REG_SEQ(R300_GB_MSPOS0, 2);
633 OUT_CS(mspos0);
634 OUT_CS(mspos1);
635 END_CS;
636 }
637
638 void r300_emit_query_start(struct r300_context *r300, unsigned size, void*state)
639 {
640 struct r300_query *query = r300->query_current;
641 CS_LOCALS(r300);
642
643 if (!query)
644 return;
645
646 BEGIN_CS(size);
647 if (r300->screen->caps.family == CHIP_RV530) {
648 OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_ALL);
649 } else {
650 OUT_CS_REG(R300_SU_REG_DEST, R300_RASTER_PIPE_SELECT_ALL);
651 }
652 OUT_CS_REG(R300_ZB_ZPASS_DATA, 0);
653 END_CS;
654 query->begin_emitted = TRUE;
655 }
656
657 static void r300_emit_query_end_frag_pipes(struct r300_context *r300,
658 struct r300_query *query)
659 {
660 struct r300_capabilities* caps = &r300->screen->caps;
661 uint32_t gb_pipes = r300->screen->info.r300_num_gb_pipes;
662 CS_LOCALS(r300);
663
664 assert(gb_pipes);
665
666 BEGIN_CS(6 * gb_pipes + 2);
667 /* I'm not so sure I like this switch, but it's hard to be elegant
668 * when there's so many special cases...
669 *
670 * So here's the basic idea. For each pipe, enable writes to it only,
671 * then put out the relocation for ZPASS_ADDR, taking into account a
672 * 4-byte offset for each pipe. RV380 and older are special; they have
673 * only two pipes, and the second pipe's enable is on bit 3, not bit 1,
674 * so there's a chipset cap for that. */
675 switch (gb_pipes) {
676 case 4:
677 /* pipe 3 only */
678 OUT_CS_REG(R300_SU_REG_DEST, 1 << 3);
679 OUT_CS_REG(R300_ZB_ZPASS_ADDR, (query->num_results + 3) * 4);
680 OUT_CS_RELOC(r300->query_current);
681 case 3:
682 /* pipe 2 only */
683 OUT_CS_REG(R300_SU_REG_DEST, 1 << 2);
684 OUT_CS_REG(R300_ZB_ZPASS_ADDR, (query->num_results + 2) * 4);
685 OUT_CS_RELOC(r300->query_current);
686 case 2:
687 /* pipe 1 only */
688 /* As mentioned above, accomodate RV380 and older. */
689 OUT_CS_REG(R300_SU_REG_DEST,
690 1 << (caps->high_second_pipe ? 3 : 1));
691 OUT_CS_REG(R300_ZB_ZPASS_ADDR, (query->num_results + 1) * 4);
692 OUT_CS_RELOC(r300->query_current);
693 case 1:
694 /* pipe 0 only */
695 OUT_CS_REG(R300_SU_REG_DEST, 1 << 0);
696 OUT_CS_REG(R300_ZB_ZPASS_ADDR, (query->num_results + 0) * 4);
697 OUT_CS_RELOC(r300->query_current);
698 break;
699 default:
700 fprintf(stderr, "r300: Implementation error: Chipset reports %d"
701 " pixel pipes!\n", gb_pipes);
702 abort();
703 }
704
705 /* And, finally, reset it to normal... */
706 OUT_CS_REG(R300_SU_REG_DEST, 0xF);
707 END_CS;
708 }
709
710 static void rv530_emit_query_end_single_z(struct r300_context *r300,
711 struct r300_query *query)
712 {
713 CS_LOCALS(r300);
714
715 BEGIN_CS(8);
716 OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_0);
717 OUT_CS_REG(R300_ZB_ZPASS_ADDR, query->num_results * 4);
718 OUT_CS_RELOC(r300->query_current);
719 OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_ALL);
720 END_CS;
721 }
722
723 static void rv530_emit_query_end_double_z(struct r300_context *r300,
724 struct r300_query *query)
725 {
726 CS_LOCALS(r300);
727
728 BEGIN_CS(14);
729 OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_0);
730 OUT_CS_REG(R300_ZB_ZPASS_ADDR, (query->num_results + 0) * 4);
731 OUT_CS_RELOC(r300->query_current);
732 OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_1);
733 OUT_CS_REG(R300_ZB_ZPASS_ADDR, (query->num_results + 1) * 4);
734 OUT_CS_RELOC(r300->query_current);
735 OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_ALL);
736 END_CS;
737 }
738
739 void r300_emit_query_end(struct r300_context* r300)
740 {
741 struct r300_capabilities *caps = &r300->screen->caps;
742 struct r300_query *query = r300->query_current;
743
744 if (!query)
745 return;
746
747 if (query->begin_emitted == FALSE)
748 return;
749
750 if (caps->family == CHIP_RV530) {
751 if (r300->screen->info.r300_num_z_pipes == 2)
752 rv530_emit_query_end_double_z(r300, query);
753 else
754 rv530_emit_query_end_single_z(r300, query);
755 } else
756 r300_emit_query_end_frag_pipes(r300, query);
757
758 query->begin_emitted = FALSE;
759 query->num_results += query->num_pipes;
760
761 /* XXX grab all the results and reset the counter. */
762 if (query->num_results >= query->buf->size / 4 - 4) {
763 query->num_results = (query->buf->size / 4) / 2;
764 fprintf(stderr, "r300: Rewinding OQBO...\n");
765 }
766 }
767
768 void r300_emit_invariant_state(struct r300_context *r300,
769 unsigned size, void *state)
770 {
771 CS_LOCALS(r300);
772 WRITE_CS_TABLE(state, size);
773 }
774
775 void r300_emit_rs_state(struct r300_context* r300, unsigned size, void* state)
776 {
777 struct r300_rs_state* rs = state;
778 CS_LOCALS(r300);
779
780 BEGIN_CS(size);
781 OUT_CS_TABLE(rs->cb_main, RS_STATE_MAIN_SIZE);
782 if (rs->polygon_offset_enable) {
783 if (r300->zbuffer_bpp == 16) {
784 OUT_CS_TABLE(rs->cb_poly_offset_zb16, 5);
785 } else {
786 OUT_CS_TABLE(rs->cb_poly_offset_zb24, 5);
787 }
788 }
789 END_CS;
790 }
791
792 void r300_emit_rs_block_state(struct r300_context* r300,
793 unsigned size, void* state)
794 {
795 struct r300_rs_block* rs = (struct r300_rs_block*)state;
796 unsigned i;
797 /* It's the same for both INST and IP tables */
798 unsigned count = (rs->inst_count & R300_RS_INST_COUNT_MASK) + 1;
799 CS_LOCALS(r300);
800
801 if (DBG_ON(r300, DBG_RS_BLOCK)) {
802 r500_dump_rs_block(rs);
803
804 fprintf(stderr, "r300: RS emit:\n");
805
806 for (i = 0; i < count; i++)
807 fprintf(stderr, " : ip %d: 0x%08x\n", i, rs->ip[i]);
808
809 for (i = 0; i < count; i++)
810 fprintf(stderr, " : inst %d: 0x%08x\n", i, rs->inst[i]);
811
812 fprintf(stderr, " : count: 0x%08x inst_count: 0x%08x\n",
813 rs->count, rs->inst_count);
814 }
815
816 BEGIN_CS(size);
817 OUT_CS_REG_SEQ(R300_VAP_VTX_STATE_CNTL, 2);
818 OUT_CS(rs->vap_vtx_state_cntl);
819 OUT_CS(rs->vap_vsm_vtx_assm);
820 OUT_CS_REG_SEQ(R300_VAP_OUTPUT_VTX_FMT_0, 2);
821 OUT_CS(rs->vap_out_vtx_fmt[0]);
822 OUT_CS(rs->vap_out_vtx_fmt[1]);
823 OUT_CS_REG_SEQ(R300_GB_ENABLE, 1);
824 OUT_CS(rs->gb_enable);
825
826 if (r300->screen->caps.is_r500) {
827 OUT_CS_REG_SEQ(R500_RS_IP_0, count);
828 } else {
829 OUT_CS_REG_SEQ(R300_RS_IP_0, count);
830 }
831 OUT_CS_TABLE(rs->ip, count);
832
833 OUT_CS_REG_SEQ(R300_RS_COUNT, 2);
834 OUT_CS(rs->count);
835 OUT_CS(rs->inst_count);
836
837 if (r300->screen->caps.is_r500) {
838 OUT_CS_REG_SEQ(R500_RS_INST_0, count);
839 } else {
840 OUT_CS_REG_SEQ(R300_RS_INST_0, count);
841 }
842 OUT_CS_TABLE(rs->inst, count);
843 END_CS;
844 }
845
846 void r300_emit_sample_mask(struct r300_context *r300,
847 unsigned size, void *state)
848 {
849 unsigned mask = (*(unsigned*)state) & ((1 << 6)-1);
850 CS_LOCALS(r300);
851
852 BEGIN_CS(size);
853 OUT_CS_REG(R300_SC_SCREENDOOR,
854 mask | (mask << 6) | (mask << 12) | (mask << 18));
855 END_CS;
856 }
857
858 void r300_emit_scissor_state(struct r300_context* r300,
859 unsigned size, void* state)
860 {
861 struct pipe_scissor_state* scissor = (struct pipe_scissor_state*)state;
862 CS_LOCALS(r300);
863
864 BEGIN_CS(size);
865 OUT_CS_REG_SEQ(R300_SC_CLIPRECT_TL_0, 2);
866 if (r300->screen->caps.is_r500) {
867 OUT_CS((scissor->minx << R300_CLIPRECT_X_SHIFT) |
868 (scissor->miny << R300_CLIPRECT_Y_SHIFT));
869 OUT_CS(((scissor->maxx - 1) << R300_CLIPRECT_X_SHIFT) |
870 ((scissor->maxy - 1) << R300_CLIPRECT_Y_SHIFT));
871 } else {
872 OUT_CS(((scissor->minx + 1440) << R300_CLIPRECT_X_SHIFT) |
873 ((scissor->miny + 1440) << R300_CLIPRECT_Y_SHIFT));
874 OUT_CS(((scissor->maxx + 1440-1) << R300_CLIPRECT_X_SHIFT) |
875 ((scissor->maxy + 1440-1) << R300_CLIPRECT_Y_SHIFT));
876 }
877 END_CS;
878 }
879
880 void r300_emit_textures_state(struct r300_context *r300,
881 unsigned size, void *state)
882 {
883 struct r300_textures_state *allstate = (struct r300_textures_state*)state;
884 struct r300_texture_sampler_state *texstate;
885 struct r300_resource *tex;
886 unsigned i;
887 boolean has_us_format = r300->screen->caps.has_us_format;
888 CS_LOCALS(r300);
889
890 BEGIN_CS(size);
891 OUT_CS_REG(R300_TX_ENABLE, allstate->tx_enable);
892
893 for (i = 0; i < allstate->count; i++) {
894 if ((1 << i) & allstate->tx_enable) {
895 texstate = &allstate->regs[i];
896 tex = r300_resource(allstate->sampler_views[i]->base.texture);
897
898 OUT_CS_REG(R300_TX_FILTER0_0 + (i * 4), texstate->filter0);
899 OUT_CS_REG(R300_TX_FILTER1_0 + (i * 4), texstate->filter1);
900 OUT_CS_REG(R300_TX_BORDER_COLOR_0 + (i * 4),
901 texstate->border_color);
902
903 OUT_CS_REG(R300_TX_FORMAT0_0 + (i * 4), texstate->format.format0);
904 OUT_CS_REG(R300_TX_FORMAT1_0 + (i * 4), texstate->format.format1);
905 OUT_CS_REG(R300_TX_FORMAT2_0 + (i * 4), texstate->format.format2);
906
907 OUT_CS_REG(R300_TX_OFFSET_0 + (i * 4), texstate->format.tile_config);
908 OUT_CS_RELOC(tex);
909
910 if (has_us_format) {
911 OUT_CS_REG(R500_US_FORMAT0_0 + (i * 4),
912 texstate->format.us_format0);
913 }
914 }
915 }
916 END_CS;
917 }
918
919 void r300_emit_vertex_arrays(struct r300_context* r300, int offset,
920 boolean indexed, int instance_id)
921 {
922 struct pipe_vertex_buffer *vbuf = r300->vertex_buffer;
923 struct pipe_vertex_element *velem = r300->velems->velem;
924 struct r300_resource *buf;
925 int i;
926 unsigned vertex_array_count = r300->velems->count;
927 unsigned packet_size = (vertex_array_count * 3 + 1) / 2;
928 struct pipe_vertex_buffer *vb1, *vb2;
929 unsigned *hw_format_size = r300->velems->format_size;
930 unsigned size1, size2, offset1, offset2, stride1, stride2;
931 CS_LOCALS(r300);
932
933 BEGIN_CS(2 + packet_size + vertex_array_count * 2);
934 OUT_CS_PKT3(R300_PACKET3_3D_LOAD_VBPNTR, packet_size);
935 OUT_CS(vertex_array_count | (!indexed ? R300_VC_FORCE_PREFETCH : 0));
936
937 if (instance_id == -1) {
938 /* Non-instanced arrays. This ignores instance_divisor and instance_id. */
939 for (i = 0; i < vertex_array_count - 1; i += 2) {
940 vb1 = &vbuf[velem[i].vertex_buffer_index];
941 vb2 = &vbuf[velem[i+1].vertex_buffer_index];
942 size1 = hw_format_size[i];
943 size2 = hw_format_size[i+1];
944
945 OUT_CS(R300_VBPNTR_SIZE0(size1) | R300_VBPNTR_STRIDE0(vb1->stride) |
946 R300_VBPNTR_SIZE1(size2) | R300_VBPNTR_STRIDE1(vb2->stride));
947 OUT_CS(vb1->buffer_offset + velem[i].src_offset + offset * vb1->stride);
948 OUT_CS(vb2->buffer_offset + velem[i+1].src_offset + offset * vb2->stride);
949 }
950
951 if (vertex_array_count & 1) {
952 vb1 = &vbuf[velem[i].vertex_buffer_index];
953 size1 = hw_format_size[i];
954
955 OUT_CS(R300_VBPNTR_SIZE0(size1) | R300_VBPNTR_STRIDE0(vb1->stride));
956 OUT_CS(vb1->buffer_offset + velem[i].src_offset + offset * vb1->stride);
957 }
958
959 for (i = 0; i < vertex_array_count; i++) {
960 buf = r300_resource(vbuf[velem[i].vertex_buffer_index].buffer);
961 OUT_CS_RELOC(buf);
962 }
963 } else {
964 /* Instanced arrays. */
965 for (i = 0; i < vertex_array_count - 1; i += 2) {
966 vb1 = &vbuf[velem[i].vertex_buffer_index];
967 vb2 = &vbuf[velem[i+1].vertex_buffer_index];
968 size1 = hw_format_size[i];
969 size2 = hw_format_size[i+1];
970
971 if (velem[i].instance_divisor) {
972 stride1 = 0;
973 offset1 = vb1->buffer_offset + velem[i].src_offset +
974 (instance_id / velem[i].instance_divisor) * vb1->stride;
975 } else {
976 stride1 = vb1->stride;
977 offset1 = vb1->buffer_offset + velem[i].src_offset + offset * vb1->stride;
978 }
979 if (velem[i+1].instance_divisor) {
980 stride2 = 0;
981 offset2 = vb2->buffer_offset + velem[i+1].src_offset +
982 (instance_id / velem[i+1].instance_divisor) * vb2->stride;
983 } else {
984 stride2 = vb2->stride;
985 offset2 = vb2->buffer_offset + velem[i+1].src_offset + offset * vb2->stride;
986 }
987
988 OUT_CS(R300_VBPNTR_SIZE0(size1) | R300_VBPNTR_STRIDE0(stride1) |
989 R300_VBPNTR_SIZE1(size2) | R300_VBPNTR_STRIDE1(stride2));
990 OUT_CS(offset1);
991 OUT_CS(offset2);
992 }
993
994 if (vertex_array_count & 1) {
995 vb1 = &vbuf[velem[i].vertex_buffer_index];
996 size1 = hw_format_size[i];
997
998 if (velem[i].instance_divisor) {
999 stride1 = 0;
1000 offset1 = vb1->buffer_offset + velem[i].src_offset +
1001 (instance_id / velem[i].instance_divisor) * vb1->stride;
1002 } else {
1003 stride1 = vb1->stride;
1004 offset1 = vb1->buffer_offset + velem[i].src_offset + offset * vb1->stride;
1005 }
1006
1007 OUT_CS(R300_VBPNTR_SIZE0(size1) | R300_VBPNTR_STRIDE0(stride1));
1008 OUT_CS(offset1);
1009 }
1010
1011 for (i = 0; i < vertex_array_count; i++) {
1012 buf = r300_resource(vbuf[velem[i].vertex_buffer_index].buffer);
1013 OUT_CS_RELOC(buf);
1014 }
1015 }
1016 END_CS;
1017 }
1018
1019 void r300_emit_vertex_arrays_swtcl(struct r300_context *r300, boolean indexed)
1020 {
1021 CS_LOCALS(r300);
1022
1023 DBG(r300, DBG_SWTCL, "r300: Preparing vertex buffer %p for render, "
1024 "vertex size %d\n", r300->vbo,
1025 r300->vertex_info.size);
1026 /* Set the pointer to our vertex buffer. The emitted values are this:
1027 * PACKET3 [3D_LOAD_VBPNTR]
1028 * COUNT [1]
1029 * FORMAT [size | stride << 8]
1030 * OFFSET [offset into BO]
1031 * VBPNTR [relocated BO]
1032 */
1033 BEGIN_CS(7);
1034 OUT_CS_PKT3(R300_PACKET3_3D_LOAD_VBPNTR, 3);
1035 OUT_CS(1 | (!indexed ? R300_VC_FORCE_PREFETCH : 0));
1036 OUT_CS(r300->vertex_info.size |
1037 (r300->vertex_info.size << 8));
1038 OUT_CS(r300->draw_vbo_offset);
1039 OUT_CS(0);
1040
1041 assert(r300->vbo_cs);
1042 cs_winsys->cs_write_reloc(cs_copy, r300->vbo_cs);
1043 CS_USED_DW(2);
1044 END_CS;
1045 }
1046
1047 void r300_emit_vertex_stream_state(struct r300_context* r300,
1048 unsigned size, void* state)
1049 {
1050 struct r300_vertex_stream_state *streams =
1051 (struct r300_vertex_stream_state*)state;
1052 unsigned i;
1053 CS_LOCALS(r300);
1054
1055 if (DBG_ON(r300, DBG_PSC)) {
1056 fprintf(stderr, "r300: PSC emit:\n");
1057
1058 for (i = 0; i < streams->count; i++) {
1059 fprintf(stderr, " : prog_stream_cntl%d: 0x%08x\n", i,
1060 streams->vap_prog_stream_cntl[i]);
1061 }
1062
1063 for (i = 0; i < streams->count; i++) {
1064 fprintf(stderr, " : prog_stream_cntl_ext%d: 0x%08x\n", i,
1065 streams->vap_prog_stream_cntl_ext[i]);
1066 }
1067 }
1068
1069 BEGIN_CS(size);
1070 OUT_CS_REG_SEQ(R300_VAP_PROG_STREAM_CNTL_0, streams->count);
1071 OUT_CS_TABLE(streams->vap_prog_stream_cntl, streams->count);
1072 OUT_CS_REG_SEQ(R300_VAP_PROG_STREAM_CNTL_EXT_0, streams->count);
1073 OUT_CS_TABLE(streams->vap_prog_stream_cntl_ext, streams->count);
1074 END_CS;
1075 }
1076
1077 void r300_emit_pvs_flush(struct r300_context* r300, unsigned size, void* state)
1078 {
1079 CS_LOCALS(r300);
1080
1081 BEGIN_CS(size);
1082 OUT_CS_REG(R300_VAP_PVS_STATE_FLUSH_REG, 0x0);
1083 END_CS;
1084 }
1085
1086 void r300_emit_vap_invariant_state(struct r300_context *r300,
1087 unsigned size, void *state)
1088 {
1089 CS_LOCALS(r300);
1090 WRITE_CS_TABLE(state, size);
1091 }
1092
1093 void r300_emit_vs_state(struct r300_context* r300, unsigned size, void* state)
1094 {
1095 struct r300_vertex_shader* vs = (struct r300_vertex_shader*)state;
1096 struct r300_vertex_program_code* code = &vs->code;
1097 struct r300_screen* r300screen = r300->screen;
1098 unsigned instruction_count = code->length / 4;
1099
1100 unsigned vtx_mem_size = r300screen->caps.is_r500 ? 128 : 72;
1101 unsigned input_count = MAX2(util_bitcount(code->InputsRead), 1);
1102 unsigned output_count = MAX2(util_bitcount(code->OutputsWritten), 1);
1103 unsigned temp_count = MAX2(code->num_temporaries, 1);
1104
1105 unsigned pvs_num_slots = MIN3(vtx_mem_size / input_count,
1106 vtx_mem_size / output_count, 10);
1107 unsigned pvs_num_controllers = MIN2(vtx_mem_size / temp_count, 5);
1108
1109 CS_LOCALS(r300);
1110
1111 BEGIN_CS(size);
1112
1113 /* R300_VAP_PVS_CODE_CNTL_0
1114 * R300_VAP_PVS_CONST_CNTL
1115 * R300_VAP_PVS_CODE_CNTL_1
1116 * See the r5xx docs for instructions on how to use these. */
1117 OUT_CS_REG(R300_VAP_PVS_CODE_CNTL_0, R300_PVS_FIRST_INST(0) |
1118 R300_PVS_XYZW_VALID_INST(instruction_count - 1) |
1119 R300_PVS_LAST_INST(instruction_count - 1));
1120 OUT_CS_REG(R300_VAP_PVS_CODE_CNTL_1, instruction_count - 1);
1121
1122 OUT_CS_REG(R300_VAP_PVS_VECTOR_INDX_REG, 0);
1123 OUT_CS_ONE_REG(R300_VAP_PVS_UPLOAD_DATA, code->length);
1124 OUT_CS_TABLE(code->body.d, code->length);
1125
1126 OUT_CS_REG(R300_VAP_CNTL, R300_PVS_NUM_SLOTS(pvs_num_slots) |
1127 R300_PVS_NUM_CNTLRS(pvs_num_controllers) |
1128 R300_PVS_NUM_FPUS(r300screen->caps.num_vert_fpus) |
1129 R300_PVS_VF_MAX_VTX_NUM(12) |
1130 (r300screen->caps.is_r500 ? R500_TCL_STATE_OPTIMIZATION : 0));
1131
1132 /* Emit flow control instructions. Even if there are no fc instructions,
1133 * we still need to write the registers to make sure they are cleared. */
1134 OUT_CS_REG(R300_VAP_PVS_FLOW_CNTL_OPC, code->fc_ops);
1135 if (r300screen->caps.is_r500) {
1136 OUT_CS_REG_SEQ(R500_VAP_PVS_FLOW_CNTL_ADDRS_LW_0, R300_VS_MAX_FC_OPS * 2);
1137 OUT_CS_TABLE(code->fc_op_addrs.r500, R300_VS_MAX_FC_OPS * 2);
1138 } else {
1139 OUT_CS_REG_SEQ(R300_VAP_PVS_FLOW_CNTL_ADDRS_0, R300_VS_MAX_FC_OPS);
1140 OUT_CS_TABLE(code->fc_op_addrs.r300, R300_VS_MAX_FC_OPS);
1141 }
1142 OUT_CS_REG_SEQ(R300_VAP_PVS_FLOW_CNTL_LOOP_INDEX_0, R300_VS_MAX_FC_OPS);
1143 OUT_CS_TABLE(code->fc_loop_index, R300_VS_MAX_FC_OPS);
1144
1145 END_CS;
1146 }
1147
1148 void r300_emit_vs_constants(struct r300_context* r300,
1149 unsigned size, void *state)
1150 {
1151 unsigned count =
1152 ((struct r300_vertex_shader*)r300->vs_state.state)->externals_count;
1153 struct r300_constant_buffer *buf = (struct r300_constant_buffer*)state;
1154 struct r300_vertex_shader *vs = (struct r300_vertex_shader*)r300->vs_state.state;
1155 unsigned i;
1156 int imm_first = vs->externals_count;
1157 int imm_end = vs->code.constants.Count;
1158 int imm_count = vs->immediates_count;
1159 CS_LOCALS(r300);
1160
1161 BEGIN_CS(size);
1162 OUT_CS_REG(R300_VAP_PVS_CONST_CNTL,
1163 R300_PVS_CONST_BASE_OFFSET(buf->buffer_base) |
1164 R300_PVS_MAX_CONST_ADDR(MAX2(imm_end - 1, 0)));
1165 if (vs->externals_count) {
1166 OUT_CS_REG(R300_VAP_PVS_VECTOR_INDX_REG,
1167 (r300->screen->caps.is_r500 ?
1168 R500_PVS_CONST_START : R300_PVS_CONST_START) + buf->buffer_base);
1169 OUT_CS_ONE_REG(R300_VAP_PVS_UPLOAD_DATA, count * 4);
1170 if (buf->remap_table){
1171 for (i = 0; i < count; i++) {
1172 uint32_t *data = &buf->ptr[buf->remap_table[i]*4];
1173 OUT_CS_TABLE(data, 4);
1174 }
1175 } else {
1176 OUT_CS_TABLE(buf->ptr, count * 4);
1177 }
1178 }
1179
1180 /* Emit immediates. */
1181 if (imm_count) {
1182 OUT_CS_REG(R300_VAP_PVS_VECTOR_INDX_REG,
1183 (r300->screen->caps.is_r500 ?
1184 R500_PVS_CONST_START : R300_PVS_CONST_START) +
1185 buf->buffer_base + imm_first);
1186 OUT_CS_ONE_REG(R300_VAP_PVS_UPLOAD_DATA, imm_count * 4);
1187 for (i = imm_first; i < imm_end; i++) {
1188 const float *data = vs->code.constants.Constants[i].u.Immediate;
1189 OUT_CS_TABLE(data, 4);
1190 }
1191 }
1192 END_CS;
1193 }
1194
1195 void r300_emit_viewport_state(struct r300_context* r300,
1196 unsigned size, void* state)
1197 {
1198 struct r300_viewport_state* viewport = (struct r300_viewport_state*)state;
1199 CS_LOCALS(r300);
1200
1201 BEGIN_CS(size);
1202 OUT_CS_REG_SEQ(R300_SE_VPORT_XSCALE, 6);
1203 OUT_CS_TABLE(&viewport->xscale, 6);
1204 OUT_CS_REG(R300_VAP_VTE_CNTL, viewport->vte_control);
1205 END_CS;
1206 }
1207
1208 void r300_emit_hiz_clear(struct r300_context *r300, unsigned size, void *state)
1209 {
1210 struct pipe_framebuffer_state *fb =
1211 (struct pipe_framebuffer_state*)r300->fb_state.state;
1212 struct r300_resource* tex;
1213 CS_LOCALS(r300);
1214
1215 tex = r300_resource(fb->zsbuf->texture);
1216
1217 BEGIN_CS(size);
1218 OUT_CS_PKT3(R300_PACKET3_3D_CLEAR_HIZ, 2);
1219 OUT_CS(0);
1220 OUT_CS(tex->tex.hiz_dwords[fb->zsbuf->u.tex.level]);
1221 OUT_CS(r300->hiz_clear_value);
1222 END_CS;
1223
1224 /* Mark the current zbuffer's hiz ram as in use. */
1225 r300->hiz_in_use = TRUE;
1226 r300->hiz_func = HIZ_FUNC_NONE;
1227 r300_mark_atom_dirty(r300, &r300->hyperz_state);
1228 }
1229
1230 void r300_emit_zmask_clear(struct r300_context *r300, unsigned size, void *state)
1231 {
1232 struct pipe_framebuffer_state *fb =
1233 (struct pipe_framebuffer_state*)r300->fb_state.state;
1234 struct r300_resource *tex;
1235 CS_LOCALS(r300);
1236
1237 tex = r300_resource(fb->zsbuf->texture);
1238
1239 BEGIN_CS(size);
1240 OUT_CS_PKT3(R300_PACKET3_3D_CLEAR_ZMASK, 2);
1241 OUT_CS(0);
1242 OUT_CS(tex->tex.zmask_dwords[fb->zsbuf->u.tex.level]);
1243 OUT_CS(0);
1244 END_CS;
1245
1246 /* Mark the current zbuffer's zmask as in use. */
1247 r300->zmask_in_use = TRUE;
1248 r300_mark_atom_dirty(r300, &r300->hyperz_state);
1249 }
1250
1251 void r300_emit_cmask_clear(struct r300_context *r300, unsigned size, void *state)
1252 {
1253 struct pipe_framebuffer_state *fb =
1254 (struct pipe_framebuffer_state*)r300->fb_state.state;
1255 struct r300_resource *tex;
1256 CS_LOCALS(r300);
1257
1258 tex = r300_resource(fb->cbufs[0]->texture);
1259
1260 BEGIN_CS(size);
1261 OUT_CS_PKT3(R300_PACKET3_3D_CLEAR_CMASK, 2);
1262 OUT_CS(0);
1263 OUT_CS(tex->tex.cmask_dwords);
1264 OUT_CS(0);
1265 END_CS;
1266
1267 /* Mark the current zbuffer's zmask as in use. */
1268 r300->cmask_in_use = TRUE;
1269 r300_mark_fb_state_dirty(r300, R300_CHANGED_CMASK_ENABLE);
1270 }
1271
1272 void r300_emit_ztop_state(struct r300_context* r300,
1273 unsigned size, void* state)
1274 {
1275 struct r300_ztop_state* ztop = (struct r300_ztop_state*)state;
1276 CS_LOCALS(r300);
1277
1278 BEGIN_CS(size);
1279 OUT_CS_REG(R300_ZB_ZTOP, ztop->z_buffer_top);
1280 END_CS;
1281 }
1282
1283 void r300_emit_texture_cache_inval(struct r300_context* r300, unsigned size, void* state)
1284 {
1285 CS_LOCALS(r300);
1286
1287 BEGIN_CS(size);
1288 OUT_CS_REG(R300_TX_INVALTAGS, 0);
1289 END_CS;
1290 }
1291
1292 boolean r300_emit_buffer_validate(struct r300_context *r300,
1293 boolean do_validate_vertex_buffers,
1294 struct pipe_resource *index_buffer)
1295 {
1296 struct pipe_framebuffer_state *fb =
1297 (struct pipe_framebuffer_state*)r300->fb_state.state;
1298 struct r300_aa_state *aa = (struct r300_aa_state*)r300->aa_state.state;
1299 struct r300_textures_state *texstate =
1300 (struct r300_textures_state*)r300->textures_state.state;
1301 struct r300_resource *tex;
1302 unsigned i;
1303 boolean flushed = FALSE;
1304
1305 validate:
1306 if (r300->fb_state.dirty) {
1307 /* Color buffers... */
1308 for (i = 0; i < fb->nr_cbufs; i++) {
1309 tex = r300_resource(fb->cbufs[i]->texture);
1310 assert(tex && tex->buf && "cbuf is marked, but NULL!");
1311 r300->rws->cs_add_reloc(r300->cs, tex->cs_buf,
1312 RADEON_USAGE_READWRITE,
1313 r300_surface(fb->cbufs[i])->domain);
1314 }
1315 /* ...depth buffer... */
1316 if (fb->zsbuf) {
1317 tex = r300_resource(fb->zsbuf->texture);
1318 assert(tex && tex->buf && "zsbuf is marked, but NULL!");
1319 r300->rws->cs_add_reloc(r300->cs, tex->cs_buf,
1320 RADEON_USAGE_READWRITE,
1321 r300_surface(fb->zsbuf)->domain);
1322 }
1323 }
1324 /* The AA resolve buffer. */
1325 if (r300->aa_state.dirty) {
1326 if (aa->dest) {
1327 r300->rws->cs_add_reloc(r300->cs, aa->dest->cs_buf,
1328 RADEON_USAGE_WRITE,
1329 aa->dest->domain);
1330 }
1331 }
1332 if (r300->textures_state.dirty) {
1333 /* ...textures... */
1334 for (i = 0; i < texstate->count; i++) {
1335 if (!(texstate->tx_enable & (1 << i))) {
1336 continue;
1337 }
1338
1339 tex = r300_resource(texstate->sampler_views[i]->base.texture);
1340 r300->rws->cs_add_reloc(r300->cs, tex->cs_buf, RADEON_USAGE_READ,
1341 tex->domain);
1342 }
1343 }
1344 /* ...occlusion query buffer... */
1345 if (r300->query_current)
1346 r300->rws->cs_add_reloc(r300->cs, r300->query_current->cs_buf,
1347 RADEON_USAGE_WRITE, RADEON_DOMAIN_GTT);
1348 /* ...vertex buffer for SWTCL path... */
1349 if (r300->vbo_cs)
1350 r300->rws->cs_add_reloc(r300->cs, r300->vbo_cs,
1351 RADEON_USAGE_READ, RADEON_DOMAIN_GTT);
1352 /* ...vertex buffers for HWTCL path... */
1353 if (do_validate_vertex_buffers && r300->vertex_arrays_dirty) {
1354 struct pipe_vertex_buffer *vbuf = r300->vertex_buffer;
1355 struct pipe_vertex_buffer *last = r300->vertex_buffer +
1356 r300->nr_vertex_buffers;
1357 struct pipe_resource *buf;
1358
1359 for (; vbuf != last; vbuf++) {
1360 buf = vbuf->buffer;
1361 if (!buf)
1362 continue;
1363
1364 r300->rws->cs_add_reloc(r300->cs, r300_resource(buf)->cs_buf,
1365 RADEON_USAGE_READ,
1366 r300_resource(buf)->domain);
1367 }
1368 }
1369 /* ...and index buffer for HWTCL path. */
1370 if (index_buffer)
1371 r300->rws->cs_add_reloc(r300->cs, r300_resource(index_buffer)->cs_buf,
1372 RADEON_USAGE_READ,
1373 r300_resource(index_buffer)->domain);
1374
1375 /* Now do the validation (flush is called inside cs_validate on failure). */
1376 if (!r300->rws->cs_validate(r300->cs)) {
1377 /* Ooops, an infinite loop, give up. */
1378 if (flushed)
1379 return FALSE;
1380
1381 flushed = TRUE;
1382 goto validate;
1383 }
1384
1385 return TRUE;
1386 }
1387
1388 unsigned r300_get_num_dirty_dwords(struct r300_context *r300)
1389 {
1390 struct r300_atom* atom;
1391 unsigned dwords = 0;
1392
1393 foreach_dirty_atom(r300, atom) {
1394 if (atom->dirty) {
1395 dwords += atom->size;
1396 }
1397 }
1398
1399 /* let's reserve some more, just in case */
1400 dwords += 32;
1401
1402 return dwords;
1403 }
1404
1405 unsigned r300_get_num_cs_end_dwords(struct r300_context *r300)
1406 {
1407 unsigned dwords = 0;
1408
1409 /* Emitted in flush. */
1410 dwords += 26; /* emit_query_end */
1411 dwords += r300->hyperz_state.size + 2; /* emit_hyperz_end + zcache flush */
1412 if (r300->screen->caps.is_r500)
1413 dwords += 2; /* emit_index_bias */
1414 if (r300->screen->info.drm_minor >= 6)
1415 dwords += 3; /* MSPOS */
1416
1417 return dwords;
1418 }
1419
1420 /* Emit all dirty state. */
1421 void r300_emit_dirty_state(struct r300_context* r300)
1422 {
1423 struct r300_atom *atom;
1424
1425 foreach_dirty_atom(r300, atom) {
1426 if (atom->dirty) {
1427 atom->emit(r300, atom->size, atom->state);
1428 atom->dirty = FALSE;
1429 }
1430 }
1431
1432 r300->first_dirty = NULL;
1433 r300->last_dirty = NULL;
1434 r300->dirty_hw++;
1435 }