r300g: implement hyper-z support. (v4)
[mesa.git] / src / gallium / drivers / r300 / r300_fs.c
1 /*
2 * Copyright 2008 Corbin Simpson <MostAwesomeDude@gmail.com>
3 * Joakim Sindholt <opensource@zhasha.com>
4 * Copyright 2009 Marek Olšák <maraeo@gmail.com>
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * on the rights to use, copy, modify, merge, publish, distribute, sub
10 * license, and/or sell copies of the Software, and to permit persons to whom
11 * the Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
21 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
22 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
23 * USE OR OTHER DEALINGS IN THE SOFTWARE. */
24
25 #include "util/u_math.h"
26 #include "util/u_memory.h"
27
28 #include "tgsi/tgsi_dump.h"
29 #include "tgsi/tgsi_ureg.h"
30
31 #include "r300_cb.h"
32 #include "r300_context.h"
33 #include "r300_emit.h"
34 #include "r300_screen.h"
35 #include "r300_fs.h"
36 #include "r300_reg.h"
37 #include "r300_tgsi_to_rc.h"
38
39 #include "radeon_code.h"
40 #include "radeon_compiler.h"
41
42 /* Convert info about FS input semantics to r300_shader_semantics. */
43 void r300_shader_read_fs_inputs(struct tgsi_shader_info* info,
44 struct r300_shader_semantics* fs_inputs)
45 {
46 int i;
47 unsigned index;
48
49 r300_shader_semantics_reset(fs_inputs);
50
51 for (i = 0; i < info->num_inputs; i++) {
52 index = info->input_semantic_index[i];
53
54 switch (info->input_semantic_name[i]) {
55 case TGSI_SEMANTIC_COLOR:
56 assert(index < ATTR_COLOR_COUNT);
57 fs_inputs->color[index] = i;
58 break;
59
60 case TGSI_SEMANTIC_GENERIC:
61 assert(index < ATTR_GENERIC_COUNT);
62 fs_inputs->generic[index] = i;
63 break;
64
65 case TGSI_SEMANTIC_FOG:
66 assert(index == 0);
67 fs_inputs->fog = i;
68 break;
69
70 case TGSI_SEMANTIC_POSITION:
71 assert(index == 0);
72 fs_inputs->wpos = i;
73 break;
74
75 default:
76 fprintf(stderr, "r300: FP: Unknown input semantic: %i\n",
77 info->input_semantic_name[i]);
78 }
79 }
80 }
81
82 static void find_output_registers(struct r300_fragment_program_compiler * compiler,
83 struct r300_fragment_shader_code *shader)
84 {
85 unsigned i, colorbuf_count = 0;
86
87 /* Mark the outputs as not present initially */
88 compiler->OutputColor[0] = shader->info.num_outputs;
89 compiler->OutputColor[1] = shader->info.num_outputs;
90 compiler->OutputColor[2] = shader->info.num_outputs;
91 compiler->OutputColor[3] = shader->info.num_outputs;
92 compiler->OutputDepth = shader->info.num_outputs;
93
94 /* Now see where they really are. */
95 for(i = 0; i < shader->info.num_outputs; ++i) {
96 switch(shader->info.output_semantic_name[i]) {
97 case TGSI_SEMANTIC_COLOR:
98 compiler->OutputColor[colorbuf_count] = i;
99 colorbuf_count++;
100 break;
101 case TGSI_SEMANTIC_POSITION:
102 compiler->OutputDepth = i;
103 break;
104 }
105 }
106 }
107
108 static void allocate_hardware_inputs(
109 struct r300_fragment_program_compiler * c,
110 void (*allocate)(void * data, unsigned input, unsigned hwreg),
111 void * mydata)
112 {
113 struct r300_shader_semantics* inputs =
114 (struct r300_shader_semantics*)c->UserData;
115 int i, reg = 0;
116
117 /* Allocate input registers. */
118 for (i = 0; i < ATTR_COLOR_COUNT; i++) {
119 if (inputs->color[i] != ATTR_UNUSED) {
120 allocate(mydata, inputs->color[i], reg++);
121 }
122 }
123 for (i = 0; i < ATTR_GENERIC_COUNT; i++) {
124 if (inputs->generic[i] != ATTR_UNUSED) {
125 allocate(mydata, inputs->generic[i], reg++);
126 }
127 }
128 if (inputs->fog != ATTR_UNUSED) {
129 allocate(mydata, inputs->fog, reg++);
130 }
131 if (inputs->wpos != ATTR_UNUSED) {
132 allocate(mydata, inputs->wpos, reg++);
133 }
134 }
135
136 static void get_external_state(
137 struct r300_context* r300,
138 struct r300_fragment_program_external_state* state)
139 {
140 struct r300_textures_state *texstate = r300->textures_state.state;
141 unsigned i;
142 unsigned char *swizzle;
143
144 for (i = 0; i < texstate->sampler_state_count; i++) {
145 struct r300_sampler_state* s = texstate->sampler_states[i];
146
147 if (!s) {
148 continue;
149 }
150
151 if (s->state.compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE) {
152 state->unit[i].compare_mode_enabled = 1;
153
154 /* Pass depth texture swizzling to the compiler. */
155 if (texstate->sampler_views[i]) {
156 swizzle = texstate->sampler_views[i]->swizzle;
157
158 state->unit[i].depth_texture_swizzle =
159 RC_MAKE_SWIZZLE(swizzle[0], swizzle[1],
160 swizzle[2], swizzle[3]);
161 } else {
162 state->unit[i].depth_texture_swizzle = RC_SWIZZLE_XYZW;
163 }
164
165 /* Fortunately, no need to translate this. */
166 state->unit[i].texture_compare_func = s->state.compare_func;
167 }
168
169 state->unit[i].non_normalized_coords = !s->state.normalized_coords;
170
171 if (texstate->sampler_views[i]) {
172 struct r300_texture *t;
173 t = (struct r300_texture*)texstate->sampler_views[i]->base.texture;
174
175 /* XXX this should probably take into account STR, not just S. */
176 if (t->desc.is_npot) {
177 switch (s->state.wrap_s) {
178 case PIPE_TEX_WRAP_REPEAT:
179 state->unit[i].wrap_mode = RC_WRAP_REPEAT;
180 state->unit[i].fake_npot = TRUE;
181 break;
182
183 case PIPE_TEX_WRAP_MIRROR_REPEAT:
184 state->unit[i].wrap_mode = RC_WRAP_MIRRORED_REPEAT;
185 state->unit[i].fake_npot = TRUE;
186 break;
187
188 case PIPE_TEX_WRAP_MIRROR_CLAMP:
189 case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE:
190 case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER:
191 state->unit[i].wrap_mode = RC_WRAP_MIRRORED_CLAMP;
192 state->unit[i].fake_npot = TRUE;
193 break;
194
195 default:
196 state->unit[i].wrap_mode = RC_WRAP_NONE;
197 break;
198 }
199 }
200 }
201 }
202 }
203
204 static void r300_translate_fragment_shader(
205 struct r300_context* r300,
206 struct r300_fragment_shader_code* shader,
207 const struct tgsi_token *tokens);
208
209 static void r300_dummy_fragment_shader(
210 struct r300_context* r300,
211 struct r300_fragment_shader_code* shader)
212 {
213 struct pipe_shader_state state;
214 struct ureg_program *ureg;
215 struct ureg_dst out;
216 struct ureg_src imm;
217
218 /* Make a simple fragment shader which outputs (0, 0, 0, 1) */
219 ureg = ureg_create(TGSI_PROCESSOR_FRAGMENT);
220 out = ureg_DECL_output(ureg, TGSI_SEMANTIC_COLOR, 0);
221 imm = ureg_imm4f(ureg, 0, 0, 0, 1);
222
223 ureg_MOV(ureg, out, imm);
224 ureg_END(ureg);
225
226 state.tokens = ureg_finalize(ureg);
227
228 shader->dummy = TRUE;
229 r300_translate_fragment_shader(r300, shader, state.tokens);
230
231 ureg_destroy(ureg);
232 }
233
234 static void r300_emit_fs_code_to_buffer(
235 struct r300_context *r300,
236 struct r300_fragment_shader_code *shader)
237 {
238 struct rX00_fragment_program_code *generic_code = &shader->code;
239 unsigned imm_count = shader->immediates_count;
240 unsigned imm_first = shader->externals_count;
241 unsigned imm_end = generic_code->constants.Count;
242 struct rc_constant *constants = generic_code->constants.Constants;
243 unsigned i;
244 CB_LOCALS;
245
246 if (r300->screen->caps.is_r500) {
247 struct r500_fragment_program_code *code = &generic_code->code.r500;
248
249 shader->cb_code_size = 19 +
250 ((code->inst_end + 1) * 6) +
251 imm_count * 7 +
252 code->int_constant_count * 2;
253
254 NEW_CB(shader->cb_code, shader->cb_code_size);
255 OUT_CB_REG(R500_US_CONFIG, R500_ZERO_TIMES_ANYTHING_EQUALS_ZERO);
256 OUT_CB_REG(R500_US_PIXSIZE, code->max_temp_idx);
257 OUT_CB_REG(R500_US_FC_CTRL, code->us_fc_ctrl);
258 for(i = 0; i < code->int_constant_count; i++){
259 OUT_CB_REG(R500_US_FC_INT_CONST_0 + (i * 4),
260 code->int_constants[i]);
261 }
262 OUT_CB_REG(R500_US_CODE_RANGE,
263 R500_US_CODE_RANGE_ADDR(0) | R500_US_CODE_RANGE_SIZE(code->inst_end));
264 OUT_CB_REG(R500_US_CODE_OFFSET, 0);
265 OUT_CB_REG(R500_US_CODE_ADDR,
266 R500_US_CODE_START_ADDR(0) | R500_US_CODE_END_ADDR(code->inst_end));
267
268 OUT_CB_REG(R500_GA_US_VECTOR_INDEX, R500_GA_US_VECTOR_INDEX_TYPE_INSTR);
269 OUT_CB_ONE_REG(R500_GA_US_VECTOR_DATA, (code->inst_end + 1) * 6);
270 for (i = 0; i <= code->inst_end; i++) {
271 OUT_CB(code->inst[i].inst0);
272 OUT_CB(code->inst[i].inst1);
273 OUT_CB(code->inst[i].inst2);
274 OUT_CB(code->inst[i].inst3);
275 OUT_CB(code->inst[i].inst4);
276 OUT_CB(code->inst[i].inst5);
277 }
278
279 /* Emit immediates. */
280 if (imm_count) {
281 for(i = imm_first; i < imm_end; ++i) {
282 if (constants[i].Type == RC_CONSTANT_IMMEDIATE) {
283 const float *data = constants[i].u.Immediate;
284
285 OUT_CB_REG(R500_GA_US_VECTOR_INDEX,
286 R500_GA_US_VECTOR_INDEX_TYPE_CONST |
287 (i & R500_GA_US_VECTOR_INDEX_MASK));
288 OUT_CB_ONE_REG(R500_GA_US_VECTOR_DATA, 4);
289 OUT_CB_TABLE(data, 4);
290 }
291 }
292 }
293 } else { /* r300 */
294 struct r300_fragment_program_code *code = &generic_code->code.r300;
295
296 shader->cb_code_size = 19 +
297 (r300->screen->caps.is_r400 ? 2 : 0) +
298 code->alu.length * 4 +
299 (code->tex.length ? (1 + code->tex.length) : 0) +
300 imm_count * 5;
301
302 NEW_CB(shader->cb_code, shader->cb_code_size);
303
304 if (r300->screen->caps.is_r400)
305 OUT_CB_REG(R400_US_CODE_BANK, 0);
306
307 OUT_CB_REG(R300_US_CONFIG, code->config);
308 OUT_CB_REG(R300_US_PIXSIZE, code->pixsize);
309 OUT_CB_REG(R300_US_CODE_OFFSET, code->code_offset);
310
311 OUT_CB_REG_SEQ(R300_US_CODE_ADDR_0, 4);
312 OUT_CB_TABLE(code->code_addr, 4);
313
314 OUT_CB_REG_SEQ(R300_US_ALU_RGB_INST_0, code->alu.length);
315 for (i = 0; i < code->alu.length; i++)
316 OUT_CB(code->alu.inst[i].rgb_inst);
317
318 OUT_CB_REG_SEQ(R300_US_ALU_RGB_ADDR_0, code->alu.length);
319 for (i = 0; i < code->alu.length; i++)
320 OUT_CB(code->alu.inst[i].rgb_addr);
321
322 OUT_CB_REG_SEQ(R300_US_ALU_ALPHA_INST_0, code->alu.length);
323 for (i = 0; i < code->alu.length; i++)
324 OUT_CB(code->alu.inst[i].alpha_inst);
325
326 OUT_CB_REG_SEQ(R300_US_ALU_ALPHA_ADDR_0, code->alu.length);
327 for (i = 0; i < code->alu.length; i++)
328 OUT_CB(code->alu.inst[i].alpha_addr);
329
330 if (code->tex.length) {
331 OUT_CB_REG_SEQ(R300_US_TEX_INST_0, code->tex.length);
332 OUT_CB_TABLE(code->tex.inst, code->tex.length);
333 }
334
335 /* Emit immediates. */
336 if (imm_count) {
337 for(i = imm_first; i < imm_end; ++i) {
338 if (constants[i].Type == RC_CONSTANT_IMMEDIATE) {
339 const float *data = constants[i].u.Immediate;
340
341 OUT_CB_REG_SEQ(R300_PFS_PARAM_0_X + i * 16, 4);
342 OUT_CB(pack_float24(data[0]));
343 OUT_CB(pack_float24(data[1]));
344 OUT_CB(pack_float24(data[2]));
345 OUT_CB(pack_float24(data[3]));
346 }
347 }
348 }
349 }
350
351 OUT_CB_REG(R300_FG_DEPTH_SRC, shader->fg_depth_src);
352 OUT_CB_REG(R300_US_W_FMT, shader->us_out_w);
353 END_CB;
354 }
355
356 static void r300_translate_fragment_shader(
357 struct r300_context* r300,
358 struct r300_fragment_shader_code* shader,
359 const struct tgsi_token *tokens)
360 {
361 struct r300_fragment_program_compiler compiler;
362 struct tgsi_to_rc ttr;
363 int wpos;
364 unsigned i;
365
366 tgsi_scan_shader(tokens, &shader->info);
367 r300_shader_read_fs_inputs(&shader->info, &shader->inputs);
368
369 wpos = shader->inputs.wpos;
370
371 /* Setup the compiler. */
372 memset(&compiler, 0, sizeof(compiler));
373 rc_init(&compiler.Base);
374 compiler.Base.Debug = DBG_ON(r300, DBG_FP);
375
376 compiler.code = &shader->code;
377 compiler.state = shader->compare_state;
378 compiler.Base.is_r500 = r300->screen->caps.is_r500;
379 compiler.Base.max_temp_regs = compiler.Base.is_r500 ? 128 : 32;
380 compiler.AllocateHwInputs = &allocate_hardware_inputs;
381 compiler.UserData = &shader->inputs;
382
383 find_output_registers(&compiler, shader);
384
385 if (compiler.Base.Debug) {
386 debug_printf("r300: Initial fragment program\n");
387 tgsi_dump(tokens, 0);
388 }
389
390 /* Translate TGSI to our internal representation */
391 ttr.compiler = &compiler.Base;
392 ttr.info = &shader->info;
393 ttr.use_half_swizzles = TRUE;
394
395 r300_tgsi_to_rc(&ttr, tokens);
396
397 /**
398 * Transform the program to support WPOS.
399 *
400 * Introduce a small fragment at the start of the program that will be
401 * the only code that directly reads the WPOS input.
402 * All other code pieces that reference that input will be rewritten
403 * to read from a newly allocated temporary. */
404 if (wpos != ATTR_UNUSED) {
405 /* Moving the input to some other reg is not really necessary. */
406 rc_transform_fragment_wpos(&compiler.Base, wpos, wpos, TRUE);
407 }
408
409 /* Invoke the compiler */
410 r3xx_compile_fragment_program(&compiler);
411
412 /* Shaders with zero instructions are invalid,
413 * use the dummy shader instead. */
414 if (shader->code.code.r500.inst_end == -1) {
415 rc_destroy(&compiler.Base);
416 r300_dummy_fragment_shader(r300, shader);
417 return;
418 }
419
420 if (compiler.Base.Error) {
421 fprintf(stderr, "r300 FP: Compiler Error:\n%sUsing a dummy shader"
422 " instead.\nIf there's an 'unknown opcode' message, please"
423 " file a bug report and attach this log.\n", compiler.Base.ErrorMsg);
424
425 if (shader->dummy) {
426 fprintf(stderr, "r300 FP: Cannot compile the dummy shader! "
427 "Giving up...\n");
428 abort();
429 }
430
431 rc_destroy(&compiler.Base);
432 r300_dummy_fragment_shader(r300, shader);
433 return;
434 }
435
436 /* Initialize numbers of constants for each type. */
437 shader->externals_count = ttr.immediate_offset;
438 shader->immediates_count = 0;
439 shader->rc_state_count = 0;
440
441 for (i = shader->externals_count; i < shader->code.constants.Count; i++) {
442 switch (shader->code.constants.Constants[i].Type) {
443 case RC_CONSTANT_IMMEDIATE:
444 ++shader->immediates_count;
445 break;
446 case RC_CONSTANT_STATE:
447 ++shader->rc_state_count;
448 break;
449 default:
450 assert(0);
451 }
452 }
453
454 /* Setup shader depth output. */
455 if (shader->code.writes_depth) {
456 shader->fg_depth_src = R300_FG_DEPTH_SRC_SHADER;
457 shader->us_out_w = R300_W_FMT_W24 | R300_W_SRC_US;
458 } else {
459 shader->fg_depth_src = R300_FG_DEPTH_SRC_SCAN;
460 shader->us_out_w = R300_W_FMT_W0 | R300_W_SRC_US;
461 }
462
463 /* And, finally... */
464 rc_destroy(&compiler.Base);
465
466 /* Build the command buffer. */
467 r300_emit_fs_code_to_buffer(r300, shader);
468 }
469
470 boolean r300_pick_fragment_shader(struct r300_context* r300)
471 {
472 struct r300_fragment_shader* fs = r300_fs(r300);
473 struct r300_fragment_program_external_state state = {{{ 0 }}};
474 struct r300_fragment_shader_code* ptr;
475
476 get_external_state(r300, &state);
477
478 if (!fs->first) {
479 /* Build the fragment shader for the first time. */
480 fs->first = fs->shader = CALLOC_STRUCT(r300_fragment_shader_code);
481
482 memcpy(&fs->shader->compare_state, &state,
483 sizeof(struct r300_fragment_program_external_state));
484 r300_translate_fragment_shader(r300, fs->shader, fs->state.tokens);
485 return TRUE;
486
487 } else {
488 /* Check if the currently-bound shader has been compiled
489 * with the texture-compare state we need. */
490 if (memcmp(&fs->shader->compare_state, &state, sizeof(state)) != 0) {
491 /* Search for the right shader. */
492 ptr = fs->first;
493 while (ptr) {
494 if (memcmp(&ptr->compare_state, &state, sizeof(state)) == 0) {
495 if (fs->shader != ptr) {
496 fs->shader = ptr;
497 return TRUE;
498 }
499 /* The currently-bound one is OK. */
500 return FALSE;
501 }
502 ptr = ptr->next;
503 }
504
505 /* Not found, gotta compile a new one. */
506 ptr = CALLOC_STRUCT(r300_fragment_shader_code);
507 ptr->next = fs->first;
508 fs->first = fs->shader = ptr;
509
510 ptr->compare_state = state;
511 r300_translate_fragment_shader(r300, ptr, fs->state.tokens);
512 return TRUE;
513 }
514 }
515
516 return FALSE;
517 }