r300g: fix fb_state atom size
[mesa.git] / src / gallium / drivers / r300 / r300_state.c
1 /*
2 * Copyright 2008 Corbin Simpson <MostAwesomeDude@gmail.com>
3 * Copyright 2009 Marek Olšák <maraeo@gmail.com>
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * on the rights to use, copy, modify, merge, publish, distribute, sub
9 * license, and/or sell copies of the Software, and to permit persons to whom
10 * the Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE. */
23
24 #include "draw/draw_context.h"
25
26 #include "util/u_blitter.h"
27 #include "util/u_math.h"
28 #include "util/u_mm.h"
29 #include "util/u_memory.h"
30 #include "util/u_pack_color.h"
31
32 #include "tgsi/tgsi_parse.h"
33
34 #include "pipe/p_config.h"
35
36 #include "r300_cb.h"
37 #include "r300_context.h"
38 #include "r300_emit.h"
39 #include "r300_reg.h"
40 #include "r300_screen.h"
41 #include "r300_screen_buffer.h"
42 #include "r300_state_inlines.h"
43 #include "r300_fs.h"
44 #include "r300_texture.h"
45 #include "r300_vs.h"
46 #include "r300_winsys.h"
47 #include "r300_hyperz.h"
48
49 /* r300_state: Functions used to intialize state context by translating
50 * Gallium state objects into semi-native r300 state objects. */
51
52 #define UPDATE_STATE(cso, atom) \
53 if (cso != atom.state) { \
54 atom.state = cso; \
55 atom.dirty = TRUE; \
56 }
57
58 static boolean blend_discard_if_src_alpha_0(unsigned srcRGB, unsigned srcA,
59 unsigned dstRGB, unsigned dstA)
60 {
61 /* If the blend equation is ADD or REVERSE_SUBTRACT,
62 * SRC_ALPHA == 0, and the following state is set, the colorbuffer
63 * will not be changed.
64 * Notice that the dst factors are the src factors inverted. */
65 return (srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
66 srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE ||
67 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
68 (srcA == PIPE_BLENDFACTOR_SRC_COLOR ||
69 srcA == PIPE_BLENDFACTOR_SRC_ALPHA ||
70 srcA == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE ||
71 srcA == PIPE_BLENDFACTOR_ZERO) &&
72 (dstRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
73 dstRGB == PIPE_BLENDFACTOR_ONE) &&
74 (dstA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
75 dstA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
76 dstA == PIPE_BLENDFACTOR_ONE);
77 }
78
79 static boolean blend_discard_if_src_alpha_1(unsigned srcRGB, unsigned srcA,
80 unsigned dstRGB, unsigned dstA)
81 {
82 /* If the blend equation is ADD or REVERSE_SUBTRACT,
83 * SRC_ALPHA == 1, and the following state is set, the colorbuffer
84 * will not be changed.
85 * Notice that the dst factors are the src factors inverted. */
86 return (srcRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
87 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
88 (srcA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
89 srcA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
90 srcA == PIPE_BLENDFACTOR_ZERO) &&
91 (dstRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
92 dstRGB == PIPE_BLENDFACTOR_ONE) &&
93 (dstA == PIPE_BLENDFACTOR_SRC_COLOR ||
94 dstA == PIPE_BLENDFACTOR_SRC_ALPHA ||
95 dstA == PIPE_BLENDFACTOR_ONE);
96 }
97
98 static boolean blend_discard_if_src_color_0(unsigned srcRGB, unsigned srcA,
99 unsigned dstRGB, unsigned dstA)
100 {
101 /* If the blend equation is ADD or REVERSE_SUBTRACT,
102 * SRC_COLOR == (0,0,0), and the following state is set, the colorbuffer
103 * will not be changed.
104 * Notice that the dst factors are the src factors inverted. */
105 return (srcRGB == PIPE_BLENDFACTOR_SRC_COLOR ||
106 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
107 (srcA == PIPE_BLENDFACTOR_ZERO) &&
108 (dstRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
109 dstRGB == PIPE_BLENDFACTOR_ONE) &&
110 (dstA == PIPE_BLENDFACTOR_ONE);
111 }
112
113 static boolean blend_discard_if_src_color_1(unsigned srcRGB, unsigned srcA,
114 unsigned dstRGB, unsigned dstA)
115 {
116 /* If the blend equation is ADD or REVERSE_SUBTRACT,
117 * SRC_COLOR == (1,1,1), and the following state is set, the colorbuffer
118 * will not be changed.
119 * Notice that the dst factors are the src factors inverted. */
120 return (srcRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
121 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
122 (srcA == PIPE_BLENDFACTOR_ZERO) &&
123 (dstRGB == PIPE_BLENDFACTOR_SRC_COLOR ||
124 dstRGB == PIPE_BLENDFACTOR_ONE) &&
125 (dstA == PIPE_BLENDFACTOR_ONE);
126 }
127
128 static boolean blend_discard_if_src_alpha_color_0(unsigned srcRGB, unsigned srcA,
129 unsigned dstRGB, unsigned dstA)
130 {
131 /* If the blend equation is ADD or REVERSE_SUBTRACT,
132 * SRC_ALPHA_COLOR == (0,0,0,0), and the following state is set,
133 * the colorbuffer will not be changed.
134 * Notice that the dst factors are the src factors inverted. */
135 return (srcRGB == PIPE_BLENDFACTOR_SRC_COLOR ||
136 srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
137 srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE ||
138 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
139 (srcA == PIPE_BLENDFACTOR_SRC_COLOR ||
140 srcA == PIPE_BLENDFACTOR_SRC_ALPHA ||
141 srcA == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE ||
142 srcA == PIPE_BLENDFACTOR_ZERO) &&
143 (dstRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
144 dstRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
145 dstRGB == PIPE_BLENDFACTOR_ONE) &&
146 (dstA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
147 dstA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
148 dstA == PIPE_BLENDFACTOR_ONE);
149 }
150
151 static boolean blend_discard_if_src_alpha_color_1(unsigned srcRGB, unsigned srcA,
152 unsigned dstRGB, unsigned dstA)
153 {
154 /* If the blend equation is ADD or REVERSE_SUBTRACT,
155 * SRC_ALPHA_COLOR == (1,1,1,1), and the following state is set,
156 * the colorbuffer will not be changed.
157 * Notice that the dst factors are the src factors inverted. */
158 return (srcRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
159 srcRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
160 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
161 (srcA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
162 srcA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
163 srcA == PIPE_BLENDFACTOR_ZERO) &&
164 (dstRGB == PIPE_BLENDFACTOR_SRC_COLOR ||
165 dstRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
166 dstRGB == PIPE_BLENDFACTOR_ONE) &&
167 (dstA == PIPE_BLENDFACTOR_SRC_COLOR ||
168 dstA == PIPE_BLENDFACTOR_SRC_ALPHA ||
169 dstA == PIPE_BLENDFACTOR_ONE);
170 }
171
172 static unsigned bgra_cmask(unsigned mask)
173 {
174 /* Gallium uses RGBA color ordering while R300 expects BGRA. */
175
176 return ((mask & PIPE_MASK_R) << 2) |
177 ((mask & PIPE_MASK_B) >> 2) |
178 (mask & (PIPE_MASK_G | PIPE_MASK_A));
179 }
180
181 /* Create a new blend state based on the CSO blend state.
182 *
183 * This encompasses alpha blending, logic/raster ops, and blend dithering. */
184 static void* r300_create_blend_state(struct pipe_context* pipe,
185 const struct pipe_blend_state* state)
186 {
187 struct r300_screen* r300screen = r300_screen(pipe->screen);
188 struct r300_blend_state* blend = CALLOC_STRUCT(r300_blend_state);
189 uint32_t blend_control = 0; /* R300_RB3D_CBLEND: 0x4e04 */
190 uint32_t alpha_blend_control = 0; /* R300_RB3D_ABLEND: 0x4e08 */
191 uint32_t color_channel_mask = 0; /* R300_RB3D_COLOR_CHANNEL_MASK: 0x4e0c */
192 uint32_t rop = 0; /* R300_RB3D_ROPCNTL: 0x4e18 */
193 uint32_t dither = 0; /* R300_RB3D_DITHER_CTL: 0x4e50 */
194 CB_LOCALS;
195
196 if (state->rt[0].blend_enable)
197 {
198 unsigned eqRGB = state->rt[0].rgb_func;
199 unsigned srcRGB = state->rt[0].rgb_src_factor;
200 unsigned dstRGB = state->rt[0].rgb_dst_factor;
201
202 unsigned eqA = state->rt[0].alpha_func;
203 unsigned srcA = state->rt[0].alpha_src_factor;
204 unsigned dstA = state->rt[0].alpha_dst_factor;
205
206 /* despite the name, ALPHA_BLEND_ENABLE has nothing to do with alpha,
207 * this is just the crappy D3D naming */
208 blend_control = R300_ALPHA_BLEND_ENABLE |
209 r300_translate_blend_function(eqRGB) |
210 ( r300_translate_blend_factor(srcRGB) << R300_SRC_BLEND_SHIFT) |
211 ( r300_translate_blend_factor(dstRGB) << R300_DST_BLEND_SHIFT);
212
213 /* Optimization: some operations do not require the destination color.
214 *
215 * When SRC_ALPHA_SATURATE is used, colorbuffer reads must be enabled,
216 * otherwise blending gives incorrect results. It seems to be
217 * a hardware bug. */
218 if (eqRGB == PIPE_BLEND_MIN || eqA == PIPE_BLEND_MIN ||
219 eqRGB == PIPE_BLEND_MAX || eqA == PIPE_BLEND_MAX ||
220 dstRGB != PIPE_BLENDFACTOR_ZERO ||
221 dstA != PIPE_BLENDFACTOR_ZERO ||
222 srcRGB == PIPE_BLENDFACTOR_DST_COLOR ||
223 srcRGB == PIPE_BLENDFACTOR_DST_ALPHA ||
224 srcRGB == PIPE_BLENDFACTOR_INV_DST_COLOR ||
225 srcRGB == PIPE_BLENDFACTOR_INV_DST_ALPHA ||
226 srcA == PIPE_BLENDFACTOR_DST_COLOR ||
227 srcA == PIPE_BLENDFACTOR_DST_ALPHA ||
228 srcA == PIPE_BLENDFACTOR_INV_DST_COLOR ||
229 srcA == PIPE_BLENDFACTOR_INV_DST_ALPHA ||
230 srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE) {
231 /* Enable reading from the colorbuffer. */
232 blend_control |= R300_READ_ENABLE;
233
234 if (r300screen->caps.is_r500) {
235 /* Optimization: Depending on incoming pixels, we can
236 * conditionally disable the reading in hardware... */
237 if (eqRGB != PIPE_BLEND_MIN && eqA != PIPE_BLEND_MIN &&
238 eqRGB != PIPE_BLEND_MAX && eqA != PIPE_BLEND_MAX) {
239 /* Disable reading if SRC_ALPHA == 0. */
240 if ((dstRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
241 dstRGB == PIPE_BLENDFACTOR_ZERO) &&
242 (dstA == PIPE_BLENDFACTOR_SRC_COLOR ||
243 dstA == PIPE_BLENDFACTOR_SRC_ALPHA ||
244 dstA == PIPE_BLENDFACTOR_ZERO)) {
245 blend_control |= R500_SRC_ALPHA_0_NO_READ;
246 }
247
248 /* Disable reading if SRC_ALPHA == 1. */
249 if ((dstRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
250 dstRGB == PIPE_BLENDFACTOR_ZERO) &&
251 (dstA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
252 dstA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
253 dstA == PIPE_BLENDFACTOR_ZERO)) {
254 blend_control |= R500_SRC_ALPHA_1_NO_READ;
255 }
256 }
257 }
258 }
259
260 /* Optimization: discard pixels which don't change the colorbuffer.
261 *
262 * The code below is non-trivial and some math is involved.
263 *
264 * Discarding pixels must be disabled when FP16 AA is enabled.
265 * This is a hardware bug. Also, this implementation wouldn't work
266 * with FP blending enabled and equation clamping disabled.
267 *
268 * Equations other than ADD are rarely used and therefore won't be
269 * optimized. */
270 if ((eqRGB == PIPE_BLEND_ADD || eqRGB == PIPE_BLEND_REVERSE_SUBTRACT) &&
271 (eqA == PIPE_BLEND_ADD || eqA == PIPE_BLEND_REVERSE_SUBTRACT)) {
272 /* ADD: X+Y
273 * REVERSE_SUBTRACT: Y-X
274 *
275 * The idea is:
276 * If X = src*srcFactor = 0 and Y = dst*dstFactor = 1,
277 * then CB will not be changed.
278 *
279 * Given the srcFactor and dstFactor variables, we can derive
280 * what src and dst should be equal to and discard appropriate
281 * pixels.
282 */
283 if (blend_discard_if_src_alpha_0(srcRGB, srcA, dstRGB, dstA)) {
284 blend_control |= R300_DISCARD_SRC_PIXELS_SRC_ALPHA_0;
285 } else if (blend_discard_if_src_alpha_1(srcRGB, srcA,
286 dstRGB, dstA)) {
287 blend_control |= R300_DISCARD_SRC_PIXELS_SRC_ALPHA_1;
288 } else if (blend_discard_if_src_color_0(srcRGB, srcA,
289 dstRGB, dstA)) {
290 blend_control |= R300_DISCARD_SRC_PIXELS_SRC_COLOR_0;
291 } else if (blend_discard_if_src_color_1(srcRGB, srcA,
292 dstRGB, dstA)) {
293 blend_control |= R300_DISCARD_SRC_PIXELS_SRC_COLOR_1;
294 } else if (blend_discard_if_src_alpha_color_0(srcRGB, srcA,
295 dstRGB, dstA)) {
296 blend_control |=
297 R300_DISCARD_SRC_PIXELS_SRC_ALPHA_COLOR_0;
298 } else if (blend_discard_if_src_alpha_color_1(srcRGB, srcA,
299 dstRGB, dstA)) {
300 blend_control |=
301 R300_DISCARD_SRC_PIXELS_SRC_ALPHA_COLOR_1;
302 }
303 }
304
305 /* separate alpha */
306 if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB) {
307 blend_control |= R300_SEPARATE_ALPHA_ENABLE;
308 alpha_blend_control =
309 r300_translate_blend_function(eqA) |
310 (r300_translate_blend_factor(srcA) << R300_SRC_BLEND_SHIFT) |
311 (r300_translate_blend_factor(dstA) << R300_DST_BLEND_SHIFT);
312 }
313 }
314
315 /* PIPE_LOGICOP_* don't need to be translated, fortunately. */
316 if (state->logicop_enable) {
317 rop = R300_RB3D_ROPCNTL_ROP_ENABLE |
318 (state->logicop_func) << R300_RB3D_ROPCNTL_ROP_SHIFT;
319 }
320
321 /* Color channel masks for all MRTs. */
322 color_channel_mask = bgra_cmask(state->rt[0].colormask);
323 if (r300screen->caps.is_r500 && state->independent_blend_enable) {
324 if (state->rt[1].blend_enable) {
325 color_channel_mask |= bgra_cmask(state->rt[1].colormask) << 4;
326 }
327 if (state->rt[2].blend_enable) {
328 color_channel_mask |= bgra_cmask(state->rt[2].colormask) << 8;
329 }
330 if (state->rt[3].blend_enable) {
331 color_channel_mask |= bgra_cmask(state->rt[3].colormask) << 12;
332 }
333 }
334
335 /* Neither fglrx nor classic r300 ever set this, regardless of dithering
336 * state. Since it's an optional implementation detail, we can leave it
337 * out and never dither.
338 *
339 * This could be revisited if we ever get quality or conformance hints.
340 *
341 if (state->dither) {
342 dither = R300_RB3D_DITHER_CTL_DITHER_MODE_LUT |
343 R300_RB3D_DITHER_CTL_ALPHA_DITHER_MODE_LUT;
344 }
345 */
346
347 /* Build a command buffer. */
348 BEGIN_CB(blend->cb, 8);
349 OUT_CB_REG(R300_RB3D_ROPCNTL, rop);
350 OUT_CB_REG_SEQ(R300_RB3D_CBLEND, 3);
351 OUT_CB(blend_control);
352 OUT_CB(alpha_blend_control);
353 OUT_CB(color_channel_mask);
354 OUT_CB_REG(R300_RB3D_DITHER_CTL, dither);
355 END_CB;
356
357 /* The same as above, but with no colorbuffer reads and writes. */
358 BEGIN_CB(blend->cb_no_readwrite, 8);
359 OUT_CB_REG(R300_RB3D_ROPCNTL, rop);
360 OUT_CB_REG_SEQ(R300_RB3D_CBLEND, 3);
361 OUT_CB(0);
362 OUT_CB(0);
363 OUT_CB(0);
364 OUT_CB_REG(R300_RB3D_DITHER_CTL, dither);
365 END_CB;
366
367 return (void*)blend;
368 }
369
370 /* Bind blend state. */
371 static void r300_bind_blend_state(struct pipe_context* pipe,
372 void* state)
373 {
374 struct r300_context* r300 = r300_context(pipe);
375
376 UPDATE_STATE(state, r300->blend_state);
377 }
378
379 /* Free blend state. */
380 static void r300_delete_blend_state(struct pipe_context* pipe,
381 void* state)
382 {
383 FREE(state);
384 }
385
386 /* Convert float to 10bit integer */
387 static unsigned float_to_fixed10(float f)
388 {
389 return CLAMP((unsigned)(f * 1023.9f), 0, 1023);
390 }
391
392 /* Set blend color.
393 * Setup both R300 and R500 registers, figure out later which one to write. */
394 static void r300_set_blend_color(struct pipe_context* pipe,
395 const struct pipe_blend_color* color)
396 {
397 struct r300_context* r300 = r300_context(pipe);
398 struct r300_blend_color_state* state =
399 (struct r300_blend_color_state*)r300->blend_color_state.state;
400 CB_LOCALS;
401
402 if (r300->screen->caps.is_r500) {
403 /* XXX if FP16 blending is enabled, we should use the FP16 format */
404 BEGIN_CB(state->cb, 3);
405 OUT_CB_REG_SEQ(R500_RB3D_CONSTANT_COLOR_AR, 2);
406 OUT_CB(float_to_fixed10(color->color[0]) |
407 (float_to_fixed10(color->color[3]) << 16));
408 OUT_CB(float_to_fixed10(color->color[2]) |
409 (float_to_fixed10(color->color[1]) << 16));
410 END_CB;
411 } else {
412 union util_color uc;
413 util_pack_color(color->color, PIPE_FORMAT_B8G8R8A8_UNORM, &uc);
414
415 BEGIN_CB(state->cb, 2);
416 OUT_CB_REG(R300_RB3D_BLEND_COLOR, uc.ui);
417 END_CB;
418 }
419
420 r300->blend_color_state.dirty = TRUE;
421 }
422
423 static void r300_set_clip_state(struct pipe_context* pipe,
424 const struct pipe_clip_state* state)
425 {
426 struct r300_context* r300 = r300_context(pipe);
427 struct r300_clip_state *clip =
428 (struct r300_clip_state*)r300->clip_state.state;
429 CB_LOCALS;
430
431 clip->clip = *state;
432
433 if (r300->screen->caps.has_tcl) {
434 r300->clip_state.size = 2 + !!state->nr * 3 + state->nr * 4;
435
436 BEGIN_CB(clip->cb, r300->clip_state.size);
437 if (state->nr) {
438 OUT_CB_REG(R300_VAP_PVS_VECTOR_INDX_REG,
439 (r300->screen->caps.is_r500 ?
440 R500_PVS_UCP_START : R300_PVS_UCP_START));
441 OUT_CB_ONE_REG(R300_VAP_PVS_UPLOAD_DATA, state->nr * 4);
442 OUT_CB_TABLE(state->ucp, state->nr * 4);
443 }
444 OUT_CB_REG(R300_VAP_CLIP_CNTL, ((1 << state->nr) - 1) |
445 R300_PS_UCP_MODE_CLIP_AS_TRIFAN |
446 (state->depth_clamp ? R300_CLIP_DISABLE : 0));
447 END_CB;
448
449 r300->clip_state.dirty = TRUE;
450 } else {
451 draw_set_clip_state(r300->draw, state);
452 }
453 }
454
455 static void
456 r300_set_sample_mask(struct pipe_context *pipe,
457 unsigned sample_mask)
458 {
459 }
460
461
462 /* Create a new depth, stencil, and alpha state based on the CSO dsa state.
463 *
464 * This contains the depth buffer, stencil buffer, alpha test, and such.
465 * On the Radeon, depth and stencil buffer setup are intertwined, which is
466 * the reason for some of the strange-looking assignments across registers. */
467 static void*
468 r300_create_dsa_state(struct pipe_context* pipe,
469 const struct pipe_depth_stencil_alpha_state* state)
470 {
471 struct r300_capabilities *caps = &r300_screen(pipe->screen)->caps;
472 struct r300_dsa_state* dsa = CALLOC_STRUCT(r300_dsa_state);
473 CB_LOCALS;
474
475 dsa->dsa = *state;
476
477 /* Depth test setup. - separate write mask depth for decomp flush */
478 if (state->depth.writemask) {
479 dsa->z_buffer_control |= R300_Z_WRITE_ENABLE;
480 }
481
482 if (state->depth.enabled) {
483 dsa->z_buffer_control |= R300_Z_ENABLE;
484
485 dsa->z_stencil_control |=
486 (r300_translate_depth_stencil_function(state->depth.func) <<
487 R300_Z_FUNC_SHIFT);
488 }
489
490 /* Stencil buffer setup. */
491 if (state->stencil[0].enabled) {
492 dsa->z_buffer_control |= R300_STENCIL_ENABLE;
493 dsa->z_stencil_control |=
494 (r300_translate_depth_stencil_function(state->stencil[0].func) <<
495 R300_S_FRONT_FUNC_SHIFT) |
496 (r300_translate_stencil_op(state->stencil[0].fail_op) <<
497 R300_S_FRONT_SFAIL_OP_SHIFT) |
498 (r300_translate_stencil_op(state->stencil[0].zpass_op) <<
499 R300_S_FRONT_ZPASS_OP_SHIFT) |
500 (r300_translate_stencil_op(state->stencil[0].zfail_op) <<
501 R300_S_FRONT_ZFAIL_OP_SHIFT);
502
503 dsa->stencil_ref_mask =
504 (state->stencil[0].valuemask << R300_STENCILMASK_SHIFT) |
505 (state->stencil[0].writemask << R300_STENCILWRITEMASK_SHIFT);
506
507 if (state->stencil[1].enabled) {
508 dsa->two_sided = TRUE;
509
510 dsa->z_buffer_control |= R300_STENCIL_FRONT_BACK;
511 dsa->z_stencil_control |=
512 (r300_translate_depth_stencil_function(state->stencil[1].func) <<
513 R300_S_BACK_FUNC_SHIFT) |
514 (r300_translate_stencil_op(state->stencil[1].fail_op) <<
515 R300_S_BACK_SFAIL_OP_SHIFT) |
516 (r300_translate_stencil_op(state->stencil[1].zpass_op) <<
517 R300_S_BACK_ZPASS_OP_SHIFT) |
518 (r300_translate_stencil_op(state->stencil[1].zfail_op) <<
519 R300_S_BACK_ZFAIL_OP_SHIFT);
520
521 dsa->stencil_ref_bf =
522 (state->stencil[1].valuemask << R300_STENCILMASK_SHIFT) |
523 (state->stencil[1].writemask << R300_STENCILWRITEMASK_SHIFT);
524
525 if (caps->is_r500) {
526 dsa->z_buffer_control |= R500_STENCIL_REFMASK_FRONT_BACK;
527 } else {
528 dsa->two_sided_stencil_ref =
529 (state->stencil[0].valuemask != state->stencil[1].valuemask ||
530 state->stencil[0].writemask != state->stencil[1].writemask);
531 }
532 }
533 }
534
535 /* Alpha test setup. */
536 if (state->alpha.enabled) {
537 dsa->alpha_function =
538 r300_translate_alpha_function(state->alpha.func) |
539 R300_FG_ALPHA_FUNC_ENABLE;
540
541 /* We could use 10bit alpha ref but who needs that? */
542 dsa->alpha_function |= float_to_ubyte(state->alpha.ref_value);
543
544 if (caps->is_r500)
545 dsa->alpha_function |= R500_FG_ALPHA_FUNC_8BIT;
546 }
547
548 BEGIN_CB(&dsa->cb_begin, 8);
549 OUT_CB_REG(R300_FG_ALPHA_FUNC, dsa->alpha_function);
550 OUT_CB_REG_SEQ(R300_ZB_CNTL, 3);
551 OUT_CB(dsa->z_buffer_control);
552 OUT_CB(dsa->z_stencil_control);
553 OUT_CB(dsa->stencil_ref_mask);
554 OUT_CB_REG(R500_ZB_STENCILREFMASK_BF, dsa->stencil_ref_bf);
555 END_CB;
556
557 BEGIN_CB(dsa->cb_no_readwrite, 8);
558 OUT_CB_REG(R300_FG_ALPHA_FUNC, dsa->alpha_function);
559 OUT_CB_REG_SEQ(R300_ZB_CNTL, 3);
560 OUT_CB(0);
561 OUT_CB(0);
562 OUT_CB(0);
563 OUT_CB_REG(R500_ZB_STENCILREFMASK_BF, 0);
564 END_CB;
565
566 return (void*)dsa;
567 }
568
569 static void r300_dsa_inject_stencilref(struct r300_context *r300)
570 {
571 struct r300_dsa_state *dsa =
572 (struct r300_dsa_state*)r300->dsa_state.state;
573
574 if (!dsa)
575 return;
576
577 dsa->stencil_ref_mask =
578 (dsa->stencil_ref_mask & ~R300_STENCILREF_MASK) |
579 r300->stencil_ref.ref_value[0];
580 dsa->stencil_ref_bf =
581 (dsa->stencil_ref_bf & ~R300_STENCILREF_MASK) |
582 r300->stencil_ref.ref_value[1];
583 }
584
585 /* Bind DSA state. */
586 static void r300_bind_dsa_state(struct pipe_context* pipe,
587 void* state)
588 {
589 struct r300_context* r300 = r300_context(pipe);
590
591 if (!state) {
592 return;
593 }
594
595 UPDATE_STATE(state, r300->dsa_state);
596
597 r300->hyperz_state.dirty = TRUE; /* Will be updated before the emission. */
598 r300_dsa_inject_stencilref(r300);
599 }
600
601 /* Free DSA state. */
602 static void r300_delete_dsa_state(struct pipe_context* pipe,
603 void* state)
604 {
605 FREE(state);
606 }
607
608 static void r300_set_stencil_ref(struct pipe_context* pipe,
609 const struct pipe_stencil_ref* sr)
610 {
611 struct r300_context* r300 = r300_context(pipe);
612
613 r300->stencil_ref = *sr;
614
615 r300_dsa_inject_stencilref(r300);
616 r300->dsa_state.dirty = TRUE;
617 }
618
619 static void r300_tex_set_tiling_flags(struct r300_context *r300,
620 struct r300_texture *tex, unsigned level)
621 {
622 /* Check if the macrotile flag needs to be changed.
623 * Skip changing the flags otherwise. */
624 if (tex->desc.macrotile[tex->surface_level] !=
625 tex->desc.macrotile[level]) {
626 /* Tiling determines how DRM treats the buffer data.
627 * We must flush CS when changing it if the buffer is referenced. */
628 if (r300->rws->cs_is_buffer_referenced(r300->cs,
629 tex->buffer, R300_REF_CS))
630 r300->context.flush(&r300->context, 0, NULL);
631
632 r300->rws->buffer_set_tiling(r300->rws, tex->buffer,
633 tex->desc.microtile, tex->desc.macrotile[level],
634 tex->desc.stride_in_bytes[0]);
635
636 tex->surface_level = level;
637 }
638 }
639
640 /* This switcheroo is needed just because of goddamned MACRO_SWITCH. */
641 static void r300_fb_set_tiling_flags(struct r300_context *r300,
642 const struct pipe_framebuffer_state *state)
643 {
644 unsigned i;
645
646 /* Set tiling flags for new surfaces. */
647 for (i = 0; i < state->nr_cbufs; i++) {
648 r300_tex_set_tiling_flags(r300,
649 r300_texture(state->cbufs[i]->texture),
650 state->cbufs[i]->level);
651 }
652 if (state->zsbuf) {
653 r300_tex_set_tiling_flags(r300,
654 r300_texture(state->zsbuf->texture),
655 state->zsbuf->level);
656 }
657 }
658
659 static void r300_print_fb_surf_info(struct pipe_surface *surf, unsigned index,
660 const char *binding)
661 {
662 struct pipe_resource *tex = surf->texture;
663 struct r300_texture *rtex = r300_texture(tex);
664
665 fprintf(stderr,
666 "r300: %s[%i] Dim: %ix%i, Offset: %i, ZSlice: %i, "
667 "Face: %i, Level: %i, Format: %s\n"
668
669 "r300: TEX: Macro: %s, Micro: %s, Pitch: %i, "
670 "Dim: %ix%ix%i, LastLevel: %i, Format: %s\n",
671
672 binding, index, surf->width, surf->height, surf->offset,
673 surf->zslice, surf->face, surf->level,
674 util_format_short_name(surf->format),
675
676 rtex->desc.macrotile[0] ? "YES" : " NO",
677 rtex->desc.microtile ? "YES" : " NO",
678 rtex->desc.stride_in_pixels[0],
679 tex->width0, tex->height0, tex->depth0,
680 tex->last_level, util_format_short_name(tex->format));
681 }
682
683 void r300_mark_fb_state_dirty(struct r300_context *r300,
684 enum r300_fb_state_change change)
685 {
686 struct pipe_framebuffer_state *state = r300->fb_state.state;
687 boolean has_hyperz = r300->rws->get_value(r300->rws, R300_CAN_HYPERZ);
688
689 /* What is marked as dirty depends on the enum r300_fb_state_change. */
690 r300->gpu_flush.dirty = TRUE;
691 r300->fb_state.dirty = TRUE;
692 if (r300->rws->get_value(r300->rws, R300_CAN_HYPERZ))
693 r300->hyperz_state.dirty = TRUE;
694
695 if (change == R300_CHANGED_FB_STATE) {
696 r300->aa_state.dirty = TRUE;
697 r300->fb_state_pipelined.dirty = TRUE;
698 }
699
700 /* Now compute the fb_state atom size. */
701 r300->fb_state.size = 2 + (8 * state->nr_cbufs);
702
703 if (r300->cbzb_clear)
704 r300->fb_state.size += 10;
705 else if (state->zsbuf) {
706 r300->fb_state.size += 10;
707 if (has_hyperz)
708 r300->fb_state.size += r300->screen->caps.hiz_ram ? 8 : 4;
709 }
710
711 /* The size of the rest of atoms stays the same. */
712 }
713
714 static void
715 r300_set_framebuffer_state(struct pipe_context* pipe,
716 const struct pipe_framebuffer_state* state)
717 {
718 struct r300_context* r300 = r300_context(pipe);
719 struct r300_aa_state *aa = (struct r300_aa_state*)r300->aa_state.state;
720 struct pipe_framebuffer_state *old_state = r300->fb_state.state;
721 boolean has_hyperz = r300->rws->get_value(r300->rws, R300_CAN_HYPERZ);
722 unsigned max_width, max_height, i;
723 uint32_t zbuffer_bpp = 0;
724 int blocksize;
725
726 if (r300->screen->caps.is_r500) {
727 max_width = max_height = 4096;
728 } else if (r300->screen->caps.is_r400) {
729 max_width = max_height = 4021;
730 } else {
731 max_width = max_height = 2560;
732 }
733
734 if (state->width > max_width || state->height > max_height) {
735 fprintf(stderr, "r300: Implementation error: Render targets are too "
736 "big in %s, refusing to bind framebuffer state!\n", __FUNCTION__);
737 return;
738 }
739
740 /* If nr_cbufs is changed from zero to non-zero or vice versa... */
741 if (!!old_state->nr_cbufs != !!state->nr_cbufs) {
742 r300->blend_state.dirty = TRUE;
743 }
744 /* If zsbuf is set from NULL to non-NULL or vice versa.. */
745 if (!!old_state->zsbuf != !!state->zsbuf) {
746 r300->dsa_state.dirty = TRUE;
747 }
748
749 /* The tiling flags are dependent on the surface miplevel, unfortunately. */
750 r300_fb_set_tiling_flags(r300, state);
751
752 util_assign_framebuffer_state(r300->fb_state.state, state);
753
754 r300_mark_fb_state_dirty(r300, R300_CHANGED_FB_STATE);
755
756 r300->hiz_enable = false;
757 r300->z_fastfill = false;
758 r300->z_compression = false;
759
760 if (state->zsbuf) {
761 blocksize = util_format_get_blocksize(state->zsbuf->texture->format);
762 switch (blocksize) {
763 case 2:
764 zbuffer_bpp = 16;
765 break;
766 case 4:
767 zbuffer_bpp = 24;
768 break;
769 }
770 if (has_hyperz) {
771 struct r300_surface *zs_surf = r300_surface(state->zsbuf);
772 struct r300_texture *tex;
773 int compress = r300->screen->caps.is_rv350 ? RV350_Z_COMPRESS_88 : R300_Z_COMPRESS_44;
774 int level = zs_surf->base.level;
775
776 tex = r300_texture(zs_surf->base.texture);
777
778 /* work out whether we can support hiz on this buffer */
779 r300_hiz_alloc_block(r300, zs_surf);
780
781 /* work out whether we can support zmask features on this buffer */
782 r300_zmask_alloc_block(r300, zs_surf, compress);
783
784 if (tex->hiz_mem[level]) {
785 r300->hiz_enable = 1;
786 }
787
788 if (tex->zmask_mem[level]) {
789 r300->z_fastfill = 1;
790 /* compression causes hangs on 16-bit */
791 if (zbuffer_bpp == 24)
792 r300->z_compression = compress;
793 }
794 DBG(r300, DBG_HYPERZ,
795 "hyper-z features: hiz: %d @ %08x z-compression: %d z-fastfill: %d @ %08x\n", r300->hiz_enable,
796 tex->hiz_mem[level] ? tex->hiz_mem[level]->ofs : 0xdeadbeef,
797 r300->z_compression, r300->z_fastfill,
798 tex->zmask_mem[level] ? tex->zmask_mem[level]->ofs : 0xdeadbeef);
799 }
800
801 /* Polygon offset depends on the zbuffer bit depth. */
802 if (r300->zbuffer_bpp != zbuffer_bpp) {
803 r300->zbuffer_bpp = zbuffer_bpp;
804
805 if (r300->polygon_offset_enabled)
806 r300->rs_state.dirty = TRUE;
807 }
808 }
809
810 /* Set up AA config. */
811 if (r300->rws->get_value(r300->rws, R300_VID_DRM_2_3_0)) {
812 if (state->nr_cbufs && state->cbufs[0]->texture->nr_samples > 1) {
813 aa->aa_config = R300_GB_AA_CONFIG_AA_ENABLE;
814
815 switch (state->cbufs[0]->texture->nr_samples) {
816 case 2:
817 aa->aa_config |= R300_GB_AA_CONFIG_NUM_AA_SUBSAMPLES_2;
818 break;
819 case 3:
820 aa->aa_config |= R300_GB_AA_CONFIG_NUM_AA_SUBSAMPLES_3;
821 break;
822 case 4:
823 aa->aa_config |= R300_GB_AA_CONFIG_NUM_AA_SUBSAMPLES_4;
824 break;
825 case 6:
826 aa->aa_config |= R300_GB_AA_CONFIG_NUM_AA_SUBSAMPLES_6;
827 break;
828 }
829 } else {
830 aa->aa_config = 0;
831 }
832 }
833
834 if (DBG_ON(r300, DBG_FB)) {
835 fprintf(stderr, "r300: set_framebuffer_state:\n");
836 for (i = 0; i < state->nr_cbufs; i++) {
837 r300_print_fb_surf_info(state->cbufs[i], i, "CB");
838 }
839 if (state->zsbuf) {
840 r300_print_fb_surf_info(state->zsbuf, 0, "ZB");
841 }
842 }
843 }
844
845 /* Create fragment shader state. */
846 static void* r300_create_fs_state(struct pipe_context* pipe,
847 const struct pipe_shader_state* shader)
848 {
849 struct r300_fragment_shader* fs = NULL;
850
851 fs = (struct r300_fragment_shader*)CALLOC_STRUCT(r300_fragment_shader);
852
853 /* Copy state directly into shader. */
854 fs->state = *shader;
855 fs->state.tokens = tgsi_dup_tokens(shader->tokens);
856
857 return (void*)fs;
858 }
859
860 void r300_mark_fs_code_dirty(struct r300_context *r300)
861 {
862 struct r300_fragment_shader* fs = r300_fs(r300);
863
864 r300->fs.dirty = TRUE;
865 r300->fs_rc_constant_state.dirty = TRUE;
866 r300->fs_constants.dirty = TRUE;
867 r300->fs.size = fs->shader->cb_code_size;
868
869 if (r300->screen->caps.is_r500) {
870 r300->fs_rc_constant_state.size = fs->shader->rc_state_count * 7;
871 r300->fs_constants.size = fs->shader->externals_count * 4 + 3;
872 } else {
873 r300->fs_rc_constant_state.size = fs->shader->rc_state_count * 5;
874 r300->fs_constants.size = fs->shader->externals_count * 4 + 1;
875 }
876 }
877
878 /* Bind fragment shader state. */
879 static void r300_bind_fs_state(struct pipe_context* pipe, void* shader)
880 {
881 struct r300_context* r300 = r300_context(pipe);
882 struct r300_fragment_shader* fs = (struct r300_fragment_shader*)shader;
883
884 if (fs == NULL) {
885 r300->fs.state = NULL;
886 return;
887 }
888
889 r300->fs.state = fs;
890 r300_pick_fragment_shader(r300);
891 r300_mark_fs_code_dirty(r300);
892
893 r300->rs_block_state.dirty = TRUE; /* Will be updated before the emission. */
894 }
895
896 /* Delete fragment shader state. */
897 static void r300_delete_fs_state(struct pipe_context* pipe, void* shader)
898 {
899 struct r300_fragment_shader* fs = (struct r300_fragment_shader*)shader;
900 struct r300_fragment_shader_code *tmp, *ptr = fs->first;
901
902 while (ptr) {
903 tmp = ptr;
904 ptr = ptr->next;
905 rc_constants_destroy(&tmp->code.constants);
906 FREE(tmp->cb_code);
907 FREE(tmp);
908 }
909 FREE((void*)fs->state.tokens);
910 FREE(shader);
911 }
912
913 static void r300_set_polygon_stipple(struct pipe_context* pipe,
914 const struct pipe_poly_stipple* state)
915 {
916 /* XXX no idea how to set this up, but not terribly important */
917 }
918
919 /* Create a new rasterizer state based on the CSO rasterizer state.
920 *
921 * This is a very large chunk of state, and covers most of the graphics
922 * backend (GB), geometry assembly (GA), and setup unit (SU) blocks.
923 *
924 * In a not entirely unironic sidenote, this state has nearly nothing to do
925 * with the actual block on the Radeon called the rasterizer (RS). */
926 static void* r300_create_rs_state(struct pipe_context* pipe,
927 const struct pipe_rasterizer_state* state)
928 {
929 struct r300_rs_state* rs = CALLOC_STRUCT(r300_rs_state);
930 int i;
931 float psiz;
932 uint32_t vap_control_status; /* R300_VAP_CNTL_STATUS: 0x2140 */
933 uint32_t point_size; /* R300_GA_POINT_SIZE: 0x421c */
934 uint32_t point_minmax; /* R300_GA_POINT_MINMAX: 0x4230 */
935 uint32_t line_control; /* R300_GA_LINE_CNTL: 0x4234 */
936 uint32_t polygon_offset_enable; /* R300_SU_POLY_OFFSET_ENABLE: 0x42b4 */
937 uint32_t cull_mode; /* R300_SU_CULL_MODE: 0x42b8 */
938 uint32_t line_stipple_config; /* R300_GA_LINE_STIPPLE_CONFIG: 0x4328 */
939 uint32_t line_stipple_value; /* R300_GA_LINE_STIPPLE_VALUE: 0x4260 */
940 uint32_t polygon_mode; /* R300_GA_POLY_MODE: 0x4288 */
941 uint32_t clip_rule; /* R300_SC_CLIP_RULE: 0x43D0 */
942
943 /* Specifies top of Raster pipe specific enable controls,
944 * i.e. texture coordinates stuffing for points, lines, triangles */
945 uint32_t stuffing_enable; /* R300_GB_ENABLE: 0x4008 */
946
947 /* Point sprites texture coordinates, 0: lower left, 1: upper right */
948 float point_texcoord_left; /* R300_GA_POINT_S0: 0x4200 */
949 float point_texcoord_bottom = 0;/* R300_GA_POINT_T0: 0x4204 */
950 float point_texcoord_right; /* R300_GA_POINT_S1: 0x4208 */
951 float point_texcoord_top = 0; /* R300_GA_POINT_T1: 0x420c */
952 CB_LOCALS;
953
954 /* Copy rasterizer state. */
955 rs->rs = *state;
956 rs->rs_draw = *state;
957
958 /* Override some states for Draw. */
959 rs->rs_draw.sprite_coord_enable = 0; /* We can do this in HW. */
960
961 #ifdef PIPE_ARCH_LITTLE_ENDIAN
962 vap_control_status = R300_VC_NO_SWAP;
963 #else
964 vap_control_status = R300_VC_32BIT_SWAP;
965 #endif
966
967 /* If no TCL engine is present, turn off the HW TCL. */
968 if (!r300_screen(pipe->screen)->caps.has_tcl) {
969 vap_control_status |= R300_VAP_TCL_BYPASS;
970 }
971
972 /* Point size width and height. */
973 point_size =
974 pack_float_16_6x(state->point_size) |
975 (pack_float_16_6x(state->point_size) << R300_POINTSIZE_X_SHIFT);
976
977 /* Point size clamping. */
978 if (state->point_size_per_vertex) {
979 /* Per-vertex point size.
980 * Clamp to [0, max FB size] */
981 psiz = pipe->screen->get_paramf(pipe->screen,
982 PIPE_CAP_MAX_POINT_WIDTH);
983 point_minmax =
984 pack_float_16_6x(psiz) << R300_GA_POINT_MINMAX_MAX_SHIFT;
985 } else {
986 /* We cannot disable the point-size vertex output,
987 * so clamp it. */
988 psiz = state->point_size;
989 point_minmax =
990 (pack_float_16_6x(psiz) << R300_GA_POINT_MINMAX_MIN_SHIFT) |
991 (pack_float_16_6x(psiz) << R300_GA_POINT_MINMAX_MAX_SHIFT);
992 }
993
994 /* Line control. */
995 line_control = pack_float_16_6x(state->line_width) |
996 R300_GA_LINE_CNTL_END_TYPE_COMP;
997
998 /* Enable polygon mode */
999 polygon_mode = 0;
1000 if (state->fill_front != PIPE_POLYGON_MODE_FILL ||
1001 state->fill_back != PIPE_POLYGON_MODE_FILL) {
1002 polygon_mode = R300_GA_POLY_MODE_DUAL;
1003 }
1004
1005 /* Front face */
1006 if (state->front_ccw)
1007 cull_mode = R300_FRONT_FACE_CCW;
1008 else
1009 cull_mode = R300_FRONT_FACE_CW;
1010
1011 /* Polygon offset */
1012 polygon_offset_enable = 0;
1013 if (util_get_offset(state, state->fill_front)) {
1014 polygon_offset_enable |= R300_FRONT_ENABLE;
1015 }
1016 if (util_get_offset(state, state->fill_back)) {
1017 polygon_offset_enable |= R300_BACK_ENABLE;
1018 }
1019
1020 rs->polygon_offset_enable = polygon_offset_enable != 0;
1021
1022 /* Polygon mode */
1023 if (polygon_mode) {
1024 polygon_mode |=
1025 r300_translate_polygon_mode_front(state->fill_front);
1026 polygon_mode |=
1027 r300_translate_polygon_mode_back(state->fill_back);
1028 }
1029
1030 if (state->cull_face & PIPE_FACE_FRONT) {
1031 cull_mode |= R300_CULL_FRONT;
1032 }
1033 if (state->cull_face & PIPE_FACE_BACK) {
1034 cull_mode |= R300_CULL_BACK;
1035 }
1036
1037 if (state->line_stipple_enable) {
1038 line_stipple_config =
1039 R300_GA_LINE_STIPPLE_CONFIG_LINE_RESET_LINE |
1040 (fui((float)state->line_stipple_factor) &
1041 R300_GA_LINE_STIPPLE_CONFIG_STIPPLE_SCALE_MASK);
1042 /* XXX this might need to be scaled up */
1043 line_stipple_value = state->line_stipple_pattern;
1044 } else {
1045 line_stipple_config = 0;
1046 line_stipple_value = 0;
1047 }
1048
1049 if (state->flatshade) {
1050 rs->color_control = R300_SHADE_MODEL_FLAT;
1051 } else {
1052 rs->color_control = R300_SHADE_MODEL_SMOOTH;
1053 }
1054
1055 clip_rule = state->scissor ? 0xAAAA : 0xFFFF;
1056
1057 /* Point sprites */
1058 stuffing_enable = 0;
1059 if (state->sprite_coord_enable) {
1060 stuffing_enable = R300_GB_POINT_STUFF_ENABLE;
1061 for (i = 0; i < 8; i++) {
1062 if (state->sprite_coord_enable & (1 << i))
1063 stuffing_enable |=
1064 R300_GB_TEX_ST << (R300_GB_TEX0_SOURCE_SHIFT + (i*2));
1065 }
1066
1067 point_texcoord_left = 0.0f;
1068 point_texcoord_right = 1.0f;
1069
1070 switch (state->sprite_coord_mode) {
1071 case PIPE_SPRITE_COORD_UPPER_LEFT:
1072 point_texcoord_top = 0.0f;
1073 point_texcoord_bottom = 1.0f;
1074 break;
1075 case PIPE_SPRITE_COORD_LOWER_LEFT:
1076 point_texcoord_top = 1.0f;
1077 point_texcoord_bottom = 0.0f;
1078 break;
1079 }
1080 }
1081
1082 /* Build the main command buffer. */
1083 BEGIN_CB(rs->cb_main, 25);
1084 OUT_CB_REG(R300_VAP_CNTL_STATUS, vap_control_status);
1085 OUT_CB_REG(R300_GA_POINT_SIZE, point_size);
1086 OUT_CB_REG_SEQ(R300_GA_POINT_MINMAX, 2);
1087 OUT_CB(point_minmax);
1088 OUT_CB(line_control);
1089 OUT_CB_REG_SEQ(R300_SU_POLY_OFFSET_ENABLE, 2);
1090 OUT_CB(polygon_offset_enable);
1091 rs->cull_mode_index = 9;
1092 OUT_CB(cull_mode);
1093 OUT_CB_REG(R300_GA_LINE_STIPPLE_CONFIG, line_stipple_config);
1094 OUT_CB_REG(R300_GA_LINE_STIPPLE_VALUE, line_stipple_value);
1095 OUT_CB_REG(R300_GA_POLY_MODE, polygon_mode);
1096 OUT_CB_REG(R300_SC_CLIP_RULE, clip_rule);
1097 OUT_CB_REG(R300_GB_ENABLE, stuffing_enable);
1098 OUT_CB_REG_SEQ(R300_GA_POINT_S0, 4);
1099 OUT_CB_32F(point_texcoord_left);
1100 OUT_CB_32F(point_texcoord_bottom);
1101 OUT_CB_32F(point_texcoord_right);
1102 OUT_CB_32F(point_texcoord_top);
1103 END_CB;
1104
1105 /* Build the two command buffers for polygon offset setup. */
1106 if (polygon_offset_enable) {
1107 float scale = state->offset_scale * 12;
1108 float offset = state->offset_units * 4;
1109
1110 BEGIN_CB(rs->cb_poly_offset_zb16, 5);
1111 OUT_CB_REG_SEQ(R300_SU_POLY_OFFSET_FRONT_SCALE, 4);
1112 OUT_CB_32F(scale);
1113 OUT_CB_32F(offset);
1114 OUT_CB_32F(scale);
1115 OUT_CB_32F(offset);
1116 END_CB;
1117
1118 offset = state->offset_units * 2;
1119
1120 BEGIN_CB(rs->cb_poly_offset_zb24, 5);
1121 OUT_CB_REG_SEQ(R300_SU_POLY_OFFSET_FRONT_SCALE, 4);
1122 OUT_CB_32F(scale);
1123 OUT_CB_32F(offset);
1124 OUT_CB_32F(scale);
1125 OUT_CB_32F(offset);
1126 END_CB;
1127 }
1128
1129 return (void*)rs;
1130 }
1131
1132 /* Bind rasterizer state. */
1133 static void r300_bind_rs_state(struct pipe_context* pipe, void* state)
1134 {
1135 struct r300_context* r300 = r300_context(pipe);
1136 struct r300_rs_state* rs = (struct r300_rs_state*)state;
1137 int last_sprite_coord_enable = r300->sprite_coord_enable;
1138 boolean last_two_sided_color = r300->two_sided_color;
1139
1140 if (r300->draw && rs) {
1141 draw_set_rasterizer_state(r300->draw, &rs->rs_draw, state);
1142 }
1143
1144 if (rs) {
1145 r300->polygon_offset_enabled = rs->polygon_offset_enable;
1146 r300->sprite_coord_enable = rs->rs.sprite_coord_enable;
1147 r300->two_sided_color = rs->rs.light_twoside;
1148 } else {
1149 r300->polygon_offset_enabled = FALSE;
1150 r300->sprite_coord_enable = 0;
1151 r300->two_sided_color = FALSE;
1152 }
1153
1154 UPDATE_STATE(state, r300->rs_state);
1155 r300->rs_state.size = 25 + (r300->polygon_offset_enabled ? 5 : 0);
1156
1157 if (last_sprite_coord_enable != r300->sprite_coord_enable ||
1158 last_two_sided_color != r300->two_sided_color) {
1159 r300->rs_block_state.dirty = TRUE;
1160 }
1161 }
1162
1163 /* Free rasterizer state. */
1164 static void r300_delete_rs_state(struct pipe_context* pipe, void* state)
1165 {
1166 FREE(state);
1167 }
1168
1169 static void*
1170 r300_create_sampler_state(struct pipe_context* pipe,
1171 const struct pipe_sampler_state* state)
1172 {
1173 struct r300_context* r300 = r300_context(pipe);
1174 struct r300_sampler_state* sampler = CALLOC_STRUCT(r300_sampler_state);
1175 boolean is_r500 = r300->screen->caps.is_r500;
1176 int lod_bias;
1177 union util_color uc;
1178
1179 sampler->state = *state;
1180
1181 /* r300 doesn't handle CLAMP and MIRROR_CLAMP correctly when either MAG
1182 * or MIN filter is NEAREST. Since texwrap produces same results
1183 * for CLAMP and CLAMP_TO_EDGE, we use them instead. */
1184 if (sampler->state.min_img_filter == PIPE_TEX_FILTER_NEAREST ||
1185 sampler->state.mag_img_filter == PIPE_TEX_FILTER_NEAREST) {
1186 /* Wrap S. */
1187 if (sampler->state.wrap_s == PIPE_TEX_WRAP_CLAMP)
1188 sampler->state.wrap_s = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
1189 else if (sampler->state.wrap_s == PIPE_TEX_WRAP_MIRROR_CLAMP)
1190 sampler->state.wrap_s = PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE;
1191
1192 /* Wrap T. */
1193 if (sampler->state.wrap_t == PIPE_TEX_WRAP_CLAMP)
1194 sampler->state.wrap_t = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
1195 else if (sampler->state.wrap_t == PIPE_TEX_WRAP_MIRROR_CLAMP)
1196 sampler->state.wrap_t = PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE;
1197
1198 /* Wrap R. */
1199 if (sampler->state.wrap_r == PIPE_TEX_WRAP_CLAMP)
1200 sampler->state.wrap_r = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
1201 else if (sampler->state.wrap_r == PIPE_TEX_WRAP_MIRROR_CLAMP)
1202 sampler->state.wrap_r = PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE;
1203 }
1204
1205 sampler->filter0 |=
1206 (r300_translate_wrap(sampler->state.wrap_s) << R300_TX_WRAP_S_SHIFT) |
1207 (r300_translate_wrap(sampler->state.wrap_t) << R300_TX_WRAP_T_SHIFT) |
1208 (r300_translate_wrap(sampler->state.wrap_r) << R300_TX_WRAP_R_SHIFT);
1209
1210 sampler->filter0 |= r300_translate_tex_filters(state->min_img_filter,
1211 state->mag_img_filter,
1212 state->min_mip_filter,
1213 state->max_anisotropy > 0);
1214
1215 sampler->filter0 |= r300_anisotropy(state->max_anisotropy);
1216
1217 /* Unfortunately, r300-r500 don't support floating-point mipmap lods. */
1218 /* We must pass these to the merge function to clamp them properly. */
1219 sampler->min_lod = MAX2((unsigned)state->min_lod, 0);
1220 sampler->max_lod = MAX2((unsigned)ceilf(state->max_lod), 0);
1221
1222 lod_bias = CLAMP((int)(state->lod_bias * 32 + 1), -(1 << 9), (1 << 9) - 1);
1223
1224 sampler->filter1 |= (lod_bias << R300_LOD_BIAS_SHIFT) & R300_LOD_BIAS_MASK;
1225
1226 /* This is very high quality anisotropic filtering for R5xx.
1227 * It's good for benchmarking the performance of texturing but
1228 * in practice we don't want to slow down the driver because it's
1229 * a pretty good performance killer. Feel free to play with it. */
1230 if (DBG_ON(r300, DBG_ANISOHQ) && is_r500) {
1231 sampler->filter1 |= r500_anisotropy(state->max_anisotropy);
1232 }
1233
1234 util_pack_color(state->border_color, PIPE_FORMAT_B8G8R8A8_UNORM, &uc);
1235 sampler->border_color = uc.ui;
1236
1237 /* R500-specific fixups and optimizations */
1238 if (r300->screen->caps.is_r500) {
1239 sampler->filter1 |= R500_BORDER_FIX;
1240 }
1241
1242 return (void*)sampler;
1243 }
1244
1245 static void r300_bind_sampler_states(struct pipe_context* pipe,
1246 unsigned count,
1247 void** states)
1248 {
1249 struct r300_context* r300 = r300_context(pipe);
1250 struct r300_textures_state* state =
1251 (struct r300_textures_state*)r300->textures_state.state;
1252 unsigned tex_units = r300->screen->caps.num_tex_units;
1253
1254 if (count > tex_units) {
1255 return;
1256 }
1257
1258 memcpy(state->sampler_states, states, sizeof(void*) * count);
1259 state->sampler_state_count = count;
1260
1261 r300->textures_state.dirty = TRUE;
1262 }
1263
1264 static void r300_lacks_vertex_textures(struct pipe_context* pipe,
1265 unsigned count,
1266 void** states)
1267 {
1268 }
1269
1270 static void r300_delete_sampler_state(struct pipe_context* pipe, void* state)
1271 {
1272 FREE(state);
1273 }
1274
1275 static uint32_t r300_assign_texture_cache_region(unsigned index, unsigned num)
1276 {
1277 /* This looks like a hack, but I believe it's suppose to work like
1278 * that. To illustrate how this works, let's assume you have 5 textures.
1279 * From docs, 5 and the successive numbers are:
1280 *
1281 * FOURTH_1 = 5
1282 * FOURTH_2 = 6
1283 * FOURTH_3 = 7
1284 * EIGHTH_0 = 8
1285 * EIGHTH_1 = 9
1286 *
1287 * First 3 textures will get 3/4 of size of the cache, divived evenly
1288 * between them. The last 1/4 of the cache must be divided between
1289 * the last 2 textures, each will therefore get 1/8 of the cache.
1290 * Why not just to use "5 + texture_index" ?
1291 *
1292 * This simple trick works for all "num" <= 16.
1293 */
1294 if (num <= 1)
1295 return R300_TX_CACHE(R300_TX_CACHE_WHOLE);
1296 else
1297 return R300_TX_CACHE(num + index);
1298 }
1299
1300 static void r300_set_fragment_sampler_views(struct pipe_context* pipe,
1301 unsigned count,
1302 struct pipe_sampler_view** views)
1303 {
1304 struct r300_context* r300 = r300_context(pipe);
1305 struct r300_textures_state* state =
1306 (struct r300_textures_state*)r300->textures_state.state;
1307 struct r300_texture *texture;
1308 unsigned i, real_num_views = 0, view_index = 0;
1309 unsigned tex_units = r300->screen->caps.num_tex_units;
1310 boolean dirty_tex = FALSE;
1311
1312 if (count > tex_units) {
1313 return;
1314 }
1315
1316 /* Calculate the real number of views. */
1317 for (i = 0; i < count; i++) {
1318 if (views[i])
1319 real_num_views++;
1320 }
1321
1322 for (i = 0; i < count; i++) {
1323 if (&state->sampler_views[i]->base != views[i]) {
1324 pipe_sampler_view_reference(
1325 (struct pipe_sampler_view**)&state->sampler_views[i],
1326 views[i]);
1327
1328 if (!views[i]) {
1329 continue;
1330 }
1331
1332 /* A new sampler view (= texture)... */
1333 dirty_tex = TRUE;
1334
1335 /* Set the texrect factor in the fragment shader.
1336 * Needed for RECT and NPOT fallback. */
1337 texture = r300_texture(views[i]->texture);
1338 if (texture->desc.is_npot) {
1339 r300->fs_rc_constant_state.dirty = TRUE;
1340 }
1341
1342 state->sampler_views[i]->texcache_region =
1343 r300_assign_texture_cache_region(view_index, real_num_views);
1344 view_index++;
1345 }
1346 }
1347
1348 for (i = count; i < tex_units; i++) {
1349 if (state->sampler_views[i]) {
1350 pipe_sampler_view_reference(
1351 (struct pipe_sampler_view**)&state->sampler_views[i],
1352 NULL);
1353 }
1354 }
1355
1356 state->sampler_view_count = count;
1357
1358 r300->textures_state.dirty = TRUE;
1359
1360 if (dirty_tex) {
1361 r300->texture_cache_inval.dirty = TRUE;
1362 }
1363 }
1364
1365 static struct pipe_sampler_view *
1366 r300_create_sampler_view(struct pipe_context *pipe,
1367 struct pipe_resource *texture,
1368 const struct pipe_sampler_view *templ)
1369 {
1370 struct r300_sampler_view *view = CALLOC_STRUCT(r300_sampler_view);
1371 struct r300_texture *tex = r300_texture(texture);
1372 boolean is_r500 = r300_screen(pipe->screen)->caps.is_r500;
1373
1374 if (view) {
1375 view->base = *templ;
1376 view->base.reference.count = 1;
1377 view->base.context = pipe;
1378 view->base.texture = NULL;
1379 pipe_resource_reference(&view->base.texture, texture);
1380
1381 view->swizzle[0] = templ->swizzle_r;
1382 view->swizzle[1] = templ->swizzle_g;
1383 view->swizzle[2] = templ->swizzle_b;
1384 view->swizzle[3] = templ->swizzle_a;
1385
1386 view->format = tex->tx_format;
1387 view->format.format1 |= r300_translate_texformat(templ->format,
1388 view->swizzle,
1389 is_r500);
1390 if (is_r500) {
1391 view->format.format2 |= r500_tx_format_msb_bit(templ->format);
1392 }
1393 }
1394
1395 return (struct pipe_sampler_view*)view;
1396 }
1397
1398 static void
1399 r300_sampler_view_destroy(struct pipe_context *pipe,
1400 struct pipe_sampler_view *view)
1401 {
1402 pipe_resource_reference(&view->texture, NULL);
1403 FREE(view);
1404 }
1405
1406 static void r300_set_scissor_state(struct pipe_context* pipe,
1407 const struct pipe_scissor_state* state)
1408 {
1409 struct r300_context* r300 = r300_context(pipe);
1410
1411 memcpy(r300->scissor_state.state, state,
1412 sizeof(struct pipe_scissor_state));
1413
1414 r300->scissor_state.dirty = TRUE;
1415 }
1416
1417 static void r300_set_viewport_state(struct pipe_context* pipe,
1418 const struct pipe_viewport_state* state)
1419 {
1420 struct r300_context* r300 = r300_context(pipe);
1421 struct r300_viewport_state* viewport =
1422 (struct r300_viewport_state*)r300->viewport_state.state;
1423
1424 r300->viewport = *state;
1425
1426 if (r300->draw) {
1427 draw_set_viewport_state(r300->draw, state);
1428 viewport->vte_control = R300_VTX_XY_FMT | R300_VTX_Z_FMT;
1429 return;
1430 }
1431
1432 /* Do the transform in HW. */
1433 viewport->vte_control = R300_VTX_W0_FMT;
1434
1435 if (state->scale[0] != 1.0f) {
1436 viewport->xscale = state->scale[0];
1437 viewport->vte_control |= R300_VPORT_X_SCALE_ENA;
1438 }
1439 if (state->scale[1] != 1.0f) {
1440 viewport->yscale = state->scale[1];
1441 viewport->vte_control |= R300_VPORT_Y_SCALE_ENA;
1442 }
1443 if (state->scale[2] != 1.0f) {
1444 viewport->zscale = state->scale[2];
1445 viewport->vte_control |= R300_VPORT_Z_SCALE_ENA;
1446 }
1447 if (state->translate[0] != 0.0f) {
1448 viewport->xoffset = state->translate[0];
1449 viewport->vte_control |= R300_VPORT_X_OFFSET_ENA;
1450 }
1451 if (state->translate[1] != 0.0f) {
1452 viewport->yoffset = state->translate[1];
1453 viewport->vte_control |= R300_VPORT_Y_OFFSET_ENA;
1454 }
1455 if (state->translate[2] != 0.0f) {
1456 viewport->zoffset = state->translate[2];
1457 viewport->vte_control |= R300_VPORT_Z_OFFSET_ENA;
1458 }
1459
1460 r300->viewport_state.dirty = TRUE;
1461 if (r300->fs.state && r300_fs(r300)->shader->inputs.wpos != ATTR_UNUSED) {
1462 r300->fs_rc_constant_state.dirty = TRUE;
1463 }
1464 }
1465
1466 static void r300_set_vertex_buffers(struct pipe_context* pipe,
1467 unsigned count,
1468 const struct pipe_vertex_buffer* buffers)
1469 {
1470 struct r300_context* r300 = r300_context(pipe);
1471 struct pipe_vertex_buffer *vbo;
1472 unsigned i, max_index = (1 << 24) - 1;
1473 boolean any_user_buffer = FALSE;
1474
1475 if (count == r300->vertex_buffer_count &&
1476 memcmp(r300->vertex_buffer, buffers,
1477 sizeof(struct pipe_vertex_buffer) * count) == 0) {
1478 return;
1479 }
1480
1481 if (r300->screen->caps.has_tcl) {
1482 /* HW TCL. */
1483 r300->incompatible_vb_layout = FALSE;
1484
1485 /* Check if the strides and offsets are aligned to the size of DWORD. */
1486 for (i = 0; i < count; i++) {
1487 if (buffers[i].buffer) {
1488 if (buffers[i].stride % 4 != 0 ||
1489 buffers[i].buffer_offset % 4 != 0) {
1490 r300->incompatible_vb_layout = TRUE;
1491 break;
1492 }
1493 }
1494 }
1495
1496 for (i = 0; i < count; i++) {
1497 /* Why, yes, I AM casting away constness. How did you know? */
1498 vbo = (struct pipe_vertex_buffer*)&buffers[i];
1499
1500 /* Skip NULL buffers */
1501 if (!buffers[i].buffer) {
1502 continue;
1503 }
1504
1505 if (r300_buffer_is_user_buffer(vbo->buffer)) {
1506 any_user_buffer = TRUE;
1507 }
1508
1509 if (vbo->max_index == ~0) {
1510 /* if no VBO stride then only one vertex value so max index is 1 */
1511 /* should think about converting to VS constants like svga does */
1512 if (!vbo->stride)
1513 vbo->max_index = 1;
1514 else
1515 vbo->max_index =
1516 (vbo->buffer->width0 - vbo->buffer_offset) / vbo->stride;
1517 }
1518
1519 max_index = MIN2(vbo->max_index, max_index);
1520 }
1521
1522 r300->any_user_vbs = any_user_buffer;
1523 r300->vertex_buffer_max_index = max_index;
1524
1525 } else {
1526 /* SW TCL. */
1527 draw_set_vertex_buffers(r300->draw, count, buffers);
1528 }
1529
1530 /* Common code. */
1531 for (i = 0; i < count; i++) {
1532 /* Reference our buffer. */
1533 pipe_resource_reference(&r300->vertex_buffer[i].buffer, buffers[i].buffer);
1534 }
1535 for (; i < r300->vertex_buffer_count; i++) {
1536 /* Dereference any old buffers. */
1537 pipe_resource_reference(&r300->vertex_buffer[i].buffer, NULL);
1538 }
1539
1540 memcpy(r300->vertex_buffer, buffers,
1541 sizeof(struct pipe_vertex_buffer) * count);
1542 r300->vertex_buffer_count = count;
1543 }
1544
1545 static void r300_set_index_buffer(struct pipe_context* pipe,
1546 const struct pipe_index_buffer *ib)
1547 {
1548 struct r300_context* r300 = r300_context(pipe);
1549
1550 if (ib) {
1551 pipe_resource_reference(&r300->index_buffer.buffer, ib->buffer);
1552 memcpy(&r300->index_buffer, ib, sizeof(r300->index_buffer));
1553 }
1554 else {
1555 pipe_resource_reference(&r300->index_buffer.buffer, NULL);
1556 memset(&r300->index_buffer, 0, sizeof(r300->index_buffer));
1557 }
1558
1559 /* TODO make this more like a state */
1560 }
1561
1562 /* Initialize the PSC tables. */
1563 static void r300_vertex_psc(struct r300_vertex_element_state *velems)
1564 {
1565 struct r300_vertex_stream_state *vstream = &velems->vertex_stream;
1566 uint16_t type, swizzle;
1567 enum pipe_format format;
1568 unsigned i;
1569
1570 if (velems->count > 16) {
1571 fprintf(stderr, "r300: More than 16 vertex elements are not supported,"
1572 " requested %i, using 16.\n", velems->count);
1573 velems->count = 16;
1574 }
1575
1576 /* Vertex shaders have no semantics on their inputs,
1577 * so PSC should just route stuff based on the vertex elements,
1578 * and not on attrib information. */
1579 for (i = 0; i < velems->count; i++) {
1580 format = velems->hw_format[i];
1581
1582 type = r300_translate_vertex_data_type(format);
1583 if (type == R300_INVALID_FORMAT) {
1584 fprintf(stderr, "r300: Bad vertex format %s.\n",
1585 util_format_short_name(format));
1586 assert(0);
1587 abort();
1588 }
1589
1590 type |= i << R300_DST_VEC_LOC_SHIFT;
1591 swizzle = r300_translate_vertex_data_swizzle(format);
1592
1593 if (i & 1) {
1594 vstream->vap_prog_stream_cntl[i >> 1] |= type << 16;
1595 vstream->vap_prog_stream_cntl_ext[i >> 1] |= swizzle << 16;
1596 } else {
1597 vstream->vap_prog_stream_cntl[i >> 1] |= type;
1598 vstream->vap_prog_stream_cntl_ext[i >> 1] |= swizzle;
1599 }
1600 }
1601
1602 /* Set the last vector in the PSC. */
1603 if (i) {
1604 i -= 1;
1605 }
1606 vstream->vap_prog_stream_cntl[i >> 1] |=
1607 (R300_LAST_VEC << (i & 1 ? 16 : 0));
1608
1609 vstream->count = (i >> 1) + 1;
1610 }
1611
1612 #define FORMAT_REPLACE(what, withwhat) \
1613 case PIPE_FORMAT_##what: *format = PIPE_FORMAT_##withwhat; break
1614
1615 static void* r300_create_vertex_elements_state(struct pipe_context* pipe,
1616 unsigned count,
1617 const struct pipe_vertex_element* attribs)
1618 {
1619 struct r300_vertex_element_state *velems;
1620 unsigned i;
1621 enum pipe_format *format;
1622
1623 assert(count <= PIPE_MAX_ATTRIBS);
1624 velems = CALLOC_STRUCT(r300_vertex_element_state);
1625 if (velems != NULL) {
1626 velems->count = count;
1627 memcpy(velems->velem, attribs, sizeof(struct pipe_vertex_element) * count);
1628
1629 if (r300_screen(pipe->screen)->caps.has_tcl) {
1630 /* Set the best hw format in case the original format is not
1631 * supported by hw. */
1632 for (i = 0; i < count; i++) {
1633 velems->hw_format[i] = velems->velem[i].src_format;
1634 format = &velems->hw_format[i];
1635
1636 /* This is basically the list of unsupported formats.
1637 * For now we don't care about the alignment, that's going to
1638 * be sorted out after the PSC setup. */
1639 switch (*format) {
1640 FORMAT_REPLACE(R64_FLOAT, R32_FLOAT);
1641 FORMAT_REPLACE(R64G64_FLOAT, R32G32_FLOAT);
1642 FORMAT_REPLACE(R64G64B64_FLOAT, R32G32B32_FLOAT);
1643 FORMAT_REPLACE(R64G64B64A64_FLOAT, R32G32B32A32_FLOAT);
1644
1645 FORMAT_REPLACE(R32_UNORM, R32_FLOAT);
1646 FORMAT_REPLACE(R32G32_UNORM, R32G32_FLOAT);
1647 FORMAT_REPLACE(R32G32B32_UNORM, R32G32B32_FLOAT);
1648 FORMAT_REPLACE(R32G32B32A32_UNORM, R32G32B32A32_FLOAT);
1649
1650 FORMAT_REPLACE(R32_USCALED, R32_FLOAT);
1651 FORMAT_REPLACE(R32G32_USCALED, R32G32_FLOAT);
1652 FORMAT_REPLACE(R32G32B32_USCALED, R32G32B32_FLOAT);
1653 FORMAT_REPLACE(R32G32B32A32_USCALED,R32G32B32A32_FLOAT);
1654
1655 FORMAT_REPLACE(R32_SNORM, R32_FLOAT);
1656 FORMAT_REPLACE(R32G32_SNORM, R32G32_FLOAT);
1657 FORMAT_REPLACE(R32G32B32_SNORM, R32G32B32_FLOAT);
1658 FORMAT_REPLACE(R32G32B32A32_SNORM, R32G32B32A32_FLOAT);
1659
1660 FORMAT_REPLACE(R32_SSCALED, R32_FLOAT);
1661 FORMAT_REPLACE(R32G32_SSCALED, R32G32_FLOAT);
1662 FORMAT_REPLACE(R32G32B32_SSCALED, R32G32B32_FLOAT);
1663 FORMAT_REPLACE(R32G32B32A32_SSCALED,R32G32B32A32_FLOAT);
1664
1665 FORMAT_REPLACE(R32_FIXED, R32_FLOAT);
1666 FORMAT_REPLACE(R32G32_FIXED, R32G32_FLOAT);
1667 FORMAT_REPLACE(R32G32B32_FIXED, R32G32B32_FLOAT);
1668 FORMAT_REPLACE(R32G32B32A32_FIXED, R32G32B32A32_FLOAT);
1669
1670 default:;
1671 }
1672
1673 velems->incompatible_layout =
1674 velems->incompatible_layout ||
1675 velems->velem[i].src_format != velems->hw_format[i] ||
1676 velems->velem[i].src_offset % 4 != 0;
1677 }
1678
1679 /* Now setup PSC.
1680 * The unused components will be replaced by (..., 0, 1). */
1681 r300_vertex_psc(velems);
1682
1683 /* Align the formats to the size of DWORD.
1684 * We only care about the blocksizes of the formats since
1685 * swizzles are already set up.
1686 * Also compute the vertex size. */
1687 for (i = 0; i < count; i++) {
1688 /* This is OK because we check for aligned strides too. */
1689 velems->hw_format_size[i] =
1690 align(util_format_get_blocksize(velems->hw_format[i]), 4);
1691 velems->vertex_size_dwords += velems->hw_format_size[i] / 4;
1692 }
1693 }
1694 }
1695 return velems;
1696 }
1697
1698 static void r300_bind_vertex_elements_state(struct pipe_context *pipe,
1699 void *state)
1700 {
1701 struct r300_context *r300 = r300_context(pipe);
1702 struct r300_vertex_element_state *velems = state;
1703
1704 if (velems == NULL) {
1705 return;
1706 }
1707
1708 r300->velems = velems;
1709
1710 if (r300->draw) {
1711 draw_set_vertex_elements(r300->draw, velems->count, velems->velem);
1712 return;
1713 }
1714
1715 UPDATE_STATE(&velems->vertex_stream, r300->vertex_stream_state);
1716 r300->vertex_stream_state.size = (1 + velems->vertex_stream.count) * 2;
1717 }
1718
1719 static void r300_delete_vertex_elements_state(struct pipe_context *pipe, void *state)
1720 {
1721 FREE(state);
1722 }
1723
1724 static void* r300_create_vs_state(struct pipe_context* pipe,
1725 const struct pipe_shader_state* shader)
1726 {
1727 struct r300_context* r300 = r300_context(pipe);
1728 struct r300_vertex_shader* vs = CALLOC_STRUCT(r300_vertex_shader);
1729
1730 /* Copy state directly into shader. */
1731 vs->state = *shader;
1732 vs->state.tokens = tgsi_dup_tokens(shader->tokens);
1733
1734 if (r300->screen->caps.has_tcl) {
1735 r300_init_vs_outputs(vs);
1736 r300_translate_vertex_shader(r300, vs);
1737 } else {
1738 r300_draw_init_vertex_shader(r300->draw, vs);
1739 }
1740
1741 return vs;
1742 }
1743
1744 static void r300_bind_vs_state(struct pipe_context* pipe, void* shader)
1745 {
1746 struct r300_context* r300 = r300_context(pipe);
1747 struct r300_vertex_shader* vs = (struct r300_vertex_shader*)shader;
1748
1749 if (vs == NULL) {
1750 r300->vs_state.state = NULL;
1751 return;
1752 }
1753 if (vs == r300->vs_state.state) {
1754 return;
1755 }
1756 r300->vs_state.state = vs;
1757
1758 /* The majority of the RS block bits is dependent on the vertex shader. */
1759 r300->rs_block_state.dirty = TRUE; /* Will be updated before the emission. */
1760
1761 if (r300->screen->caps.has_tcl) {
1762 r300->vs_state.dirty = TRUE;
1763 r300->vs_state.size =
1764 vs->code.length + 9 +
1765 (vs->immediates_count ? vs->immediates_count * 4 + 3 : 0);
1766
1767 if (vs->externals_count) {
1768 r300->vs_constants.dirty = TRUE;
1769 r300->vs_constants.size = vs->externals_count * 4 + 3;
1770 } else {
1771 r300->vs_constants.size = 0;
1772 }
1773
1774 r300->pvs_flush.dirty = TRUE;
1775 } else {
1776 draw_bind_vertex_shader(r300->draw,
1777 (struct draw_vertex_shader*)vs->draw_vs);
1778 }
1779 }
1780
1781 static void r300_delete_vs_state(struct pipe_context* pipe, void* shader)
1782 {
1783 struct r300_context* r300 = r300_context(pipe);
1784 struct r300_vertex_shader* vs = (struct r300_vertex_shader*)shader;
1785
1786 if (r300->screen->caps.has_tcl) {
1787 rc_constants_destroy(&vs->code.constants);
1788 } else {
1789 draw_delete_vertex_shader(r300->draw,
1790 (struct draw_vertex_shader*)vs->draw_vs);
1791 }
1792
1793 FREE((void*)vs->state.tokens);
1794 FREE(shader);
1795 }
1796
1797 static void r300_set_constant_buffer(struct pipe_context *pipe,
1798 uint shader, uint index,
1799 struct pipe_resource *buf)
1800 {
1801 struct r300_context* r300 = r300_context(pipe);
1802 struct r300_constant_buffer *cbuf;
1803 uint32_t *mapped = r300_buffer(buf)->user_buffer;
1804 int max_size = 0, max_size_bytes = 0, clamped_size = 0;
1805
1806 switch (shader) {
1807 case PIPE_SHADER_VERTEX:
1808 cbuf = (struct r300_constant_buffer*)r300->vs_constants.state;
1809 max_size = 256;
1810 break;
1811 case PIPE_SHADER_FRAGMENT:
1812 cbuf = (struct r300_constant_buffer*)r300->fs_constants.state;
1813 if (r300->screen->caps.is_r500) {
1814 max_size = 256;
1815 } else {
1816 max_size = 32;
1817 }
1818 break;
1819 default:
1820 assert(0);
1821 return;
1822 }
1823 max_size_bytes = max_size * 4 * sizeof(float);
1824
1825 if (buf == NULL || buf->width0 == 0 ||
1826 (mapped = r300_buffer(buf)->constant_buffer) == NULL) {
1827 cbuf->count = 0;
1828 return;
1829 }
1830
1831 if (shader == PIPE_SHADER_FRAGMENT ||
1832 (shader == PIPE_SHADER_VERTEX && r300->screen->caps.has_tcl)) {
1833 assert((buf->width0 % (4 * sizeof(float))) == 0);
1834
1835 /* Check the size of the constant buffer. */
1836 /* XXX Subtract immediates and RC_STATE_* variables. */
1837 if (buf->width0 > max_size_bytes) {
1838 fprintf(stderr, "r300: Max size of the constant buffer is "
1839 "%i*4 floats.\n", max_size);
1840 }
1841
1842 clamped_size = MIN2(buf->width0, max_size_bytes);
1843 cbuf->count = clamped_size / (4 * sizeof(float));
1844 cbuf->ptr = mapped;
1845 }
1846
1847 if (shader == PIPE_SHADER_VERTEX) {
1848 if (r300->screen->caps.has_tcl) {
1849 if (r300->vs_constants.size) {
1850 r300->vs_constants.dirty = TRUE;
1851 }
1852 r300->pvs_flush.dirty = TRUE;
1853 } else if (r300->draw) {
1854 draw_set_mapped_constant_buffer(r300->draw, PIPE_SHADER_VERTEX,
1855 0, mapped, buf->width0);
1856 }
1857 } else if (shader == PIPE_SHADER_FRAGMENT) {
1858 r300->fs_constants.dirty = TRUE;
1859 }
1860 }
1861
1862 void r300_init_state_functions(struct r300_context* r300)
1863 {
1864 r300->context.create_blend_state = r300_create_blend_state;
1865 r300->context.bind_blend_state = r300_bind_blend_state;
1866 r300->context.delete_blend_state = r300_delete_blend_state;
1867
1868 r300->context.set_blend_color = r300_set_blend_color;
1869
1870 r300->context.set_clip_state = r300_set_clip_state;
1871 r300->context.set_sample_mask = r300_set_sample_mask;
1872
1873 r300->context.set_constant_buffer = r300_set_constant_buffer;
1874
1875 r300->context.create_depth_stencil_alpha_state = r300_create_dsa_state;
1876 r300->context.bind_depth_stencil_alpha_state = r300_bind_dsa_state;
1877 r300->context.delete_depth_stencil_alpha_state = r300_delete_dsa_state;
1878
1879 r300->context.set_stencil_ref = r300_set_stencil_ref;
1880
1881 r300->context.set_framebuffer_state = r300_set_framebuffer_state;
1882
1883 r300->context.create_fs_state = r300_create_fs_state;
1884 r300->context.bind_fs_state = r300_bind_fs_state;
1885 r300->context.delete_fs_state = r300_delete_fs_state;
1886
1887 r300->context.set_polygon_stipple = r300_set_polygon_stipple;
1888
1889 r300->context.create_rasterizer_state = r300_create_rs_state;
1890 r300->context.bind_rasterizer_state = r300_bind_rs_state;
1891 r300->context.delete_rasterizer_state = r300_delete_rs_state;
1892
1893 r300->context.create_sampler_state = r300_create_sampler_state;
1894 r300->context.bind_fragment_sampler_states = r300_bind_sampler_states;
1895 r300->context.bind_vertex_sampler_states = r300_lacks_vertex_textures;
1896 r300->context.delete_sampler_state = r300_delete_sampler_state;
1897
1898 r300->context.set_fragment_sampler_views = r300_set_fragment_sampler_views;
1899 r300->context.create_sampler_view = r300_create_sampler_view;
1900 r300->context.sampler_view_destroy = r300_sampler_view_destroy;
1901
1902 r300->context.set_scissor_state = r300_set_scissor_state;
1903
1904 r300->context.set_viewport_state = r300_set_viewport_state;
1905
1906 r300->context.set_vertex_buffers = r300_set_vertex_buffers;
1907 r300->context.set_index_buffer = r300_set_index_buffer;
1908
1909 r300->context.create_vertex_elements_state = r300_create_vertex_elements_state;
1910 r300->context.bind_vertex_elements_state = r300_bind_vertex_elements_state;
1911 r300->context.delete_vertex_elements_state = r300_delete_vertex_elements_state;
1912
1913 r300->context.create_vs_state = r300_create_vs_state;
1914 r300->context.bind_vs_state = r300_bind_vs_state;
1915 r300->context.delete_vs_state = r300_delete_vs_state;
1916 }