r300g: fix crash while binding a NULL constant buffer
[mesa.git] / src / gallium / drivers / r300 / r300_state.c
1 /*
2 * Copyright 2008 Corbin Simpson <MostAwesomeDude@gmail.com>
3 * Copyright 2009 Marek Olšák <maraeo@gmail.com>
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * on the rights to use, copy, modify, merge, publish, distribute, sub
9 * license, and/or sell copies of the Software, and to permit persons to whom
10 * the Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE. */
23
24 #include "draw/draw_context.h"
25
26 #include "util/u_framebuffer.h"
27 #include "util/u_half.h"
28 #include "util/u_helpers.h"
29 #include "util/u_math.h"
30 #include "util/u_mm.h"
31 #include "util/u_memory.h"
32 #include "util/u_pack_color.h"
33 #include "util/u_transfer.h"
34
35 #include "tgsi/tgsi_parse.h"
36
37 #include "pipe/p_config.h"
38
39 #include "r300_cb.h"
40 #include "r300_context.h"
41 #include "r300_emit.h"
42 #include "r300_reg.h"
43 #include "r300_screen.h"
44 #include "r300_screen_buffer.h"
45 #include "r300_state_inlines.h"
46 #include "r300_fs.h"
47 #include "r300_texture.h"
48 #include "r300_vs.h"
49
50 /* r300_state: Functions used to intialize state context by translating
51 * Gallium state objects into semi-native r300 state objects. */
52
53 #define UPDATE_STATE(cso, atom) \
54 if (cso != atom.state) { \
55 atom.state = cso; \
56 r300_mark_atom_dirty(r300, &(atom)); \
57 }
58
59 static boolean blend_discard_if_src_alpha_0(unsigned srcRGB, unsigned srcA,
60 unsigned dstRGB, unsigned dstA)
61 {
62 /* If the blend equation is ADD or REVERSE_SUBTRACT,
63 * SRC_ALPHA == 0, and the following state is set, the colorbuffer
64 * will not be changed.
65 * Notice that the dst factors are the src factors inverted. */
66 return (srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
67 srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE ||
68 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
69 (srcA == PIPE_BLENDFACTOR_SRC_COLOR ||
70 srcA == PIPE_BLENDFACTOR_SRC_ALPHA ||
71 srcA == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE ||
72 srcA == PIPE_BLENDFACTOR_ZERO) &&
73 (dstRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
74 dstRGB == PIPE_BLENDFACTOR_ONE) &&
75 (dstA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
76 dstA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
77 dstA == PIPE_BLENDFACTOR_ONE);
78 }
79
80 static boolean blend_discard_if_src_alpha_1(unsigned srcRGB, unsigned srcA,
81 unsigned dstRGB, unsigned dstA)
82 {
83 /* If the blend equation is ADD or REVERSE_SUBTRACT,
84 * SRC_ALPHA == 1, and the following state is set, the colorbuffer
85 * will not be changed.
86 * Notice that the dst factors are the src factors inverted. */
87 return (srcRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
88 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
89 (srcA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
90 srcA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
91 srcA == PIPE_BLENDFACTOR_ZERO) &&
92 (dstRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
93 dstRGB == PIPE_BLENDFACTOR_ONE) &&
94 (dstA == PIPE_BLENDFACTOR_SRC_COLOR ||
95 dstA == PIPE_BLENDFACTOR_SRC_ALPHA ||
96 dstA == PIPE_BLENDFACTOR_ONE);
97 }
98
99 static boolean blend_discard_if_src_color_0(unsigned srcRGB, unsigned srcA,
100 unsigned dstRGB, unsigned dstA)
101 {
102 /* If the blend equation is ADD or REVERSE_SUBTRACT,
103 * SRC_COLOR == (0,0,0), and the following state is set, the colorbuffer
104 * will not be changed.
105 * Notice that the dst factors are the src factors inverted. */
106 return (srcRGB == PIPE_BLENDFACTOR_SRC_COLOR ||
107 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
108 (srcA == PIPE_BLENDFACTOR_ZERO) &&
109 (dstRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
110 dstRGB == PIPE_BLENDFACTOR_ONE) &&
111 (dstA == PIPE_BLENDFACTOR_ONE);
112 }
113
114 static boolean blend_discard_if_src_color_1(unsigned srcRGB, unsigned srcA,
115 unsigned dstRGB, unsigned dstA)
116 {
117 /* If the blend equation is ADD or REVERSE_SUBTRACT,
118 * SRC_COLOR == (1,1,1), and the following state is set, the colorbuffer
119 * will not be changed.
120 * Notice that the dst factors are the src factors inverted. */
121 return (srcRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
122 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
123 (srcA == PIPE_BLENDFACTOR_ZERO) &&
124 (dstRGB == PIPE_BLENDFACTOR_SRC_COLOR ||
125 dstRGB == PIPE_BLENDFACTOR_ONE) &&
126 (dstA == PIPE_BLENDFACTOR_ONE);
127 }
128
129 static boolean blend_discard_if_src_alpha_color_0(unsigned srcRGB, unsigned srcA,
130 unsigned dstRGB, unsigned dstA)
131 {
132 /* If the blend equation is ADD or REVERSE_SUBTRACT,
133 * SRC_ALPHA_COLOR == (0,0,0,0), and the following state is set,
134 * the colorbuffer will not be changed.
135 * Notice that the dst factors are the src factors inverted. */
136 return (srcRGB == PIPE_BLENDFACTOR_SRC_COLOR ||
137 srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
138 srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE ||
139 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
140 (srcA == PIPE_BLENDFACTOR_SRC_COLOR ||
141 srcA == PIPE_BLENDFACTOR_SRC_ALPHA ||
142 srcA == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE ||
143 srcA == PIPE_BLENDFACTOR_ZERO) &&
144 (dstRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
145 dstRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
146 dstRGB == PIPE_BLENDFACTOR_ONE) &&
147 (dstA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
148 dstA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
149 dstA == PIPE_BLENDFACTOR_ONE);
150 }
151
152 static boolean blend_discard_if_src_alpha_color_1(unsigned srcRGB, unsigned srcA,
153 unsigned dstRGB, unsigned dstA)
154 {
155 /* If the blend equation is ADD or REVERSE_SUBTRACT,
156 * SRC_ALPHA_COLOR == (1,1,1,1), and the following state is set,
157 * the colorbuffer will not be changed.
158 * Notice that the dst factors are the src factors inverted. */
159 return (srcRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
160 srcRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
161 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
162 (srcA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
163 srcA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
164 srcA == PIPE_BLENDFACTOR_ZERO) &&
165 (dstRGB == PIPE_BLENDFACTOR_SRC_COLOR ||
166 dstRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
167 dstRGB == PIPE_BLENDFACTOR_ONE) &&
168 (dstA == PIPE_BLENDFACTOR_SRC_COLOR ||
169 dstA == PIPE_BLENDFACTOR_SRC_ALPHA ||
170 dstA == PIPE_BLENDFACTOR_ONE);
171 }
172
173 static unsigned blend_discard_conditionally(unsigned eqRGB, unsigned eqA,
174 unsigned dstRGB, unsigned dstA,
175 unsigned srcRGB, unsigned srcA)
176 {
177 unsigned blend_control = 0;
178
179 /* Optimization: discard pixels which don't change the colorbuffer.
180 *
181 * The code below is non-trivial and some math is involved.
182 *
183 * Discarding pixels must be disabled when FP16 AA is enabled.
184 * This is a hardware bug. Also, this implementation wouldn't work
185 * with FP blending enabled and equation clamping disabled.
186 *
187 * Equations other than ADD are rarely used and therefore won't be
188 * optimized. */
189 if ((eqRGB == PIPE_BLEND_ADD || eqRGB == PIPE_BLEND_REVERSE_SUBTRACT) &&
190 (eqA == PIPE_BLEND_ADD || eqA == PIPE_BLEND_REVERSE_SUBTRACT)) {
191 /* ADD: X+Y
192 * REVERSE_SUBTRACT: Y-X
193 *
194 * The idea is:
195 * If X = src*srcFactor = 0 and Y = dst*dstFactor = 1,
196 * then CB will not be changed.
197 *
198 * Given the srcFactor and dstFactor variables, we can derive
199 * what src and dst should be equal to and discard appropriate
200 * pixels.
201 */
202 if (blend_discard_if_src_alpha_0(srcRGB, srcA, dstRGB, dstA)) {
203 blend_control |= R300_DISCARD_SRC_PIXELS_SRC_ALPHA_0;
204 } else if (blend_discard_if_src_alpha_1(srcRGB, srcA,
205 dstRGB, dstA)) {
206 blend_control |= R300_DISCARD_SRC_PIXELS_SRC_ALPHA_1;
207 } else if (blend_discard_if_src_color_0(srcRGB, srcA,
208 dstRGB, dstA)) {
209 blend_control |= R300_DISCARD_SRC_PIXELS_SRC_COLOR_0;
210 } else if (blend_discard_if_src_color_1(srcRGB, srcA,
211 dstRGB, dstA)) {
212 blend_control |= R300_DISCARD_SRC_PIXELS_SRC_COLOR_1;
213 } else if (blend_discard_if_src_alpha_color_0(srcRGB, srcA,
214 dstRGB, dstA)) {
215 blend_control |=
216 R300_DISCARD_SRC_PIXELS_SRC_ALPHA_COLOR_0;
217 } else if (blend_discard_if_src_alpha_color_1(srcRGB, srcA,
218 dstRGB, dstA)) {
219 blend_control |=
220 R300_DISCARD_SRC_PIXELS_SRC_ALPHA_COLOR_1;
221 }
222 }
223 return blend_control;
224 }
225
226 /* The hardware colormask is clunky a must be swizzled depending on the format.
227 * This was figured out by trial-and-error. */
228 static unsigned bgra_cmask(unsigned mask)
229 {
230 return ((mask & PIPE_MASK_R) << 2) |
231 ((mask & PIPE_MASK_B) >> 2) |
232 (mask & (PIPE_MASK_G | PIPE_MASK_A));
233 }
234
235 static unsigned rgba_cmask(unsigned mask)
236 {
237 return mask & PIPE_MASK_RGBA;
238 }
239
240 static unsigned rrrr_cmask(unsigned mask)
241 {
242 return (mask & PIPE_MASK_R) |
243 ((mask & PIPE_MASK_R) << 1) |
244 ((mask & PIPE_MASK_R) << 2) |
245 ((mask & PIPE_MASK_R) << 3);
246 }
247
248 static unsigned aaaa_cmask(unsigned mask)
249 {
250 return ((mask & PIPE_MASK_A) >> 3) |
251 ((mask & PIPE_MASK_A) >> 2) |
252 ((mask & PIPE_MASK_A) >> 1) |
253 (mask & PIPE_MASK_A);
254 }
255
256 static unsigned grrg_cmask(unsigned mask)
257 {
258 return ((mask & PIPE_MASK_R) << 1) |
259 ((mask & PIPE_MASK_R) << 2) |
260 ((mask & PIPE_MASK_G) >> 1) |
261 ((mask & PIPE_MASK_G) << 2);
262 }
263
264 static unsigned arra_cmask(unsigned mask)
265 {
266 return ((mask & PIPE_MASK_R) << 1) |
267 ((mask & PIPE_MASK_R) << 2) |
268 ((mask & PIPE_MASK_A) >> 3) |
269 (mask & PIPE_MASK_A);
270 }
271
272 static unsigned blend_read_enable(unsigned eqRGB, unsigned eqA,
273 unsigned dstRGB, unsigned dstA,
274 unsigned srcRGB, unsigned srcA,
275 boolean src_alpha_optz)
276 {
277 unsigned blend_control = 0;
278
279 /* Optimization: some operations do not require the destination color.
280 *
281 * When SRC_ALPHA_SATURATE is used, colorbuffer reads must be enabled,
282 * otherwise blending gives incorrect results. It seems to be
283 * a hardware bug. */
284 if (eqRGB == PIPE_BLEND_MIN || eqA == PIPE_BLEND_MIN ||
285 eqRGB == PIPE_BLEND_MAX || eqA == PIPE_BLEND_MAX ||
286 dstRGB != PIPE_BLENDFACTOR_ZERO ||
287 dstA != PIPE_BLENDFACTOR_ZERO ||
288 srcRGB == PIPE_BLENDFACTOR_DST_COLOR ||
289 srcRGB == PIPE_BLENDFACTOR_DST_ALPHA ||
290 srcRGB == PIPE_BLENDFACTOR_INV_DST_COLOR ||
291 srcRGB == PIPE_BLENDFACTOR_INV_DST_ALPHA ||
292 srcA == PIPE_BLENDFACTOR_DST_COLOR ||
293 srcA == PIPE_BLENDFACTOR_DST_ALPHA ||
294 srcA == PIPE_BLENDFACTOR_INV_DST_COLOR ||
295 srcA == PIPE_BLENDFACTOR_INV_DST_ALPHA ||
296 srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE) {
297 /* Enable reading from the colorbuffer. */
298 blend_control |= R300_READ_ENABLE;
299
300 if (src_alpha_optz) {
301 /* Optimization: Depending on incoming pixels, we can
302 * conditionally disable the reading in hardware... */
303 if (eqRGB != PIPE_BLEND_MIN && eqA != PIPE_BLEND_MIN &&
304 eqRGB != PIPE_BLEND_MAX && eqA != PIPE_BLEND_MAX) {
305 /* Disable reading if SRC_ALPHA == 0. */
306 if ((dstRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
307 dstRGB == PIPE_BLENDFACTOR_ZERO) &&
308 (dstA == PIPE_BLENDFACTOR_SRC_COLOR ||
309 dstA == PIPE_BLENDFACTOR_SRC_ALPHA ||
310 dstA == PIPE_BLENDFACTOR_ZERO) &&
311 (srcRGB != PIPE_BLENDFACTOR_DST_COLOR &&
312 srcRGB != PIPE_BLENDFACTOR_DST_ALPHA &&
313 srcRGB != PIPE_BLENDFACTOR_INV_DST_COLOR &&
314 srcRGB != PIPE_BLENDFACTOR_INV_DST_ALPHA)) {
315 blend_control |= R500_SRC_ALPHA_0_NO_READ;
316 }
317
318 /* Disable reading if SRC_ALPHA == 1. */
319 if ((dstRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
320 dstRGB == PIPE_BLENDFACTOR_ZERO) &&
321 (dstA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
322 dstA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
323 dstA == PIPE_BLENDFACTOR_ZERO) &&
324 (srcRGB != PIPE_BLENDFACTOR_DST_COLOR &&
325 srcRGB != PIPE_BLENDFACTOR_DST_ALPHA &&
326 srcRGB != PIPE_BLENDFACTOR_INV_DST_COLOR &&
327 srcRGB != PIPE_BLENDFACTOR_INV_DST_ALPHA)) {
328 blend_control |= R500_SRC_ALPHA_1_NO_READ;
329 }
330 }
331 }
332 }
333 return blend_control;
334 }
335
336 /* Create a new blend state based on the CSO blend state.
337 *
338 * This encompasses alpha blending, logic/raster ops, and blend dithering. */
339 static void* r300_create_blend_state(struct pipe_context* pipe,
340 const struct pipe_blend_state* state)
341 {
342 struct r300_screen* r300screen = r300_screen(pipe->screen);
343 struct r300_blend_state* blend = CALLOC_STRUCT(r300_blend_state);
344 uint32_t blend_control = 0; /* R300_RB3D_CBLEND: 0x4e04 */
345 uint32_t blend_control_noclamp = 0; /* R300_RB3D_CBLEND: 0x4e04 */
346 uint32_t blend_control_noalpha = 0; /* R300_RB3D_CBLEND: 0x4e04 */
347 uint32_t blend_control_noalpha_noclamp = 0; /* R300_RB3D_CBLEND: 0x4e04 */
348 uint32_t alpha_blend_control = 0; /* R300_RB3D_ABLEND: 0x4e08 */
349 uint32_t alpha_blend_control_noclamp = 0; /* R300_RB3D_ABLEND: 0x4e08 */
350 uint32_t alpha_blend_control_noalpha = 0; /* R300_RB3D_ABLEND: 0x4e08 */
351 uint32_t alpha_blend_control_noalpha_noclamp = 0; /* R300_RB3D_ABLEND: 0x4e08 */
352 uint32_t rop = 0; /* R300_RB3D_ROPCNTL: 0x4e18 */
353 uint32_t dither = 0; /* R300_RB3D_DITHER_CTL: 0x4e50 */
354 int i;
355
356 const unsigned eqRGB = state->rt[0].rgb_func;
357 const unsigned srcRGB = state->rt[0].rgb_src_factor;
358 const unsigned dstRGB = state->rt[0].rgb_dst_factor;
359
360 const unsigned eqA = state->rt[0].alpha_func;
361 const unsigned srcA = state->rt[0].alpha_src_factor;
362 const unsigned dstA = state->rt[0].alpha_dst_factor;
363
364 unsigned srcRGBX = srcRGB;
365 unsigned dstRGBX = dstRGB;
366 CB_LOCALS;
367
368 blend->state = *state;
369
370 /* force DST_ALPHA to ONE where we can */
371 switch (srcRGBX) {
372 case PIPE_BLENDFACTOR_DST_ALPHA:
373 srcRGBX = PIPE_BLENDFACTOR_ONE;
374 break;
375 case PIPE_BLENDFACTOR_INV_DST_ALPHA:
376 srcRGBX = PIPE_BLENDFACTOR_ZERO;
377 break;
378 }
379
380 switch (dstRGBX) {
381 case PIPE_BLENDFACTOR_DST_ALPHA:
382 dstRGBX = PIPE_BLENDFACTOR_ONE;
383 break;
384 case PIPE_BLENDFACTOR_INV_DST_ALPHA:
385 dstRGBX = PIPE_BLENDFACTOR_ZERO;
386 break;
387 }
388
389 /* Get blending register values. */
390 if (state->rt[0].blend_enable) {
391 unsigned blend_eq, blend_eq_noclamp;
392
393 /* despite the name, ALPHA_BLEND_ENABLE has nothing to do with alpha,
394 * this is just the crappy D3D naming */
395 blend_control = blend_control_noclamp =
396 R300_ALPHA_BLEND_ENABLE |
397 ( r300_translate_blend_factor(srcRGB) << R300_SRC_BLEND_SHIFT) |
398 ( r300_translate_blend_factor(dstRGB) << R300_DST_BLEND_SHIFT);
399
400 blend_control_noalpha = blend_control_noalpha_noclamp =
401 R300_ALPHA_BLEND_ENABLE |
402 ( r300_translate_blend_factor(srcRGBX) << R300_SRC_BLEND_SHIFT) |
403 ( r300_translate_blend_factor(dstRGBX) << R300_DST_BLEND_SHIFT);
404
405 blend_eq = r300_translate_blend_function(eqRGB, TRUE);
406 blend_eq_noclamp = r300_translate_blend_function(eqRGB, FALSE);
407
408 blend_control |= blend_eq;
409 blend_control_noalpha |= blend_eq;
410 blend_control_noclamp |= blend_eq_noclamp;
411 blend_control_noalpha_noclamp |= blend_eq_noclamp;
412
413 /* Optimization: some operations do not require the destination color. */
414 blend_control |= blend_read_enable(eqRGB, eqA, dstRGB, dstA,
415 srcRGB, srcA, r300screen->caps.is_r500);
416 blend_control_noclamp |= blend_read_enable(eqRGB, eqA, dstRGB, dstA,
417 srcRGB, srcA, FALSE);
418 blend_control_noalpha |= blend_read_enable(eqRGB, eqA, dstRGBX, dstA,
419 srcRGBX, srcA, r300screen->caps.is_r500);
420 blend_control_noalpha_noclamp |= blend_read_enable(eqRGB, eqA, dstRGBX, dstA,
421 srcRGBX, srcA, FALSE);
422
423 /* Optimization: discard pixels which don't change the colorbuffer.
424 * It cannot be used with FP16 AA. */
425 blend_control |= blend_discard_conditionally(eqRGB, eqA, dstRGB, dstA,
426 srcRGB, srcA);
427 blend_control_noalpha |= blend_discard_conditionally(eqRGB, eqA, dstRGBX, dstA,
428 srcRGBX, srcA);
429
430 /* separate alpha */
431 if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB) {
432 blend_control |= R300_SEPARATE_ALPHA_ENABLE;
433 blend_control_noclamp |= R300_SEPARATE_ALPHA_ENABLE;
434
435 alpha_blend_control = alpha_blend_control_noclamp =
436 (r300_translate_blend_factor(srcA) << R300_SRC_BLEND_SHIFT) |
437 (r300_translate_blend_factor(dstA) << R300_DST_BLEND_SHIFT);
438 alpha_blend_control |= r300_translate_blend_function(eqA, TRUE);
439 alpha_blend_control_noclamp |= r300_translate_blend_function(eqA, FALSE);
440 }
441 if (srcA != srcRGBX || dstA != dstRGBX || eqA != eqRGB) {
442 blend_control_noalpha |= R300_SEPARATE_ALPHA_ENABLE;
443 blend_control_noalpha_noclamp |= R300_SEPARATE_ALPHA_ENABLE;
444
445 alpha_blend_control_noalpha = alpha_blend_control_noalpha_noclamp =
446 (r300_translate_blend_factor(srcA) << R300_SRC_BLEND_SHIFT) |
447 (r300_translate_blend_factor(dstA) << R300_DST_BLEND_SHIFT);
448 alpha_blend_control_noalpha |= r300_translate_blend_function(eqA, TRUE);
449 alpha_blend_control_noalpha_noclamp |= r300_translate_blend_function(eqA, FALSE);
450 }
451 }
452
453 /* PIPE_LOGICOP_* don't need to be translated, fortunately. */
454 if (state->logicop_enable) {
455 rop = R300_RB3D_ROPCNTL_ROP_ENABLE |
456 (state->logicop_func) << R300_RB3D_ROPCNTL_ROP_SHIFT;
457 }
458
459 /* Neither fglrx nor classic r300 ever set this, regardless of dithering
460 * state. Since it's an optional implementation detail, we can leave it
461 * out and never dither.
462 *
463 * This could be revisited if we ever get quality or conformance hints.
464 *
465 if (state->dither) {
466 dither = R300_RB3D_DITHER_CTL_DITHER_MODE_LUT |
467 R300_RB3D_DITHER_CTL_ALPHA_DITHER_MODE_LUT;
468 }
469 */
470
471 /* Build a command buffer. */
472 {
473 unsigned (*func[COLORMASK_NUM_SWIZZLES])(unsigned) = {
474 bgra_cmask,
475 rgba_cmask,
476 rrrr_cmask,
477 aaaa_cmask,
478 grrg_cmask,
479 arra_cmask,
480 bgra_cmask,
481 rgba_cmask
482 };
483
484 for (i = 0; i < COLORMASK_NUM_SWIZZLES; i++) {
485 boolean has_alpha = i != COLORMASK_RGBX && i != COLORMASK_BGRX;
486
487 BEGIN_CB(blend->cb_clamp[i], 8);
488 OUT_CB_REG(R300_RB3D_ROPCNTL, rop);
489 OUT_CB_REG_SEQ(R300_RB3D_CBLEND, 3);
490 OUT_CB(has_alpha ? blend_control : blend_control_noalpha);
491 OUT_CB(has_alpha ? alpha_blend_control : alpha_blend_control_noalpha);
492 OUT_CB(func[i](state->rt[0].colormask));
493 OUT_CB_REG(R300_RB3D_DITHER_CTL, dither);
494 END_CB;
495 }
496 }
497
498 /* Build a command buffer (for RGBA16F). */
499 BEGIN_CB(blend->cb_noclamp, 8);
500 OUT_CB_REG(R300_RB3D_ROPCNTL, rop);
501 OUT_CB_REG_SEQ(R300_RB3D_CBLEND, 3);
502 OUT_CB(blend_control_noclamp);
503 OUT_CB(alpha_blend_control_noclamp);
504 OUT_CB(rgba_cmask(state->rt[0].colormask));
505 OUT_CB_REG(R300_RB3D_DITHER_CTL, dither);
506 END_CB;
507
508 /* Build a command buffer (for RGB16F). */
509 BEGIN_CB(blend->cb_noclamp_noalpha, 8);
510 OUT_CB_REG(R300_RB3D_ROPCNTL, rop);
511 OUT_CB_REG_SEQ(R300_RB3D_CBLEND, 3);
512 OUT_CB(blend_control_noalpha_noclamp);
513 OUT_CB(alpha_blend_control_noalpha_noclamp);
514 OUT_CB(rgba_cmask(state->rt[0].colormask));
515 OUT_CB_REG(R300_RB3D_DITHER_CTL, dither);
516 END_CB;
517
518 /* The same as above, but with no colorbuffer reads and writes. */
519 BEGIN_CB(blend->cb_no_readwrite, 8);
520 OUT_CB_REG(R300_RB3D_ROPCNTL, rop);
521 OUT_CB_REG_SEQ(R300_RB3D_CBLEND, 3);
522 OUT_CB(0);
523 OUT_CB(0);
524 OUT_CB(0);
525 OUT_CB_REG(R300_RB3D_DITHER_CTL, dither);
526 END_CB;
527
528 return (void*)blend;
529 }
530
531 /* Bind blend state. */
532 static void r300_bind_blend_state(struct pipe_context* pipe,
533 void* state)
534 {
535 struct r300_context* r300 = r300_context(pipe);
536 struct r300_blend_state *blend = (struct r300_blend_state*)state;
537 boolean last_alpha_to_one = r300->alpha_to_one;
538 boolean last_alpha_to_coverage = r300->alpha_to_coverage;
539
540 UPDATE_STATE(state, r300->blend_state);
541
542 if (!blend)
543 return;
544
545 r300->alpha_to_one = blend->state.alpha_to_one;
546 r300->alpha_to_coverage = blend->state.alpha_to_coverage;
547
548 if (r300->alpha_to_one != last_alpha_to_one && r300->msaa_enable &&
549 r300->fs_status == FRAGMENT_SHADER_VALID) {
550 r300->fs_status = FRAGMENT_SHADER_MAYBE_DIRTY;
551 }
552
553 if (r300->alpha_to_coverage != last_alpha_to_coverage &&
554 r300->msaa_enable) {
555 r300_mark_atom_dirty(r300, &r300->dsa_state);
556 }
557 }
558
559 /* Free blend state. */
560 static void r300_delete_blend_state(struct pipe_context* pipe,
561 void* state)
562 {
563 FREE(state);
564 }
565
566 /* Convert float to 10bit integer */
567 static unsigned float_to_fixed10(float f)
568 {
569 return CLAMP((unsigned)(f * 1023.9f), 0, 1023);
570 }
571
572 /* Set blend color.
573 * Setup both R300 and R500 registers, figure out later which one to write. */
574 static void r300_set_blend_color(struct pipe_context* pipe,
575 const struct pipe_blend_color* color)
576 {
577 struct r300_context* r300 = r300_context(pipe);
578 struct pipe_framebuffer_state *fb = r300->fb_state.state;
579 struct r300_blend_color_state *state =
580 (struct r300_blend_color_state*)r300->blend_color_state.state;
581 struct pipe_blend_color c;
582 enum pipe_format format = fb->nr_cbufs ? fb->cbufs[0]->format : 0;
583 float tmp;
584 CB_LOCALS;
585
586 state->state = *color; /* Save it, so that we can reuse it in set_fb_state */
587 c = *color;
588
589 /* The blend color is dependent on the colorbuffer format. */
590 if (fb->nr_cbufs) {
591 switch (format) {
592 case PIPE_FORMAT_R8_UNORM:
593 case PIPE_FORMAT_L8_UNORM:
594 case PIPE_FORMAT_I8_UNORM:
595 c.color[1] = c.color[0];
596 break;
597
598 case PIPE_FORMAT_A8_UNORM:
599 c.color[1] = c.color[3];
600 break;
601
602 case PIPE_FORMAT_R8G8_UNORM:
603 c.color[2] = c.color[1];
604 break;
605
606 case PIPE_FORMAT_L8A8_UNORM:
607 case PIPE_FORMAT_R8A8_UNORM:
608 c.color[2] = c.color[3];
609 break;
610
611 case PIPE_FORMAT_R8G8B8A8_UNORM:
612 case PIPE_FORMAT_R8G8B8X8_UNORM:
613 tmp = c.color[0];
614 c.color[0] = c.color[2];
615 c.color[2] = tmp;
616 break;
617
618 default:;
619 }
620 }
621
622 if (r300->screen->caps.is_r500) {
623 BEGIN_CB(state->cb, 3);
624 OUT_CB_REG_SEQ(R500_RB3D_CONSTANT_COLOR_AR, 2);
625
626 switch (format) {
627 case PIPE_FORMAT_R16G16B16A16_FLOAT:
628 case PIPE_FORMAT_R16G16B16X16_FLOAT:
629 OUT_CB(util_float_to_half(c.color[2]) |
630 (util_float_to_half(c.color[3]) << 16));
631 OUT_CB(util_float_to_half(c.color[0]) |
632 (util_float_to_half(c.color[1]) << 16));
633 break;
634
635 default:
636 OUT_CB(float_to_fixed10(c.color[0]) |
637 (float_to_fixed10(c.color[3]) << 16));
638 OUT_CB(float_to_fixed10(c.color[2]) |
639 (float_to_fixed10(c.color[1]) << 16));
640 }
641
642 END_CB;
643 } else {
644 union util_color uc;
645 util_pack_color(c.color, PIPE_FORMAT_B8G8R8A8_UNORM, &uc);
646
647 BEGIN_CB(state->cb, 2);
648 OUT_CB_REG(R300_RB3D_BLEND_COLOR, uc.ui);
649 END_CB;
650 }
651
652 r300_mark_atom_dirty(r300, &r300->blend_color_state);
653 }
654
655 static void r300_set_clip_state(struct pipe_context* pipe,
656 const struct pipe_clip_state* state)
657 {
658 struct r300_context* r300 = r300_context(pipe);
659 struct r300_clip_state *clip =
660 (struct r300_clip_state*)r300->clip_state.state;
661 CB_LOCALS;
662
663 if (r300->screen->caps.has_tcl) {
664 BEGIN_CB(clip->cb, r300->clip_state.size);
665 OUT_CB_REG(R300_VAP_PVS_VECTOR_INDX_REG,
666 (r300->screen->caps.is_r500 ?
667 R500_PVS_UCP_START : R300_PVS_UCP_START));
668 OUT_CB_ONE_REG(R300_VAP_PVS_UPLOAD_DATA, 6 * 4);
669 OUT_CB_TABLE(state->ucp, 6 * 4);
670 END_CB;
671
672 r300_mark_atom_dirty(r300, &r300->clip_state);
673 } else {
674 draw_set_clip_state(r300->draw, state);
675 }
676 }
677
678 /* Create a new depth, stencil, and alpha state based on the CSO dsa state.
679 *
680 * This contains the depth buffer, stencil buffer, alpha test, and such.
681 * On the Radeon, depth and stencil buffer setup are intertwined, which is
682 * the reason for some of the strange-looking assignments across registers. */
683 static void* r300_create_dsa_state(struct pipe_context* pipe,
684 const struct pipe_depth_stencil_alpha_state* state)
685 {
686 boolean is_r500 = r300_screen(pipe->screen)->caps.is_r500;
687 struct r300_dsa_state* dsa = CALLOC_STRUCT(r300_dsa_state);
688 CB_LOCALS;
689 uint32_t alpha_value_fp16 = 0;
690 uint32_t z_buffer_control = 0;
691 uint32_t z_stencil_control = 0;
692 uint32_t stencil_ref_mask = 0;
693 uint32_t stencil_ref_bf = 0;
694
695 dsa->dsa = *state;
696
697 /* Depth test setup. - separate write mask depth for decomp flush */
698 if (state->depth.writemask) {
699 z_buffer_control |= R300_Z_WRITE_ENABLE;
700 }
701
702 if (state->depth.enabled) {
703 z_buffer_control |= R300_Z_ENABLE;
704
705 z_stencil_control |=
706 (r300_translate_depth_stencil_function(state->depth.func) <<
707 R300_Z_FUNC_SHIFT);
708 }
709
710 /* Stencil buffer setup. */
711 if (state->stencil[0].enabled) {
712 z_buffer_control |= R300_STENCIL_ENABLE;
713 z_stencil_control |=
714 (r300_translate_depth_stencil_function(state->stencil[0].func) <<
715 R300_S_FRONT_FUNC_SHIFT) |
716 (r300_translate_stencil_op(state->stencil[0].fail_op) <<
717 R300_S_FRONT_SFAIL_OP_SHIFT) |
718 (r300_translate_stencil_op(state->stencil[0].zpass_op) <<
719 R300_S_FRONT_ZPASS_OP_SHIFT) |
720 (r300_translate_stencil_op(state->stencil[0].zfail_op) <<
721 R300_S_FRONT_ZFAIL_OP_SHIFT);
722
723 stencil_ref_mask =
724 (state->stencil[0].valuemask << R300_STENCILMASK_SHIFT) |
725 (state->stencil[0].writemask << R300_STENCILWRITEMASK_SHIFT);
726
727 if (state->stencil[1].enabled) {
728 dsa->two_sided = TRUE;
729
730 z_buffer_control |= R300_STENCIL_FRONT_BACK;
731 z_stencil_control |=
732 (r300_translate_depth_stencil_function(state->stencil[1].func) <<
733 R300_S_BACK_FUNC_SHIFT) |
734 (r300_translate_stencil_op(state->stencil[1].fail_op) <<
735 R300_S_BACK_SFAIL_OP_SHIFT) |
736 (r300_translate_stencil_op(state->stencil[1].zpass_op) <<
737 R300_S_BACK_ZPASS_OP_SHIFT) |
738 (r300_translate_stencil_op(state->stencil[1].zfail_op) <<
739 R300_S_BACK_ZFAIL_OP_SHIFT);
740
741 stencil_ref_bf =
742 (state->stencil[1].valuemask << R300_STENCILMASK_SHIFT) |
743 (state->stencil[1].writemask << R300_STENCILWRITEMASK_SHIFT);
744
745 if (is_r500) {
746 z_buffer_control |= R500_STENCIL_REFMASK_FRONT_BACK;
747 } else {
748 dsa->two_sided_stencil_ref =
749 (state->stencil[0].valuemask != state->stencil[1].valuemask ||
750 state->stencil[0].writemask != state->stencil[1].writemask);
751 }
752 }
753 }
754
755 /* Alpha test setup. */
756 if (state->alpha.enabled) {
757 dsa->alpha_function =
758 r300_translate_alpha_function(state->alpha.func) |
759 R300_FG_ALPHA_FUNC_ENABLE;
760
761 dsa->alpha_function |= float_to_ubyte(state->alpha.ref_value);
762 alpha_value_fp16 = util_float_to_half(state->alpha.ref_value);
763 }
764
765 BEGIN_CB(&dsa->cb_begin, 8);
766 OUT_CB_REG_SEQ(R300_ZB_CNTL, 3);
767 OUT_CB(z_buffer_control);
768 OUT_CB(z_stencil_control);
769 OUT_CB(stencil_ref_mask);
770 OUT_CB_REG(R500_ZB_STENCILREFMASK_BF, stencil_ref_bf);
771 OUT_CB_REG(R500_FG_ALPHA_VALUE, alpha_value_fp16);
772 END_CB;
773
774 BEGIN_CB(dsa->cb_zb_no_readwrite, 8);
775 OUT_CB_REG_SEQ(R300_ZB_CNTL, 3);
776 OUT_CB(0);
777 OUT_CB(0);
778 OUT_CB(0);
779 OUT_CB_REG(R500_ZB_STENCILREFMASK_BF, 0);
780 OUT_CB_REG(R500_FG_ALPHA_VALUE, alpha_value_fp16);
781 END_CB;
782
783 return (void*)dsa;
784 }
785
786 static void r300_dsa_inject_stencilref(struct r300_context *r300)
787 {
788 struct r300_dsa_state *dsa =
789 (struct r300_dsa_state*)r300->dsa_state.state;
790
791 if (!dsa)
792 return;
793
794 dsa->stencil_ref_mask =
795 (dsa->stencil_ref_mask & ~R300_STENCILREF_MASK) |
796 r300->stencil_ref.ref_value[0];
797 dsa->stencil_ref_bf =
798 (dsa->stencil_ref_bf & ~R300_STENCILREF_MASK) |
799 r300->stencil_ref.ref_value[1];
800 }
801
802 /* Bind DSA state. */
803 static void r300_bind_dsa_state(struct pipe_context* pipe,
804 void* state)
805 {
806 struct r300_context* r300 = r300_context(pipe);
807
808 if (!state) {
809 return;
810 }
811
812 UPDATE_STATE(state, r300->dsa_state);
813
814 r300_mark_atom_dirty(r300, &r300->hyperz_state); /* Will be updated before the emission. */
815 r300_dsa_inject_stencilref(r300);
816 }
817
818 /* Free DSA state. */
819 static void r300_delete_dsa_state(struct pipe_context* pipe,
820 void* state)
821 {
822 FREE(state);
823 }
824
825 static void r300_set_stencil_ref(struct pipe_context* pipe,
826 const struct pipe_stencil_ref* sr)
827 {
828 struct r300_context* r300 = r300_context(pipe);
829
830 r300->stencil_ref = *sr;
831
832 r300_dsa_inject_stencilref(r300);
833 r300_mark_atom_dirty(r300, &r300->dsa_state);
834 }
835
836 static void r300_tex_set_tiling_flags(struct r300_context *r300,
837 struct r300_resource *tex,
838 unsigned level)
839 {
840 /* Check if the macrotile flag needs to be changed.
841 * Skip changing the flags otherwise. */
842 if (tex->tex.macrotile[tex->surface_level] !=
843 tex->tex.macrotile[level]) {
844 r300->rws->buffer_set_tiling(tex->buf, r300->cs,
845 tex->tex.microtile, tex->tex.macrotile[level],
846 0, 0, 0, 0, 0,
847 tex->tex.stride_in_bytes[0]);
848
849 tex->surface_level = level;
850 }
851 }
852
853 /* This switcheroo is needed just because of goddamned MACRO_SWITCH. */
854 static void r300_fb_set_tiling_flags(struct r300_context *r300,
855 const struct pipe_framebuffer_state *state)
856 {
857 unsigned i;
858
859 /* Set tiling flags for new surfaces. */
860 for (i = 0; i < state->nr_cbufs; i++) {
861 r300_tex_set_tiling_flags(r300,
862 r300_resource(state->cbufs[i]->texture),
863 state->cbufs[i]->u.tex.level);
864 }
865 if (state->zsbuf) {
866 r300_tex_set_tiling_flags(r300,
867 r300_resource(state->zsbuf->texture),
868 state->zsbuf->u.tex.level);
869 }
870 }
871
872 static void r300_print_fb_surf_info(struct pipe_surface *surf, unsigned index,
873 const char *binding)
874 {
875 struct pipe_resource *tex = surf->texture;
876 struct r300_resource *rtex = r300_resource(tex);
877
878 fprintf(stderr,
879 "r300: %s[%i] Dim: %ix%i, Firstlayer: %i, "
880 "Lastlayer: %i, Level: %i, Format: %s\n"
881
882 "r300: TEX: Macro: %s, Micro: %s, "
883 "Dim: %ix%ix%i, LastLevel: %i, Format: %s\n",
884
885 binding, index, surf->width, surf->height,
886 surf->u.tex.first_layer, surf->u.tex.last_layer, surf->u.tex.level,
887 util_format_short_name(surf->format),
888
889 rtex->tex.macrotile[0] ? "YES" : " NO",
890 rtex->tex.microtile ? "YES" : " NO",
891 tex->width0, tex->height0, tex->depth0,
892 tex->last_level, util_format_short_name(surf->format));
893 }
894
895 void r300_mark_fb_state_dirty(struct r300_context *r300,
896 enum r300_fb_state_change change)
897 {
898 struct pipe_framebuffer_state *state = r300->fb_state.state;
899
900 r300_mark_atom_dirty(r300, &r300->gpu_flush);
901 r300_mark_atom_dirty(r300, &r300->fb_state);
902
903 /* What is marked as dirty depends on the enum r300_fb_state_change. */
904 if (change == R300_CHANGED_FB_STATE) {
905 r300_mark_atom_dirty(r300, &r300->aa_state);
906 r300_mark_atom_dirty(r300, &r300->dsa_state); /* for AlphaRef */
907 r300_set_blend_color(&r300->context, r300->blend_color_state.state);
908 }
909
910 if (change == R300_CHANGED_FB_STATE ||
911 change == R300_CHANGED_HYPERZ_FLAG) {
912 r300_mark_atom_dirty(r300, &r300->hyperz_state);
913 }
914
915 if (change == R300_CHANGED_FB_STATE ||
916 change == R300_CHANGED_MULTIWRITE) {
917 r300_mark_atom_dirty(r300, &r300->fb_state_pipelined);
918 }
919
920 /* Now compute the fb_state atom size. */
921 r300->fb_state.size = 2 + (8 * state->nr_cbufs);
922
923 if (r300->cbzb_clear)
924 r300->fb_state.size += 10;
925 else if (state->zsbuf) {
926 r300->fb_state.size += 10;
927 if (r300->hyperz_enabled)
928 r300->fb_state.size += 8;
929 }
930
931 if (r300->cmask_in_use) {
932 r300->fb_state.size += 6;
933 if (r300->screen->caps.is_r500 && r300->screen->info.drm_minor >= 29) {
934 r300->fb_state.size += 3;
935 }
936 }
937
938 /* The size of the rest of atoms stays the same. */
939 }
940
941 static unsigned r300_get_num_samples(struct r300_context *r300)
942 {
943 struct pipe_framebuffer_state* fb =
944 (struct pipe_framebuffer_state*)r300->fb_state.state;
945 unsigned i, num_samples;
946
947 if (!fb->nr_cbufs && !fb->zsbuf)
948 return 1;
949
950 num_samples = 6;
951
952 for (i = 0; i < fb->nr_cbufs; i++)
953 num_samples = MIN2(num_samples, fb->cbufs[i]->texture->nr_samples);
954
955 if (fb->zsbuf)
956 num_samples = MIN2(num_samples, fb->zsbuf->texture->nr_samples);
957
958 if (!num_samples)
959 num_samples = 1;
960
961 return num_samples;
962 }
963
964 static void
965 r300_set_framebuffer_state(struct pipe_context* pipe,
966 const struct pipe_framebuffer_state* state)
967 {
968 struct r300_context* r300 = r300_context(pipe);
969 struct r300_aa_state *aa = (struct r300_aa_state*)r300->aa_state.state;
970 struct pipe_framebuffer_state *old_state = r300->fb_state.state;
971 unsigned max_width, max_height, i;
972 uint32_t zbuffer_bpp = 0;
973 boolean unlock_zbuffer = FALSE;
974
975 if (r300->screen->caps.is_r500) {
976 max_width = max_height = 4096;
977 } else if (r300->screen->caps.is_r400) {
978 max_width = max_height = 4021;
979 } else {
980 max_width = max_height = 2560;
981 }
982
983 if (state->width > max_width || state->height > max_height) {
984 fprintf(stderr, "r300: Implementation error: Render targets are too "
985 "big in %s, refusing to bind framebuffer state!\n", __FUNCTION__);
986 return;
987 }
988
989 if (old_state->zsbuf && r300->zmask_in_use && !r300->locked_zbuffer) {
990 /* There is a zmask in use, what are we gonna do? */
991 if (state->zsbuf) {
992 if (!pipe_surface_equal(old_state->zsbuf, state->zsbuf)) {
993 /* Decompress the currently bound zbuffer before we bind another one. */
994 r300_decompress_zmask(r300);
995 r300->hiz_in_use = FALSE;
996 }
997 } else {
998 /* We don't bind another zbuffer, so lock the current one. */
999 pipe_surface_reference(&r300->locked_zbuffer, old_state->zsbuf);
1000 }
1001 } else if (r300->locked_zbuffer) {
1002 /* We have a locked zbuffer now, what are we gonna do? */
1003 if (state->zsbuf) {
1004 if (!pipe_surface_equal(r300->locked_zbuffer, state->zsbuf)) {
1005 /* We are binding some other zbuffer, so decompress the locked one,
1006 * it gets unlocked automatically. */
1007 r300_decompress_zmask_locked_unsafe(r300);
1008 r300->hiz_in_use = FALSE;
1009 } else {
1010 /* We are binding the locked zbuffer again, so unlock it. */
1011 unlock_zbuffer = TRUE;
1012 }
1013 }
1014 }
1015 assert(state->zsbuf || (r300->locked_zbuffer && !unlock_zbuffer) || !r300->zmask_in_use);
1016
1017 /* Set whether CMASK can be used. */
1018 r300->cmask_in_use =
1019 state->nr_cbufs == 1 &&
1020 r300->screen->cmask_resource == state->cbufs[0]->texture;
1021
1022 /* Need to reset clamping or colormask. */
1023 r300_mark_atom_dirty(r300, &r300->blend_state);
1024
1025 /* Re-swizzle the blend color. */
1026 r300_set_blend_color(pipe, &((struct r300_blend_color_state*)r300->blend_color_state.state)->state);
1027
1028 /* If zsbuf is set from NULL to non-NULL or vice versa.. */
1029 if (!!old_state->zsbuf != !!state->zsbuf) {
1030 r300_mark_atom_dirty(r300, &r300->dsa_state);
1031 }
1032
1033 if (r300->screen->info.drm_minor < 12) {
1034 /* The tiling flags are dependent on the surface miplevel, unfortunately.
1035 * This workarounds a bad design decision in old kernels which were
1036 * rewriting tile fields in registers. */
1037 r300_fb_set_tiling_flags(r300, state);
1038 }
1039
1040 util_copy_framebuffer_state(r300->fb_state.state, state);
1041
1042 if (unlock_zbuffer) {
1043 pipe_surface_reference(&r300->locked_zbuffer, NULL);
1044 }
1045
1046 r300_mark_fb_state_dirty(r300, R300_CHANGED_FB_STATE);
1047
1048 if (state->zsbuf) {
1049 switch (util_format_get_blocksize(state->zsbuf->format)) {
1050 case 2:
1051 zbuffer_bpp = 16;
1052 break;
1053 case 4:
1054 zbuffer_bpp = 24;
1055 break;
1056 }
1057
1058 /* Polygon offset depends on the zbuffer bit depth. */
1059 if (r300->zbuffer_bpp != zbuffer_bpp) {
1060 r300->zbuffer_bpp = zbuffer_bpp;
1061
1062 if (r300->polygon_offset_enabled)
1063 r300_mark_atom_dirty(r300, &r300->rs_state);
1064 }
1065 }
1066
1067 r300->num_samples = r300_get_num_samples(r300);
1068
1069 /* Set up AA config. */
1070 if (r300->num_samples > 1) {
1071 switch (r300->num_samples) {
1072 case 2:
1073 aa->aa_config = R300_GB_AA_CONFIG_AA_ENABLE |
1074 R300_GB_AA_CONFIG_NUM_AA_SUBSAMPLES_2;
1075 break;
1076 case 4:
1077 aa->aa_config = R300_GB_AA_CONFIG_AA_ENABLE |
1078 R300_GB_AA_CONFIG_NUM_AA_SUBSAMPLES_4;
1079 break;
1080 case 6:
1081 aa->aa_config = R300_GB_AA_CONFIG_AA_ENABLE |
1082 R300_GB_AA_CONFIG_NUM_AA_SUBSAMPLES_6;
1083 break;
1084 }
1085 } else {
1086 aa->aa_config = 0;
1087 }
1088
1089 if (DBG_ON(r300, DBG_FB)) {
1090 fprintf(stderr, "r300: set_framebuffer_state:\n");
1091 for (i = 0; i < state->nr_cbufs; i++) {
1092 r300_print_fb_surf_info(state->cbufs[i], i, "CB");
1093 }
1094 if (state->zsbuf) {
1095 r300_print_fb_surf_info(state->zsbuf, 0, "ZB");
1096 }
1097 }
1098 }
1099
1100 /* Create fragment shader state. */
1101 static void* r300_create_fs_state(struct pipe_context* pipe,
1102 const struct pipe_shader_state* shader)
1103 {
1104 struct r300_fragment_shader* fs = NULL;
1105
1106 fs = (struct r300_fragment_shader*)CALLOC_STRUCT(r300_fragment_shader);
1107
1108 /* Copy state directly into shader. */
1109 fs->state = *shader;
1110 fs->state.tokens = tgsi_dup_tokens(shader->tokens);
1111
1112 return (void*)fs;
1113 }
1114
1115 void r300_mark_fs_code_dirty(struct r300_context *r300)
1116 {
1117 struct r300_fragment_shader* fs = r300_fs(r300);
1118
1119 r300_mark_atom_dirty(r300, &r300->fs);
1120 r300_mark_atom_dirty(r300, &r300->fs_rc_constant_state);
1121 r300_mark_atom_dirty(r300, &r300->fs_constants);
1122 r300->fs.size = fs->shader->cb_code_size;
1123
1124 if (r300->screen->caps.is_r500) {
1125 r300->fs_rc_constant_state.size = fs->shader->rc_state_count * 7;
1126 r300->fs_constants.size = fs->shader->externals_count * 4 + 3;
1127 } else {
1128 r300->fs_rc_constant_state.size = fs->shader->rc_state_count * 5;
1129 r300->fs_constants.size = fs->shader->externals_count * 4 + 1;
1130 }
1131
1132 ((struct r300_constant_buffer*)r300->fs_constants.state)->remap_table =
1133 fs->shader->code.constants_remap_table;
1134 }
1135
1136 /* Bind fragment shader state. */
1137 static void r300_bind_fs_state(struct pipe_context* pipe, void* shader)
1138 {
1139 struct r300_context* r300 = r300_context(pipe);
1140 struct r300_fragment_shader* fs = (struct r300_fragment_shader*)shader;
1141
1142 if (fs == NULL) {
1143 r300->fs.state = NULL;
1144 return;
1145 }
1146
1147 r300->fs.state = fs;
1148 r300->fs_status = FRAGMENT_SHADER_DIRTY;
1149
1150 r300_mark_atom_dirty(r300, &r300->rs_block_state); /* Will be updated before the emission. */
1151 }
1152
1153 /* Delete fragment shader state. */
1154 static void r300_delete_fs_state(struct pipe_context* pipe, void* shader)
1155 {
1156 struct r300_fragment_shader* fs = (struct r300_fragment_shader*)shader;
1157 struct r300_fragment_shader_code *tmp, *ptr = fs->first;
1158
1159 while (ptr) {
1160 tmp = ptr;
1161 ptr = ptr->next;
1162 rc_constants_destroy(&tmp->code.constants);
1163 FREE(tmp->cb_code);
1164 FREE(tmp);
1165 }
1166 FREE((void*)fs->state.tokens);
1167 FREE(shader);
1168 }
1169
1170 static void r300_set_polygon_stipple(struct pipe_context* pipe,
1171 const struct pipe_poly_stipple* state)
1172 {
1173 /* XXX no idea how to set this up, but not terribly important */
1174 }
1175
1176 /* Create a new rasterizer state based on the CSO rasterizer state.
1177 *
1178 * This is a very large chunk of state, and covers most of the graphics
1179 * backend (GB), geometry assembly (GA), and setup unit (SU) blocks.
1180 *
1181 * In a not entirely unironic sidenote, this state has nearly nothing to do
1182 * with the actual block on the Radeon called the rasterizer (RS). */
1183 static void* r300_create_rs_state(struct pipe_context* pipe,
1184 const struct pipe_rasterizer_state* state)
1185 {
1186 struct r300_rs_state* rs = CALLOC_STRUCT(r300_rs_state);
1187 uint32_t vap_control_status; /* R300_VAP_CNTL_STATUS: 0x2140 */
1188 uint32_t vap_clip_cntl; /* R300_VAP_CLIP_CNTL: 0x221C */
1189 uint32_t point_size; /* R300_GA_POINT_SIZE: 0x421c */
1190 uint32_t point_minmax; /* R300_GA_POINT_MINMAX: 0x4230 */
1191 uint32_t line_control; /* R300_GA_LINE_CNTL: 0x4234 */
1192 uint32_t polygon_offset_enable; /* R300_SU_POLY_OFFSET_ENABLE: 0x42b4 */
1193 uint32_t cull_mode; /* R300_SU_CULL_MODE: 0x42b8 */
1194 uint32_t line_stipple_config; /* R300_GA_LINE_STIPPLE_CONFIG: 0x4328 */
1195 uint32_t line_stipple_value; /* R300_GA_LINE_STIPPLE_VALUE: 0x4260 */
1196 uint32_t polygon_mode; /* R300_GA_POLY_MODE: 0x4288 */
1197 uint32_t clip_rule; /* R300_SC_CLIP_RULE: 0x43D0 */
1198 uint32_t round_mode; /* R300_GA_ROUND_MODE: 0x428c */
1199
1200 /* Point sprites texture coordinates, 0: lower left, 1: upper right */
1201 float point_texcoord_left = 0; /* R300_GA_POINT_S0: 0x4200 */
1202 float point_texcoord_bottom = 0;/* R300_GA_POINT_T0: 0x4204 */
1203 float point_texcoord_right = 1; /* R300_GA_POINT_S1: 0x4208 */
1204 float point_texcoord_top = 0; /* R300_GA_POINT_T1: 0x420c */
1205 boolean vclamp = !r300_context(pipe)->screen->caps.is_r500;
1206 CB_LOCALS;
1207
1208 /* Copy rasterizer state. */
1209 rs->rs = *state;
1210 rs->rs_draw = *state;
1211
1212 rs->rs.sprite_coord_enable = state->point_quad_rasterization *
1213 state->sprite_coord_enable;
1214
1215 /* Override some states for Draw. */
1216 rs->rs_draw.sprite_coord_enable = 0; /* We can do this in HW. */
1217 rs->rs_draw.offset_point = 0;
1218 rs->rs_draw.offset_line = 0;
1219 rs->rs_draw.offset_tri = 0;
1220 rs->rs_draw.offset_clamp = 0;
1221
1222 #ifdef PIPE_ARCH_LITTLE_ENDIAN
1223 vap_control_status = R300_VC_NO_SWAP;
1224 #else
1225 vap_control_status = R300_VC_32BIT_SWAP;
1226 #endif
1227
1228 /* If no TCL engine is present, turn off the HW TCL. */
1229 if (!r300_screen(pipe->screen)->caps.has_tcl) {
1230 vap_control_status |= R300_VAP_TCL_BYPASS;
1231 }
1232
1233 /* Point size width and height. */
1234 point_size =
1235 pack_float_16_6x(state->point_size) |
1236 (pack_float_16_6x(state->point_size) << R300_POINTSIZE_X_SHIFT);
1237
1238 /* Point size clamping. */
1239 if (state->point_size_per_vertex) {
1240 /* Per-vertex point size.
1241 * Clamp to [0, max FB size] */
1242 float min_psiz = util_get_min_point_size(state);
1243 float max_psiz = pipe->screen->get_paramf(pipe->screen,
1244 PIPE_CAPF_MAX_POINT_WIDTH);
1245 point_minmax =
1246 (pack_float_16_6x(min_psiz) << R300_GA_POINT_MINMAX_MIN_SHIFT) |
1247 (pack_float_16_6x(max_psiz) << R300_GA_POINT_MINMAX_MAX_SHIFT);
1248 } else {
1249 /* We cannot disable the point-size vertex output,
1250 * so clamp it. */
1251 float psiz = state->point_size;
1252 point_minmax =
1253 (pack_float_16_6x(psiz) << R300_GA_POINT_MINMAX_MIN_SHIFT) |
1254 (pack_float_16_6x(psiz) << R300_GA_POINT_MINMAX_MAX_SHIFT);
1255 }
1256
1257 /* Line control. */
1258 line_control = pack_float_16_6x(state->line_width) |
1259 R300_GA_LINE_CNTL_END_TYPE_COMP;
1260
1261 /* Enable polygon mode */
1262 polygon_mode = 0;
1263 if (state->fill_front != PIPE_POLYGON_MODE_FILL ||
1264 state->fill_back != PIPE_POLYGON_MODE_FILL) {
1265 polygon_mode = R300_GA_POLY_MODE_DUAL;
1266 }
1267
1268 /* Front face */
1269 if (state->front_ccw)
1270 cull_mode = R300_FRONT_FACE_CCW;
1271 else
1272 cull_mode = R300_FRONT_FACE_CW;
1273
1274 /* Polygon offset */
1275 polygon_offset_enable = 0;
1276 if (util_get_offset(state, state->fill_front)) {
1277 polygon_offset_enable |= R300_FRONT_ENABLE;
1278 }
1279 if (util_get_offset(state, state->fill_back)) {
1280 polygon_offset_enable |= R300_BACK_ENABLE;
1281 }
1282
1283 rs->polygon_offset_enable = polygon_offset_enable != 0;
1284
1285 /* Polygon mode */
1286 if (polygon_mode) {
1287 polygon_mode |=
1288 r300_translate_polygon_mode_front(state->fill_front);
1289 polygon_mode |=
1290 r300_translate_polygon_mode_back(state->fill_back);
1291 }
1292
1293 if (state->cull_face & PIPE_FACE_FRONT) {
1294 cull_mode |= R300_CULL_FRONT;
1295 }
1296 if (state->cull_face & PIPE_FACE_BACK) {
1297 cull_mode |= R300_CULL_BACK;
1298 }
1299
1300 if (state->line_stipple_enable) {
1301 line_stipple_config =
1302 R300_GA_LINE_STIPPLE_CONFIG_LINE_RESET_LINE |
1303 (fui((float)state->line_stipple_factor) &
1304 R300_GA_LINE_STIPPLE_CONFIG_STIPPLE_SCALE_MASK);
1305 /* XXX this might need to be scaled up */
1306 line_stipple_value = state->line_stipple_pattern;
1307 } else {
1308 line_stipple_config = 0;
1309 line_stipple_value = 0;
1310 }
1311
1312 if (state->flatshade) {
1313 rs->color_control = R300_SHADE_MODEL_FLAT;
1314 } else {
1315 rs->color_control = R300_SHADE_MODEL_SMOOTH;
1316 }
1317
1318 clip_rule = state->scissor ? 0xAAAA : 0xFFFF;
1319
1320 /* Point sprites coord mode */
1321 if (rs->rs.sprite_coord_enable) {
1322 switch (state->sprite_coord_mode) {
1323 case PIPE_SPRITE_COORD_UPPER_LEFT:
1324 point_texcoord_top = 0.0f;
1325 point_texcoord_bottom = 1.0f;
1326 break;
1327 case PIPE_SPRITE_COORD_LOWER_LEFT:
1328 point_texcoord_top = 1.0f;
1329 point_texcoord_bottom = 0.0f;
1330 break;
1331 }
1332 }
1333
1334 if (r300_screen(pipe->screen)->caps.has_tcl) {
1335 vap_clip_cntl = (state->clip_plane_enable & 63) |
1336 R300_PS_UCP_MODE_CLIP_AS_TRIFAN |
1337 (state->depth_clip ? 0 : R300_CLIP_DISABLE);
1338 } else {
1339 vap_clip_cntl = R300_CLIP_DISABLE;
1340 }
1341
1342 /* Vertex color clamping. FP20 means no clamping. */
1343 round_mode =
1344 R300_GA_ROUND_MODE_GEOMETRY_ROUND_NEAREST |
1345 (!vclamp ? (R300_GA_ROUND_MODE_RGB_CLAMP_FP20 |
1346 R300_GA_ROUND_MODE_ALPHA_CLAMP_FP20) : 0);
1347
1348 /* Build the main command buffer. */
1349 BEGIN_CB(rs->cb_main, RS_STATE_MAIN_SIZE);
1350 OUT_CB_REG(R300_VAP_CNTL_STATUS, vap_control_status);
1351 OUT_CB_REG(R300_VAP_CLIP_CNTL, vap_clip_cntl);
1352 OUT_CB_REG(R300_GA_POINT_SIZE, point_size);
1353 OUT_CB_REG_SEQ(R300_GA_POINT_MINMAX, 2);
1354 OUT_CB(point_minmax);
1355 OUT_CB(line_control);
1356 OUT_CB_REG_SEQ(R300_SU_POLY_OFFSET_ENABLE, 2);
1357 OUT_CB(polygon_offset_enable);
1358 rs->cull_mode_index = 11;
1359 OUT_CB(cull_mode);
1360 OUT_CB_REG(R300_GA_LINE_STIPPLE_CONFIG, line_stipple_config);
1361 OUT_CB_REG(R300_GA_LINE_STIPPLE_VALUE, line_stipple_value);
1362 OUT_CB_REG(R300_GA_POLY_MODE, polygon_mode);
1363 OUT_CB_REG(R300_GA_ROUND_MODE, round_mode);
1364 OUT_CB_REG(R300_SC_CLIP_RULE, clip_rule);
1365 OUT_CB_REG_SEQ(R300_GA_POINT_S0, 4);
1366 OUT_CB_32F(point_texcoord_left);
1367 OUT_CB_32F(point_texcoord_bottom);
1368 OUT_CB_32F(point_texcoord_right);
1369 OUT_CB_32F(point_texcoord_top);
1370 END_CB;
1371
1372 /* Build the two command buffers for polygon offset setup. */
1373 if (polygon_offset_enable) {
1374 float scale = state->offset_scale * 12;
1375 float offset = state->offset_units * 4;
1376
1377 BEGIN_CB(rs->cb_poly_offset_zb16, 5);
1378 OUT_CB_REG_SEQ(R300_SU_POLY_OFFSET_FRONT_SCALE, 4);
1379 OUT_CB_32F(scale);
1380 OUT_CB_32F(offset);
1381 OUT_CB_32F(scale);
1382 OUT_CB_32F(offset);
1383 END_CB;
1384
1385 offset = state->offset_units * 2;
1386
1387 BEGIN_CB(rs->cb_poly_offset_zb24, 5);
1388 OUT_CB_REG_SEQ(R300_SU_POLY_OFFSET_FRONT_SCALE, 4);
1389 OUT_CB_32F(scale);
1390 OUT_CB_32F(offset);
1391 OUT_CB_32F(scale);
1392 OUT_CB_32F(offset);
1393 END_CB;
1394 }
1395
1396 return (void*)rs;
1397 }
1398
1399 /* Bind rasterizer state. */
1400 static void r300_bind_rs_state(struct pipe_context* pipe, void* state)
1401 {
1402 struct r300_context* r300 = r300_context(pipe);
1403 struct r300_rs_state* rs = (struct r300_rs_state*)state;
1404 int last_sprite_coord_enable = r300->sprite_coord_enable;
1405 boolean last_two_sided_color = r300->two_sided_color;
1406 boolean last_msaa_enable = r300->msaa_enable;
1407 boolean last_flatshade = r300->flatshade;
1408
1409 if (r300->draw && rs) {
1410 draw_set_rasterizer_state(r300->draw, &rs->rs_draw, state);
1411 }
1412
1413 if (rs) {
1414 r300->polygon_offset_enabled = rs->polygon_offset_enable;
1415 r300->sprite_coord_enable = rs->rs.sprite_coord_enable;
1416 r300->two_sided_color = rs->rs.light_twoside;
1417 r300->msaa_enable = rs->rs.multisample;
1418 r300->flatshade = rs->rs.flatshade;
1419 } else {
1420 r300->polygon_offset_enabled = FALSE;
1421 r300->sprite_coord_enable = 0;
1422 r300->two_sided_color = FALSE;
1423 r300->msaa_enable = FALSE;
1424 r300->flatshade = FALSE;
1425 }
1426
1427 UPDATE_STATE(state, r300->rs_state);
1428 r300->rs_state.size = RS_STATE_MAIN_SIZE + (r300->polygon_offset_enabled ? 5 : 0);
1429
1430 if (last_sprite_coord_enable != r300->sprite_coord_enable ||
1431 last_two_sided_color != r300->two_sided_color ||
1432 last_flatshade != r300->flatshade) {
1433 r300_mark_atom_dirty(r300, &r300->rs_block_state);
1434 }
1435
1436 if (last_msaa_enable != r300->msaa_enable) {
1437 if (r300->alpha_to_coverage) {
1438 r300_mark_atom_dirty(r300, &r300->dsa_state);
1439 }
1440
1441 if (r300->alpha_to_one &&
1442 r300->fs_status == FRAGMENT_SHADER_VALID) {
1443 r300->fs_status = FRAGMENT_SHADER_MAYBE_DIRTY;
1444 }
1445 }
1446 }
1447
1448 /* Free rasterizer state. */
1449 static void r300_delete_rs_state(struct pipe_context* pipe, void* state)
1450 {
1451 FREE(state);
1452 }
1453
1454 static void*
1455 r300_create_sampler_state(struct pipe_context* pipe,
1456 const struct pipe_sampler_state* state)
1457 {
1458 struct r300_context* r300 = r300_context(pipe);
1459 struct r300_sampler_state* sampler = CALLOC_STRUCT(r300_sampler_state);
1460 boolean is_r500 = r300->screen->caps.is_r500;
1461 int lod_bias;
1462
1463 sampler->state = *state;
1464
1465 /* r300 doesn't handle CLAMP and MIRROR_CLAMP correctly when either MAG
1466 * or MIN filter is NEAREST. Since texwrap produces same results
1467 * for CLAMP and CLAMP_TO_EDGE, we use them instead. */
1468 if (sampler->state.min_img_filter == PIPE_TEX_FILTER_NEAREST ||
1469 sampler->state.mag_img_filter == PIPE_TEX_FILTER_NEAREST) {
1470 /* Wrap S. */
1471 if (sampler->state.wrap_s == PIPE_TEX_WRAP_CLAMP)
1472 sampler->state.wrap_s = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
1473 else if (sampler->state.wrap_s == PIPE_TEX_WRAP_MIRROR_CLAMP)
1474 sampler->state.wrap_s = PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE;
1475
1476 /* Wrap T. */
1477 if (sampler->state.wrap_t == PIPE_TEX_WRAP_CLAMP)
1478 sampler->state.wrap_t = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
1479 else if (sampler->state.wrap_t == PIPE_TEX_WRAP_MIRROR_CLAMP)
1480 sampler->state.wrap_t = PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE;
1481
1482 /* Wrap R. */
1483 if (sampler->state.wrap_r == PIPE_TEX_WRAP_CLAMP)
1484 sampler->state.wrap_r = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
1485 else if (sampler->state.wrap_r == PIPE_TEX_WRAP_MIRROR_CLAMP)
1486 sampler->state.wrap_r = PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE;
1487 }
1488
1489 sampler->filter0 |=
1490 (r300_translate_wrap(sampler->state.wrap_s) << R300_TX_WRAP_S_SHIFT) |
1491 (r300_translate_wrap(sampler->state.wrap_t) << R300_TX_WRAP_T_SHIFT) |
1492 (r300_translate_wrap(sampler->state.wrap_r) << R300_TX_WRAP_R_SHIFT);
1493
1494 sampler->filter0 |= r300_translate_tex_filters(state->min_img_filter,
1495 state->mag_img_filter,
1496 state->min_mip_filter,
1497 state->max_anisotropy > 1);
1498
1499 sampler->filter0 |= r300_anisotropy(state->max_anisotropy);
1500
1501 /* Unfortunately, r300-r500 don't support floating-point mipmap lods. */
1502 /* We must pass these to the merge function to clamp them properly. */
1503 sampler->min_lod = (unsigned)MAX2(state->min_lod, 0);
1504 sampler->max_lod = (unsigned)MAX2(ceilf(state->max_lod), 0);
1505
1506 lod_bias = CLAMP((int)(state->lod_bias * 32 + 1), -(1 << 9), (1 << 9) - 1);
1507
1508 sampler->filter1 |= (lod_bias << R300_LOD_BIAS_SHIFT) & R300_LOD_BIAS_MASK;
1509
1510 /* This is very high quality anisotropic filtering for R5xx.
1511 * It's good for benchmarking the performance of texturing but
1512 * in practice we don't want to slow down the driver because it's
1513 * a pretty good performance killer. Feel free to play with it. */
1514 if (DBG_ON(r300, DBG_ANISOHQ) && is_r500) {
1515 sampler->filter1 |= r500_anisotropy(state->max_anisotropy);
1516 }
1517
1518 /* R500-specific fixups and optimizations */
1519 if (r300->screen->caps.is_r500) {
1520 sampler->filter1 |= R500_BORDER_FIX;
1521 }
1522
1523 return (void*)sampler;
1524 }
1525
1526 static void r300_bind_sampler_states(struct pipe_context* pipe,
1527 unsigned count,
1528 void** states)
1529 {
1530 struct r300_context* r300 = r300_context(pipe);
1531 struct r300_textures_state* state =
1532 (struct r300_textures_state*)r300->textures_state.state;
1533 unsigned tex_units = r300->screen->caps.num_tex_units;
1534
1535 if (count > tex_units) {
1536 return;
1537 }
1538
1539 memcpy(state->sampler_states, states, sizeof(void*) * count);
1540 state->sampler_state_count = count;
1541
1542 r300_mark_atom_dirty(r300, &r300->textures_state);
1543 }
1544
1545 static void r300_lacks_vertex_textures(struct pipe_context* pipe,
1546 unsigned count,
1547 void** states)
1548 {
1549 }
1550
1551 static void r300_delete_sampler_state(struct pipe_context* pipe, void* state)
1552 {
1553 FREE(state);
1554 }
1555
1556 static uint32_t r300_assign_texture_cache_region(unsigned index, unsigned num)
1557 {
1558 /* This looks like a hack, but I believe it's suppose to work like
1559 * that. To illustrate how this works, let's assume you have 5 textures.
1560 * From docs, 5 and the successive numbers are:
1561 *
1562 * FOURTH_1 = 5
1563 * FOURTH_2 = 6
1564 * FOURTH_3 = 7
1565 * EIGHTH_0 = 8
1566 * EIGHTH_1 = 9
1567 *
1568 * First 3 textures will get 3/4 of size of the cache, divived evenly
1569 * between them. The last 1/4 of the cache must be divided between
1570 * the last 2 textures, each will therefore get 1/8 of the cache.
1571 * Why not just to use "5 + texture_index" ?
1572 *
1573 * This simple trick works for all "num" <= 16.
1574 */
1575 if (num <= 1)
1576 return R300_TX_CACHE(R300_TX_CACHE_WHOLE);
1577 else
1578 return R300_TX_CACHE(num + index);
1579 }
1580
1581 static void r300_set_fragment_sampler_views(struct pipe_context* pipe,
1582 unsigned count,
1583 struct pipe_sampler_view** views)
1584 {
1585 struct r300_context* r300 = r300_context(pipe);
1586 struct r300_textures_state* state =
1587 (struct r300_textures_state*)r300->textures_state.state;
1588 struct r300_resource *texture;
1589 unsigned i, real_num_views = 0, view_index = 0;
1590 unsigned tex_units = r300->screen->caps.num_tex_units;
1591 boolean dirty_tex = FALSE;
1592
1593 if (count > tex_units) {
1594 return;
1595 }
1596
1597 /* Calculate the real number of views. */
1598 for (i = 0; i < count; i++) {
1599 if (views[i])
1600 real_num_views++;
1601 }
1602
1603 for (i = 0; i < count; i++) {
1604 pipe_sampler_view_reference(
1605 (struct pipe_sampler_view**)&state->sampler_views[i],
1606 views[i]);
1607
1608 if (!views[i]) {
1609 continue;
1610 }
1611
1612 /* A new sampler view (= texture)... */
1613 dirty_tex = TRUE;
1614
1615 /* Set the texrect factor in the fragment shader.
1616 * Needed for RECT and NPOT fallback. */
1617 texture = r300_resource(views[i]->texture);
1618 if (texture->tex.is_npot) {
1619 r300_mark_atom_dirty(r300, &r300->fs_rc_constant_state);
1620 }
1621
1622 state->sampler_views[i]->texcache_region =
1623 r300_assign_texture_cache_region(view_index, real_num_views);
1624 view_index++;
1625 }
1626
1627 for (i = count; i < tex_units; i++) {
1628 if (state->sampler_views[i]) {
1629 pipe_sampler_view_reference(
1630 (struct pipe_sampler_view**)&state->sampler_views[i],
1631 NULL);
1632 }
1633 }
1634
1635 state->sampler_view_count = count;
1636
1637 r300_mark_atom_dirty(r300, &r300->textures_state);
1638
1639 if (dirty_tex) {
1640 r300_mark_atom_dirty(r300, &r300->texture_cache_inval);
1641 }
1642 }
1643
1644 struct pipe_sampler_view *
1645 r300_create_sampler_view_custom(struct pipe_context *pipe,
1646 struct pipe_resource *texture,
1647 const struct pipe_sampler_view *templ,
1648 unsigned width0_override,
1649 unsigned height0_override)
1650 {
1651 struct r300_sampler_view *view = CALLOC_STRUCT(r300_sampler_view);
1652 struct r300_resource *tex = r300_resource(texture);
1653 boolean is_r500 = r300_screen(pipe->screen)->caps.is_r500;
1654 boolean dxtc_swizzle = r300_screen(pipe->screen)->caps.dxtc_swizzle;
1655
1656 if (view) {
1657 unsigned hwformat;
1658
1659 view->base = *templ;
1660 view->base.reference.count = 1;
1661 view->base.context = pipe;
1662 view->base.texture = NULL;
1663 pipe_resource_reference(&view->base.texture, texture);
1664
1665 view->width0_override = width0_override;
1666 view->height0_override = height0_override;
1667 view->swizzle[0] = templ->swizzle_r;
1668 view->swizzle[1] = templ->swizzle_g;
1669 view->swizzle[2] = templ->swizzle_b;
1670 view->swizzle[3] = templ->swizzle_a;
1671
1672 hwformat = r300_translate_texformat(templ->format,
1673 view->swizzle,
1674 is_r500,
1675 dxtc_swizzle);
1676
1677 if (hwformat == ~0) {
1678 fprintf(stderr, "r300: Ooops. Got unsupported format %s in %s.\n",
1679 util_format_short_name(templ->format), __func__);
1680 }
1681 assert(hwformat != ~0);
1682
1683 r300_texture_setup_format_state(r300_screen(pipe->screen), tex,
1684 templ->format, 0,
1685 width0_override, height0_override,
1686 &view->format);
1687 view->format.format1 |= hwformat;
1688 if (is_r500) {
1689 view->format.format2 |= r500_tx_format_msb_bit(templ->format);
1690 }
1691 }
1692
1693 return (struct pipe_sampler_view*)view;
1694 }
1695
1696 static struct pipe_sampler_view *
1697 r300_create_sampler_view(struct pipe_context *pipe,
1698 struct pipe_resource *texture,
1699 const struct pipe_sampler_view *templ)
1700 {
1701 return r300_create_sampler_view_custom(pipe, texture, templ,
1702 r300_resource(texture)->tex.width0,
1703 r300_resource(texture)->tex.height0);
1704 }
1705
1706
1707 static void
1708 r300_sampler_view_destroy(struct pipe_context *pipe,
1709 struct pipe_sampler_view *view)
1710 {
1711 pipe_resource_reference(&view->texture, NULL);
1712 FREE(view);
1713 }
1714
1715 static void r300_set_sample_mask(struct pipe_context *pipe,
1716 unsigned mask)
1717 {
1718 struct r300_context* r300 = r300_context(pipe);
1719
1720 *((unsigned*)r300->sample_mask.state) = mask;
1721
1722 r300_mark_atom_dirty(r300, &r300->sample_mask);
1723 }
1724
1725 static void r300_set_scissor_state(struct pipe_context* pipe,
1726 const struct pipe_scissor_state* state)
1727 {
1728 struct r300_context* r300 = r300_context(pipe);
1729
1730 memcpy(r300->scissor_state.state, state,
1731 sizeof(struct pipe_scissor_state));
1732
1733 r300_mark_atom_dirty(r300, &r300->scissor_state);
1734 }
1735
1736 static void r300_set_viewport_state(struct pipe_context* pipe,
1737 const struct pipe_viewport_state* state)
1738 {
1739 struct r300_context* r300 = r300_context(pipe);
1740 struct r300_viewport_state* viewport =
1741 (struct r300_viewport_state*)r300->viewport_state.state;
1742
1743 r300->viewport = *state;
1744
1745 if (r300->draw) {
1746 draw_set_viewport_state(r300->draw, state);
1747 viewport->vte_control = R300_VTX_XY_FMT | R300_VTX_Z_FMT;
1748 return;
1749 }
1750
1751 /* Do the transform in HW. */
1752 viewport->vte_control = R300_VTX_W0_FMT;
1753
1754 if (state->scale[0] != 1.0f) {
1755 viewport->xscale = state->scale[0];
1756 viewport->vte_control |= R300_VPORT_X_SCALE_ENA;
1757 }
1758 if (state->scale[1] != 1.0f) {
1759 viewport->yscale = state->scale[1];
1760 viewport->vte_control |= R300_VPORT_Y_SCALE_ENA;
1761 }
1762 if (state->scale[2] != 1.0f) {
1763 viewport->zscale = state->scale[2];
1764 viewport->vte_control |= R300_VPORT_Z_SCALE_ENA;
1765 }
1766 if (state->translate[0] != 0.0f) {
1767 viewport->xoffset = state->translate[0];
1768 viewport->vte_control |= R300_VPORT_X_OFFSET_ENA;
1769 }
1770 if (state->translate[1] != 0.0f) {
1771 viewport->yoffset = state->translate[1];
1772 viewport->vte_control |= R300_VPORT_Y_OFFSET_ENA;
1773 }
1774 if (state->translate[2] != 0.0f) {
1775 viewport->zoffset = state->translate[2];
1776 viewport->vte_control |= R300_VPORT_Z_OFFSET_ENA;
1777 }
1778
1779 r300_mark_atom_dirty(r300, &r300->viewport_state);
1780 if (r300->fs.state && r300_fs(r300)->shader &&
1781 r300_fs(r300)->shader->inputs.wpos != ATTR_UNUSED) {
1782 r300_mark_atom_dirty(r300, &r300->fs_rc_constant_state);
1783 }
1784 }
1785
1786 static void r300_set_vertex_buffers_hwtcl(struct pipe_context* pipe,
1787 unsigned start_slot, unsigned count,
1788 const struct pipe_vertex_buffer* buffers)
1789 {
1790 struct r300_context* r300 = r300_context(pipe);
1791
1792 util_set_vertex_buffers_count(r300->vertex_buffer,
1793 &r300->nr_vertex_buffers,
1794 buffers, start_slot, count);
1795
1796 /* There must be at least one vertex buffer set, otherwise it locks up. */
1797 if (!r300->nr_vertex_buffers) {
1798 util_set_vertex_buffers_count(r300->vertex_buffer,
1799 &r300->nr_vertex_buffers,
1800 &r300->dummy_vb, 0, 1);
1801 }
1802
1803 r300->vertex_arrays_dirty = TRUE;
1804 }
1805
1806 static void r300_set_vertex_buffers_swtcl(struct pipe_context* pipe,
1807 unsigned start_slot, unsigned count,
1808 const struct pipe_vertex_buffer* buffers)
1809 {
1810 struct r300_context* r300 = r300_context(pipe);
1811 unsigned i;
1812
1813 util_set_vertex_buffers_count(r300->vertex_buffer,
1814 &r300->nr_vertex_buffers,
1815 buffers, start_slot, count);
1816 draw_set_vertex_buffers(r300->draw, start_slot, count, buffers);
1817
1818 if (!buffers)
1819 return;
1820
1821 for (i = 0; i < count; i++) {
1822 if (buffers[i].user_buffer) {
1823 draw_set_mapped_vertex_buffer(r300->draw, start_slot + i,
1824 buffers[i].user_buffer);
1825 } else if (buffers[i].buffer) {
1826 draw_set_mapped_vertex_buffer(r300->draw, start_slot + i,
1827 r300_resource(buffers[i].buffer)->malloced_buffer);
1828 }
1829 }
1830 }
1831
1832 static void r300_set_index_buffer_hwtcl(struct pipe_context* pipe,
1833 const struct pipe_index_buffer *ib)
1834 {
1835 struct r300_context* r300 = r300_context(pipe);
1836
1837 if (ib) {
1838 pipe_resource_reference(&r300->index_buffer.buffer, ib->buffer);
1839 memcpy(&r300->index_buffer, ib, sizeof(*ib));
1840 } else {
1841 pipe_resource_reference(&r300->index_buffer.buffer, NULL);
1842 }
1843 }
1844
1845 static void r300_set_index_buffer_swtcl(struct pipe_context* pipe,
1846 const struct pipe_index_buffer *ib)
1847 {
1848 struct r300_context* r300 = r300_context(pipe);
1849
1850 if (ib) {
1851 const void *buf = NULL;
1852 if (ib->user_buffer) {
1853 buf = ib->user_buffer;
1854 } else if (ib->buffer) {
1855 buf = r300_resource(ib->buffer)->malloced_buffer;
1856 }
1857 draw_set_indexes(r300->draw,
1858 (const ubyte *) buf + ib->offset,
1859 ib->index_size);
1860 }
1861 }
1862
1863 /* Initialize the PSC tables. */
1864 static void r300_vertex_psc(struct r300_vertex_element_state *velems)
1865 {
1866 struct r300_vertex_stream_state *vstream = &velems->vertex_stream;
1867 uint16_t type, swizzle;
1868 enum pipe_format format;
1869 unsigned i;
1870
1871 /* Vertex shaders have no semantics on their inputs,
1872 * so PSC should just route stuff based on the vertex elements,
1873 * and not on attrib information. */
1874 for (i = 0; i < velems->count; i++) {
1875 format = velems->velem[i].src_format;
1876
1877 type = r300_translate_vertex_data_type(format);
1878 if (type == R300_INVALID_FORMAT) {
1879 fprintf(stderr, "r300: Bad vertex format %s.\n",
1880 util_format_short_name(format));
1881 assert(0);
1882 abort();
1883 }
1884
1885 type |= i << R300_DST_VEC_LOC_SHIFT;
1886 swizzle = r300_translate_vertex_data_swizzle(format);
1887
1888 if (i & 1) {
1889 vstream->vap_prog_stream_cntl[i >> 1] |= type << 16;
1890 vstream->vap_prog_stream_cntl_ext[i >> 1] |= swizzle << 16;
1891 } else {
1892 vstream->vap_prog_stream_cntl[i >> 1] |= type;
1893 vstream->vap_prog_stream_cntl_ext[i >> 1] |= swizzle;
1894 }
1895 }
1896
1897 /* Set the last vector in the PSC. */
1898 if (i) {
1899 i -= 1;
1900 }
1901 vstream->vap_prog_stream_cntl[i >> 1] |=
1902 (R300_LAST_VEC << (i & 1 ? 16 : 0));
1903
1904 vstream->count = (i >> 1) + 1;
1905 }
1906
1907 static void* r300_create_vertex_elements_state(struct pipe_context* pipe,
1908 unsigned count,
1909 const struct pipe_vertex_element* attribs)
1910 {
1911 struct r300_vertex_element_state *velems;
1912 unsigned i;
1913 struct pipe_vertex_element dummy_attrib = {0};
1914
1915 /* R300 Programmable Stream Control (PSC) doesn't support 0 vertex elements. */
1916 if (!count) {
1917 dummy_attrib.src_format = PIPE_FORMAT_R8G8B8A8_UNORM;
1918 attribs = &dummy_attrib;
1919 count = 1;
1920 } else if (count > 16) {
1921 fprintf(stderr, "r300: More than 16 vertex elements are not supported,"
1922 " requested %i, using 16.\n", count);
1923 count = 16;
1924 }
1925
1926 velems = CALLOC_STRUCT(r300_vertex_element_state);
1927 if (!velems)
1928 return NULL;
1929
1930 velems->count = count;
1931 memcpy(velems->velem, attribs, sizeof(struct pipe_vertex_element) * count);
1932
1933 if (r300_screen(pipe->screen)->caps.has_tcl) {
1934 /* Setup PSC.
1935 * The unused components will be replaced by (..., 0, 1). */
1936 r300_vertex_psc(velems);
1937
1938 for (i = 0; i < count; i++) {
1939 velems->format_size[i] =
1940 align(util_format_get_blocksize(velems->velem[i].src_format), 4);
1941 velems->vertex_size_dwords += velems->format_size[i] / 4;
1942 }
1943 }
1944
1945 return velems;
1946 }
1947
1948 static void r300_bind_vertex_elements_state(struct pipe_context *pipe,
1949 void *state)
1950 {
1951 struct r300_context *r300 = r300_context(pipe);
1952 struct r300_vertex_element_state *velems = state;
1953
1954 if (velems == NULL) {
1955 return;
1956 }
1957
1958 r300->velems = velems;
1959
1960 if (r300->draw) {
1961 draw_set_vertex_elements(r300->draw, velems->count, velems->velem);
1962 return;
1963 }
1964
1965 UPDATE_STATE(&velems->vertex_stream, r300->vertex_stream_state);
1966 r300->vertex_stream_state.size = (1 + velems->vertex_stream.count) * 2;
1967 r300->vertex_arrays_dirty = TRUE;
1968 }
1969
1970 static void r300_delete_vertex_elements_state(struct pipe_context *pipe, void *state)
1971 {
1972 FREE(state);
1973 }
1974
1975 static void* r300_create_vs_state(struct pipe_context* pipe,
1976 const struct pipe_shader_state* shader)
1977 {
1978 struct r300_context* r300 = r300_context(pipe);
1979 struct r300_vertex_shader* vs = CALLOC_STRUCT(r300_vertex_shader);
1980
1981 /* Copy state directly into shader. */
1982 vs->state = *shader;
1983 vs->state.tokens = tgsi_dup_tokens(shader->tokens);
1984
1985 if (r300->screen->caps.has_tcl) {
1986 r300_init_vs_outputs(r300, vs);
1987 r300_translate_vertex_shader(r300, vs);
1988 } else {
1989 r300_draw_init_vertex_shader(r300, vs);
1990 }
1991
1992 return vs;
1993 }
1994
1995 static void r300_bind_vs_state(struct pipe_context* pipe, void* shader)
1996 {
1997 struct r300_context* r300 = r300_context(pipe);
1998 struct r300_vertex_shader* vs = (struct r300_vertex_shader*)shader;
1999
2000 if (vs == NULL) {
2001 r300->vs_state.state = NULL;
2002 return;
2003 }
2004 if (vs == r300->vs_state.state) {
2005 return;
2006 }
2007 r300->vs_state.state = vs;
2008
2009 /* The majority of the RS block bits is dependent on the vertex shader. */
2010 r300_mark_atom_dirty(r300, &r300->rs_block_state); /* Will be updated before the emission. */
2011
2012 if (r300->screen->caps.has_tcl) {
2013 unsigned fc_op_dwords = r300->screen->caps.is_r500 ? 3 : 2;
2014 r300_mark_atom_dirty(r300, &r300->vs_state);
2015 r300->vs_state.size = vs->code.length + 9 +
2016 (R300_VS_MAX_FC_OPS * fc_op_dwords + 4);
2017
2018 r300_mark_atom_dirty(r300, &r300->vs_constants);
2019 r300->vs_constants.size =
2020 2 +
2021 (vs->externals_count ? vs->externals_count * 4 + 3 : 0) +
2022 (vs->immediates_count ? vs->immediates_count * 4 + 3 : 0);
2023
2024 ((struct r300_constant_buffer*)r300->vs_constants.state)->remap_table =
2025 vs->code.constants_remap_table;
2026
2027 r300_mark_atom_dirty(r300, &r300->pvs_flush);
2028 } else {
2029 draw_bind_vertex_shader(r300->draw,
2030 (struct draw_vertex_shader*)vs->draw_vs);
2031 }
2032 }
2033
2034 static void r300_delete_vs_state(struct pipe_context* pipe, void* shader)
2035 {
2036 struct r300_context* r300 = r300_context(pipe);
2037 struct r300_vertex_shader* vs = (struct r300_vertex_shader*)shader;
2038
2039 if (r300->screen->caps.has_tcl) {
2040 rc_constants_destroy(&vs->code.constants);
2041 FREE(vs->code.constants_remap_table);
2042 } else {
2043 draw_delete_vertex_shader(r300->draw,
2044 (struct draw_vertex_shader*)vs->draw_vs);
2045 }
2046
2047 FREE((void*)vs->state.tokens);
2048 FREE(shader);
2049 }
2050
2051 static void r300_set_constant_buffer(struct pipe_context *pipe,
2052 uint shader, uint index,
2053 struct pipe_constant_buffer *cb)
2054 {
2055 struct r300_context* r300 = r300_context(pipe);
2056 struct r300_constant_buffer *cbuf;
2057 uint32_t *mapped;
2058
2059 if (!cb || (!cb->buffer && !cb->user_buffer))
2060 return;
2061
2062 switch (shader) {
2063 case PIPE_SHADER_VERTEX:
2064 cbuf = (struct r300_constant_buffer*)r300->vs_constants.state;
2065 break;
2066 case PIPE_SHADER_FRAGMENT:
2067 cbuf = (struct r300_constant_buffer*)r300->fs_constants.state;
2068 break;
2069 default:
2070 return;
2071 }
2072
2073
2074 if (cb->user_buffer)
2075 mapped = (uint32_t*)cb->user_buffer;
2076 else {
2077 struct r300_resource *rbuf = r300_resource(cb->buffer);
2078
2079 if (rbuf && rbuf->malloced_buffer)
2080 mapped = (uint32_t*)rbuf->malloced_buffer;
2081 else
2082 return;
2083 }
2084
2085 if (shader == PIPE_SHADER_FRAGMENT ||
2086 (shader == PIPE_SHADER_VERTEX && r300->screen->caps.has_tcl)) {
2087 cbuf->ptr = mapped;
2088 }
2089
2090 if (shader == PIPE_SHADER_VERTEX) {
2091 if (r300->screen->caps.has_tcl) {
2092 struct r300_vertex_shader *vs =
2093 (struct r300_vertex_shader*)r300->vs_state.state;
2094
2095 if (!vs) {
2096 cbuf->buffer_base = 0;
2097 return;
2098 }
2099
2100 cbuf->buffer_base = r300->vs_const_base;
2101 r300->vs_const_base += vs->code.constants.Count;
2102 if (r300->vs_const_base > R500_MAX_PVS_CONST_VECS) {
2103 r300->vs_const_base = vs->code.constants.Count;
2104 cbuf->buffer_base = 0;
2105 r300_mark_atom_dirty(r300, &r300->pvs_flush);
2106 }
2107 r300_mark_atom_dirty(r300, &r300->vs_constants);
2108 } else if (r300->draw) {
2109 draw_set_mapped_constant_buffer(r300->draw, PIPE_SHADER_VERTEX,
2110 0, mapped, cb->buffer_size);
2111 }
2112 } else if (shader == PIPE_SHADER_FRAGMENT) {
2113 r300_mark_atom_dirty(r300, &r300->fs_constants);
2114 }
2115 }
2116
2117 static void r300_texture_barrier(struct pipe_context *pipe)
2118 {
2119 struct r300_context *r300 = r300_context(pipe);
2120
2121 r300_mark_atom_dirty(r300, &r300->gpu_flush);
2122 r300_mark_atom_dirty(r300, &r300->texture_cache_inval);
2123 }
2124
2125 void r300_init_state_functions(struct r300_context* r300)
2126 {
2127 r300->context.create_blend_state = r300_create_blend_state;
2128 r300->context.bind_blend_state = r300_bind_blend_state;
2129 r300->context.delete_blend_state = r300_delete_blend_state;
2130
2131 r300->context.set_blend_color = r300_set_blend_color;
2132
2133 r300->context.set_clip_state = r300_set_clip_state;
2134 r300->context.set_sample_mask = r300_set_sample_mask;
2135
2136 r300->context.set_constant_buffer = r300_set_constant_buffer;
2137
2138 r300->context.create_depth_stencil_alpha_state = r300_create_dsa_state;
2139 r300->context.bind_depth_stencil_alpha_state = r300_bind_dsa_state;
2140 r300->context.delete_depth_stencil_alpha_state = r300_delete_dsa_state;
2141
2142 r300->context.set_stencil_ref = r300_set_stencil_ref;
2143
2144 r300->context.set_framebuffer_state = r300_set_framebuffer_state;
2145
2146 r300->context.create_fs_state = r300_create_fs_state;
2147 r300->context.bind_fs_state = r300_bind_fs_state;
2148 r300->context.delete_fs_state = r300_delete_fs_state;
2149
2150 r300->context.set_polygon_stipple = r300_set_polygon_stipple;
2151
2152 r300->context.create_rasterizer_state = r300_create_rs_state;
2153 r300->context.bind_rasterizer_state = r300_bind_rs_state;
2154 r300->context.delete_rasterizer_state = r300_delete_rs_state;
2155
2156 r300->context.create_sampler_state = r300_create_sampler_state;
2157 r300->context.bind_fragment_sampler_states = r300_bind_sampler_states;
2158 r300->context.bind_vertex_sampler_states = r300_lacks_vertex_textures;
2159 r300->context.delete_sampler_state = r300_delete_sampler_state;
2160
2161 r300->context.set_fragment_sampler_views = r300_set_fragment_sampler_views;
2162 r300->context.create_sampler_view = r300_create_sampler_view;
2163 r300->context.sampler_view_destroy = r300_sampler_view_destroy;
2164
2165 r300->context.set_scissor_state = r300_set_scissor_state;
2166
2167 r300->context.set_viewport_state = r300_set_viewport_state;
2168
2169 if (r300->screen->caps.has_tcl) {
2170 r300->context.set_vertex_buffers = r300_set_vertex_buffers_hwtcl;
2171 r300->context.set_index_buffer = r300_set_index_buffer_hwtcl;
2172 } else {
2173 r300->context.set_vertex_buffers = r300_set_vertex_buffers_swtcl;
2174 r300->context.set_index_buffer = r300_set_index_buffer_swtcl;
2175 }
2176
2177 r300->context.create_vertex_elements_state = r300_create_vertex_elements_state;
2178 r300->context.bind_vertex_elements_state = r300_bind_vertex_elements_state;
2179 r300->context.delete_vertex_elements_state = r300_delete_vertex_elements_state;
2180
2181 r300->context.create_vs_state = r300_create_vs_state;
2182 r300->context.bind_vs_state = r300_bind_vs_state;
2183 r300->context.delete_vs_state = r300_delete_vs_state;
2184
2185 r300->context.texture_barrier = r300_texture_barrier;
2186 }