gallium: Avoid void pointer arithmetic.
[mesa.git] / src / gallium / drivers / r300 / r300_state.c
1 /*
2 * Copyright 2008 Corbin Simpson <MostAwesomeDude@gmail.com>
3 * Copyright 2009 Marek Olšák <maraeo@gmail.com>
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * on the rights to use, copy, modify, merge, publish, distribute, sub
9 * license, and/or sell copies of the Software, and to permit persons to whom
10 * the Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE. */
23
24 #include "draw/draw_context.h"
25
26 #include "util/u_blitter.h"
27 #include "util/u_math.h"
28 #include "util/u_memory.h"
29 #include "util/u_pack_color.h"
30
31 #include "tgsi/tgsi_parse.h"
32
33 #include "pipe/p_config.h"
34
35 #include "r300_cb.h"
36 #include "r300_context.h"
37 #include "r300_emit.h"
38 #include "r300_reg.h"
39 #include "r300_screen.h"
40 #include "r300_screen_buffer.h"
41 #include "r300_state_inlines.h"
42 #include "r300_fs.h"
43 #include "r300_texture.h"
44 #include "r300_vs.h"
45 #include "r300_winsys.h"
46
47 /* r300_state: Functions used to intialize state context by translating
48 * Gallium state objects into semi-native r300 state objects. */
49
50 #define UPDATE_STATE(cso, atom) \
51 if (cso != atom.state) { \
52 atom.state = cso; \
53 atom.dirty = TRUE; \
54 }
55
56 static boolean blend_discard_if_src_alpha_0(unsigned srcRGB, unsigned srcA,
57 unsigned dstRGB, unsigned dstA)
58 {
59 /* If the blend equation is ADD or REVERSE_SUBTRACT,
60 * SRC_ALPHA == 0, and the following state is set, the colorbuffer
61 * will not be changed.
62 * Notice that the dst factors are the src factors inverted. */
63 return (srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
64 srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE ||
65 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
66 (srcA == PIPE_BLENDFACTOR_SRC_COLOR ||
67 srcA == PIPE_BLENDFACTOR_SRC_ALPHA ||
68 srcA == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE ||
69 srcA == PIPE_BLENDFACTOR_ZERO) &&
70 (dstRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
71 dstRGB == PIPE_BLENDFACTOR_ONE) &&
72 (dstA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
73 dstA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
74 dstA == PIPE_BLENDFACTOR_ONE);
75 }
76
77 static boolean blend_discard_if_src_alpha_1(unsigned srcRGB, unsigned srcA,
78 unsigned dstRGB, unsigned dstA)
79 {
80 /* If the blend equation is ADD or REVERSE_SUBTRACT,
81 * SRC_ALPHA == 1, and the following state is set, the colorbuffer
82 * will not be changed.
83 * Notice that the dst factors are the src factors inverted. */
84 return (srcRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
85 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
86 (srcA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
87 srcA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
88 srcA == PIPE_BLENDFACTOR_ZERO) &&
89 (dstRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
90 dstRGB == PIPE_BLENDFACTOR_ONE) &&
91 (dstA == PIPE_BLENDFACTOR_SRC_COLOR ||
92 dstA == PIPE_BLENDFACTOR_SRC_ALPHA ||
93 dstA == PIPE_BLENDFACTOR_ONE);
94 }
95
96 static boolean blend_discard_if_src_color_0(unsigned srcRGB, unsigned srcA,
97 unsigned dstRGB, unsigned dstA)
98 {
99 /* If the blend equation is ADD or REVERSE_SUBTRACT,
100 * SRC_COLOR == (0,0,0), and the following state is set, the colorbuffer
101 * will not be changed.
102 * Notice that the dst factors are the src factors inverted. */
103 return (srcRGB == PIPE_BLENDFACTOR_SRC_COLOR ||
104 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
105 (srcA == PIPE_BLENDFACTOR_ZERO) &&
106 (dstRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
107 dstRGB == PIPE_BLENDFACTOR_ONE) &&
108 (dstA == PIPE_BLENDFACTOR_ONE);
109 }
110
111 static boolean blend_discard_if_src_color_1(unsigned srcRGB, unsigned srcA,
112 unsigned dstRGB, unsigned dstA)
113 {
114 /* If the blend equation is ADD or REVERSE_SUBTRACT,
115 * SRC_COLOR == (1,1,1), and the following state is set, the colorbuffer
116 * will not be changed.
117 * Notice that the dst factors are the src factors inverted. */
118 return (srcRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
119 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
120 (srcA == PIPE_BLENDFACTOR_ZERO) &&
121 (dstRGB == PIPE_BLENDFACTOR_SRC_COLOR ||
122 dstRGB == PIPE_BLENDFACTOR_ONE) &&
123 (dstA == PIPE_BLENDFACTOR_ONE);
124 }
125
126 static boolean blend_discard_if_src_alpha_color_0(unsigned srcRGB, unsigned srcA,
127 unsigned dstRGB, unsigned dstA)
128 {
129 /* If the blend equation is ADD or REVERSE_SUBTRACT,
130 * SRC_ALPHA_COLOR == (0,0,0,0), and the following state is set,
131 * the colorbuffer will not be changed.
132 * Notice that the dst factors are the src factors inverted. */
133 return (srcRGB == PIPE_BLENDFACTOR_SRC_COLOR ||
134 srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
135 srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE ||
136 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
137 (srcA == PIPE_BLENDFACTOR_SRC_COLOR ||
138 srcA == PIPE_BLENDFACTOR_SRC_ALPHA ||
139 srcA == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE ||
140 srcA == PIPE_BLENDFACTOR_ZERO) &&
141 (dstRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
142 dstRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
143 dstRGB == PIPE_BLENDFACTOR_ONE) &&
144 (dstA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
145 dstA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
146 dstA == PIPE_BLENDFACTOR_ONE);
147 }
148
149 static boolean blend_discard_if_src_alpha_color_1(unsigned srcRGB, unsigned srcA,
150 unsigned dstRGB, unsigned dstA)
151 {
152 /* If the blend equation is ADD or REVERSE_SUBTRACT,
153 * SRC_ALPHA_COLOR == (1,1,1,1), and the following state is set,
154 * the colorbuffer will not be changed.
155 * Notice that the dst factors are the src factors inverted. */
156 return (srcRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
157 srcRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
158 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
159 (srcA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
160 srcA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
161 srcA == PIPE_BLENDFACTOR_ZERO) &&
162 (dstRGB == PIPE_BLENDFACTOR_SRC_COLOR ||
163 dstRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
164 dstRGB == PIPE_BLENDFACTOR_ONE) &&
165 (dstA == PIPE_BLENDFACTOR_SRC_COLOR ||
166 dstA == PIPE_BLENDFACTOR_SRC_ALPHA ||
167 dstA == PIPE_BLENDFACTOR_ONE);
168 }
169
170 static unsigned bgra_cmask(unsigned mask)
171 {
172 /* Gallium uses RGBA color ordering while R300 expects BGRA. */
173
174 return ((mask & PIPE_MASK_R) << 2) |
175 ((mask & PIPE_MASK_B) >> 2) |
176 (mask & (PIPE_MASK_G | PIPE_MASK_A));
177 }
178
179 /* Create a new blend state based on the CSO blend state.
180 *
181 * This encompasses alpha blending, logic/raster ops, and blend dithering. */
182 static void* r300_create_blend_state(struct pipe_context* pipe,
183 const struct pipe_blend_state* state)
184 {
185 struct r300_screen* r300screen = r300_screen(pipe->screen);
186 struct r300_blend_state* blend = CALLOC_STRUCT(r300_blend_state);
187 uint32_t blend_control = 0; /* R300_RB3D_CBLEND: 0x4e04 */
188 uint32_t alpha_blend_control = 0; /* R300_RB3D_ABLEND: 0x4e08 */
189 uint32_t color_channel_mask = 0; /* R300_RB3D_COLOR_CHANNEL_MASK: 0x4e0c */
190 uint32_t rop = 0; /* R300_RB3D_ROPCNTL: 0x4e18 */
191 uint32_t dither = 0; /* R300_RB3D_DITHER_CTL: 0x4e50 */
192 CB_LOCALS;
193
194 if (state->rt[0].blend_enable)
195 {
196 unsigned eqRGB = state->rt[0].rgb_func;
197 unsigned srcRGB = state->rt[0].rgb_src_factor;
198 unsigned dstRGB = state->rt[0].rgb_dst_factor;
199
200 unsigned eqA = state->rt[0].alpha_func;
201 unsigned srcA = state->rt[0].alpha_src_factor;
202 unsigned dstA = state->rt[0].alpha_dst_factor;
203
204 /* despite the name, ALPHA_BLEND_ENABLE has nothing to do with alpha,
205 * this is just the crappy D3D naming */
206 blend_control = R300_ALPHA_BLEND_ENABLE |
207 r300_translate_blend_function(eqRGB) |
208 ( r300_translate_blend_factor(srcRGB) << R300_SRC_BLEND_SHIFT) |
209 ( r300_translate_blend_factor(dstRGB) << R300_DST_BLEND_SHIFT);
210
211 /* Optimization: some operations do not require the destination color.
212 *
213 * When SRC_ALPHA_SATURATE is used, colorbuffer reads must be enabled,
214 * otherwise blending gives incorrect results. It seems to be
215 * a hardware bug. */
216 if (eqRGB == PIPE_BLEND_MIN || eqA == PIPE_BLEND_MIN ||
217 eqRGB == PIPE_BLEND_MAX || eqA == PIPE_BLEND_MAX ||
218 dstRGB != PIPE_BLENDFACTOR_ZERO ||
219 dstA != PIPE_BLENDFACTOR_ZERO ||
220 srcRGB == PIPE_BLENDFACTOR_DST_COLOR ||
221 srcRGB == PIPE_BLENDFACTOR_DST_ALPHA ||
222 srcRGB == PIPE_BLENDFACTOR_INV_DST_COLOR ||
223 srcRGB == PIPE_BLENDFACTOR_INV_DST_ALPHA ||
224 srcA == PIPE_BLENDFACTOR_DST_COLOR ||
225 srcA == PIPE_BLENDFACTOR_DST_ALPHA ||
226 srcA == PIPE_BLENDFACTOR_INV_DST_COLOR ||
227 srcA == PIPE_BLENDFACTOR_INV_DST_ALPHA ||
228 srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE) {
229 /* Enable reading from the colorbuffer. */
230 blend_control |= R300_READ_ENABLE;
231
232 if (r300screen->caps.is_r500) {
233 /* Optimization: Depending on incoming pixels, we can
234 * conditionally disable the reading in hardware... */
235 if (eqRGB != PIPE_BLEND_MIN && eqA != PIPE_BLEND_MIN &&
236 eqRGB != PIPE_BLEND_MAX && eqA != PIPE_BLEND_MAX) {
237 /* Disable reading if SRC_ALPHA == 0. */
238 if ((dstRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
239 dstRGB == PIPE_BLENDFACTOR_ZERO) &&
240 (dstA == PIPE_BLENDFACTOR_SRC_COLOR ||
241 dstA == PIPE_BLENDFACTOR_SRC_ALPHA ||
242 dstA == PIPE_BLENDFACTOR_ZERO)) {
243 blend_control |= R500_SRC_ALPHA_0_NO_READ;
244 }
245
246 /* Disable reading if SRC_ALPHA == 1. */
247 if ((dstRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
248 dstRGB == PIPE_BLENDFACTOR_ZERO) &&
249 (dstA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
250 dstA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
251 dstA == PIPE_BLENDFACTOR_ZERO)) {
252 blend_control |= R500_SRC_ALPHA_1_NO_READ;
253 }
254 }
255 }
256 }
257
258 /* Optimization: discard pixels which don't change the colorbuffer.
259 *
260 * The code below is non-trivial and some math is involved.
261 *
262 * Discarding pixels must be disabled when FP16 AA is enabled.
263 * This is a hardware bug. Also, this implementation wouldn't work
264 * with FP blending enabled and equation clamping disabled.
265 *
266 * Equations other than ADD are rarely used and therefore won't be
267 * optimized. */
268 if ((eqRGB == PIPE_BLEND_ADD || eqRGB == PIPE_BLEND_REVERSE_SUBTRACT) &&
269 (eqA == PIPE_BLEND_ADD || eqA == PIPE_BLEND_REVERSE_SUBTRACT)) {
270 /* ADD: X+Y
271 * REVERSE_SUBTRACT: Y-X
272 *
273 * The idea is:
274 * If X = src*srcFactor = 0 and Y = dst*dstFactor = 1,
275 * then CB will not be changed.
276 *
277 * Given the srcFactor and dstFactor variables, we can derive
278 * what src and dst should be equal to and discard appropriate
279 * pixels.
280 */
281 if (blend_discard_if_src_alpha_0(srcRGB, srcA, dstRGB, dstA)) {
282 blend_control |= R300_DISCARD_SRC_PIXELS_SRC_ALPHA_0;
283 } else if (blend_discard_if_src_alpha_1(srcRGB, srcA,
284 dstRGB, dstA)) {
285 blend_control |= R300_DISCARD_SRC_PIXELS_SRC_ALPHA_1;
286 } else if (blend_discard_if_src_color_0(srcRGB, srcA,
287 dstRGB, dstA)) {
288 blend_control |= R300_DISCARD_SRC_PIXELS_SRC_COLOR_0;
289 } else if (blend_discard_if_src_color_1(srcRGB, srcA,
290 dstRGB, dstA)) {
291 blend_control |= R300_DISCARD_SRC_PIXELS_SRC_COLOR_1;
292 } else if (blend_discard_if_src_alpha_color_0(srcRGB, srcA,
293 dstRGB, dstA)) {
294 blend_control |=
295 R300_DISCARD_SRC_PIXELS_SRC_ALPHA_COLOR_0;
296 } else if (blend_discard_if_src_alpha_color_1(srcRGB, srcA,
297 dstRGB, dstA)) {
298 blend_control |=
299 R300_DISCARD_SRC_PIXELS_SRC_ALPHA_COLOR_1;
300 }
301 }
302
303 /* separate alpha */
304 if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB) {
305 blend_control |= R300_SEPARATE_ALPHA_ENABLE;
306 alpha_blend_control =
307 r300_translate_blend_function(eqA) |
308 (r300_translate_blend_factor(srcA) << R300_SRC_BLEND_SHIFT) |
309 (r300_translate_blend_factor(dstA) << R300_DST_BLEND_SHIFT);
310 }
311 }
312
313 /* PIPE_LOGICOP_* don't need to be translated, fortunately. */
314 if (state->logicop_enable) {
315 rop = R300_RB3D_ROPCNTL_ROP_ENABLE |
316 (state->logicop_func) << R300_RB3D_ROPCNTL_ROP_SHIFT;
317 }
318
319 /* Color channel masks for all MRTs. */
320 color_channel_mask = bgra_cmask(state->rt[0].colormask);
321 if (r300screen->caps.is_r500 && state->independent_blend_enable) {
322 if (state->rt[1].blend_enable) {
323 color_channel_mask |= bgra_cmask(state->rt[1].colormask) << 4;
324 }
325 if (state->rt[2].blend_enable) {
326 color_channel_mask |= bgra_cmask(state->rt[2].colormask) << 8;
327 }
328 if (state->rt[3].blend_enable) {
329 color_channel_mask |= bgra_cmask(state->rt[3].colormask) << 12;
330 }
331 }
332
333 /* Neither fglrx nor classic r300 ever set this, regardless of dithering
334 * state. Since it's an optional implementation detail, we can leave it
335 * out and never dither.
336 *
337 * This could be revisited if we ever get quality or conformance hints.
338 *
339 if (state->dither) {
340 dither = R300_RB3D_DITHER_CTL_DITHER_MODE_LUT |
341 R300_RB3D_DITHER_CTL_ALPHA_DITHER_MODE_LUT;
342 }
343 */
344
345 /* Build a command buffer. */
346 BEGIN_CB(blend->cb, 8);
347 OUT_CB_REG(R300_RB3D_ROPCNTL, rop);
348 OUT_CB_REG_SEQ(R300_RB3D_CBLEND, 3);
349 OUT_CB(blend_control);
350 OUT_CB(alpha_blend_control);
351 OUT_CB(color_channel_mask);
352 OUT_CB_REG(R300_RB3D_DITHER_CTL, dither);
353 END_CB;
354
355 /* The same as above, but with no colorbuffer reads and writes. */
356 BEGIN_CB(blend->cb_no_readwrite, 8);
357 OUT_CB_REG(R300_RB3D_ROPCNTL, rop);
358 OUT_CB_REG_SEQ(R300_RB3D_CBLEND, 3);
359 OUT_CB(0);
360 OUT_CB(0);
361 OUT_CB(0);
362 OUT_CB_REG(R300_RB3D_DITHER_CTL, dither);
363 END_CB;
364
365 return (void*)blend;
366 }
367
368 /* Bind blend state. */
369 static void r300_bind_blend_state(struct pipe_context* pipe,
370 void* state)
371 {
372 struct r300_context* r300 = r300_context(pipe);
373
374 UPDATE_STATE(state, r300->blend_state);
375 }
376
377 /* Free blend state. */
378 static void r300_delete_blend_state(struct pipe_context* pipe,
379 void* state)
380 {
381 FREE(state);
382 }
383
384 /* Convert float to 10bit integer */
385 static unsigned float_to_fixed10(float f)
386 {
387 return CLAMP((unsigned)(f * 1023.9f), 0, 1023);
388 }
389
390 /* Set blend color.
391 * Setup both R300 and R500 registers, figure out later which one to write. */
392 static void r300_set_blend_color(struct pipe_context* pipe,
393 const struct pipe_blend_color* color)
394 {
395 struct r300_context* r300 = r300_context(pipe);
396 struct r300_blend_color_state* state =
397 (struct r300_blend_color_state*)r300->blend_color_state.state;
398 CB_LOCALS;
399
400 if (r300->screen->caps.is_r500) {
401 /* XXX if FP16 blending is enabled, we should use the FP16 format */
402 BEGIN_CB(state->cb, 3);
403 OUT_CB_REG_SEQ(R500_RB3D_CONSTANT_COLOR_AR, 2);
404 OUT_CB(float_to_fixed10(color->color[0]) |
405 (float_to_fixed10(color->color[3]) << 16));
406 OUT_CB(float_to_fixed10(color->color[2]) |
407 (float_to_fixed10(color->color[1]) << 16));
408 END_CB;
409 } else {
410 union util_color uc;
411 util_pack_color(color->color, PIPE_FORMAT_B8G8R8A8_UNORM, &uc);
412
413 BEGIN_CB(state->cb, 2);
414 OUT_CB_REG(R300_RB3D_BLEND_COLOR, uc.ui);
415 END_CB;
416 }
417
418 r300->blend_color_state.dirty = TRUE;
419 }
420
421 static void r300_set_clip_state(struct pipe_context* pipe,
422 const struct pipe_clip_state* state)
423 {
424 struct r300_context* r300 = r300_context(pipe);
425 struct r300_clip_state *clip =
426 (struct r300_clip_state*)r300->clip_state.state;
427 CB_LOCALS;
428
429 clip->clip = *state;
430
431 if (r300->screen->caps.has_tcl) {
432 r300->clip_state.size = 2 + !!state->nr * 3 + state->nr * 4;
433
434 BEGIN_CB(clip->cb, r300->clip_state.size);
435 if (state->nr) {
436 OUT_CB_REG(R300_VAP_PVS_VECTOR_INDX_REG,
437 (r300->screen->caps.is_r500 ?
438 R500_PVS_UCP_START : R300_PVS_UCP_START));
439 OUT_CB_ONE_REG(R300_VAP_PVS_UPLOAD_DATA, state->nr * 4);
440 OUT_CB_TABLE(state->ucp, state->nr * 4);
441 }
442 OUT_CB_REG(R300_VAP_CLIP_CNTL, ((1 << state->nr) - 1) |
443 R300_PS_UCP_MODE_CLIP_AS_TRIFAN |
444 (state->depth_clamp ? R300_CLIP_DISABLE : 0));
445 END_CB;
446
447 r300->clip_state.dirty = TRUE;
448 } else {
449 draw_flush(r300->draw);
450 draw_set_clip_state(r300->draw, state);
451 }
452 }
453
454 static void
455 r300_set_sample_mask(struct pipe_context *pipe,
456 unsigned sample_mask)
457 {
458 }
459
460
461 /* Create a new depth, stencil, and alpha state based on the CSO dsa state.
462 *
463 * This contains the depth buffer, stencil buffer, alpha test, and such.
464 * On the Radeon, depth and stencil buffer setup are intertwined, which is
465 * the reason for some of the strange-looking assignments across registers. */
466 static void*
467 r300_create_dsa_state(struct pipe_context* pipe,
468 const struct pipe_depth_stencil_alpha_state* state)
469 {
470 struct r300_capabilities *caps = &r300_screen(pipe->screen)->caps;
471 struct r300_dsa_state* dsa = CALLOC_STRUCT(r300_dsa_state);
472 CB_LOCALS;
473
474 dsa->dsa = *state;
475
476 /* Depth test setup. */
477 if (state->depth.enabled) {
478 dsa->z_buffer_control |= R300_Z_ENABLE;
479
480 if (state->depth.writemask) {
481 dsa->z_buffer_control |= R300_Z_WRITE_ENABLE;
482 }
483
484 dsa->z_stencil_control |=
485 (r300_translate_depth_stencil_function(state->depth.func) <<
486 R300_Z_FUNC_SHIFT);
487 }
488
489 /* Stencil buffer setup. */
490 if (state->stencil[0].enabled) {
491 dsa->z_buffer_control |= R300_STENCIL_ENABLE;
492 dsa->z_stencil_control |=
493 (r300_translate_depth_stencil_function(state->stencil[0].func) <<
494 R300_S_FRONT_FUNC_SHIFT) |
495 (r300_translate_stencil_op(state->stencil[0].fail_op) <<
496 R300_S_FRONT_SFAIL_OP_SHIFT) |
497 (r300_translate_stencil_op(state->stencil[0].zpass_op) <<
498 R300_S_FRONT_ZPASS_OP_SHIFT) |
499 (r300_translate_stencil_op(state->stencil[0].zfail_op) <<
500 R300_S_FRONT_ZFAIL_OP_SHIFT);
501
502 dsa->stencil_ref_mask =
503 (state->stencil[0].valuemask << R300_STENCILMASK_SHIFT) |
504 (state->stencil[0].writemask << R300_STENCILWRITEMASK_SHIFT);
505
506 if (state->stencil[1].enabled) {
507 dsa->two_sided = TRUE;
508
509 dsa->z_buffer_control |= R300_STENCIL_FRONT_BACK;
510 dsa->z_stencil_control |=
511 (r300_translate_depth_stencil_function(state->stencil[1].func) <<
512 R300_S_BACK_FUNC_SHIFT) |
513 (r300_translate_stencil_op(state->stencil[1].fail_op) <<
514 R300_S_BACK_SFAIL_OP_SHIFT) |
515 (r300_translate_stencil_op(state->stencil[1].zpass_op) <<
516 R300_S_BACK_ZPASS_OP_SHIFT) |
517 (r300_translate_stencil_op(state->stencil[1].zfail_op) <<
518 R300_S_BACK_ZFAIL_OP_SHIFT);
519
520 dsa->stencil_ref_bf =
521 (state->stencil[1].valuemask << R300_STENCILMASK_SHIFT) |
522 (state->stencil[1].writemask << R300_STENCILWRITEMASK_SHIFT);
523
524 if (caps->is_r500) {
525 dsa->z_buffer_control |= R500_STENCIL_REFMASK_FRONT_BACK;
526 } else {
527 dsa->two_sided_stencil_ref =
528 (state->stencil[0].valuemask != state->stencil[1].valuemask ||
529 state->stencil[0].writemask != state->stencil[1].writemask);
530 }
531 }
532 }
533
534 /* Alpha test setup. */
535 if (state->alpha.enabled) {
536 dsa->alpha_function =
537 r300_translate_alpha_function(state->alpha.func) |
538 R300_FG_ALPHA_FUNC_ENABLE;
539
540 /* We could use 10bit alpha ref but who needs that? */
541 dsa->alpha_function |= float_to_ubyte(state->alpha.ref_value);
542
543 if (caps->is_r500)
544 dsa->alpha_function |= R500_FG_ALPHA_FUNC_8BIT;
545 }
546
547 BEGIN_CB(&dsa->cb_begin, 8);
548 OUT_CB_REG(R300_FG_ALPHA_FUNC, dsa->alpha_function);
549 OUT_CB_REG_SEQ(R300_ZB_CNTL, 3);
550 OUT_CB(dsa->z_buffer_control);
551 OUT_CB(dsa->z_stencil_control);
552 OUT_CB(dsa->stencil_ref_mask);
553 OUT_CB_REG(R500_ZB_STENCILREFMASK_BF, dsa->stencil_ref_bf);
554 END_CB;
555
556 BEGIN_CB(dsa->cb_no_readwrite, 8);
557 OUT_CB_REG(R300_FG_ALPHA_FUNC, dsa->alpha_function);
558 OUT_CB_REG_SEQ(R300_ZB_CNTL, 3);
559 OUT_CB(0);
560 OUT_CB(0);
561 OUT_CB(0);
562 OUT_CB_REG(R500_ZB_STENCILREFMASK_BF, 0);
563 END_CB;
564
565 return (void*)dsa;
566 }
567
568 static void r300_dsa_inject_stencilref(struct r300_context *r300)
569 {
570 struct r300_dsa_state *dsa =
571 (struct r300_dsa_state*)r300->dsa_state.state;
572
573 if (!dsa)
574 return;
575
576 dsa->stencil_ref_mask =
577 (dsa->stencil_ref_mask & ~R300_STENCILREF_MASK) |
578 r300->stencil_ref.ref_value[0];
579 dsa->stencil_ref_bf =
580 (dsa->stencil_ref_bf & ~R300_STENCILREF_MASK) |
581 r300->stencil_ref.ref_value[1];
582 }
583
584 /* Bind DSA state. */
585 static void r300_bind_dsa_state(struct pipe_context* pipe,
586 void* state)
587 {
588 struct r300_context* r300 = r300_context(pipe);
589
590 if (!state) {
591 return;
592 }
593
594 UPDATE_STATE(state, r300->dsa_state);
595
596 r300_dsa_inject_stencilref(r300);
597 }
598
599 /* Free DSA state. */
600 static void r300_delete_dsa_state(struct pipe_context* pipe,
601 void* state)
602 {
603 FREE(state);
604 }
605
606 static void r300_set_stencil_ref(struct pipe_context* pipe,
607 const struct pipe_stencil_ref* sr)
608 {
609 struct r300_context* r300 = r300_context(pipe);
610
611 r300->stencil_ref = *sr;
612
613 r300_dsa_inject_stencilref(r300);
614 r300->dsa_state.dirty = TRUE;
615 }
616
617 static void r300_tex_set_tiling_flags(struct r300_context *r300,
618 struct r300_texture *tex, unsigned level)
619 {
620 /* Check if the macrotile flag needs to be changed.
621 * Skip changing the flags otherwise. */
622 if (tex->desc.macrotile[tex->surface_level] !=
623 tex->desc.macrotile[level]) {
624 /* Tiling determines how DRM treats the buffer data.
625 * We must flush CS when changing it if the buffer is referenced. */
626 if (r300->rws->cs_is_buffer_referenced(r300->cs,
627 tex->buffer, R300_REF_CS))
628 r300->context.flush(&r300->context, 0, NULL);
629
630 r300->rws->buffer_set_tiling(r300->rws, tex->buffer,
631 tex->desc.microtile, tex->desc.macrotile[level],
632 tex->desc.stride_in_bytes[0]);
633
634 tex->surface_level = level;
635 }
636 }
637
638 /* This switcheroo is needed just because of goddamned MACRO_SWITCH. */
639 static void r300_fb_set_tiling_flags(struct r300_context *r300,
640 const struct pipe_framebuffer_state *state)
641 {
642 unsigned i;
643
644 /* Set tiling flags for new surfaces. */
645 for (i = 0; i < state->nr_cbufs; i++) {
646 r300_tex_set_tiling_flags(r300,
647 r300_texture(state->cbufs[i]->texture),
648 state->cbufs[i]->level);
649 }
650 if (state->zsbuf) {
651 r300_tex_set_tiling_flags(r300,
652 r300_texture(state->zsbuf->texture),
653 state->zsbuf->level);
654 }
655 }
656
657 static void r300_print_fb_surf_info(struct pipe_surface *surf, unsigned index,
658 const char *binding)
659 {
660 struct pipe_resource *tex = surf->texture;
661 struct r300_texture *rtex = r300_texture(tex);
662
663 fprintf(stderr,
664 "r300: %s[%i] Dim: %ix%i, Offset: %i, ZSlice: %i, "
665 "Face: %i, Level: %i, Format: %s\n"
666
667 "r300: TEX: Macro: %s, Micro: %s, Pitch: %i, "
668 "Dim: %ix%ix%i, LastLevel: %i, Format: %s\n",
669
670 binding, index, surf->width, surf->height, surf->offset,
671 surf->zslice, surf->face, surf->level,
672 util_format_short_name(surf->format),
673
674 rtex->desc.macrotile[0] ? "YES" : " NO",
675 rtex->desc.microtile ? "YES" : " NO",
676 rtex->desc.stride_in_pixels[0],
677 tex->width0, tex->height0, tex->depth0,
678 tex->last_level, util_format_short_name(tex->format));
679 }
680
681 void r300_mark_fb_state_dirty(struct r300_context *r300,
682 enum r300_fb_state_change change)
683 {
684 struct pipe_framebuffer_state *state = r300->fb_state.state;
685
686 /* What is marked as dirty depends on the enum r300_fb_state_change. */
687 r300->gpu_flush.dirty = TRUE;
688 r300->fb_state.dirty = TRUE;
689 r300->hyperz_state.dirty = TRUE;
690
691 if (change == R300_CHANGED_FB_STATE) {
692 r300->aa_state.dirty = TRUE;
693 r300->fb_state_pipelined.dirty = TRUE;
694 }
695
696 /* Now compute the fb_state atom size. */
697 r300->fb_state.size = 2 + (8 * state->nr_cbufs);
698
699 if (r300->cbzb_clear)
700 r300->fb_state.size += 10;
701 else if (state->zsbuf)
702 r300->fb_state.size += r300->screen->caps.has_hiz ? 18 : 14;
703
704 /* The size of the rest of atoms stays the same. */
705 }
706
707 static void
708 r300_set_framebuffer_state(struct pipe_context* pipe,
709 const struct pipe_framebuffer_state* state)
710 {
711 struct r300_context* r300 = r300_context(pipe);
712 struct r300_aa_state *aa = (struct r300_aa_state*)r300->aa_state.state;
713 struct pipe_framebuffer_state *old_state = r300->fb_state.state;
714 unsigned max_width, max_height, i;
715 uint32_t zbuffer_bpp = 0;
716
717 if (r300->screen->caps.is_r500) {
718 max_width = max_height = 4096;
719 } else if (r300->screen->caps.is_r400) {
720 max_width = max_height = 4021;
721 } else {
722 max_width = max_height = 2560;
723 }
724
725 if (state->width > max_width || state->height > max_height) {
726 fprintf(stderr, "r300: Implementation error: Render targets are too "
727 "big in %s, refusing to bind framebuffer state!\n", __FUNCTION__);
728 return;
729 }
730
731 if (r300->draw) {
732 draw_flush(r300->draw);
733 }
734
735 /* If nr_cbufs is changed from zero to non-zero or vice versa... */
736 if (!!old_state->nr_cbufs != !!state->nr_cbufs) {
737 r300->blend_state.dirty = TRUE;
738 }
739 /* If zsbuf is set from NULL to non-NULL or vice versa.. */
740 if (!!old_state->zsbuf != !!state->zsbuf) {
741 r300->dsa_state.dirty = TRUE;
742 }
743
744 /* The tiling flags are dependent on the surface miplevel, unfortunately. */
745 r300_fb_set_tiling_flags(r300, state);
746
747 util_assign_framebuffer_state(r300->fb_state.state, state);
748
749 r300_mark_fb_state_dirty(r300, R300_CHANGED_FB_STATE);
750
751 /* Polygon offset depends on the zbuffer bit depth. */
752 if (state->zsbuf && r300->polygon_offset_enabled) {
753 switch (util_format_get_blocksize(state->zsbuf->texture->format)) {
754 case 2:
755 zbuffer_bpp = 16;
756 break;
757 case 4:
758 zbuffer_bpp = 24;
759 break;
760 }
761
762 if (r300->zbuffer_bpp != zbuffer_bpp) {
763 r300->zbuffer_bpp = zbuffer_bpp;
764 r300->rs_state.dirty = TRUE;
765 }
766 }
767
768 /* Set up AA config. */
769 if (r300->rws->get_value(r300->rws, R300_VID_DRM_2_3_0)) {
770 if (state->nr_cbufs && state->cbufs[0]->texture->nr_samples > 1) {
771 aa->aa_config = R300_GB_AA_CONFIG_AA_ENABLE;
772
773 switch (state->cbufs[0]->texture->nr_samples) {
774 case 2:
775 aa->aa_config |= R300_GB_AA_CONFIG_NUM_AA_SUBSAMPLES_2;
776 break;
777 case 3:
778 aa->aa_config |= R300_GB_AA_CONFIG_NUM_AA_SUBSAMPLES_3;
779 break;
780 case 4:
781 aa->aa_config |= R300_GB_AA_CONFIG_NUM_AA_SUBSAMPLES_4;
782 break;
783 case 6:
784 aa->aa_config |= R300_GB_AA_CONFIG_NUM_AA_SUBSAMPLES_6;
785 break;
786 }
787 } else {
788 aa->aa_config = 0;
789 }
790 }
791
792 if (DBG_ON(r300, DBG_FB)) {
793 fprintf(stderr, "r300: set_framebuffer_state:\n");
794 for (i = 0; i < state->nr_cbufs; i++) {
795 r300_print_fb_surf_info(state->cbufs[i], i, "CB");
796 }
797 if (state->zsbuf) {
798 r300_print_fb_surf_info(state->zsbuf, 0, "ZB");
799 }
800 }
801 }
802
803 /* Create fragment shader state. */
804 static void* r300_create_fs_state(struct pipe_context* pipe,
805 const struct pipe_shader_state* shader)
806 {
807 struct r300_fragment_shader* fs = NULL;
808
809 fs = (struct r300_fragment_shader*)CALLOC_STRUCT(r300_fragment_shader);
810
811 /* Copy state directly into shader. */
812 fs->state = *shader;
813 fs->state.tokens = tgsi_dup_tokens(shader->tokens);
814
815 return (void*)fs;
816 }
817
818 void r300_mark_fs_code_dirty(struct r300_context *r300)
819 {
820 struct r300_fragment_shader* fs = r300_fs(r300);
821
822 r300->fs.dirty = TRUE;
823 r300->fs_rc_constant_state.dirty = TRUE;
824 r300->fs_constants.dirty = TRUE;
825 r300->fs.size = fs->shader->cb_code_size;
826
827 if (r300->screen->caps.is_r500) {
828 r300->fs_rc_constant_state.size = fs->shader->rc_state_count * 7;
829 r300->fs_constants.size = fs->shader->externals_count * 4 + 3;
830 } else {
831 r300->fs_rc_constant_state.size = fs->shader->rc_state_count * 5;
832 r300->fs_constants.size = fs->shader->externals_count * 4 + 1;
833 }
834 }
835
836 /* Bind fragment shader state. */
837 static void r300_bind_fs_state(struct pipe_context* pipe, void* shader)
838 {
839 struct r300_context* r300 = r300_context(pipe);
840 struct r300_fragment_shader* fs = (struct r300_fragment_shader*)shader;
841
842 if (fs == NULL) {
843 r300->fs.state = NULL;
844 return;
845 }
846
847 r300->fs.state = fs;
848 r300_pick_fragment_shader(r300);
849 r300_mark_fs_code_dirty(r300);
850
851 r300->rs_block_state.dirty = TRUE; /* Will be updated before the emission. */
852 }
853
854 /* Delete fragment shader state. */
855 static void r300_delete_fs_state(struct pipe_context* pipe, void* shader)
856 {
857 struct r300_fragment_shader* fs = (struct r300_fragment_shader*)shader;
858 struct r300_fragment_shader_code *tmp, *ptr = fs->first;
859
860 while (ptr) {
861 tmp = ptr;
862 ptr = ptr->next;
863 rc_constants_destroy(&tmp->code.constants);
864 FREE(tmp->cb_code);
865 FREE(tmp);
866 }
867 FREE((void*)fs->state.tokens);
868 FREE(shader);
869 }
870
871 static void r300_set_polygon_stipple(struct pipe_context* pipe,
872 const struct pipe_poly_stipple* state)
873 {
874 /* XXX no idea how to set this up, but not terribly important */
875 }
876
877 /* Create a new rasterizer state based on the CSO rasterizer state.
878 *
879 * This is a very large chunk of state, and covers most of the graphics
880 * backend (GB), geometry assembly (GA), and setup unit (SU) blocks.
881 *
882 * In a not entirely unironic sidenote, this state has nearly nothing to do
883 * with the actual block on the Radeon called the rasterizer (RS). */
884 static void* r300_create_rs_state(struct pipe_context* pipe,
885 const struct pipe_rasterizer_state* state)
886 {
887 struct r300_rs_state* rs = CALLOC_STRUCT(r300_rs_state);
888 int i;
889 float psiz;
890 uint32_t vap_control_status; /* R300_VAP_CNTL_STATUS: 0x2140 */
891 uint32_t point_size; /* R300_GA_POINT_SIZE: 0x421c */
892 uint32_t point_minmax; /* R300_GA_POINT_MINMAX: 0x4230 */
893 uint32_t line_control; /* R300_GA_LINE_CNTL: 0x4234 */
894 uint32_t polygon_offset_enable; /* R300_SU_POLY_OFFSET_ENABLE: 0x42b4 */
895 uint32_t cull_mode; /* R300_SU_CULL_MODE: 0x42b8 */
896 uint32_t line_stipple_config; /* R300_GA_LINE_STIPPLE_CONFIG: 0x4328 */
897 uint32_t line_stipple_value; /* R300_GA_LINE_STIPPLE_VALUE: 0x4260 */
898 uint32_t polygon_mode; /* R300_GA_POLY_MODE: 0x4288 */
899 uint32_t clip_rule; /* R300_SC_CLIP_RULE: 0x43D0 */
900
901 /* Specifies top of Raster pipe specific enable controls,
902 * i.e. texture coordinates stuffing for points, lines, triangles */
903 uint32_t stuffing_enable; /* R300_GB_ENABLE: 0x4008 */
904
905 /* Point sprites texture coordinates, 0: lower left, 1: upper right */
906 float point_texcoord_left; /* R300_GA_POINT_S0: 0x4200 */
907 float point_texcoord_bottom = 0;/* R300_GA_POINT_T0: 0x4204 */
908 float point_texcoord_right; /* R300_GA_POINT_S1: 0x4208 */
909 float point_texcoord_top = 0; /* R300_GA_POINT_T1: 0x420c */
910 CB_LOCALS;
911
912 /* Copy rasterizer state. */
913 rs->rs = *state;
914 rs->rs_draw = *state;
915
916 /* Override some states for Draw. */
917 rs->rs_draw.sprite_coord_enable = 0; /* We can do this in HW. */
918
919 #ifdef PIPE_ARCH_LITTLE_ENDIAN
920 vap_control_status = R300_VC_NO_SWAP;
921 #else
922 vap_control_status = R300_VC_32BIT_SWAP;
923 #endif
924
925 /* If no TCL engine is present, turn off the HW TCL. */
926 if (!r300_screen(pipe->screen)->caps.has_tcl) {
927 vap_control_status |= R300_VAP_TCL_BYPASS;
928 }
929
930 /* Point size width and height. */
931 point_size =
932 pack_float_16_6x(state->point_size) |
933 (pack_float_16_6x(state->point_size) << R300_POINTSIZE_X_SHIFT);
934
935 /* Point size clamping. */
936 if (state->point_size_per_vertex) {
937 /* Per-vertex point size.
938 * Clamp to [0, max FB size] */
939 psiz = pipe->screen->get_paramf(pipe->screen,
940 PIPE_CAP_MAX_POINT_WIDTH);
941 point_minmax =
942 pack_float_16_6x(psiz) << R300_GA_POINT_MINMAX_MAX_SHIFT;
943 } else {
944 /* We cannot disable the point-size vertex output,
945 * so clamp it. */
946 psiz = state->point_size;
947 point_minmax =
948 (pack_float_16_6x(psiz) << R300_GA_POINT_MINMAX_MIN_SHIFT) |
949 (pack_float_16_6x(psiz) << R300_GA_POINT_MINMAX_MAX_SHIFT);
950 }
951
952 /* Line control. */
953 line_control = pack_float_16_6x(state->line_width) |
954 R300_GA_LINE_CNTL_END_TYPE_COMP;
955
956 /* Enable polygon mode */
957 polygon_mode = 0;
958 if (state->fill_front != PIPE_POLYGON_MODE_FILL ||
959 state->fill_back != PIPE_POLYGON_MODE_FILL) {
960 polygon_mode = R300_GA_POLY_MODE_DUAL;
961 }
962
963 /* Front face */
964 if (state->front_ccw)
965 cull_mode = R300_FRONT_FACE_CCW;
966 else
967 cull_mode = R300_FRONT_FACE_CW;
968
969 /* Polygon offset */
970 polygon_offset_enable = 0;
971 if (util_get_offset(state, state->fill_front)) {
972 polygon_offset_enable |= R300_FRONT_ENABLE;
973 }
974 if (util_get_offset(state, state->fill_back)) {
975 polygon_offset_enable |= R300_BACK_ENABLE;
976 }
977
978 rs->polygon_offset_enable = polygon_offset_enable != 0;
979
980 /* Polygon mode */
981 if (polygon_mode) {
982 polygon_mode |=
983 r300_translate_polygon_mode_front(state->fill_front);
984 polygon_mode |=
985 r300_translate_polygon_mode_back(state->fill_back);
986 }
987
988 if (state->cull_face & PIPE_FACE_FRONT) {
989 cull_mode |= R300_CULL_FRONT;
990 }
991 if (state->cull_face & PIPE_FACE_BACK) {
992 cull_mode |= R300_CULL_BACK;
993 }
994
995 if (state->line_stipple_enable) {
996 line_stipple_config =
997 R300_GA_LINE_STIPPLE_CONFIG_LINE_RESET_LINE |
998 (fui((float)state->line_stipple_factor) &
999 R300_GA_LINE_STIPPLE_CONFIG_STIPPLE_SCALE_MASK);
1000 /* XXX this might need to be scaled up */
1001 line_stipple_value = state->line_stipple_pattern;
1002 } else {
1003 line_stipple_config = 0;
1004 line_stipple_value = 0;
1005 }
1006
1007 if (state->flatshade) {
1008 rs->color_control = R300_SHADE_MODEL_FLAT;
1009 } else {
1010 rs->color_control = R300_SHADE_MODEL_SMOOTH;
1011 }
1012
1013 clip_rule = state->scissor ? 0xAAAA : 0xFFFF;
1014
1015 /* Point sprites */
1016 stuffing_enable = 0;
1017 if (state->sprite_coord_enable) {
1018 stuffing_enable = R300_GB_POINT_STUFF_ENABLE;
1019 for (i = 0; i < 8; i++) {
1020 if (state->sprite_coord_enable & (1 << i))
1021 stuffing_enable |=
1022 R300_GB_TEX_STR << (R300_GB_TEX0_SOURCE_SHIFT + (i*2));
1023 }
1024
1025 point_texcoord_left = 0.0f;
1026 point_texcoord_right = 1.0f;
1027
1028 switch (state->sprite_coord_mode) {
1029 case PIPE_SPRITE_COORD_UPPER_LEFT:
1030 point_texcoord_top = 0.0f;
1031 point_texcoord_bottom = 1.0f;
1032 break;
1033 case PIPE_SPRITE_COORD_LOWER_LEFT:
1034 point_texcoord_top = 1.0f;
1035 point_texcoord_bottom = 0.0f;
1036 break;
1037 }
1038 }
1039
1040 /* Build the main command buffer. */
1041 BEGIN_CB(rs->cb_main, 25);
1042 OUT_CB_REG(R300_VAP_CNTL_STATUS, vap_control_status);
1043 OUT_CB_REG(R300_GA_POINT_SIZE, point_size);
1044 OUT_CB_REG_SEQ(R300_GA_POINT_MINMAX, 2);
1045 OUT_CB(point_minmax);
1046 OUT_CB(line_control);
1047 OUT_CB_REG_SEQ(R300_SU_POLY_OFFSET_ENABLE, 2);
1048 OUT_CB(polygon_offset_enable);
1049 rs->cull_mode_index = 9;
1050 OUT_CB(cull_mode);
1051 OUT_CB_REG(R300_GA_LINE_STIPPLE_CONFIG, line_stipple_config);
1052 OUT_CB_REG(R300_GA_LINE_STIPPLE_VALUE, line_stipple_value);
1053 OUT_CB_REG(R300_GA_POLY_MODE, polygon_mode);
1054 OUT_CB_REG(R300_SC_CLIP_RULE, clip_rule);
1055 OUT_CB_REG(R300_GB_ENABLE, stuffing_enable);
1056 OUT_CB_REG_SEQ(R300_GA_POINT_S0, 4);
1057 OUT_CB_32F(point_texcoord_left);
1058 OUT_CB_32F(point_texcoord_bottom);
1059 OUT_CB_32F(point_texcoord_right);
1060 OUT_CB_32F(point_texcoord_top);
1061 END_CB;
1062
1063 /* Build the two command buffers for polygon offset setup. */
1064 if (polygon_offset_enable) {
1065 float scale = state->offset_scale * 12;
1066 float offset = state->offset_units * 4;
1067
1068 BEGIN_CB(rs->cb_poly_offset_zb16, 5);
1069 OUT_CB_REG_SEQ(R300_SU_POLY_OFFSET_FRONT_SCALE, 4);
1070 OUT_CB_32F(scale);
1071 OUT_CB_32F(offset);
1072 OUT_CB_32F(scale);
1073 OUT_CB_32F(offset);
1074 END_CB;
1075
1076 offset = state->offset_units * 2;
1077
1078 BEGIN_CB(rs->cb_poly_offset_zb24, 5);
1079 OUT_CB_REG_SEQ(R300_SU_POLY_OFFSET_FRONT_SCALE, 4);
1080 OUT_CB_32F(scale);
1081 OUT_CB_32F(offset);
1082 OUT_CB_32F(scale);
1083 OUT_CB_32F(offset);
1084 END_CB;
1085 }
1086
1087 return (void*)rs;
1088 }
1089
1090 /* Bind rasterizer state. */
1091 static void r300_bind_rs_state(struct pipe_context* pipe, void* state)
1092 {
1093 struct r300_context* r300 = r300_context(pipe);
1094 struct r300_rs_state* rs = (struct r300_rs_state*)state;
1095 int last_sprite_coord_enable = r300->sprite_coord_enable;
1096 boolean last_two_sided_color = r300->two_sided_color;
1097
1098 if (r300->draw && rs) {
1099 draw_flush(r300->draw);
1100 draw_set_rasterizer_state(r300->draw, &rs->rs_draw, state);
1101 }
1102
1103 if (rs) {
1104 r300->polygon_offset_enabled = (rs->rs.offset_point ||
1105 rs->rs.offset_line ||
1106 rs->rs.offset_tri);
1107 r300->sprite_coord_enable = rs->rs.sprite_coord_enable;
1108 r300->two_sided_color = rs->rs.light_twoside;
1109 } else {
1110 r300->polygon_offset_enabled = FALSE;
1111 r300->sprite_coord_enable = 0;
1112 r300->two_sided_color = FALSE;
1113 }
1114
1115 UPDATE_STATE(state, r300->rs_state);
1116 r300->rs_state.size = 25 + (r300->polygon_offset_enabled ? 5 : 0);
1117
1118 if (last_sprite_coord_enable != r300->sprite_coord_enable ||
1119 last_two_sided_color != r300->two_sided_color) {
1120 r300->rs_block_state.dirty = TRUE;
1121 }
1122 }
1123
1124 /* Free rasterizer state. */
1125 static void r300_delete_rs_state(struct pipe_context* pipe, void* state)
1126 {
1127 FREE(state);
1128 }
1129
1130 static void*
1131 r300_create_sampler_state(struct pipe_context* pipe,
1132 const struct pipe_sampler_state* state)
1133 {
1134 struct r300_context* r300 = r300_context(pipe);
1135 struct r300_sampler_state* sampler = CALLOC_STRUCT(r300_sampler_state);
1136 boolean is_r500 = r300->screen->caps.is_r500;
1137 int lod_bias;
1138 union util_color uc;
1139
1140 sampler->state = *state;
1141
1142 /* r300 doesn't handle CLAMP and MIRROR_CLAMP correctly when either MAG
1143 * or MIN filter is NEAREST. Since texwrap produces same results
1144 * for CLAMP and CLAMP_TO_EDGE, we use them instead. */
1145 if (sampler->state.min_img_filter == PIPE_TEX_FILTER_NEAREST ||
1146 sampler->state.mag_img_filter == PIPE_TEX_FILTER_NEAREST) {
1147 /* Wrap S. */
1148 if (sampler->state.wrap_s == PIPE_TEX_WRAP_CLAMP)
1149 sampler->state.wrap_s = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
1150 else if (sampler->state.wrap_s == PIPE_TEX_WRAP_MIRROR_CLAMP)
1151 sampler->state.wrap_s = PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE;
1152
1153 /* Wrap T. */
1154 if (sampler->state.wrap_t == PIPE_TEX_WRAP_CLAMP)
1155 sampler->state.wrap_t = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
1156 else if (sampler->state.wrap_t == PIPE_TEX_WRAP_MIRROR_CLAMP)
1157 sampler->state.wrap_t = PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE;
1158
1159 /* Wrap R. */
1160 if (sampler->state.wrap_r == PIPE_TEX_WRAP_CLAMP)
1161 sampler->state.wrap_r = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
1162 else if (sampler->state.wrap_r == PIPE_TEX_WRAP_MIRROR_CLAMP)
1163 sampler->state.wrap_r = PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE;
1164 }
1165
1166 sampler->filter0 |=
1167 (r300_translate_wrap(sampler->state.wrap_s) << R300_TX_WRAP_S_SHIFT) |
1168 (r300_translate_wrap(sampler->state.wrap_t) << R300_TX_WRAP_T_SHIFT) |
1169 (r300_translate_wrap(sampler->state.wrap_r) << R300_TX_WRAP_R_SHIFT);
1170
1171 sampler->filter0 |= r300_translate_tex_filters(state->min_img_filter,
1172 state->mag_img_filter,
1173 state->min_mip_filter,
1174 state->max_anisotropy > 0);
1175
1176 sampler->filter0 |= r300_anisotropy(state->max_anisotropy);
1177
1178 /* Unfortunately, r300-r500 don't support floating-point mipmap lods. */
1179 /* We must pass these to the merge function to clamp them properly. */
1180 sampler->min_lod = MAX2((unsigned)state->min_lod, 0);
1181 sampler->max_lod = MAX2((unsigned)ceilf(state->max_lod), 0);
1182
1183 lod_bias = CLAMP((int)(state->lod_bias * 32 + 1), -(1 << 9), (1 << 9) - 1);
1184
1185 sampler->filter1 |= (lod_bias << R300_LOD_BIAS_SHIFT) & R300_LOD_BIAS_MASK;
1186
1187 /* This is very high quality anisotropic filtering for R5xx.
1188 * It's good for benchmarking the performance of texturing but
1189 * in practice we don't want to slow down the driver because it's
1190 * a pretty good performance killer. Feel free to play with it. */
1191 if (DBG_ON(r300, DBG_ANISOHQ) && is_r500) {
1192 sampler->filter1 |= r500_anisotropy(state->max_anisotropy);
1193 }
1194
1195 util_pack_color(state->border_color, PIPE_FORMAT_B8G8R8A8_UNORM, &uc);
1196 sampler->border_color = uc.ui;
1197
1198 /* R500-specific fixups and optimizations */
1199 if (r300->screen->caps.is_r500) {
1200 sampler->filter1 |= R500_BORDER_FIX;
1201 }
1202
1203 return (void*)sampler;
1204 }
1205
1206 static void r300_bind_sampler_states(struct pipe_context* pipe,
1207 unsigned count,
1208 void** states)
1209 {
1210 struct r300_context* r300 = r300_context(pipe);
1211 struct r300_textures_state* state =
1212 (struct r300_textures_state*)r300->textures_state.state;
1213 unsigned tex_units = r300->screen->caps.num_tex_units;
1214
1215 if (count > tex_units) {
1216 return;
1217 }
1218
1219 memcpy(state->sampler_states, states, sizeof(void*) * count);
1220 state->sampler_state_count = count;
1221
1222 r300->textures_state.dirty = TRUE;
1223 }
1224
1225 static void r300_lacks_vertex_textures(struct pipe_context* pipe,
1226 unsigned count,
1227 void** states)
1228 {
1229 }
1230
1231 static void r300_delete_sampler_state(struct pipe_context* pipe, void* state)
1232 {
1233 FREE(state);
1234 }
1235
1236 static uint32_t r300_assign_texture_cache_region(unsigned index, unsigned num)
1237 {
1238 /* This looks like a hack, but I believe it's suppose to work like
1239 * that. To illustrate how this works, let's assume you have 5 textures.
1240 * From docs, 5 and the successive numbers are:
1241 *
1242 * FOURTH_1 = 5
1243 * FOURTH_2 = 6
1244 * FOURTH_3 = 7
1245 * EIGHTH_0 = 8
1246 * EIGHTH_1 = 9
1247 *
1248 * First 3 textures will get 3/4 of size of the cache, divived evenly
1249 * between them. The last 1/4 of the cache must be divided between
1250 * the last 2 textures, each will therefore get 1/8 of the cache.
1251 * Why not just to use "5 + texture_index" ?
1252 *
1253 * This simple trick works for all "num" <= 16.
1254 */
1255 if (num <= 1)
1256 return R300_TX_CACHE(R300_TX_CACHE_WHOLE);
1257 else
1258 return R300_TX_CACHE(num + index);
1259 }
1260
1261 static void r300_set_fragment_sampler_views(struct pipe_context* pipe,
1262 unsigned count,
1263 struct pipe_sampler_view** views)
1264 {
1265 struct r300_context* r300 = r300_context(pipe);
1266 struct r300_textures_state* state =
1267 (struct r300_textures_state*)r300->textures_state.state;
1268 struct r300_texture *texture;
1269 unsigned i, real_num_views = 0, view_index = 0;
1270 unsigned tex_units = r300->screen->caps.num_tex_units;
1271 boolean dirty_tex = FALSE;
1272
1273 if (count > tex_units) {
1274 return;
1275 }
1276
1277 /* Calculate the real number of views. */
1278 for (i = 0; i < count; i++) {
1279 if (views[i])
1280 real_num_views++;
1281 }
1282
1283 for (i = 0; i < count; i++) {
1284 if (&state->sampler_views[i]->base != views[i]) {
1285 pipe_sampler_view_reference(
1286 (struct pipe_sampler_view**)&state->sampler_views[i],
1287 views[i]);
1288
1289 if (!views[i]) {
1290 continue;
1291 }
1292
1293 /* A new sampler view (= texture)... */
1294 dirty_tex = TRUE;
1295
1296 /* Set the texrect factor in the fragment shader.
1297 * Needed for RECT and NPOT fallback. */
1298 texture = r300_texture(views[i]->texture);
1299 if (texture->desc.is_npot) {
1300 r300->fs_rc_constant_state.dirty = TRUE;
1301 }
1302
1303 state->sampler_views[i]->texcache_region =
1304 r300_assign_texture_cache_region(view_index, real_num_views);
1305 view_index++;
1306 }
1307 }
1308
1309 for (i = count; i < tex_units; i++) {
1310 if (state->sampler_views[i]) {
1311 pipe_sampler_view_reference(
1312 (struct pipe_sampler_view**)&state->sampler_views[i],
1313 NULL);
1314 }
1315 }
1316
1317 state->sampler_view_count = count;
1318
1319 r300->textures_state.dirty = TRUE;
1320
1321 if (dirty_tex) {
1322 r300->texture_cache_inval.dirty = TRUE;
1323 }
1324 }
1325
1326 static struct pipe_sampler_view *
1327 r300_create_sampler_view(struct pipe_context *pipe,
1328 struct pipe_resource *texture,
1329 const struct pipe_sampler_view *templ)
1330 {
1331 struct r300_sampler_view *view = CALLOC_STRUCT(r300_sampler_view);
1332 struct r300_texture *tex = r300_texture(texture);
1333 boolean is_r500 = r300_screen(pipe->screen)->caps.is_r500;
1334
1335 if (view) {
1336 view->base = *templ;
1337 view->base.reference.count = 1;
1338 view->base.context = pipe;
1339 view->base.texture = NULL;
1340 pipe_resource_reference(&view->base.texture, texture);
1341
1342 view->swizzle[0] = templ->swizzle_r;
1343 view->swizzle[1] = templ->swizzle_g;
1344 view->swizzle[2] = templ->swizzle_b;
1345 view->swizzle[3] = templ->swizzle_a;
1346
1347 view->format = tex->tx_format;
1348 view->format.format1 |= r300_translate_texformat(templ->format,
1349 view->swizzle,
1350 is_r500);
1351 if (is_r500) {
1352 view->format.format2 |= r500_tx_format_msb_bit(templ->format);
1353 }
1354 }
1355
1356 return (struct pipe_sampler_view*)view;
1357 }
1358
1359 static void
1360 r300_sampler_view_destroy(struct pipe_context *pipe,
1361 struct pipe_sampler_view *view)
1362 {
1363 pipe_resource_reference(&view->texture, NULL);
1364 FREE(view);
1365 }
1366
1367 static void r300_set_scissor_state(struct pipe_context* pipe,
1368 const struct pipe_scissor_state* state)
1369 {
1370 struct r300_context* r300 = r300_context(pipe);
1371
1372 memcpy(r300->scissor_state.state, state,
1373 sizeof(struct pipe_scissor_state));
1374
1375 r300->scissor_state.dirty = TRUE;
1376 }
1377
1378 static void r300_set_viewport_state(struct pipe_context* pipe,
1379 const struct pipe_viewport_state* state)
1380 {
1381 struct r300_context* r300 = r300_context(pipe);
1382 struct r300_viewport_state* viewport =
1383 (struct r300_viewport_state*)r300->viewport_state.state;
1384
1385 r300->viewport = *state;
1386
1387 if (r300->draw) {
1388 draw_flush(r300->draw);
1389 draw_set_viewport_state(r300->draw, state);
1390 viewport->vte_control = R300_VTX_XY_FMT | R300_VTX_Z_FMT;
1391 return;
1392 }
1393
1394 /* Do the transform in HW. */
1395 viewport->vte_control = R300_VTX_W0_FMT;
1396
1397 if (state->scale[0] != 1.0f) {
1398 viewport->xscale = state->scale[0];
1399 viewport->vte_control |= R300_VPORT_X_SCALE_ENA;
1400 }
1401 if (state->scale[1] != 1.0f) {
1402 viewport->yscale = state->scale[1];
1403 viewport->vte_control |= R300_VPORT_Y_SCALE_ENA;
1404 }
1405 if (state->scale[2] != 1.0f) {
1406 viewport->zscale = state->scale[2];
1407 viewport->vte_control |= R300_VPORT_Z_SCALE_ENA;
1408 }
1409 if (state->translate[0] != 0.0f) {
1410 viewport->xoffset = state->translate[0];
1411 viewport->vte_control |= R300_VPORT_X_OFFSET_ENA;
1412 }
1413 if (state->translate[1] != 0.0f) {
1414 viewport->yoffset = state->translate[1];
1415 viewport->vte_control |= R300_VPORT_Y_OFFSET_ENA;
1416 }
1417 if (state->translate[2] != 0.0f) {
1418 viewport->zoffset = state->translate[2];
1419 viewport->vte_control |= R300_VPORT_Z_OFFSET_ENA;
1420 }
1421
1422 r300->viewport_state.dirty = TRUE;
1423 if (r300->fs.state && r300_fs(r300)->shader->inputs.wpos != ATTR_UNUSED) {
1424 r300->fs_rc_constant_state.dirty = TRUE;
1425 }
1426 }
1427
1428 static void r300_set_vertex_buffers(struct pipe_context* pipe,
1429 unsigned count,
1430 const struct pipe_vertex_buffer* buffers)
1431 {
1432 struct r300_context* r300 = r300_context(pipe);
1433 struct pipe_vertex_buffer *vbo;
1434 unsigned i, max_index = (1 << 24) - 1;
1435 boolean any_user_buffer = FALSE;
1436
1437 if (count == r300->vertex_buffer_count &&
1438 memcmp(r300->vertex_buffer, buffers,
1439 sizeof(struct pipe_vertex_buffer) * count) == 0) {
1440 return;
1441 }
1442
1443 if (r300->screen->caps.has_tcl) {
1444 /* HW TCL. */
1445 r300->incompatible_vb_layout = FALSE;
1446
1447 /* Check if the strides and offsets are aligned to the size of DWORD. */
1448 for (i = 0; i < count; i++) {
1449 if (buffers[i].buffer) {
1450 if (buffers[i].stride % 4 != 0 ||
1451 buffers[i].buffer_offset % 4 != 0) {
1452 r300->incompatible_vb_layout = TRUE;
1453 break;
1454 }
1455 }
1456 }
1457
1458 for (i = 0; i < count; i++) {
1459 /* Why, yes, I AM casting away constness. How did you know? */
1460 vbo = (struct pipe_vertex_buffer*)&buffers[i];
1461
1462 /* Skip NULL buffers */
1463 if (!buffers[i].buffer) {
1464 continue;
1465 }
1466
1467 if (r300_buffer_is_user_buffer(vbo->buffer)) {
1468 any_user_buffer = TRUE;
1469 }
1470
1471 if (vbo->max_index == ~0) {
1472 /* if no VBO stride then only one vertex value so max index is 1 */
1473 /* should think about converting to VS constants like svga does */
1474 if (!vbo->stride)
1475 vbo->max_index = 1;
1476 else
1477 vbo->max_index =
1478 (vbo->buffer->width0 - vbo->buffer_offset) / vbo->stride;
1479 }
1480
1481 max_index = MIN2(vbo->max_index, max_index);
1482 }
1483
1484 r300->any_user_vbs = any_user_buffer;
1485 r300->vertex_buffer_max_index = max_index;
1486
1487 } else {
1488 /* SW TCL. */
1489 draw_flush(r300->draw);
1490 draw_set_vertex_buffers(r300->draw, count, buffers);
1491 }
1492
1493 /* Common code. */
1494 for (i = 0; i < count; i++) {
1495 /* Reference our buffer. */
1496 pipe_resource_reference(&r300->vertex_buffer[i].buffer, buffers[i].buffer);
1497 }
1498 for (; i < r300->vertex_buffer_count; i++) {
1499 /* Dereference any old buffers. */
1500 pipe_resource_reference(&r300->vertex_buffer[i].buffer, NULL);
1501 }
1502
1503 memcpy(r300->vertex_buffer, buffers,
1504 sizeof(struct pipe_vertex_buffer) * count);
1505 r300->vertex_buffer_count = count;
1506 }
1507
1508 static void r300_set_index_buffer(struct pipe_context* pipe,
1509 const struct pipe_index_buffer *ib)
1510 {
1511 struct r300_context* r300 = r300_context(pipe);
1512
1513 if (ib) {
1514 pipe_resource_reference(&r300->index_buffer.buffer, ib->buffer);
1515 memcpy(&r300->index_buffer, ib, sizeof(r300->index_buffer));
1516 }
1517 else {
1518 pipe_resource_reference(&r300->index_buffer.buffer, NULL);
1519 memset(&r300->index_buffer, 0, sizeof(r300->index_buffer));
1520 }
1521
1522 /* TODO make this more like a state */
1523 }
1524
1525 /* Initialize the PSC tables. */
1526 static void r300_vertex_psc(struct r300_vertex_element_state *velems)
1527 {
1528 struct r300_vertex_stream_state *vstream = &velems->vertex_stream;
1529 uint16_t type, swizzle;
1530 enum pipe_format format;
1531 unsigned i;
1532
1533 if (velems->count > 16) {
1534 fprintf(stderr, "r300: More than 16 vertex elements are not supported,"
1535 " requested %i, using 16.\n", velems->count);
1536 velems->count = 16;
1537 }
1538
1539 /* Vertex shaders have no semantics on their inputs,
1540 * so PSC should just route stuff based on the vertex elements,
1541 * and not on attrib information. */
1542 for (i = 0; i < velems->count; i++) {
1543 format = velems->hw_format[i];
1544
1545 type = r300_translate_vertex_data_type(format);
1546 if (type == R300_INVALID_FORMAT) {
1547 fprintf(stderr, "r300: Bad vertex format %s.\n",
1548 util_format_short_name(format));
1549 assert(0);
1550 abort();
1551 }
1552
1553 type |= i << R300_DST_VEC_LOC_SHIFT;
1554 swizzle = r300_translate_vertex_data_swizzle(format);
1555
1556 if (i & 1) {
1557 vstream->vap_prog_stream_cntl[i >> 1] |= type << 16;
1558 vstream->vap_prog_stream_cntl_ext[i >> 1] |= swizzle << 16;
1559 } else {
1560 vstream->vap_prog_stream_cntl[i >> 1] |= type;
1561 vstream->vap_prog_stream_cntl_ext[i >> 1] |= swizzle;
1562 }
1563 }
1564
1565 /* Set the last vector in the PSC. */
1566 if (i) {
1567 i -= 1;
1568 }
1569 vstream->vap_prog_stream_cntl[i >> 1] |=
1570 (R300_LAST_VEC << (i & 1 ? 16 : 0));
1571
1572 vstream->count = (i >> 1) + 1;
1573 }
1574
1575 #define FORMAT_REPLACE(what, withwhat) \
1576 case PIPE_FORMAT_##what: *format = PIPE_FORMAT_##withwhat; break
1577
1578 static void* r300_create_vertex_elements_state(struct pipe_context* pipe,
1579 unsigned count,
1580 const struct pipe_vertex_element* attribs)
1581 {
1582 struct r300_vertex_element_state *velems;
1583 unsigned i;
1584 enum pipe_format *format;
1585
1586 assert(count <= PIPE_MAX_ATTRIBS);
1587 velems = CALLOC_STRUCT(r300_vertex_element_state);
1588 if (velems != NULL) {
1589 velems->count = count;
1590 memcpy(velems->velem, attribs, sizeof(struct pipe_vertex_element) * count);
1591
1592 if (r300_screen(pipe->screen)->caps.has_tcl) {
1593 /* Set the best hw format in case the original format is not
1594 * supported by hw. */
1595 for (i = 0; i < count; i++) {
1596 velems->hw_format[i] = velems->velem[i].src_format;
1597 format = &velems->hw_format[i];
1598
1599 /* This is basically the list of unsupported formats.
1600 * For now we don't care about the alignment, that's going to
1601 * be sorted out after the PSC setup. */
1602 switch (*format) {
1603 FORMAT_REPLACE(R64_FLOAT, R32_FLOAT);
1604 FORMAT_REPLACE(R64G64_FLOAT, R32G32_FLOAT);
1605 FORMAT_REPLACE(R64G64B64_FLOAT, R32G32B32_FLOAT);
1606 FORMAT_REPLACE(R64G64B64A64_FLOAT, R32G32B32A32_FLOAT);
1607
1608 FORMAT_REPLACE(R32_UNORM, R32_FLOAT);
1609 FORMAT_REPLACE(R32G32_UNORM, R32G32_FLOAT);
1610 FORMAT_REPLACE(R32G32B32_UNORM, R32G32B32_FLOAT);
1611 FORMAT_REPLACE(R32G32B32A32_UNORM, R32G32B32A32_FLOAT);
1612
1613 FORMAT_REPLACE(R32_USCALED, R32_FLOAT);
1614 FORMAT_REPLACE(R32G32_USCALED, R32G32_FLOAT);
1615 FORMAT_REPLACE(R32G32B32_USCALED, R32G32B32_FLOAT);
1616 FORMAT_REPLACE(R32G32B32A32_USCALED,R32G32B32A32_FLOAT);
1617
1618 FORMAT_REPLACE(R32_SNORM, R32_FLOAT);
1619 FORMAT_REPLACE(R32G32_SNORM, R32G32_FLOAT);
1620 FORMAT_REPLACE(R32G32B32_SNORM, R32G32B32_FLOAT);
1621 FORMAT_REPLACE(R32G32B32A32_SNORM, R32G32B32A32_FLOAT);
1622
1623 FORMAT_REPLACE(R32_SSCALED, R32_FLOAT);
1624 FORMAT_REPLACE(R32G32_SSCALED, R32G32_FLOAT);
1625 FORMAT_REPLACE(R32G32B32_SSCALED, R32G32B32_FLOAT);
1626 FORMAT_REPLACE(R32G32B32A32_SSCALED,R32G32B32A32_FLOAT);
1627
1628 FORMAT_REPLACE(R32_FIXED, R32_FLOAT);
1629 FORMAT_REPLACE(R32G32_FIXED, R32G32_FLOAT);
1630 FORMAT_REPLACE(R32G32B32_FIXED, R32G32B32_FLOAT);
1631 FORMAT_REPLACE(R32G32B32A32_FIXED, R32G32B32A32_FLOAT);
1632
1633 default:;
1634 }
1635
1636 velems->incompatible_layout =
1637 velems->incompatible_layout ||
1638 velems->velem[i].src_format != velems->hw_format[i] ||
1639 velems->velem[i].src_offset % 4 != 0;
1640 }
1641
1642 /* Now setup PSC.
1643 * The unused components will be replaced by (..., 0, 1). */
1644 r300_vertex_psc(velems);
1645
1646 /* Align the formats to the size of DWORD.
1647 * We only care about the blocksizes of the formats since
1648 * swizzles are already set up.
1649 * Also compute the vertex size. */
1650 for (i = 0; i < count; i++) {
1651 /* This is OK because we check for aligned strides too. */
1652 velems->hw_format_size[i] =
1653 align(util_format_get_blocksize(velems->hw_format[i]), 4);
1654 velems->vertex_size_dwords += velems->hw_format_size[i] / 4;
1655 }
1656 }
1657 }
1658 return velems;
1659 }
1660
1661 static void r300_bind_vertex_elements_state(struct pipe_context *pipe,
1662 void *state)
1663 {
1664 struct r300_context *r300 = r300_context(pipe);
1665 struct r300_vertex_element_state *velems = state;
1666
1667 if (velems == NULL) {
1668 return;
1669 }
1670
1671 r300->velems = velems;
1672
1673 if (r300->draw) {
1674 draw_flush(r300->draw);
1675 draw_set_vertex_elements(r300->draw, velems->count, velems->velem);
1676 return;
1677 }
1678
1679 UPDATE_STATE(&velems->vertex_stream, r300->vertex_stream_state);
1680 r300->vertex_stream_state.size = (1 + velems->vertex_stream.count) * 2;
1681 }
1682
1683 static void r300_delete_vertex_elements_state(struct pipe_context *pipe, void *state)
1684 {
1685 FREE(state);
1686 }
1687
1688 static void* r300_create_vs_state(struct pipe_context* pipe,
1689 const struct pipe_shader_state* shader)
1690 {
1691 struct r300_context* r300 = r300_context(pipe);
1692 struct r300_vertex_shader* vs = CALLOC_STRUCT(r300_vertex_shader);
1693
1694 /* Copy state directly into shader. */
1695 vs->state = *shader;
1696 vs->state.tokens = tgsi_dup_tokens(shader->tokens);
1697
1698 if (r300->screen->caps.has_tcl) {
1699 r300_init_vs_outputs(vs);
1700 r300_translate_vertex_shader(r300, vs);
1701 } else {
1702 r300_draw_init_vertex_shader(r300->draw, vs);
1703 }
1704
1705 return vs;
1706 }
1707
1708 static void r300_bind_vs_state(struct pipe_context* pipe, void* shader)
1709 {
1710 struct r300_context* r300 = r300_context(pipe);
1711 struct r300_vertex_shader* vs = (struct r300_vertex_shader*)shader;
1712
1713 if (vs == NULL) {
1714 r300->vs_state.state = NULL;
1715 return;
1716 }
1717 if (vs == r300->vs_state.state) {
1718 return;
1719 }
1720 r300->vs_state.state = vs;
1721
1722 /* The majority of the RS block bits is dependent on the vertex shader. */
1723 r300->rs_block_state.dirty = TRUE; /* Will be updated before the emission. */
1724
1725 if (r300->screen->caps.has_tcl) {
1726 r300->vs_state.dirty = TRUE;
1727 r300->vs_state.size =
1728 vs->code.length + 9 +
1729 (vs->immediates_count ? vs->immediates_count * 4 + 3 : 0);
1730
1731 if (vs->externals_count) {
1732 r300->vs_constants.dirty = TRUE;
1733 r300->vs_constants.size = vs->externals_count * 4 + 3;
1734 } else {
1735 r300->vs_constants.size = 0;
1736 }
1737
1738 r300->pvs_flush.dirty = TRUE;
1739 } else {
1740 draw_flush(r300->draw);
1741 draw_bind_vertex_shader(r300->draw,
1742 (struct draw_vertex_shader*)vs->draw_vs);
1743 }
1744 }
1745
1746 static void r300_delete_vs_state(struct pipe_context* pipe, void* shader)
1747 {
1748 struct r300_context* r300 = r300_context(pipe);
1749 struct r300_vertex_shader* vs = (struct r300_vertex_shader*)shader;
1750
1751 if (r300->screen->caps.has_tcl) {
1752 rc_constants_destroy(&vs->code.constants);
1753 } else {
1754 draw_delete_vertex_shader(r300->draw,
1755 (struct draw_vertex_shader*)vs->draw_vs);
1756 }
1757
1758 FREE((void*)vs->state.tokens);
1759 FREE(shader);
1760 }
1761
1762 static void r300_set_constant_buffer(struct pipe_context *pipe,
1763 uint shader, uint index,
1764 struct pipe_resource *buf)
1765 {
1766 struct r300_context* r300 = r300_context(pipe);
1767 struct r300_constant_buffer *cbuf;
1768 uint32_t *mapped = r300_buffer(buf)->user_buffer;
1769 int max_size = 0, max_size_bytes = 0, clamped_size = 0;
1770
1771 switch (shader) {
1772 case PIPE_SHADER_VERTEX:
1773 cbuf = (struct r300_constant_buffer*)r300->vs_constants.state;
1774 max_size = 256;
1775 break;
1776 case PIPE_SHADER_FRAGMENT:
1777 cbuf = (struct r300_constant_buffer*)r300->fs_constants.state;
1778 if (r300->screen->caps.is_r500) {
1779 max_size = 256;
1780 } else {
1781 max_size = 32;
1782 }
1783 break;
1784 default:
1785 assert(0);
1786 return;
1787 }
1788 max_size_bytes = max_size * 4 * sizeof(float);
1789
1790 if (buf == NULL || buf->width0 == 0 ||
1791 (mapped = r300_buffer(buf)->constant_buffer) == NULL) {
1792 cbuf->count = 0;
1793 return;
1794 }
1795
1796 if (shader == PIPE_SHADER_FRAGMENT ||
1797 (shader == PIPE_SHADER_VERTEX && r300->screen->caps.has_tcl)) {
1798 assert((buf->width0 % (4 * sizeof(float))) == 0);
1799
1800 /* Check the size of the constant buffer. */
1801 /* XXX Subtract immediates and RC_STATE_* variables. */
1802 if (buf->width0 > max_size_bytes) {
1803 fprintf(stderr, "r300: Max size of the constant buffer is "
1804 "%i*4 floats.\n", max_size);
1805 }
1806
1807 clamped_size = MIN2(buf->width0, max_size_bytes);
1808 cbuf->count = clamped_size / (4 * sizeof(float));
1809 cbuf->ptr = mapped;
1810 }
1811
1812 if (shader == PIPE_SHADER_VERTEX) {
1813 if (r300->screen->caps.has_tcl) {
1814 if (r300->vs_constants.size) {
1815 r300->vs_constants.dirty = TRUE;
1816 }
1817 r300->pvs_flush.dirty = TRUE;
1818 } else if (r300->draw) {
1819 draw_set_mapped_constant_buffer(r300->draw, PIPE_SHADER_VERTEX,
1820 0, mapped, buf->width0);
1821 }
1822 } else if (shader == PIPE_SHADER_FRAGMENT) {
1823 r300->fs_constants.dirty = TRUE;
1824 }
1825 }
1826
1827 void r300_init_state_functions(struct r300_context* r300)
1828 {
1829 r300->context.create_blend_state = r300_create_blend_state;
1830 r300->context.bind_blend_state = r300_bind_blend_state;
1831 r300->context.delete_blend_state = r300_delete_blend_state;
1832
1833 r300->context.set_blend_color = r300_set_blend_color;
1834
1835 r300->context.set_clip_state = r300_set_clip_state;
1836 r300->context.set_sample_mask = r300_set_sample_mask;
1837
1838 r300->context.set_constant_buffer = r300_set_constant_buffer;
1839
1840 r300->context.create_depth_stencil_alpha_state = r300_create_dsa_state;
1841 r300->context.bind_depth_stencil_alpha_state = r300_bind_dsa_state;
1842 r300->context.delete_depth_stencil_alpha_state = r300_delete_dsa_state;
1843
1844 r300->context.set_stencil_ref = r300_set_stencil_ref;
1845
1846 r300->context.set_framebuffer_state = r300_set_framebuffer_state;
1847
1848 r300->context.create_fs_state = r300_create_fs_state;
1849 r300->context.bind_fs_state = r300_bind_fs_state;
1850 r300->context.delete_fs_state = r300_delete_fs_state;
1851
1852 r300->context.set_polygon_stipple = r300_set_polygon_stipple;
1853
1854 r300->context.create_rasterizer_state = r300_create_rs_state;
1855 r300->context.bind_rasterizer_state = r300_bind_rs_state;
1856 r300->context.delete_rasterizer_state = r300_delete_rs_state;
1857
1858 r300->context.create_sampler_state = r300_create_sampler_state;
1859 r300->context.bind_fragment_sampler_states = r300_bind_sampler_states;
1860 r300->context.bind_vertex_sampler_states = r300_lacks_vertex_textures;
1861 r300->context.delete_sampler_state = r300_delete_sampler_state;
1862
1863 r300->context.set_fragment_sampler_views = r300_set_fragment_sampler_views;
1864 r300->context.create_sampler_view = r300_create_sampler_view;
1865 r300->context.sampler_view_destroy = r300_sampler_view_destroy;
1866
1867 r300->context.set_scissor_state = r300_set_scissor_state;
1868
1869 r300->context.set_viewport_state = r300_set_viewport_state;
1870
1871 r300->context.set_vertex_buffers = r300_set_vertex_buffers;
1872 r300->context.set_index_buffer = r300_set_index_buffer;
1873
1874 r300->context.create_vertex_elements_state = r300_create_vertex_elements_state;
1875 r300->context.bind_vertex_elements_state = r300_bind_vertex_elements_state;
1876 r300->context.delete_vertex_elements_state = r300_delete_vertex_elements_state;
1877
1878 r300->context.create_vs_state = r300_create_vs_state;
1879 r300->context.bind_vs_state = r300_bind_vs_state;
1880 r300->context.delete_vs_state = r300_delete_vs_state;
1881 }