r300g: implement depth clamp
[mesa.git] / src / gallium / drivers / r300 / r300_state.c
1 /*
2 * Copyright 2008 Corbin Simpson <MostAwesomeDude@gmail.com>
3 * Copyright 2009 Marek Olšák <maraeo@gmail.com>
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * on the rights to use, copy, modify, merge, publish, distribute, sub
9 * license, and/or sell copies of the Software, and to permit persons to whom
10 * the Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE. */
23
24 #include "draw/draw_context.h"
25
26 #include "util/u_blitter.h"
27 #include "util/u_math.h"
28 #include "util/u_memory.h"
29 #include "util/u_pack_color.h"
30
31 #include "tgsi/tgsi_parse.h"
32
33 #include "pipe/p_config.h"
34
35 #include "r300_cb.h"
36 #include "r300_context.h"
37 #include "r300_emit.h"
38 #include "r300_reg.h"
39 #include "r300_screen.h"
40 #include "r300_screen_buffer.h"
41 #include "r300_state_inlines.h"
42 #include "r300_fs.h"
43 #include "r300_texture.h"
44 #include "r300_vs.h"
45 #include "r300_winsys.h"
46
47 /* r300_state: Functions used to intialize state context by translating
48 * Gallium state objects into semi-native r300 state objects. */
49
50 #define UPDATE_STATE(cso, atom) \
51 if (cso != atom.state) { \
52 atom.state = cso; \
53 atom.dirty = TRUE; \
54 }
55
56 static boolean blend_discard_if_src_alpha_0(unsigned srcRGB, unsigned srcA,
57 unsigned dstRGB, unsigned dstA)
58 {
59 /* If the blend equation is ADD or REVERSE_SUBTRACT,
60 * SRC_ALPHA == 0, and the following state is set, the colorbuffer
61 * will not be changed.
62 * Notice that the dst factors are the src factors inverted. */
63 return (srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
64 srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE ||
65 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
66 (srcA == PIPE_BLENDFACTOR_SRC_COLOR ||
67 srcA == PIPE_BLENDFACTOR_SRC_ALPHA ||
68 srcA == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE ||
69 srcA == PIPE_BLENDFACTOR_ZERO) &&
70 (dstRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
71 dstRGB == PIPE_BLENDFACTOR_ONE) &&
72 (dstA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
73 dstA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
74 dstA == PIPE_BLENDFACTOR_ONE);
75 }
76
77 static boolean blend_discard_if_src_alpha_1(unsigned srcRGB, unsigned srcA,
78 unsigned dstRGB, unsigned dstA)
79 {
80 /* If the blend equation is ADD or REVERSE_SUBTRACT,
81 * SRC_ALPHA == 1, and the following state is set, the colorbuffer
82 * will not be changed.
83 * Notice that the dst factors are the src factors inverted. */
84 return (srcRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
85 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
86 (srcA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
87 srcA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
88 srcA == PIPE_BLENDFACTOR_ZERO) &&
89 (dstRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
90 dstRGB == PIPE_BLENDFACTOR_ONE) &&
91 (dstA == PIPE_BLENDFACTOR_SRC_COLOR ||
92 dstA == PIPE_BLENDFACTOR_SRC_ALPHA ||
93 dstA == PIPE_BLENDFACTOR_ONE);
94 }
95
96 static boolean blend_discard_if_src_color_0(unsigned srcRGB, unsigned srcA,
97 unsigned dstRGB, unsigned dstA)
98 {
99 /* If the blend equation is ADD or REVERSE_SUBTRACT,
100 * SRC_COLOR == (0,0,0), and the following state is set, the colorbuffer
101 * will not be changed.
102 * Notice that the dst factors are the src factors inverted. */
103 return (srcRGB == PIPE_BLENDFACTOR_SRC_COLOR ||
104 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
105 (srcA == PIPE_BLENDFACTOR_ZERO) &&
106 (dstRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
107 dstRGB == PIPE_BLENDFACTOR_ONE) &&
108 (dstA == PIPE_BLENDFACTOR_ONE);
109 }
110
111 static boolean blend_discard_if_src_color_1(unsigned srcRGB, unsigned srcA,
112 unsigned dstRGB, unsigned dstA)
113 {
114 /* If the blend equation is ADD or REVERSE_SUBTRACT,
115 * SRC_COLOR == (1,1,1), and the following state is set, the colorbuffer
116 * will not be changed.
117 * Notice that the dst factors are the src factors inverted. */
118 return (srcRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
119 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
120 (srcA == PIPE_BLENDFACTOR_ZERO) &&
121 (dstRGB == PIPE_BLENDFACTOR_SRC_COLOR ||
122 dstRGB == PIPE_BLENDFACTOR_ONE) &&
123 (dstA == PIPE_BLENDFACTOR_ONE);
124 }
125
126 static boolean blend_discard_if_src_alpha_color_0(unsigned srcRGB, unsigned srcA,
127 unsigned dstRGB, unsigned dstA)
128 {
129 /* If the blend equation is ADD or REVERSE_SUBTRACT,
130 * SRC_ALPHA_COLOR == (0,0,0,0), and the following state is set,
131 * the colorbuffer will not be changed.
132 * Notice that the dst factors are the src factors inverted. */
133 return (srcRGB == PIPE_BLENDFACTOR_SRC_COLOR ||
134 srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
135 srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE ||
136 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
137 (srcA == PIPE_BLENDFACTOR_SRC_COLOR ||
138 srcA == PIPE_BLENDFACTOR_SRC_ALPHA ||
139 srcA == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE ||
140 srcA == PIPE_BLENDFACTOR_ZERO) &&
141 (dstRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
142 dstRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
143 dstRGB == PIPE_BLENDFACTOR_ONE) &&
144 (dstA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
145 dstA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
146 dstA == PIPE_BLENDFACTOR_ONE);
147 }
148
149 static boolean blend_discard_if_src_alpha_color_1(unsigned srcRGB, unsigned srcA,
150 unsigned dstRGB, unsigned dstA)
151 {
152 /* If the blend equation is ADD or REVERSE_SUBTRACT,
153 * SRC_ALPHA_COLOR == (1,1,1,1), and the following state is set,
154 * the colorbuffer will not be changed.
155 * Notice that the dst factors are the src factors inverted. */
156 return (srcRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
157 srcRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
158 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
159 (srcA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
160 srcA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
161 srcA == PIPE_BLENDFACTOR_ZERO) &&
162 (dstRGB == PIPE_BLENDFACTOR_SRC_COLOR ||
163 dstRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
164 dstRGB == PIPE_BLENDFACTOR_ONE) &&
165 (dstA == PIPE_BLENDFACTOR_SRC_COLOR ||
166 dstA == PIPE_BLENDFACTOR_SRC_ALPHA ||
167 dstA == PIPE_BLENDFACTOR_ONE);
168 }
169
170 static unsigned bgra_cmask(unsigned mask)
171 {
172 /* Gallium uses RGBA color ordering while R300 expects BGRA. */
173
174 return ((mask & PIPE_MASK_R) << 2) |
175 ((mask & PIPE_MASK_B) >> 2) |
176 (mask & (PIPE_MASK_G | PIPE_MASK_A));
177 }
178
179 /* Create a new blend state based on the CSO blend state.
180 *
181 * This encompasses alpha blending, logic/raster ops, and blend dithering. */
182 static void* r300_create_blend_state(struct pipe_context* pipe,
183 const struct pipe_blend_state* state)
184 {
185 struct r300_screen* r300screen = r300_screen(pipe->screen);
186 struct r300_blend_state* blend = CALLOC_STRUCT(r300_blend_state);
187 uint32_t blend_control = 0; /* R300_RB3D_CBLEND: 0x4e04 */
188 uint32_t alpha_blend_control = 0; /* R300_RB3D_ABLEND: 0x4e08 */
189 uint32_t color_channel_mask = 0; /* R300_RB3D_COLOR_CHANNEL_MASK: 0x4e0c */
190 uint32_t rop = 0; /* R300_RB3D_ROPCNTL: 0x4e18 */
191 uint32_t dither = 0; /* R300_RB3D_DITHER_CTL: 0x4e50 */
192 CB_LOCALS;
193
194 if (state->rt[0].blend_enable)
195 {
196 unsigned eqRGB = state->rt[0].rgb_func;
197 unsigned srcRGB = state->rt[0].rgb_src_factor;
198 unsigned dstRGB = state->rt[0].rgb_dst_factor;
199
200 unsigned eqA = state->rt[0].alpha_func;
201 unsigned srcA = state->rt[0].alpha_src_factor;
202 unsigned dstA = state->rt[0].alpha_dst_factor;
203
204 /* despite the name, ALPHA_BLEND_ENABLE has nothing to do with alpha,
205 * this is just the crappy D3D naming */
206 blend_control = R300_ALPHA_BLEND_ENABLE |
207 r300_translate_blend_function(eqRGB) |
208 ( r300_translate_blend_factor(srcRGB) << R300_SRC_BLEND_SHIFT) |
209 ( r300_translate_blend_factor(dstRGB) << R300_DST_BLEND_SHIFT);
210
211 /* Optimization: some operations do not require the destination color.
212 *
213 * When SRC_ALPHA_SATURATE is used, colorbuffer reads must be enabled,
214 * otherwise blending gives incorrect results. It seems to be
215 * a hardware bug. */
216 if (eqRGB == PIPE_BLEND_MIN || eqA == PIPE_BLEND_MIN ||
217 eqRGB == PIPE_BLEND_MAX || eqA == PIPE_BLEND_MAX ||
218 dstRGB != PIPE_BLENDFACTOR_ZERO ||
219 dstA != PIPE_BLENDFACTOR_ZERO ||
220 srcRGB == PIPE_BLENDFACTOR_DST_COLOR ||
221 srcRGB == PIPE_BLENDFACTOR_DST_ALPHA ||
222 srcRGB == PIPE_BLENDFACTOR_INV_DST_COLOR ||
223 srcRGB == PIPE_BLENDFACTOR_INV_DST_ALPHA ||
224 srcA == PIPE_BLENDFACTOR_DST_COLOR ||
225 srcA == PIPE_BLENDFACTOR_DST_ALPHA ||
226 srcA == PIPE_BLENDFACTOR_INV_DST_COLOR ||
227 srcA == PIPE_BLENDFACTOR_INV_DST_ALPHA ||
228 srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE) {
229 /* Enable reading from the colorbuffer. */
230 blend_control |= R300_READ_ENABLE;
231
232 if (r300screen->caps.is_r500) {
233 /* Optimization: Depending on incoming pixels, we can
234 * conditionally disable the reading in hardware... */
235 if (eqRGB != PIPE_BLEND_MIN && eqA != PIPE_BLEND_MIN &&
236 eqRGB != PIPE_BLEND_MAX && eqA != PIPE_BLEND_MAX) {
237 /* Disable reading if SRC_ALPHA == 0. */
238 if ((dstRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
239 dstRGB == PIPE_BLENDFACTOR_ZERO) &&
240 (dstA == PIPE_BLENDFACTOR_SRC_COLOR ||
241 dstA == PIPE_BLENDFACTOR_SRC_ALPHA ||
242 dstA == PIPE_BLENDFACTOR_ZERO)) {
243 blend_control |= R500_SRC_ALPHA_0_NO_READ;
244 }
245
246 /* Disable reading if SRC_ALPHA == 1. */
247 if ((dstRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
248 dstRGB == PIPE_BLENDFACTOR_ZERO) &&
249 (dstA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
250 dstA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
251 dstA == PIPE_BLENDFACTOR_ZERO)) {
252 blend_control |= R500_SRC_ALPHA_1_NO_READ;
253 }
254 }
255 }
256 }
257
258 /* Optimization: discard pixels which don't change the colorbuffer.
259 *
260 * The code below is non-trivial and some math is involved.
261 *
262 * Discarding pixels must be disabled when FP16 AA is enabled.
263 * This is a hardware bug. Also, this implementation wouldn't work
264 * with FP blending enabled and equation clamping disabled.
265 *
266 * Equations other than ADD are rarely used and therefore won't be
267 * optimized. */
268 if ((eqRGB == PIPE_BLEND_ADD || eqRGB == PIPE_BLEND_REVERSE_SUBTRACT) &&
269 (eqA == PIPE_BLEND_ADD || eqA == PIPE_BLEND_REVERSE_SUBTRACT)) {
270 /* ADD: X+Y
271 * REVERSE_SUBTRACT: Y-X
272 *
273 * The idea is:
274 * If X = src*srcFactor = 0 and Y = dst*dstFactor = 1,
275 * then CB will not be changed.
276 *
277 * Given the srcFactor and dstFactor variables, we can derive
278 * what src and dst should be equal to and discard appropriate
279 * pixels.
280 */
281 if (blend_discard_if_src_alpha_0(srcRGB, srcA, dstRGB, dstA)) {
282 blend_control |= R300_DISCARD_SRC_PIXELS_SRC_ALPHA_0;
283 } else if (blend_discard_if_src_alpha_1(srcRGB, srcA,
284 dstRGB, dstA)) {
285 blend_control |= R300_DISCARD_SRC_PIXELS_SRC_ALPHA_1;
286 } else if (blend_discard_if_src_color_0(srcRGB, srcA,
287 dstRGB, dstA)) {
288 blend_control |= R300_DISCARD_SRC_PIXELS_SRC_COLOR_0;
289 } else if (blend_discard_if_src_color_1(srcRGB, srcA,
290 dstRGB, dstA)) {
291 blend_control |= R300_DISCARD_SRC_PIXELS_SRC_COLOR_1;
292 } else if (blend_discard_if_src_alpha_color_0(srcRGB, srcA,
293 dstRGB, dstA)) {
294 blend_control |=
295 R300_DISCARD_SRC_PIXELS_SRC_ALPHA_COLOR_0;
296 } else if (blend_discard_if_src_alpha_color_1(srcRGB, srcA,
297 dstRGB, dstA)) {
298 blend_control |=
299 R300_DISCARD_SRC_PIXELS_SRC_ALPHA_COLOR_1;
300 }
301 }
302
303 /* separate alpha */
304 if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB) {
305 blend_control |= R300_SEPARATE_ALPHA_ENABLE;
306 alpha_blend_control =
307 r300_translate_blend_function(eqA) |
308 (r300_translate_blend_factor(srcA) << R300_SRC_BLEND_SHIFT) |
309 (r300_translate_blend_factor(dstA) << R300_DST_BLEND_SHIFT);
310 }
311 }
312
313 /* PIPE_LOGICOP_* don't need to be translated, fortunately. */
314 if (state->logicop_enable) {
315 rop = R300_RB3D_ROPCNTL_ROP_ENABLE |
316 (state->logicop_func) << R300_RB3D_ROPCNTL_ROP_SHIFT;
317 }
318
319 /* Color channel masks for all MRTs. */
320 color_channel_mask = bgra_cmask(state->rt[0].colormask);
321 if (r300screen->caps.is_r500 && state->independent_blend_enable) {
322 if (state->rt[1].blend_enable) {
323 color_channel_mask |= bgra_cmask(state->rt[1].colormask) << 4;
324 }
325 if (state->rt[2].blend_enable) {
326 color_channel_mask |= bgra_cmask(state->rt[2].colormask) << 8;
327 }
328 if (state->rt[3].blend_enable) {
329 color_channel_mask |= bgra_cmask(state->rt[3].colormask) << 12;
330 }
331 }
332
333 /* Neither fglrx nor classic r300 ever set this, regardless of dithering
334 * state. Since it's an optional implementation detail, we can leave it
335 * out and never dither.
336 *
337 * This could be revisited if we ever get quality or conformance hints.
338 *
339 if (state->dither) {
340 dither = R300_RB3D_DITHER_CTL_DITHER_MODE_LUT |
341 R300_RB3D_DITHER_CTL_ALPHA_DITHER_MODE_LUT;
342 }
343 */
344
345 /* Build a command buffer. */
346 BEGIN_CB(blend->cb, 8);
347 OUT_CB_REG(R300_RB3D_ROPCNTL, rop);
348 OUT_CB_REG_SEQ(R300_RB3D_CBLEND, 3);
349 OUT_CB(blend_control);
350 OUT_CB(alpha_blend_control);
351 OUT_CB(color_channel_mask);
352 OUT_CB_REG(R300_RB3D_DITHER_CTL, dither);
353 END_CB;
354
355 /* The same as above, but with no colorbuffer reads and writes. */
356 BEGIN_CB(blend->cb_no_readwrite, 8);
357 OUT_CB_REG(R300_RB3D_ROPCNTL, rop);
358 OUT_CB_REG_SEQ(R300_RB3D_CBLEND, 3);
359 OUT_CB(0);
360 OUT_CB(0);
361 OUT_CB(0);
362 OUT_CB_REG(R300_RB3D_DITHER_CTL, dither);
363 END_CB;
364
365 return (void*)blend;
366 }
367
368 /* Bind blend state. */
369 static void r300_bind_blend_state(struct pipe_context* pipe,
370 void* state)
371 {
372 struct r300_context* r300 = r300_context(pipe);
373
374 UPDATE_STATE(state, r300->blend_state);
375 }
376
377 /* Free blend state. */
378 static void r300_delete_blend_state(struct pipe_context* pipe,
379 void* state)
380 {
381 FREE(state);
382 }
383
384 /* Convert float to 10bit integer */
385 static unsigned float_to_fixed10(float f)
386 {
387 return CLAMP((unsigned)(f * 1023.9f), 0, 1023);
388 }
389
390 /* Set blend color.
391 * Setup both R300 and R500 registers, figure out later which one to write. */
392 static void r300_set_blend_color(struct pipe_context* pipe,
393 const struct pipe_blend_color* color)
394 {
395 struct r300_context* r300 = r300_context(pipe);
396 struct r300_blend_color_state* state =
397 (struct r300_blend_color_state*)r300->blend_color_state.state;
398 CB_LOCALS;
399
400 if (r300->screen->caps.is_r500) {
401 /* XXX if FP16 blending is enabled, we should use the FP16 format */
402 BEGIN_CB(state->cb, 3);
403 OUT_CB_REG_SEQ(R500_RB3D_CONSTANT_COLOR_AR, 2);
404 OUT_CB(float_to_fixed10(color->color[0]) |
405 (float_to_fixed10(color->color[3]) << 16));
406 OUT_CB(float_to_fixed10(color->color[2]) |
407 (float_to_fixed10(color->color[1]) << 16));
408 END_CB;
409 } else {
410 union util_color uc;
411 util_pack_color(color->color, PIPE_FORMAT_B8G8R8A8_UNORM, &uc);
412
413 BEGIN_CB(state->cb, 2);
414 OUT_CB_REG(R300_RB3D_BLEND_COLOR, uc.ui);
415 END_CB;
416 }
417
418 r300->blend_color_state.dirty = TRUE;
419 }
420
421 static void r300_set_clip_state(struct pipe_context* pipe,
422 const struct pipe_clip_state* state)
423 {
424 struct r300_context* r300 = r300_context(pipe);
425 struct r300_clip_state *clip =
426 (struct r300_clip_state*)r300->clip_state.state;
427 CB_LOCALS;
428
429 clip->clip = *state;
430
431 if (r300->screen->caps.has_tcl) {
432 r300->clip_state.size = 2 + !!state->nr * 3 + state->nr * 4;
433
434 BEGIN_CB(clip->cb, r300->clip_state.size);
435 if (state->nr) {
436 OUT_CB_REG(R300_VAP_PVS_VECTOR_INDX_REG,
437 (r300->screen->caps.is_r500 ?
438 R500_PVS_UCP_START : R300_PVS_UCP_START));
439 OUT_CB_ONE_REG(R300_VAP_PVS_UPLOAD_DATA, state->nr * 4);
440 OUT_CB_TABLE(state->ucp, state->nr * 4);
441 }
442 OUT_CB_REG(R300_VAP_CLIP_CNTL, ((1 << state->nr) - 1) |
443 R300_PS_UCP_MODE_CLIP_AS_TRIFAN |
444 (state->depth_clamp ? R300_CLIP_DISABLE : 0));
445 END_CB;
446
447 r300->clip_state.dirty = TRUE;
448 } else {
449 draw_flush(r300->draw);
450 draw_set_clip_state(r300->draw, state);
451 }
452 }
453
454 static void
455 r300_set_sample_mask(struct pipe_context *pipe,
456 unsigned sample_mask)
457 {
458 }
459
460
461 /* Create a new depth, stencil, and alpha state based on the CSO dsa state.
462 *
463 * This contains the depth buffer, stencil buffer, alpha test, and such.
464 * On the Radeon, depth and stencil buffer setup are intertwined, which is
465 * the reason for some of the strange-looking assignments across registers. */
466 static void*
467 r300_create_dsa_state(struct pipe_context* pipe,
468 const struct pipe_depth_stencil_alpha_state* state)
469 {
470 struct r300_capabilities *caps = &r300_screen(pipe->screen)->caps;
471 struct r300_dsa_state* dsa = CALLOC_STRUCT(r300_dsa_state);
472 CB_LOCALS;
473
474 dsa->dsa = *state;
475
476 /* Depth test setup. */
477 if (state->depth.enabled) {
478 dsa->z_buffer_control |= R300_Z_ENABLE;
479
480 if (state->depth.writemask) {
481 dsa->z_buffer_control |= R300_Z_WRITE_ENABLE;
482 }
483
484 dsa->z_stencil_control |=
485 (r300_translate_depth_stencil_function(state->depth.func) <<
486 R300_Z_FUNC_SHIFT);
487 }
488
489 /* Stencil buffer setup. */
490 if (state->stencil[0].enabled) {
491 dsa->z_buffer_control |= R300_STENCIL_ENABLE;
492 dsa->z_stencil_control |=
493 (r300_translate_depth_stencil_function(state->stencil[0].func) <<
494 R300_S_FRONT_FUNC_SHIFT) |
495 (r300_translate_stencil_op(state->stencil[0].fail_op) <<
496 R300_S_FRONT_SFAIL_OP_SHIFT) |
497 (r300_translate_stencil_op(state->stencil[0].zpass_op) <<
498 R300_S_FRONT_ZPASS_OP_SHIFT) |
499 (r300_translate_stencil_op(state->stencil[0].zfail_op) <<
500 R300_S_FRONT_ZFAIL_OP_SHIFT);
501
502 dsa->stencil_ref_mask =
503 (state->stencil[0].valuemask << R300_STENCILMASK_SHIFT) |
504 (state->stencil[0].writemask << R300_STENCILWRITEMASK_SHIFT);
505
506 if (state->stencil[1].enabled) {
507 dsa->two_sided = TRUE;
508
509 dsa->z_buffer_control |= R300_STENCIL_FRONT_BACK;
510 dsa->z_stencil_control |=
511 (r300_translate_depth_stencil_function(state->stencil[1].func) <<
512 R300_S_BACK_FUNC_SHIFT) |
513 (r300_translate_stencil_op(state->stencil[1].fail_op) <<
514 R300_S_BACK_SFAIL_OP_SHIFT) |
515 (r300_translate_stencil_op(state->stencil[1].zpass_op) <<
516 R300_S_BACK_ZPASS_OP_SHIFT) |
517 (r300_translate_stencil_op(state->stencil[1].zfail_op) <<
518 R300_S_BACK_ZFAIL_OP_SHIFT);
519
520 dsa->stencil_ref_bf =
521 (state->stencil[1].valuemask << R300_STENCILMASK_SHIFT) |
522 (state->stencil[1].writemask << R300_STENCILWRITEMASK_SHIFT);
523
524 if (caps->is_r500) {
525 dsa->z_buffer_control |= R500_STENCIL_REFMASK_FRONT_BACK;
526 } else {
527 dsa->two_sided_stencil_ref =
528 (state->stencil[0].valuemask != state->stencil[1].valuemask ||
529 state->stencil[0].writemask != state->stencil[1].writemask);
530 }
531 }
532 }
533
534 /* Alpha test setup. */
535 if (state->alpha.enabled) {
536 dsa->alpha_function =
537 r300_translate_alpha_function(state->alpha.func) |
538 R300_FG_ALPHA_FUNC_ENABLE;
539
540 /* We could use 10bit alpha ref but who needs that? */
541 dsa->alpha_function |= float_to_ubyte(state->alpha.ref_value);
542
543 if (caps->is_r500)
544 dsa->alpha_function |= R500_FG_ALPHA_FUNC_8BIT;
545 }
546
547 BEGIN_CB(&dsa->cb_begin, 8);
548 OUT_CB_REG(R300_FG_ALPHA_FUNC, dsa->alpha_function);
549 OUT_CB_REG_SEQ(R300_ZB_CNTL, 3);
550 OUT_CB(dsa->z_buffer_control);
551 OUT_CB(dsa->z_stencil_control);
552 OUT_CB(dsa->stencil_ref_mask);
553 OUT_CB_REG(R500_ZB_STENCILREFMASK_BF, dsa->stencil_ref_bf);
554 END_CB;
555
556 BEGIN_CB(dsa->cb_no_readwrite, 8);
557 OUT_CB_REG(R300_FG_ALPHA_FUNC, dsa->alpha_function);
558 OUT_CB_REG_SEQ(R300_ZB_CNTL, 3);
559 OUT_CB(0);
560 OUT_CB(0);
561 OUT_CB(0);
562 OUT_CB_REG(R500_ZB_STENCILREFMASK_BF, 0);
563 END_CB;
564
565 return (void*)dsa;
566 }
567
568 static void r300_dsa_inject_stencilref(struct r300_context *r300)
569 {
570 struct r300_dsa_state *dsa =
571 (struct r300_dsa_state*)r300->dsa_state.state;
572
573 if (!dsa)
574 return;
575
576 dsa->stencil_ref_mask =
577 (dsa->stencil_ref_mask & ~R300_STENCILREF_MASK) |
578 r300->stencil_ref.ref_value[0];
579 dsa->stencil_ref_bf =
580 (dsa->stencil_ref_bf & ~R300_STENCILREF_MASK) |
581 r300->stencil_ref.ref_value[1];
582 }
583
584 /* Bind DSA state. */
585 static void r300_bind_dsa_state(struct pipe_context* pipe,
586 void* state)
587 {
588 struct r300_context* r300 = r300_context(pipe);
589
590 if (!state) {
591 return;
592 }
593
594 UPDATE_STATE(state, r300->dsa_state);
595
596 r300_dsa_inject_stencilref(r300);
597 }
598
599 /* Free DSA state. */
600 static void r300_delete_dsa_state(struct pipe_context* pipe,
601 void* state)
602 {
603 FREE(state);
604 }
605
606 static void r300_set_stencil_ref(struct pipe_context* pipe,
607 const struct pipe_stencil_ref* sr)
608 {
609 struct r300_context* r300 = r300_context(pipe);
610
611 r300->stencil_ref = *sr;
612
613 r300_dsa_inject_stencilref(r300);
614 r300->dsa_state.dirty = TRUE;
615 }
616
617 static void r300_tex_set_tiling_flags(struct r300_context *r300,
618 struct r300_texture *tex, unsigned level)
619 {
620 /* Check if the macrotile flag needs to be changed.
621 * Skip changing the flags otherwise. */
622 if (tex->mip_macrotile[tex->surface_level] != tex->mip_macrotile[level]) {
623 /* Tiling determines how DRM treats the buffer data.
624 * We must flush CS when changing it if the buffer is referenced. */
625 if (r300->rws->cs_is_buffer_referenced(r300->cs,
626 tex->buffer, R300_REF_CS))
627 r300->context.flush(&r300->context, 0, NULL);
628
629 r300->rws->buffer_set_tiling(r300->rws, tex->buffer,
630 tex->microtile, tex->mip_macrotile[level],
631 tex->pitch[0] * util_format_get_blocksize(tex->b.b.format));
632
633 tex->surface_level = level;
634 }
635 }
636
637 /* This switcheroo is needed just because of goddamned MACRO_SWITCH. */
638 static void r300_fb_set_tiling_flags(struct r300_context *r300,
639 const struct pipe_framebuffer_state *state)
640 {
641 unsigned i;
642
643 /* Set tiling flags for new surfaces. */
644 for (i = 0; i < state->nr_cbufs; i++) {
645 r300_tex_set_tiling_flags(r300,
646 r300_texture(state->cbufs[i]->texture),
647 state->cbufs[i]->level);
648 }
649 if (state->zsbuf) {
650 r300_tex_set_tiling_flags(r300,
651 r300_texture(state->zsbuf->texture),
652 state->zsbuf->level);
653 }
654 }
655
656 static void r300_print_fb_surf_info(struct pipe_surface *surf, unsigned index,
657 const char *binding)
658 {
659 struct pipe_resource *tex = surf->texture;
660 struct r300_texture *rtex = r300_texture(tex);
661
662 fprintf(stderr,
663 "r300: %s[%i] Dim: %ix%i, Offset: %i, ZSlice: %i, "
664 "Face: %i, Level: %i, Format: %s\n"
665
666 "r300: TEX: Macro: %s, Micro: %s, Pitch: %i, "
667 "Dim: %ix%ix%i, LastLevel: %i, Format: %s\n",
668
669 binding, index, surf->width, surf->height, surf->offset,
670 surf->zslice, surf->face, surf->level,
671 util_format_short_name(surf->format),
672
673 rtex->macrotile ? "YES" : " NO", rtex->microtile ? "YES" : " NO",
674 rtex->hwpitch[0], tex->width0, tex->height0, tex->depth0,
675 tex->last_level, util_format_short_name(tex->format));
676 }
677
678 void r300_mark_fb_state_dirty(struct r300_context *r300,
679 enum r300_fb_state_change change)
680 {
681 struct pipe_framebuffer_state *state = r300->fb_state.state;
682
683 /* What is marked as dirty depends on the enum r300_fb_state_change. */
684 r300->gpu_flush.dirty = TRUE;
685 r300->fb_state.dirty = TRUE;
686 r300->hyperz_state.dirty = TRUE;
687
688 if (change == R300_CHANGED_FB_STATE) {
689 r300->aa_state.dirty = TRUE;
690 r300->fb_state_pipelined.dirty = TRUE;
691 }
692
693 /* Now compute the fb_state atom size. */
694 r300->fb_state.size = 2 + (8 * state->nr_cbufs);
695
696 if (r300->cbzb_clear)
697 r300->fb_state.size += 10;
698 else if (state->zsbuf)
699 r300->fb_state.size += r300->screen->caps.has_hiz ? 18 : 14;
700
701 /* The size of the rest of atoms stays the same. */
702 }
703
704 static void
705 r300_set_framebuffer_state(struct pipe_context* pipe,
706 const struct pipe_framebuffer_state* state)
707 {
708 struct r300_context* r300 = r300_context(pipe);
709 struct r300_aa_state *aa = (struct r300_aa_state*)r300->aa_state.state;
710 struct pipe_framebuffer_state *old_state = r300->fb_state.state;
711 unsigned max_width, max_height, i;
712 uint32_t zbuffer_bpp = 0;
713
714 if (r300->screen->caps.is_r500) {
715 max_width = max_height = 4096;
716 } else if (r300->screen->caps.is_r400) {
717 max_width = max_height = 4021;
718 } else {
719 max_width = max_height = 2560;
720 }
721
722 if (state->width > max_width || state->height > max_height) {
723 fprintf(stderr, "r300: Implementation error: Render targets are too "
724 "big in %s, refusing to bind framebuffer state!\n", __FUNCTION__);
725 return;
726 }
727
728 if (r300->draw) {
729 draw_flush(r300->draw);
730 }
731
732 /* If nr_cbufs is changed from zero to non-zero or vice versa... */
733 if (!!old_state->nr_cbufs != !!state->nr_cbufs) {
734 r300->blend_state.dirty = TRUE;
735 }
736 /* If zsbuf is set from NULL to non-NULL or vice versa.. */
737 if (!!old_state->zsbuf != !!state->zsbuf) {
738 r300->dsa_state.dirty = TRUE;
739 }
740
741 /* The tiling flags are dependent on the surface miplevel, unfortunately. */
742 r300_fb_set_tiling_flags(r300, state);
743
744 util_assign_framebuffer_state(r300->fb_state.state, state);
745
746 r300_mark_fb_state_dirty(r300, R300_CHANGED_FB_STATE);
747
748 /* Polygon offset depends on the zbuffer bit depth. */
749 if (state->zsbuf && r300->polygon_offset_enabled) {
750 switch (util_format_get_blocksize(state->zsbuf->texture->format)) {
751 case 2:
752 zbuffer_bpp = 16;
753 break;
754 case 4:
755 zbuffer_bpp = 24;
756 break;
757 }
758
759 if (r300->zbuffer_bpp != zbuffer_bpp) {
760 r300->zbuffer_bpp = zbuffer_bpp;
761 r300->rs_state.dirty = TRUE;
762 }
763 }
764
765 /* Set up AA config. */
766 if (r300->rws->get_value(r300->rws, R300_VID_DRM_2_3_0)) {
767 if (state->nr_cbufs && state->cbufs[0]->texture->nr_samples > 1) {
768 aa->aa_config = R300_GB_AA_CONFIG_AA_ENABLE;
769
770 switch (state->cbufs[0]->texture->nr_samples) {
771 case 2:
772 aa->aa_config |= R300_GB_AA_CONFIG_NUM_AA_SUBSAMPLES_2;
773 break;
774 case 3:
775 aa->aa_config |= R300_GB_AA_CONFIG_NUM_AA_SUBSAMPLES_3;
776 break;
777 case 4:
778 aa->aa_config |= R300_GB_AA_CONFIG_NUM_AA_SUBSAMPLES_4;
779 break;
780 case 6:
781 aa->aa_config |= R300_GB_AA_CONFIG_NUM_AA_SUBSAMPLES_6;
782 break;
783 }
784 } else {
785 aa->aa_config = 0;
786 }
787 }
788
789 if (DBG_ON(r300, DBG_FB)) {
790 fprintf(stderr, "r300: set_framebuffer_state:\n");
791 for (i = 0; i < state->nr_cbufs; i++) {
792 r300_print_fb_surf_info(state->cbufs[i], i, "CB");
793 }
794 if (state->zsbuf) {
795 r300_print_fb_surf_info(state->zsbuf, 0, "ZB");
796 }
797 }
798 }
799
800 /* Create fragment shader state. */
801 static void* r300_create_fs_state(struct pipe_context* pipe,
802 const struct pipe_shader_state* shader)
803 {
804 struct r300_fragment_shader* fs = NULL;
805
806 fs = (struct r300_fragment_shader*)CALLOC_STRUCT(r300_fragment_shader);
807
808 /* Copy state directly into shader. */
809 fs->state = *shader;
810 fs->state.tokens = tgsi_dup_tokens(shader->tokens);
811
812 return (void*)fs;
813 }
814
815 void r300_mark_fs_code_dirty(struct r300_context *r300)
816 {
817 struct r300_fragment_shader* fs = r300_fs(r300);
818
819 r300->fs.dirty = TRUE;
820 r300->fs_rc_constant_state.dirty = TRUE;
821 r300->fs_constants.dirty = TRUE;
822 r300->fs.size = fs->shader->cb_code_size;
823
824 if (r300->screen->caps.is_r500) {
825 r300->fs_rc_constant_state.size = fs->shader->rc_state_count * 7;
826 r300->fs_constants.size = fs->shader->externals_count * 4 + 3;
827 } else {
828 r300->fs_rc_constant_state.size = fs->shader->rc_state_count * 5;
829 r300->fs_constants.size = fs->shader->externals_count * 4 + 1;
830 }
831 }
832
833 /* Bind fragment shader state. */
834 static void r300_bind_fs_state(struct pipe_context* pipe, void* shader)
835 {
836 struct r300_context* r300 = r300_context(pipe);
837 struct r300_fragment_shader* fs = (struct r300_fragment_shader*)shader;
838
839 if (fs == NULL) {
840 r300->fs.state = NULL;
841 return;
842 }
843
844 r300->fs.state = fs;
845 r300_pick_fragment_shader(r300);
846 r300_mark_fs_code_dirty(r300);
847
848 r300->rs_block_state.dirty = TRUE; /* Will be updated before the emission. */
849 }
850
851 /* Delete fragment shader state. */
852 static void r300_delete_fs_state(struct pipe_context* pipe, void* shader)
853 {
854 struct r300_fragment_shader* fs = (struct r300_fragment_shader*)shader;
855 struct r300_fragment_shader_code *tmp, *ptr = fs->first;
856
857 while (ptr) {
858 tmp = ptr;
859 ptr = ptr->next;
860 rc_constants_destroy(&tmp->code.constants);
861 FREE(tmp->cb_code);
862 FREE(tmp);
863 }
864 FREE((void*)fs->state.tokens);
865 FREE(shader);
866 }
867
868 static void r300_set_polygon_stipple(struct pipe_context* pipe,
869 const struct pipe_poly_stipple* state)
870 {
871 /* XXX no idea how to set this up, but not terribly important */
872 }
873
874 /* Create a new rasterizer state based on the CSO rasterizer state.
875 *
876 * This is a very large chunk of state, and covers most of the graphics
877 * backend (GB), geometry assembly (GA), and setup unit (SU) blocks.
878 *
879 * In a not entirely unironic sidenote, this state has nearly nothing to do
880 * with the actual block on the Radeon called the rasterizer (RS). */
881 static void* r300_create_rs_state(struct pipe_context* pipe,
882 const struct pipe_rasterizer_state* state)
883 {
884 struct r300_rs_state* rs = CALLOC_STRUCT(r300_rs_state);
885 int i;
886 float psiz;
887 uint32_t vap_control_status; /* R300_VAP_CNTL_STATUS: 0x2140 */
888 uint32_t point_size; /* R300_GA_POINT_SIZE: 0x421c */
889 uint32_t point_minmax; /* R300_GA_POINT_MINMAX: 0x4230 */
890 uint32_t line_control; /* R300_GA_LINE_CNTL: 0x4234 */
891 uint32_t polygon_offset_enable; /* R300_SU_POLY_OFFSET_ENABLE: 0x42b4 */
892 uint32_t cull_mode; /* R300_SU_CULL_MODE: 0x42b8 */
893 uint32_t line_stipple_config; /* R300_GA_LINE_STIPPLE_CONFIG: 0x4328 */
894 uint32_t line_stipple_value; /* R300_GA_LINE_STIPPLE_VALUE: 0x4260 */
895 uint32_t polygon_mode; /* R300_GA_POLY_MODE: 0x4288 */
896 uint32_t clip_rule; /* R300_SC_CLIP_RULE: 0x43D0 */
897
898 /* Specifies top of Raster pipe specific enable controls,
899 * i.e. texture coordinates stuffing for points, lines, triangles */
900 uint32_t stuffing_enable; /* R300_GB_ENABLE: 0x4008 */
901
902 /* Point sprites texture coordinates, 0: lower left, 1: upper right */
903 float point_texcoord_left; /* R300_GA_POINT_S0: 0x4200 */
904 float point_texcoord_bottom = 0;/* R300_GA_POINT_T0: 0x4204 */
905 float point_texcoord_right; /* R300_GA_POINT_S1: 0x4208 */
906 float point_texcoord_top = 0; /* R300_GA_POINT_T1: 0x420c */
907 CB_LOCALS;
908
909 /* Copy rasterizer state. */
910 rs->rs = *state;
911 rs->rs_draw = *state;
912
913 /* Override some states for Draw. */
914 rs->rs_draw.sprite_coord_enable = 0; /* We can do this in HW. */
915
916 #ifdef PIPE_ARCH_LITTLE_ENDIAN
917 vap_control_status = R300_VC_NO_SWAP;
918 #else
919 vap_control_status = R300_VC_32BIT_SWAP;
920 #endif
921
922 /* If no TCL engine is present, turn off the HW TCL. */
923 if (!r300_screen(pipe->screen)->caps.has_tcl) {
924 vap_control_status |= R300_VAP_TCL_BYPASS;
925 }
926
927 /* Point size width and height. */
928 point_size =
929 pack_float_16_6x(state->point_size) |
930 (pack_float_16_6x(state->point_size) << R300_POINTSIZE_X_SHIFT);
931
932 /* Point size clamping. */
933 if (state->point_size_per_vertex) {
934 /* Per-vertex point size.
935 * Clamp to [0, max FB size] */
936 psiz = pipe->screen->get_paramf(pipe->screen,
937 PIPE_CAP_MAX_POINT_WIDTH);
938 point_minmax =
939 pack_float_16_6x(psiz) << R300_GA_POINT_MINMAX_MAX_SHIFT;
940 } else {
941 /* We cannot disable the point-size vertex output,
942 * so clamp it. */
943 psiz = state->point_size;
944 point_minmax =
945 (pack_float_16_6x(psiz) << R300_GA_POINT_MINMAX_MIN_SHIFT) |
946 (pack_float_16_6x(psiz) << R300_GA_POINT_MINMAX_MAX_SHIFT);
947 }
948
949 /* Line control. */
950 line_control = pack_float_16_6x(state->line_width) |
951 R300_GA_LINE_CNTL_END_TYPE_COMP;
952
953 /* Enable polygon mode */
954 polygon_mode = 0;
955 if (state->fill_front != PIPE_POLYGON_MODE_FILL ||
956 state->fill_back != PIPE_POLYGON_MODE_FILL) {
957 polygon_mode = R300_GA_POLY_MODE_DUAL;
958 }
959
960 /* Front face */
961 if (state->front_ccw)
962 cull_mode = R300_FRONT_FACE_CCW;
963 else
964 cull_mode = R300_FRONT_FACE_CW;
965
966 /* Polygon offset */
967 polygon_offset_enable = 0;
968 if (util_get_offset(state, state->fill_front)) {
969 polygon_offset_enable |= R300_FRONT_ENABLE;
970 }
971 if (util_get_offset(state, state->fill_back)) {
972 polygon_offset_enable |= R300_BACK_ENABLE;
973 }
974
975 rs->polygon_offset_enable = polygon_offset_enable != 0;
976
977 /* Polygon mode */
978 if (polygon_mode) {
979 polygon_mode |=
980 r300_translate_polygon_mode_front(state->fill_front);
981 polygon_mode |=
982 r300_translate_polygon_mode_back(state->fill_back);
983 }
984
985 if (state->cull_face & PIPE_FACE_FRONT) {
986 cull_mode |= R300_CULL_FRONT;
987 }
988 if (state->cull_face & PIPE_FACE_BACK) {
989 cull_mode |= R300_CULL_BACK;
990 }
991
992 if (state->line_stipple_enable) {
993 line_stipple_config =
994 R300_GA_LINE_STIPPLE_CONFIG_LINE_RESET_LINE |
995 (fui((float)state->line_stipple_factor) &
996 R300_GA_LINE_STIPPLE_CONFIG_STIPPLE_SCALE_MASK);
997 /* XXX this might need to be scaled up */
998 line_stipple_value = state->line_stipple_pattern;
999 } else {
1000 line_stipple_config = 0;
1001 line_stipple_value = 0;
1002 }
1003
1004 if (state->flatshade) {
1005 rs->color_control = R300_SHADE_MODEL_FLAT;
1006 } else {
1007 rs->color_control = R300_SHADE_MODEL_SMOOTH;
1008 }
1009
1010 clip_rule = state->scissor ? 0xAAAA : 0xFFFF;
1011
1012 /* Point sprites */
1013 stuffing_enable = 0;
1014 if (state->sprite_coord_enable) {
1015 stuffing_enable = R300_GB_POINT_STUFF_ENABLE;
1016 for (i = 0; i < 8; i++) {
1017 if (state->sprite_coord_enable & (1 << i))
1018 stuffing_enable |=
1019 R300_GB_TEX_STR << (R300_GB_TEX0_SOURCE_SHIFT + (i*2));
1020 }
1021
1022 point_texcoord_left = 0.0f;
1023 point_texcoord_right = 1.0f;
1024
1025 switch (state->sprite_coord_mode) {
1026 case PIPE_SPRITE_COORD_UPPER_LEFT:
1027 point_texcoord_top = 0.0f;
1028 point_texcoord_bottom = 1.0f;
1029 break;
1030 case PIPE_SPRITE_COORD_LOWER_LEFT:
1031 point_texcoord_top = 1.0f;
1032 point_texcoord_bottom = 0.0f;
1033 break;
1034 }
1035 }
1036
1037 /* Build the main command buffer. */
1038 BEGIN_CB(rs->cb_main, 25);
1039 OUT_CB_REG(R300_VAP_CNTL_STATUS, vap_control_status);
1040 OUT_CB_REG(R300_GA_POINT_SIZE, point_size);
1041 OUT_CB_REG_SEQ(R300_GA_POINT_MINMAX, 2);
1042 OUT_CB(point_minmax);
1043 OUT_CB(line_control);
1044 OUT_CB_REG_SEQ(R300_SU_POLY_OFFSET_ENABLE, 2);
1045 OUT_CB(polygon_offset_enable);
1046 rs->cull_mode_index = 9;
1047 OUT_CB(cull_mode);
1048 OUT_CB_REG(R300_GA_LINE_STIPPLE_CONFIG, line_stipple_config);
1049 OUT_CB_REG(R300_GA_LINE_STIPPLE_VALUE, line_stipple_value);
1050 OUT_CB_REG(R300_GA_POLY_MODE, polygon_mode);
1051 OUT_CB_REG(R300_SC_CLIP_RULE, clip_rule);
1052 OUT_CB_REG(R300_GB_ENABLE, stuffing_enable);
1053 OUT_CB_REG_SEQ(R300_GA_POINT_S0, 4);
1054 OUT_CB_32F(point_texcoord_left);
1055 OUT_CB_32F(point_texcoord_bottom);
1056 OUT_CB_32F(point_texcoord_right);
1057 OUT_CB_32F(point_texcoord_top);
1058 END_CB;
1059
1060 /* Build the two command buffers for polygon offset setup. */
1061 if (polygon_offset_enable) {
1062 float scale = state->offset_scale * 12;
1063 float offset = state->offset_units * 4;
1064
1065 BEGIN_CB(rs->cb_poly_offset_zb16, 5);
1066 OUT_CB_REG_SEQ(R300_SU_POLY_OFFSET_FRONT_SCALE, 4);
1067 OUT_CB_32F(scale);
1068 OUT_CB_32F(offset);
1069 OUT_CB_32F(scale);
1070 OUT_CB_32F(offset);
1071 END_CB;
1072
1073 offset = state->offset_units * 2;
1074
1075 BEGIN_CB(rs->cb_poly_offset_zb24, 5);
1076 OUT_CB_REG_SEQ(R300_SU_POLY_OFFSET_FRONT_SCALE, 4);
1077 OUT_CB_32F(scale);
1078 OUT_CB_32F(offset);
1079 OUT_CB_32F(scale);
1080 OUT_CB_32F(offset);
1081 END_CB;
1082 }
1083
1084 return (void*)rs;
1085 }
1086
1087 /* Bind rasterizer state. */
1088 static void r300_bind_rs_state(struct pipe_context* pipe, void* state)
1089 {
1090 struct r300_context* r300 = r300_context(pipe);
1091 struct r300_rs_state* rs = (struct r300_rs_state*)state;
1092 int last_sprite_coord_enable = r300->sprite_coord_enable;
1093 boolean last_two_sided_color = r300->two_sided_color;
1094
1095 if (r300->draw && rs) {
1096 draw_flush(r300->draw);
1097 draw_set_rasterizer_state(r300->draw, &rs->rs_draw, state);
1098 }
1099
1100 if (rs) {
1101 r300->polygon_offset_enabled = (rs->rs.offset_point ||
1102 rs->rs.offset_line ||
1103 rs->rs.offset_tri);
1104 r300->sprite_coord_enable = rs->rs.sprite_coord_enable;
1105 r300->two_sided_color = rs->rs.light_twoside;
1106 } else {
1107 r300->polygon_offset_enabled = FALSE;
1108 r300->sprite_coord_enable = 0;
1109 r300->two_sided_color = FALSE;
1110 }
1111
1112 UPDATE_STATE(state, r300->rs_state);
1113 r300->rs_state.size = 25 + (r300->polygon_offset_enabled ? 5 : 0);
1114
1115 if (last_sprite_coord_enable != r300->sprite_coord_enable ||
1116 last_two_sided_color != r300->two_sided_color) {
1117 r300->rs_block_state.dirty = TRUE;
1118 }
1119 }
1120
1121 /* Free rasterizer state. */
1122 static void r300_delete_rs_state(struct pipe_context* pipe, void* state)
1123 {
1124 FREE(state);
1125 }
1126
1127 static void*
1128 r300_create_sampler_state(struct pipe_context* pipe,
1129 const struct pipe_sampler_state* state)
1130 {
1131 struct r300_context* r300 = r300_context(pipe);
1132 struct r300_sampler_state* sampler = CALLOC_STRUCT(r300_sampler_state);
1133 boolean is_r500 = r300->screen->caps.is_r500;
1134 int lod_bias;
1135 union util_color uc;
1136
1137 sampler->state = *state;
1138
1139 /* r300 doesn't handle CLAMP and MIRROR_CLAMP correctly when either MAG
1140 * or MIN filter is NEAREST. Since texwrap produces same results
1141 * for CLAMP and CLAMP_TO_EDGE, we use them instead. */
1142 if (sampler->state.min_img_filter == PIPE_TEX_FILTER_NEAREST ||
1143 sampler->state.mag_img_filter == PIPE_TEX_FILTER_NEAREST) {
1144 /* Wrap S. */
1145 if (sampler->state.wrap_s == PIPE_TEX_WRAP_CLAMP)
1146 sampler->state.wrap_s = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
1147 else if (sampler->state.wrap_s == PIPE_TEX_WRAP_MIRROR_CLAMP)
1148 sampler->state.wrap_s = PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE;
1149
1150 /* Wrap T. */
1151 if (sampler->state.wrap_t == PIPE_TEX_WRAP_CLAMP)
1152 sampler->state.wrap_t = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
1153 else if (sampler->state.wrap_t == PIPE_TEX_WRAP_MIRROR_CLAMP)
1154 sampler->state.wrap_t = PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE;
1155
1156 /* Wrap R. */
1157 if (sampler->state.wrap_r == PIPE_TEX_WRAP_CLAMP)
1158 sampler->state.wrap_r = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
1159 else if (sampler->state.wrap_r == PIPE_TEX_WRAP_MIRROR_CLAMP)
1160 sampler->state.wrap_r = PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE;
1161 }
1162
1163 sampler->filter0 |=
1164 (r300_translate_wrap(sampler->state.wrap_s) << R300_TX_WRAP_S_SHIFT) |
1165 (r300_translate_wrap(sampler->state.wrap_t) << R300_TX_WRAP_T_SHIFT) |
1166 (r300_translate_wrap(sampler->state.wrap_r) << R300_TX_WRAP_R_SHIFT);
1167
1168 sampler->filter0 |= r300_translate_tex_filters(state->min_img_filter,
1169 state->mag_img_filter,
1170 state->min_mip_filter,
1171 state->max_anisotropy > 0);
1172
1173 sampler->filter0 |= r300_anisotropy(state->max_anisotropy);
1174
1175 /* Unfortunately, r300-r500 don't support floating-point mipmap lods. */
1176 /* We must pass these to the merge function to clamp them properly. */
1177 sampler->min_lod = MAX2((unsigned)state->min_lod, 0);
1178 sampler->max_lod = MAX2((unsigned)ceilf(state->max_lod), 0);
1179
1180 lod_bias = CLAMP((int)(state->lod_bias * 32 + 1), -(1 << 9), (1 << 9) - 1);
1181
1182 sampler->filter1 |= (lod_bias << R300_LOD_BIAS_SHIFT) & R300_LOD_BIAS_MASK;
1183
1184 /* This is very high quality anisotropic filtering for R5xx.
1185 * It's good for benchmarking the performance of texturing but
1186 * in practice we don't want to slow down the driver because it's
1187 * a pretty good performance killer. Feel free to play with it. */
1188 if (DBG_ON(r300, DBG_ANISOHQ) && is_r500) {
1189 sampler->filter1 |= r500_anisotropy(state->max_anisotropy);
1190 }
1191
1192 util_pack_color(state->border_color, PIPE_FORMAT_B8G8R8A8_UNORM, &uc);
1193 sampler->border_color = uc.ui;
1194
1195 /* R500-specific fixups and optimizations */
1196 if (r300->screen->caps.is_r500) {
1197 sampler->filter1 |= R500_BORDER_FIX;
1198 }
1199
1200 return (void*)sampler;
1201 }
1202
1203 static void r300_bind_sampler_states(struct pipe_context* pipe,
1204 unsigned count,
1205 void** states)
1206 {
1207 struct r300_context* r300 = r300_context(pipe);
1208 struct r300_textures_state* state =
1209 (struct r300_textures_state*)r300->textures_state.state;
1210 unsigned tex_units = r300->screen->caps.num_tex_units;
1211
1212 if (count > tex_units) {
1213 return;
1214 }
1215
1216 memcpy(state->sampler_states, states, sizeof(void*) * count);
1217 state->sampler_state_count = count;
1218
1219 r300->textures_state.dirty = TRUE;
1220 }
1221
1222 static void r300_lacks_vertex_textures(struct pipe_context* pipe,
1223 unsigned count,
1224 void** states)
1225 {
1226 }
1227
1228 static void r300_delete_sampler_state(struct pipe_context* pipe, void* state)
1229 {
1230 FREE(state);
1231 }
1232
1233 static uint32_t r300_assign_texture_cache_region(unsigned index, unsigned num)
1234 {
1235 /* This looks like a hack, but I believe it's suppose to work like
1236 * that. To illustrate how this works, let's assume you have 5 textures.
1237 * From docs, 5 and the successive numbers are:
1238 *
1239 * FOURTH_1 = 5
1240 * FOURTH_2 = 6
1241 * FOURTH_3 = 7
1242 * EIGHTH_0 = 8
1243 * EIGHTH_1 = 9
1244 *
1245 * First 3 textures will get 3/4 of size of the cache, divived evenly
1246 * between them. The last 1/4 of the cache must be divided between
1247 * the last 2 textures, each will therefore get 1/8 of the cache.
1248 * Why not just to use "5 + texture_index" ?
1249 *
1250 * This simple trick works for all "num" <= 16.
1251 */
1252 if (num <= 1)
1253 return R300_TX_CACHE(R300_TX_CACHE_WHOLE);
1254 else
1255 return R300_TX_CACHE(num + index);
1256 }
1257
1258 static void r300_set_fragment_sampler_views(struct pipe_context* pipe,
1259 unsigned count,
1260 struct pipe_sampler_view** views)
1261 {
1262 struct r300_context* r300 = r300_context(pipe);
1263 struct r300_textures_state* state =
1264 (struct r300_textures_state*)r300->textures_state.state;
1265 struct r300_texture *texture;
1266 unsigned i, real_num_views = 0, view_index = 0;
1267 unsigned tex_units = r300->screen->caps.num_tex_units;
1268 boolean dirty_tex = FALSE;
1269
1270 if (count > tex_units) {
1271 return;
1272 }
1273
1274 /* Calculate the real number of views. */
1275 for (i = 0; i < count; i++) {
1276 if (views[i])
1277 real_num_views++;
1278 }
1279
1280 for (i = 0; i < count; i++) {
1281 if (&state->sampler_views[i]->base != views[i]) {
1282 pipe_sampler_view_reference(
1283 (struct pipe_sampler_view**)&state->sampler_views[i],
1284 views[i]);
1285
1286 if (!views[i]) {
1287 continue;
1288 }
1289
1290 /* A new sampler view (= texture)... */
1291 dirty_tex = TRUE;
1292
1293 /* Set the texrect factor in the fragment shader.
1294 * Needed for RECT and NPOT fallback. */
1295 texture = r300_texture(views[i]->texture);
1296 if (texture->uses_pitch) {
1297 r300->fs_rc_constant_state.dirty = TRUE;
1298 }
1299
1300 state->sampler_views[i]->texcache_region =
1301 r300_assign_texture_cache_region(view_index, real_num_views);
1302 view_index++;
1303 }
1304 }
1305
1306 for (i = count; i < tex_units; i++) {
1307 if (state->sampler_views[i]) {
1308 pipe_sampler_view_reference(
1309 (struct pipe_sampler_view**)&state->sampler_views[i],
1310 NULL);
1311 }
1312 }
1313
1314 state->sampler_view_count = count;
1315
1316 r300->textures_state.dirty = TRUE;
1317
1318 if (dirty_tex) {
1319 r300->texture_cache_inval.dirty = TRUE;
1320 }
1321 }
1322
1323 static struct pipe_sampler_view *
1324 r300_create_sampler_view(struct pipe_context *pipe,
1325 struct pipe_resource *texture,
1326 const struct pipe_sampler_view *templ)
1327 {
1328 struct r300_sampler_view *view = CALLOC_STRUCT(r300_sampler_view);
1329 struct r300_texture *tex = r300_texture(texture);
1330
1331 if (view) {
1332 view->base = *templ;
1333 view->base.reference.count = 1;
1334 view->base.context = pipe;
1335 view->base.texture = NULL;
1336 pipe_resource_reference(&view->base.texture, texture);
1337
1338 view->swizzle[0] = templ->swizzle_r;
1339 view->swizzle[1] = templ->swizzle_g;
1340 view->swizzle[2] = templ->swizzle_b;
1341 view->swizzle[3] = templ->swizzle_a;
1342
1343 view->format = tex->tx_format;
1344 view->format.format1 |= r300_translate_texformat(templ->format,
1345 view->swizzle);
1346 if (r300_screen(pipe->screen)->caps.is_r500) {
1347 view->format.format2 |= r500_tx_format_msb_bit(templ->format);
1348 }
1349 }
1350
1351 return (struct pipe_sampler_view*)view;
1352 }
1353
1354 static void
1355 r300_sampler_view_destroy(struct pipe_context *pipe,
1356 struct pipe_sampler_view *view)
1357 {
1358 pipe_resource_reference(&view->texture, NULL);
1359 FREE(view);
1360 }
1361
1362 static void r300_set_scissor_state(struct pipe_context* pipe,
1363 const struct pipe_scissor_state* state)
1364 {
1365 struct r300_context* r300 = r300_context(pipe);
1366
1367 memcpy(r300->scissor_state.state, state,
1368 sizeof(struct pipe_scissor_state));
1369
1370 r300->scissor_state.dirty = TRUE;
1371 }
1372
1373 static void r300_set_viewport_state(struct pipe_context* pipe,
1374 const struct pipe_viewport_state* state)
1375 {
1376 struct r300_context* r300 = r300_context(pipe);
1377 struct r300_viewport_state* viewport =
1378 (struct r300_viewport_state*)r300->viewport_state.state;
1379
1380 r300->viewport = *state;
1381
1382 if (r300->draw) {
1383 draw_flush(r300->draw);
1384 draw_set_viewport_state(r300->draw, state);
1385 viewport->vte_control = R300_VTX_XY_FMT | R300_VTX_Z_FMT;
1386 return;
1387 }
1388
1389 /* Do the transform in HW. */
1390 viewport->vte_control = R300_VTX_W0_FMT;
1391
1392 if (state->scale[0] != 1.0f) {
1393 viewport->xscale = state->scale[0];
1394 viewport->vte_control |= R300_VPORT_X_SCALE_ENA;
1395 }
1396 if (state->scale[1] != 1.0f) {
1397 viewport->yscale = state->scale[1];
1398 viewport->vte_control |= R300_VPORT_Y_SCALE_ENA;
1399 }
1400 if (state->scale[2] != 1.0f) {
1401 viewport->zscale = state->scale[2];
1402 viewport->vte_control |= R300_VPORT_Z_SCALE_ENA;
1403 }
1404 if (state->translate[0] != 0.0f) {
1405 viewport->xoffset = state->translate[0];
1406 viewport->vte_control |= R300_VPORT_X_OFFSET_ENA;
1407 }
1408 if (state->translate[1] != 0.0f) {
1409 viewport->yoffset = state->translate[1];
1410 viewport->vte_control |= R300_VPORT_Y_OFFSET_ENA;
1411 }
1412 if (state->translate[2] != 0.0f) {
1413 viewport->zoffset = state->translate[2];
1414 viewport->vte_control |= R300_VPORT_Z_OFFSET_ENA;
1415 }
1416
1417 r300->viewport_state.dirty = TRUE;
1418 if (r300->fs.state && r300_fs(r300)->shader->inputs.wpos != ATTR_UNUSED) {
1419 r300->fs_rc_constant_state.dirty = TRUE;
1420 }
1421 }
1422
1423 static void r300_set_vertex_buffers(struct pipe_context* pipe,
1424 unsigned count,
1425 const struct pipe_vertex_buffer* buffers)
1426 {
1427 struct r300_context* r300 = r300_context(pipe);
1428 struct pipe_vertex_buffer *vbo;
1429 unsigned i, max_index = (1 << 24) - 1;
1430 boolean any_user_buffer = FALSE;
1431
1432 if (count == r300->vertex_buffer_count &&
1433 memcmp(r300->vertex_buffer, buffers,
1434 sizeof(struct pipe_vertex_buffer) * count) == 0) {
1435 return;
1436 }
1437
1438 if (r300->screen->caps.has_tcl) {
1439 /* HW TCL. */
1440 r300->incompatible_vb_layout = FALSE;
1441
1442 /* Check if the strides and offsets are aligned to the size of DWORD. */
1443 for (i = 0; i < count; i++) {
1444 if (buffers[i].buffer) {
1445 if (buffers[i].stride % 4 != 0 ||
1446 buffers[i].buffer_offset % 4 != 0) {
1447 r300->incompatible_vb_layout = TRUE;
1448 break;
1449 }
1450 }
1451 }
1452
1453 for (i = 0; i < count; i++) {
1454 /* Why, yes, I AM casting away constness. How did you know? */
1455 vbo = (struct pipe_vertex_buffer*)&buffers[i];
1456
1457 /* Skip NULL buffers */
1458 if (!buffers[i].buffer) {
1459 continue;
1460 }
1461
1462 if (r300_buffer_is_user_buffer(vbo->buffer)) {
1463 any_user_buffer = TRUE;
1464 }
1465
1466 if (vbo->max_index == ~0) {
1467 /* if no VBO stride then only one vertex value so max index is 1 */
1468 /* should think about converting to VS constants like svga does */
1469 if (!vbo->stride)
1470 vbo->max_index = 1;
1471 else
1472 vbo->max_index =
1473 (vbo->buffer->width0 - vbo->buffer_offset) / vbo->stride;
1474 }
1475
1476 max_index = MIN2(vbo->max_index, max_index);
1477 }
1478
1479 r300->any_user_vbs = any_user_buffer;
1480 r300->vertex_buffer_max_index = max_index;
1481
1482 } else {
1483 /* SW TCL. */
1484 draw_flush(r300->draw);
1485 draw_set_vertex_buffers(r300->draw, count, buffers);
1486 }
1487
1488 /* Common code. */
1489 for (i = 0; i < count; i++) {
1490 /* Reference our buffer. */
1491 pipe_resource_reference(&r300->vertex_buffer[i].buffer, buffers[i].buffer);
1492 }
1493 for (; i < r300->vertex_buffer_count; i++) {
1494 /* Dereference any old buffers. */
1495 pipe_resource_reference(&r300->vertex_buffer[i].buffer, NULL);
1496 }
1497
1498 memcpy(r300->vertex_buffer, buffers,
1499 sizeof(struct pipe_vertex_buffer) * count);
1500 r300->vertex_buffer_count = count;
1501 }
1502
1503 /* Initialize the PSC tables. */
1504 static void r300_vertex_psc(struct r300_vertex_element_state *velems)
1505 {
1506 struct r300_vertex_stream_state *vstream = &velems->vertex_stream;
1507 uint16_t type, swizzle;
1508 enum pipe_format format;
1509 unsigned i;
1510
1511 if (velems->count > 16) {
1512 fprintf(stderr, "r300: More than 16 vertex elements are not supported,"
1513 " requested %i, using 16.\n", velems->count);
1514 velems->count = 16;
1515 }
1516
1517 /* Vertex shaders have no semantics on their inputs,
1518 * so PSC should just route stuff based on the vertex elements,
1519 * and not on attrib information. */
1520 for (i = 0; i < velems->count; i++) {
1521 format = velems->hw_format[i];
1522
1523 type = r300_translate_vertex_data_type(format);
1524 if (type == R300_INVALID_FORMAT) {
1525 fprintf(stderr, "r300: Bad vertex format %s.\n",
1526 util_format_short_name(format));
1527 assert(0);
1528 abort();
1529 }
1530
1531 type |= i << R300_DST_VEC_LOC_SHIFT;
1532 swizzle = r300_translate_vertex_data_swizzle(format);
1533
1534 if (i & 1) {
1535 vstream->vap_prog_stream_cntl[i >> 1] |= type << 16;
1536 vstream->vap_prog_stream_cntl_ext[i >> 1] |= swizzle << 16;
1537 } else {
1538 vstream->vap_prog_stream_cntl[i >> 1] |= type;
1539 vstream->vap_prog_stream_cntl_ext[i >> 1] |= swizzle;
1540 }
1541 }
1542
1543 /* Set the last vector in the PSC. */
1544 if (i) {
1545 i -= 1;
1546 }
1547 vstream->vap_prog_stream_cntl[i >> 1] |=
1548 (R300_LAST_VEC << (i & 1 ? 16 : 0));
1549
1550 vstream->count = (i >> 1) + 1;
1551 }
1552
1553 #define FORMAT_REPLACE(what, withwhat) \
1554 case PIPE_FORMAT_##what: *format = PIPE_FORMAT_##withwhat; break
1555
1556 static void* r300_create_vertex_elements_state(struct pipe_context* pipe,
1557 unsigned count,
1558 const struct pipe_vertex_element* attribs)
1559 {
1560 struct r300_vertex_element_state *velems;
1561 unsigned i;
1562 enum pipe_format *format;
1563
1564 assert(count <= PIPE_MAX_ATTRIBS);
1565 velems = CALLOC_STRUCT(r300_vertex_element_state);
1566 if (velems != NULL) {
1567 velems->count = count;
1568 memcpy(velems->velem, attribs, sizeof(struct pipe_vertex_element) * count);
1569
1570 if (r300_screen(pipe->screen)->caps.has_tcl) {
1571 /* Set the best hw format in case the original format is not
1572 * supported by hw. */
1573 for (i = 0; i < count; i++) {
1574 velems->hw_format[i] = velems->velem[i].src_format;
1575 format = &velems->hw_format[i];
1576
1577 /* This is basically the list of unsupported formats.
1578 * For now we don't care about the alignment, that's going to
1579 * be sorted out after the PSC setup. */
1580 switch (*format) {
1581 FORMAT_REPLACE(R64_FLOAT, R32_FLOAT);
1582 FORMAT_REPLACE(R64G64_FLOAT, R32G32_FLOAT);
1583 FORMAT_REPLACE(R64G64B64_FLOAT, R32G32B32_FLOAT);
1584 FORMAT_REPLACE(R64G64B64A64_FLOAT, R32G32B32A32_FLOAT);
1585
1586 FORMAT_REPLACE(R32_UNORM, R32_FLOAT);
1587 FORMAT_REPLACE(R32G32_UNORM, R32G32_FLOAT);
1588 FORMAT_REPLACE(R32G32B32_UNORM, R32G32B32_FLOAT);
1589 FORMAT_REPLACE(R32G32B32A32_UNORM, R32G32B32A32_FLOAT);
1590
1591 FORMAT_REPLACE(R32_USCALED, R32_FLOAT);
1592 FORMAT_REPLACE(R32G32_USCALED, R32G32_FLOAT);
1593 FORMAT_REPLACE(R32G32B32_USCALED, R32G32B32_FLOAT);
1594 FORMAT_REPLACE(R32G32B32A32_USCALED,R32G32B32A32_FLOAT);
1595
1596 FORMAT_REPLACE(R32_SNORM, R32_FLOAT);
1597 FORMAT_REPLACE(R32G32_SNORM, R32G32_FLOAT);
1598 FORMAT_REPLACE(R32G32B32_SNORM, R32G32B32_FLOAT);
1599 FORMAT_REPLACE(R32G32B32A32_SNORM, R32G32B32A32_FLOAT);
1600
1601 FORMAT_REPLACE(R32_SSCALED, R32_FLOAT);
1602 FORMAT_REPLACE(R32G32_SSCALED, R32G32_FLOAT);
1603 FORMAT_REPLACE(R32G32B32_SSCALED, R32G32B32_FLOAT);
1604 FORMAT_REPLACE(R32G32B32A32_SSCALED,R32G32B32A32_FLOAT);
1605
1606 FORMAT_REPLACE(R32_FIXED, R32_FLOAT);
1607 FORMAT_REPLACE(R32G32_FIXED, R32G32_FLOAT);
1608 FORMAT_REPLACE(R32G32B32_FIXED, R32G32B32_FLOAT);
1609 FORMAT_REPLACE(R32G32B32A32_FIXED, R32G32B32A32_FLOAT);
1610
1611 default:;
1612 }
1613
1614 velems->incompatible_layout =
1615 velems->incompatible_layout ||
1616 velems->velem[i].src_format != velems->hw_format[i] ||
1617 velems->velem[i].src_offset % 4 != 0;
1618 }
1619
1620 /* Now setup PSC.
1621 * The unused components will be replaced by (..., 0, 1). */
1622 r300_vertex_psc(velems);
1623
1624 /* Align the formats to the size of DWORD.
1625 * We only care about the blocksizes of the formats since
1626 * swizzles are already set up.
1627 * Also compute the vertex size. */
1628 for (i = 0; i < count; i++) {
1629 /* This is OK because we check for aligned strides too. */
1630 velems->hw_format_size[i] =
1631 align(util_format_get_blocksize(velems->hw_format[i]), 4);
1632 velems->vertex_size_dwords += velems->hw_format_size[i] / 4;
1633 }
1634 }
1635 }
1636 return velems;
1637 }
1638
1639 static void r300_bind_vertex_elements_state(struct pipe_context *pipe,
1640 void *state)
1641 {
1642 struct r300_context *r300 = r300_context(pipe);
1643 struct r300_vertex_element_state *velems = state;
1644
1645 if (velems == NULL) {
1646 return;
1647 }
1648
1649 r300->velems = velems;
1650
1651 if (r300->draw) {
1652 draw_flush(r300->draw);
1653 draw_set_vertex_elements(r300->draw, velems->count, velems->velem);
1654 return;
1655 }
1656
1657 UPDATE_STATE(&velems->vertex_stream, r300->vertex_stream_state);
1658 r300->vertex_stream_state.size = (1 + velems->vertex_stream.count) * 2;
1659 }
1660
1661 static void r300_delete_vertex_elements_state(struct pipe_context *pipe, void *state)
1662 {
1663 FREE(state);
1664 }
1665
1666 static void* r300_create_vs_state(struct pipe_context* pipe,
1667 const struct pipe_shader_state* shader)
1668 {
1669 struct r300_context* r300 = r300_context(pipe);
1670 struct r300_vertex_shader* vs = CALLOC_STRUCT(r300_vertex_shader);
1671
1672 /* Copy state directly into shader. */
1673 vs->state = *shader;
1674 vs->state.tokens = tgsi_dup_tokens(shader->tokens);
1675
1676 if (r300->screen->caps.has_tcl) {
1677 r300_init_vs_outputs(vs);
1678 r300_translate_vertex_shader(r300, vs);
1679 } else {
1680 r300_draw_init_vertex_shader(r300->draw, vs);
1681 }
1682
1683 return vs;
1684 }
1685
1686 static void r300_bind_vs_state(struct pipe_context* pipe, void* shader)
1687 {
1688 struct r300_context* r300 = r300_context(pipe);
1689 struct r300_vertex_shader* vs = (struct r300_vertex_shader*)shader;
1690
1691 if (vs == NULL) {
1692 r300->vs_state.state = NULL;
1693 return;
1694 }
1695 if (vs == r300->vs_state.state) {
1696 return;
1697 }
1698 r300->vs_state.state = vs;
1699
1700 /* The majority of the RS block bits is dependent on the vertex shader. */
1701 r300->rs_block_state.dirty = TRUE; /* Will be updated before the emission. */
1702
1703 if (r300->screen->caps.has_tcl) {
1704 r300->vs_state.dirty = TRUE;
1705 r300->vs_state.size =
1706 vs->code.length + 9 +
1707 (vs->immediates_count ? vs->immediates_count * 4 + 3 : 0);
1708
1709 if (vs->externals_count) {
1710 r300->vs_constants.dirty = TRUE;
1711 r300->vs_constants.size = vs->externals_count * 4 + 3;
1712 } else {
1713 r300->vs_constants.size = 0;
1714 }
1715
1716 r300->pvs_flush.dirty = TRUE;
1717 } else {
1718 draw_flush(r300->draw);
1719 draw_bind_vertex_shader(r300->draw,
1720 (struct draw_vertex_shader*)vs->draw_vs);
1721 }
1722 }
1723
1724 static void r300_delete_vs_state(struct pipe_context* pipe, void* shader)
1725 {
1726 struct r300_context* r300 = r300_context(pipe);
1727 struct r300_vertex_shader* vs = (struct r300_vertex_shader*)shader;
1728
1729 if (r300->screen->caps.has_tcl) {
1730 rc_constants_destroy(&vs->code.constants);
1731 } else {
1732 draw_delete_vertex_shader(r300->draw,
1733 (struct draw_vertex_shader*)vs->draw_vs);
1734 }
1735
1736 FREE((void*)vs->state.tokens);
1737 FREE(shader);
1738 }
1739
1740 static void r300_set_constant_buffer(struct pipe_context *pipe,
1741 uint shader, uint index,
1742 struct pipe_resource *buf)
1743 {
1744 struct r300_context* r300 = r300_context(pipe);
1745 struct r300_constant_buffer *cbuf;
1746 uint32_t *mapped = r300_buffer(buf)->user_buffer;
1747 int max_size = 0, max_size_bytes = 0, clamped_size = 0;
1748
1749 switch (shader) {
1750 case PIPE_SHADER_VERTEX:
1751 cbuf = (struct r300_constant_buffer*)r300->vs_constants.state;
1752 max_size = 256;
1753 break;
1754 case PIPE_SHADER_FRAGMENT:
1755 cbuf = (struct r300_constant_buffer*)r300->fs_constants.state;
1756 if (r300->screen->caps.is_r500) {
1757 max_size = 256;
1758 } else {
1759 max_size = 32;
1760 }
1761 break;
1762 default:
1763 assert(0);
1764 return;
1765 }
1766 max_size_bytes = max_size * 4 * sizeof(float);
1767
1768 if (buf == NULL || buf->width0 == 0 ||
1769 (mapped = r300_buffer(buf)->constant_buffer) == NULL) {
1770 cbuf->count = 0;
1771 return;
1772 }
1773
1774 if (shader == PIPE_SHADER_FRAGMENT ||
1775 (shader == PIPE_SHADER_VERTEX && r300->screen->caps.has_tcl)) {
1776 assert((buf->width0 % (4 * sizeof(float))) == 0);
1777
1778 /* Check the size of the constant buffer. */
1779 /* XXX Subtract immediates and RC_STATE_* variables. */
1780 if (buf->width0 > max_size_bytes) {
1781 fprintf(stderr, "r300: Max size of the constant buffer is "
1782 "%i*4 floats.\n", max_size);
1783 }
1784
1785 clamped_size = MIN2(buf->width0, max_size_bytes);
1786 cbuf->count = clamped_size / (4 * sizeof(float));
1787 cbuf->ptr = mapped;
1788 }
1789
1790 if (shader == PIPE_SHADER_VERTEX) {
1791 if (r300->screen->caps.has_tcl) {
1792 if (r300->vs_constants.size) {
1793 r300->vs_constants.dirty = TRUE;
1794 }
1795 r300->pvs_flush.dirty = TRUE;
1796 } else if (r300->draw) {
1797 draw_set_mapped_constant_buffer(r300->draw, PIPE_SHADER_VERTEX,
1798 0, mapped, buf->width0);
1799 }
1800 } else if (shader == PIPE_SHADER_FRAGMENT) {
1801 r300->fs_constants.dirty = TRUE;
1802 }
1803 }
1804
1805 void r300_init_state_functions(struct r300_context* r300)
1806 {
1807 r300->context.create_blend_state = r300_create_blend_state;
1808 r300->context.bind_blend_state = r300_bind_blend_state;
1809 r300->context.delete_blend_state = r300_delete_blend_state;
1810
1811 r300->context.set_blend_color = r300_set_blend_color;
1812
1813 r300->context.set_clip_state = r300_set_clip_state;
1814 r300->context.set_sample_mask = r300_set_sample_mask;
1815
1816 r300->context.set_constant_buffer = r300_set_constant_buffer;
1817
1818 r300->context.create_depth_stencil_alpha_state = r300_create_dsa_state;
1819 r300->context.bind_depth_stencil_alpha_state = r300_bind_dsa_state;
1820 r300->context.delete_depth_stencil_alpha_state = r300_delete_dsa_state;
1821
1822 r300->context.set_stencil_ref = r300_set_stencil_ref;
1823
1824 r300->context.set_framebuffer_state = r300_set_framebuffer_state;
1825
1826 r300->context.create_fs_state = r300_create_fs_state;
1827 r300->context.bind_fs_state = r300_bind_fs_state;
1828 r300->context.delete_fs_state = r300_delete_fs_state;
1829
1830 r300->context.set_polygon_stipple = r300_set_polygon_stipple;
1831
1832 r300->context.create_rasterizer_state = r300_create_rs_state;
1833 r300->context.bind_rasterizer_state = r300_bind_rs_state;
1834 r300->context.delete_rasterizer_state = r300_delete_rs_state;
1835
1836 r300->context.create_sampler_state = r300_create_sampler_state;
1837 r300->context.bind_fragment_sampler_states = r300_bind_sampler_states;
1838 r300->context.bind_vertex_sampler_states = r300_lacks_vertex_textures;
1839 r300->context.delete_sampler_state = r300_delete_sampler_state;
1840
1841 r300->context.set_fragment_sampler_views = r300_set_fragment_sampler_views;
1842 r300->context.create_sampler_view = r300_create_sampler_view;
1843 r300->context.sampler_view_destroy = r300_sampler_view_destroy;
1844
1845 r300->context.set_scissor_state = r300_set_scissor_state;
1846
1847 r300->context.set_viewport_state = r300_set_viewport_state;
1848
1849 r300->context.set_vertex_buffers = r300_set_vertex_buffers;
1850
1851 r300->context.create_vertex_elements_state = r300_create_vertex_elements_state;
1852 r300->context.bind_vertex_elements_state = r300_bind_vertex_elements_state;
1853 r300->context.delete_vertex_elements_state = r300_delete_vertex_elements_state;
1854
1855 r300->context.create_vs_state = r300_create_vs_state;
1856 r300->context.bind_vs_state = r300_bind_vs_state;
1857 r300->context.delete_vs_state = r300_delete_vs_state;
1858 }