r300g: skip buffer validation of upload buffers when appropriate
[mesa.git] / src / gallium / drivers / r300 / r300_state.c
1 /*
2 * Copyright 2008 Corbin Simpson <MostAwesomeDude@gmail.com>
3 * Copyright 2009 Marek Olšák <maraeo@gmail.com>
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * on the rights to use, copy, modify, merge, publish, distribute, sub
9 * license, and/or sell copies of the Software, and to permit persons to whom
10 * the Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE. */
23
24 #include "draw/draw_context.h"
25
26 #include "util/u_framebuffer.h"
27 #include "util/u_math.h"
28 #include "util/u_mm.h"
29 #include "util/u_memory.h"
30 #include "util/u_pack_color.h"
31
32 #include "tgsi/tgsi_parse.h"
33
34 #include "pipe/p_config.h"
35
36 #include "r300_cb.h"
37 #include "r300_context.h"
38 #include "r300_emit.h"
39 #include "r300_reg.h"
40 #include "r300_screen.h"
41 #include "r300_screen_buffer.h"
42 #include "r300_state_inlines.h"
43 #include "r300_fs.h"
44 #include "r300_texture.h"
45 #include "r300_vs.h"
46 #include "r300_winsys.h"
47 #include "r300_hyperz.h"
48
49 /* r300_state: Functions used to intialize state context by translating
50 * Gallium state objects into semi-native r300 state objects. */
51
52 #define UPDATE_STATE(cso, atom) \
53 if (cso != atom.state) { \
54 atom.state = cso; \
55 r300_mark_atom_dirty(r300, &(atom)); \
56 }
57
58 static boolean blend_discard_if_src_alpha_0(unsigned srcRGB, unsigned srcA,
59 unsigned dstRGB, unsigned dstA)
60 {
61 /* If the blend equation is ADD or REVERSE_SUBTRACT,
62 * SRC_ALPHA == 0, and the following state is set, the colorbuffer
63 * will not be changed.
64 * Notice that the dst factors are the src factors inverted. */
65 return (srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
66 srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE ||
67 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
68 (srcA == PIPE_BLENDFACTOR_SRC_COLOR ||
69 srcA == PIPE_BLENDFACTOR_SRC_ALPHA ||
70 srcA == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE ||
71 srcA == PIPE_BLENDFACTOR_ZERO) &&
72 (dstRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
73 dstRGB == PIPE_BLENDFACTOR_ONE) &&
74 (dstA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
75 dstA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
76 dstA == PIPE_BLENDFACTOR_ONE);
77 }
78
79 static boolean blend_discard_if_src_alpha_1(unsigned srcRGB, unsigned srcA,
80 unsigned dstRGB, unsigned dstA)
81 {
82 /* If the blend equation is ADD or REVERSE_SUBTRACT,
83 * SRC_ALPHA == 1, and the following state is set, the colorbuffer
84 * will not be changed.
85 * Notice that the dst factors are the src factors inverted. */
86 return (srcRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
87 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
88 (srcA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
89 srcA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
90 srcA == PIPE_BLENDFACTOR_ZERO) &&
91 (dstRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
92 dstRGB == PIPE_BLENDFACTOR_ONE) &&
93 (dstA == PIPE_BLENDFACTOR_SRC_COLOR ||
94 dstA == PIPE_BLENDFACTOR_SRC_ALPHA ||
95 dstA == PIPE_BLENDFACTOR_ONE);
96 }
97
98 static boolean blend_discard_if_src_color_0(unsigned srcRGB, unsigned srcA,
99 unsigned dstRGB, unsigned dstA)
100 {
101 /* If the blend equation is ADD or REVERSE_SUBTRACT,
102 * SRC_COLOR == (0,0,0), and the following state is set, the colorbuffer
103 * will not be changed.
104 * Notice that the dst factors are the src factors inverted. */
105 return (srcRGB == PIPE_BLENDFACTOR_SRC_COLOR ||
106 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
107 (srcA == PIPE_BLENDFACTOR_ZERO) &&
108 (dstRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
109 dstRGB == PIPE_BLENDFACTOR_ONE) &&
110 (dstA == PIPE_BLENDFACTOR_ONE);
111 }
112
113 static boolean blend_discard_if_src_color_1(unsigned srcRGB, unsigned srcA,
114 unsigned dstRGB, unsigned dstA)
115 {
116 /* If the blend equation is ADD or REVERSE_SUBTRACT,
117 * SRC_COLOR == (1,1,1), and the following state is set, the colorbuffer
118 * will not be changed.
119 * Notice that the dst factors are the src factors inverted. */
120 return (srcRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
121 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
122 (srcA == PIPE_BLENDFACTOR_ZERO) &&
123 (dstRGB == PIPE_BLENDFACTOR_SRC_COLOR ||
124 dstRGB == PIPE_BLENDFACTOR_ONE) &&
125 (dstA == PIPE_BLENDFACTOR_ONE);
126 }
127
128 static boolean blend_discard_if_src_alpha_color_0(unsigned srcRGB, unsigned srcA,
129 unsigned dstRGB, unsigned dstA)
130 {
131 /* If the blend equation is ADD or REVERSE_SUBTRACT,
132 * SRC_ALPHA_COLOR == (0,0,0,0), and the following state is set,
133 * the colorbuffer will not be changed.
134 * Notice that the dst factors are the src factors inverted. */
135 return (srcRGB == PIPE_BLENDFACTOR_SRC_COLOR ||
136 srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
137 srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE ||
138 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
139 (srcA == PIPE_BLENDFACTOR_SRC_COLOR ||
140 srcA == PIPE_BLENDFACTOR_SRC_ALPHA ||
141 srcA == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE ||
142 srcA == PIPE_BLENDFACTOR_ZERO) &&
143 (dstRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
144 dstRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
145 dstRGB == PIPE_BLENDFACTOR_ONE) &&
146 (dstA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
147 dstA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
148 dstA == PIPE_BLENDFACTOR_ONE);
149 }
150
151 static boolean blend_discard_if_src_alpha_color_1(unsigned srcRGB, unsigned srcA,
152 unsigned dstRGB, unsigned dstA)
153 {
154 /* If the blend equation is ADD or REVERSE_SUBTRACT,
155 * SRC_ALPHA_COLOR == (1,1,1,1), and the following state is set,
156 * the colorbuffer will not be changed.
157 * Notice that the dst factors are the src factors inverted. */
158 return (srcRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
159 srcRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
160 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
161 (srcA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
162 srcA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
163 srcA == PIPE_BLENDFACTOR_ZERO) &&
164 (dstRGB == PIPE_BLENDFACTOR_SRC_COLOR ||
165 dstRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
166 dstRGB == PIPE_BLENDFACTOR_ONE) &&
167 (dstA == PIPE_BLENDFACTOR_SRC_COLOR ||
168 dstA == PIPE_BLENDFACTOR_SRC_ALPHA ||
169 dstA == PIPE_BLENDFACTOR_ONE);
170 }
171
172 static unsigned bgra_cmask(unsigned mask)
173 {
174 /* Gallium uses RGBA color ordering while R300 expects BGRA. */
175
176 return ((mask & PIPE_MASK_R) << 2) |
177 ((mask & PIPE_MASK_B) >> 2) |
178 (mask & (PIPE_MASK_G | PIPE_MASK_A));
179 }
180
181 /* Create a new blend state based on the CSO blend state.
182 *
183 * This encompasses alpha blending, logic/raster ops, and blend dithering. */
184 static void* r300_create_blend_state(struct pipe_context* pipe,
185 const struct pipe_blend_state* state)
186 {
187 struct r300_screen* r300screen = r300_screen(pipe->screen);
188 struct r300_blend_state* blend = CALLOC_STRUCT(r300_blend_state);
189 uint32_t blend_control = 0; /* R300_RB3D_CBLEND: 0x4e04 */
190 uint32_t alpha_blend_control = 0; /* R300_RB3D_ABLEND: 0x4e08 */
191 uint32_t color_channel_mask = 0; /* R300_RB3D_COLOR_CHANNEL_MASK: 0x4e0c */
192 uint32_t rop = 0; /* R300_RB3D_ROPCNTL: 0x4e18 */
193 uint32_t dither = 0; /* R300_RB3D_DITHER_CTL: 0x4e50 */
194 CB_LOCALS;
195
196 if (state->rt[0].blend_enable)
197 {
198 unsigned eqRGB = state->rt[0].rgb_func;
199 unsigned srcRGB = state->rt[0].rgb_src_factor;
200 unsigned dstRGB = state->rt[0].rgb_dst_factor;
201
202 unsigned eqA = state->rt[0].alpha_func;
203 unsigned srcA = state->rt[0].alpha_src_factor;
204 unsigned dstA = state->rt[0].alpha_dst_factor;
205
206 /* despite the name, ALPHA_BLEND_ENABLE has nothing to do with alpha,
207 * this is just the crappy D3D naming */
208 blend_control = R300_ALPHA_BLEND_ENABLE |
209 r300_translate_blend_function(eqRGB) |
210 ( r300_translate_blend_factor(srcRGB) << R300_SRC_BLEND_SHIFT) |
211 ( r300_translate_blend_factor(dstRGB) << R300_DST_BLEND_SHIFT);
212
213 /* Optimization: some operations do not require the destination color.
214 *
215 * When SRC_ALPHA_SATURATE is used, colorbuffer reads must be enabled,
216 * otherwise blending gives incorrect results. It seems to be
217 * a hardware bug. */
218 if (eqRGB == PIPE_BLEND_MIN || eqA == PIPE_BLEND_MIN ||
219 eqRGB == PIPE_BLEND_MAX || eqA == PIPE_BLEND_MAX ||
220 dstRGB != PIPE_BLENDFACTOR_ZERO ||
221 dstA != PIPE_BLENDFACTOR_ZERO ||
222 srcRGB == PIPE_BLENDFACTOR_DST_COLOR ||
223 srcRGB == PIPE_BLENDFACTOR_DST_ALPHA ||
224 srcRGB == PIPE_BLENDFACTOR_INV_DST_COLOR ||
225 srcRGB == PIPE_BLENDFACTOR_INV_DST_ALPHA ||
226 srcA == PIPE_BLENDFACTOR_DST_COLOR ||
227 srcA == PIPE_BLENDFACTOR_DST_ALPHA ||
228 srcA == PIPE_BLENDFACTOR_INV_DST_COLOR ||
229 srcA == PIPE_BLENDFACTOR_INV_DST_ALPHA ||
230 srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE) {
231 /* Enable reading from the colorbuffer. */
232 blend_control |= R300_READ_ENABLE;
233
234 if (r300screen->caps.is_r500) {
235 /* Optimization: Depending on incoming pixels, we can
236 * conditionally disable the reading in hardware... */
237 if (eqRGB != PIPE_BLEND_MIN && eqA != PIPE_BLEND_MIN &&
238 eqRGB != PIPE_BLEND_MAX && eqA != PIPE_BLEND_MAX) {
239 /* Disable reading if SRC_ALPHA == 0. */
240 if ((dstRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
241 dstRGB == PIPE_BLENDFACTOR_ZERO) &&
242 (dstA == PIPE_BLENDFACTOR_SRC_COLOR ||
243 dstA == PIPE_BLENDFACTOR_SRC_ALPHA ||
244 dstA == PIPE_BLENDFACTOR_ZERO)) {
245 blend_control |= R500_SRC_ALPHA_0_NO_READ;
246 }
247
248 /* Disable reading if SRC_ALPHA == 1. */
249 if ((dstRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
250 dstRGB == PIPE_BLENDFACTOR_ZERO) &&
251 (dstA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
252 dstA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
253 dstA == PIPE_BLENDFACTOR_ZERO)) {
254 blend_control |= R500_SRC_ALPHA_1_NO_READ;
255 }
256 }
257 }
258 }
259
260 /* Optimization: discard pixels which don't change the colorbuffer.
261 *
262 * The code below is non-trivial and some math is involved.
263 *
264 * Discarding pixels must be disabled when FP16 AA is enabled.
265 * This is a hardware bug. Also, this implementation wouldn't work
266 * with FP blending enabled and equation clamping disabled.
267 *
268 * Equations other than ADD are rarely used and therefore won't be
269 * optimized. */
270 if ((eqRGB == PIPE_BLEND_ADD || eqRGB == PIPE_BLEND_REVERSE_SUBTRACT) &&
271 (eqA == PIPE_BLEND_ADD || eqA == PIPE_BLEND_REVERSE_SUBTRACT)) {
272 /* ADD: X+Y
273 * REVERSE_SUBTRACT: Y-X
274 *
275 * The idea is:
276 * If X = src*srcFactor = 0 and Y = dst*dstFactor = 1,
277 * then CB will not be changed.
278 *
279 * Given the srcFactor and dstFactor variables, we can derive
280 * what src and dst should be equal to and discard appropriate
281 * pixels.
282 */
283 if (blend_discard_if_src_alpha_0(srcRGB, srcA, dstRGB, dstA)) {
284 blend_control |= R300_DISCARD_SRC_PIXELS_SRC_ALPHA_0;
285 } else if (blend_discard_if_src_alpha_1(srcRGB, srcA,
286 dstRGB, dstA)) {
287 blend_control |= R300_DISCARD_SRC_PIXELS_SRC_ALPHA_1;
288 } else if (blend_discard_if_src_color_0(srcRGB, srcA,
289 dstRGB, dstA)) {
290 blend_control |= R300_DISCARD_SRC_PIXELS_SRC_COLOR_0;
291 } else if (blend_discard_if_src_color_1(srcRGB, srcA,
292 dstRGB, dstA)) {
293 blend_control |= R300_DISCARD_SRC_PIXELS_SRC_COLOR_1;
294 } else if (blend_discard_if_src_alpha_color_0(srcRGB, srcA,
295 dstRGB, dstA)) {
296 blend_control |=
297 R300_DISCARD_SRC_PIXELS_SRC_ALPHA_COLOR_0;
298 } else if (blend_discard_if_src_alpha_color_1(srcRGB, srcA,
299 dstRGB, dstA)) {
300 blend_control |=
301 R300_DISCARD_SRC_PIXELS_SRC_ALPHA_COLOR_1;
302 }
303 }
304
305 /* separate alpha */
306 if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB) {
307 blend_control |= R300_SEPARATE_ALPHA_ENABLE;
308 alpha_blend_control =
309 r300_translate_blend_function(eqA) |
310 (r300_translate_blend_factor(srcA) << R300_SRC_BLEND_SHIFT) |
311 (r300_translate_blend_factor(dstA) << R300_DST_BLEND_SHIFT);
312 }
313 }
314
315 /* PIPE_LOGICOP_* don't need to be translated, fortunately. */
316 if (state->logicop_enable) {
317 rop = R300_RB3D_ROPCNTL_ROP_ENABLE |
318 (state->logicop_func) << R300_RB3D_ROPCNTL_ROP_SHIFT;
319 }
320
321 /* Color channel masks for all MRTs. */
322 color_channel_mask = bgra_cmask(state->rt[0].colormask);
323 if (r300screen->caps.is_r500 && state->independent_blend_enable) {
324 if (state->rt[1].blend_enable) {
325 color_channel_mask |= bgra_cmask(state->rt[1].colormask) << 4;
326 }
327 if (state->rt[2].blend_enable) {
328 color_channel_mask |= bgra_cmask(state->rt[2].colormask) << 8;
329 }
330 if (state->rt[3].blend_enable) {
331 color_channel_mask |= bgra_cmask(state->rt[3].colormask) << 12;
332 }
333 }
334
335 /* Neither fglrx nor classic r300 ever set this, regardless of dithering
336 * state. Since it's an optional implementation detail, we can leave it
337 * out and never dither.
338 *
339 * This could be revisited if we ever get quality or conformance hints.
340 *
341 if (state->dither) {
342 dither = R300_RB3D_DITHER_CTL_DITHER_MODE_LUT |
343 R300_RB3D_DITHER_CTL_ALPHA_DITHER_MODE_LUT;
344 }
345 */
346
347 /* Build a command buffer. */
348 BEGIN_CB(blend->cb, 8);
349 OUT_CB_REG(R300_RB3D_ROPCNTL, rop);
350 OUT_CB_REG_SEQ(R300_RB3D_CBLEND, 3);
351 OUT_CB(blend_control);
352 OUT_CB(alpha_blend_control);
353 OUT_CB(color_channel_mask);
354 OUT_CB_REG(R300_RB3D_DITHER_CTL, dither);
355 END_CB;
356
357 /* The same as above, but with no colorbuffer reads and writes. */
358 BEGIN_CB(blend->cb_no_readwrite, 8);
359 OUT_CB_REG(R300_RB3D_ROPCNTL, rop);
360 OUT_CB_REG_SEQ(R300_RB3D_CBLEND, 3);
361 OUT_CB(0);
362 OUT_CB(0);
363 OUT_CB(0);
364 OUT_CB_REG(R300_RB3D_DITHER_CTL, dither);
365 END_CB;
366
367 return (void*)blend;
368 }
369
370 /* Bind blend state. */
371 static void r300_bind_blend_state(struct pipe_context* pipe,
372 void* state)
373 {
374 struct r300_context* r300 = r300_context(pipe);
375
376 UPDATE_STATE(state, r300->blend_state);
377 }
378
379 /* Free blend state. */
380 static void r300_delete_blend_state(struct pipe_context* pipe,
381 void* state)
382 {
383 FREE(state);
384 }
385
386 /* Convert float to 10bit integer */
387 static unsigned float_to_fixed10(float f)
388 {
389 return CLAMP((unsigned)(f * 1023.9f), 0, 1023);
390 }
391
392 /* Set blend color.
393 * Setup both R300 and R500 registers, figure out later which one to write. */
394 static void r300_set_blend_color(struct pipe_context* pipe,
395 const struct pipe_blend_color* color)
396 {
397 struct r300_context* r300 = r300_context(pipe);
398 struct r300_blend_color_state* state =
399 (struct r300_blend_color_state*)r300->blend_color_state.state;
400 CB_LOCALS;
401
402 if (r300->screen->caps.is_r500) {
403 /* XXX if FP16 blending is enabled, we should use the FP16 format */
404 BEGIN_CB(state->cb, 3);
405 OUT_CB_REG_SEQ(R500_RB3D_CONSTANT_COLOR_AR, 2);
406 OUT_CB(float_to_fixed10(color->color[0]) |
407 (float_to_fixed10(color->color[3]) << 16));
408 OUT_CB(float_to_fixed10(color->color[2]) |
409 (float_to_fixed10(color->color[1]) << 16));
410 END_CB;
411 } else {
412 union util_color uc;
413 util_pack_color(color->color, PIPE_FORMAT_B8G8R8A8_UNORM, &uc);
414
415 BEGIN_CB(state->cb, 2);
416 OUT_CB_REG(R300_RB3D_BLEND_COLOR, uc.ui);
417 END_CB;
418 }
419
420 r300_mark_atom_dirty(r300, &r300->blend_color_state);
421 }
422
423 static void r300_set_clip_state(struct pipe_context* pipe,
424 const struct pipe_clip_state* state)
425 {
426 struct r300_context* r300 = r300_context(pipe);
427 struct r300_clip_state *clip =
428 (struct r300_clip_state*)r300->clip_state.state;
429 CB_LOCALS;
430
431 clip->clip = *state;
432
433 if (r300->screen->caps.has_tcl) {
434 r300->clip_state.size = 2 + !!state->nr * 3 + state->nr * 4;
435
436 BEGIN_CB(clip->cb, r300->clip_state.size);
437 if (state->nr) {
438 OUT_CB_REG(R300_VAP_PVS_VECTOR_INDX_REG,
439 (r300->screen->caps.is_r500 ?
440 R500_PVS_UCP_START : R300_PVS_UCP_START));
441 OUT_CB_ONE_REG(R300_VAP_PVS_UPLOAD_DATA, state->nr * 4);
442 OUT_CB_TABLE(state->ucp, state->nr * 4);
443 }
444 OUT_CB_REG(R300_VAP_CLIP_CNTL, ((1 << state->nr) - 1) |
445 R300_PS_UCP_MODE_CLIP_AS_TRIFAN |
446 (state->depth_clamp ? R300_CLIP_DISABLE : 0));
447 END_CB;
448
449 r300_mark_atom_dirty(r300, &r300->clip_state);
450 } else {
451 draw_set_clip_state(r300->draw, state);
452 }
453 }
454
455 static void
456 r300_set_sample_mask(struct pipe_context *pipe,
457 unsigned sample_mask)
458 {
459 }
460
461
462 /* Create a new depth, stencil, and alpha state based on the CSO dsa state.
463 *
464 * This contains the depth buffer, stencil buffer, alpha test, and such.
465 * On the Radeon, depth and stencil buffer setup are intertwined, which is
466 * the reason for some of the strange-looking assignments across registers. */
467 static void*
468 r300_create_dsa_state(struct pipe_context* pipe,
469 const struct pipe_depth_stencil_alpha_state* state)
470 {
471 struct r300_capabilities *caps = &r300_screen(pipe->screen)->caps;
472 struct r300_dsa_state* dsa = CALLOC_STRUCT(r300_dsa_state);
473 CB_LOCALS;
474
475 dsa->dsa = *state;
476
477 /* Depth test setup. - separate write mask depth for decomp flush */
478 if (state->depth.writemask) {
479 dsa->z_buffer_control |= R300_Z_WRITE_ENABLE;
480 }
481
482 if (state->depth.enabled) {
483 dsa->z_buffer_control |= R300_Z_ENABLE;
484
485 dsa->z_stencil_control |=
486 (r300_translate_depth_stencil_function(state->depth.func) <<
487 R300_Z_FUNC_SHIFT);
488 }
489
490 /* Stencil buffer setup. */
491 if (state->stencil[0].enabled) {
492 dsa->z_buffer_control |= R300_STENCIL_ENABLE;
493 dsa->z_stencil_control |=
494 (r300_translate_depth_stencil_function(state->stencil[0].func) <<
495 R300_S_FRONT_FUNC_SHIFT) |
496 (r300_translate_stencil_op(state->stencil[0].fail_op) <<
497 R300_S_FRONT_SFAIL_OP_SHIFT) |
498 (r300_translate_stencil_op(state->stencil[0].zpass_op) <<
499 R300_S_FRONT_ZPASS_OP_SHIFT) |
500 (r300_translate_stencil_op(state->stencil[0].zfail_op) <<
501 R300_S_FRONT_ZFAIL_OP_SHIFT);
502
503 dsa->stencil_ref_mask =
504 (state->stencil[0].valuemask << R300_STENCILMASK_SHIFT) |
505 (state->stencil[0].writemask << R300_STENCILWRITEMASK_SHIFT);
506
507 if (state->stencil[1].enabled) {
508 dsa->two_sided = TRUE;
509
510 dsa->z_buffer_control |= R300_STENCIL_FRONT_BACK;
511 dsa->z_stencil_control |=
512 (r300_translate_depth_stencil_function(state->stencil[1].func) <<
513 R300_S_BACK_FUNC_SHIFT) |
514 (r300_translate_stencil_op(state->stencil[1].fail_op) <<
515 R300_S_BACK_SFAIL_OP_SHIFT) |
516 (r300_translate_stencil_op(state->stencil[1].zpass_op) <<
517 R300_S_BACK_ZPASS_OP_SHIFT) |
518 (r300_translate_stencil_op(state->stencil[1].zfail_op) <<
519 R300_S_BACK_ZFAIL_OP_SHIFT);
520
521 dsa->stencil_ref_bf =
522 (state->stencil[1].valuemask << R300_STENCILMASK_SHIFT) |
523 (state->stencil[1].writemask << R300_STENCILWRITEMASK_SHIFT);
524
525 if (caps->is_r500) {
526 dsa->z_buffer_control |= R500_STENCIL_REFMASK_FRONT_BACK;
527 } else {
528 dsa->two_sided_stencil_ref =
529 (state->stencil[0].valuemask != state->stencil[1].valuemask ||
530 state->stencil[0].writemask != state->stencil[1].writemask);
531 }
532 }
533 }
534
535 /* Alpha test setup. */
536 if (state->alpha.enabled) {
537 dsa->alpha_function =
538 r300_translate_alpha_function(state->alpha.func) |
539 R300_FG_ALPHA_FUNC_ENABLE;
540
541 /* We could use 10bit alpha ref but who needs that? */
542 dsa->alpha_function |= float_to_ubyte(state->alpha.ref_value);
543
544 if (caps->is_r500)
545 dsa->alpha_function |= R500_FG_ALPHA_FUNC_8BIT;
546 }
547
548 BEGIN_CB(&dsa->cb_begin, 8);
549 OUT_CB_REG(R300_FG_ALPHA_FUNC, dsa->alpha_function);
550 OUT_CB_REG_SEQ(R300_ZB_CNTL, 3);
551 OUT_CB(dsa->z_buffer_control);
552 OUT_CB(dsa->z_stencil_control);
553 OUT_CB(dsa->stencil_ref_mask);
554 OUT_CB_REG(R500_ZB_STENCILREFMASK_BF, dsa->stencil_ref_bf);
555 END_CB;
556
557 BEGIN_CB(dsa->cb_no_readwrite, 8);
558 OUT_CB_REG(R300_FG_ALPHA_FUNC, dsa->alpha_function);
559 OUT_CB_REG_SEQ(R300_ZB_CNTL, 3);
560 OUT_CB(0);
561 OUT_CB(0);
562 OUT_CB(0);
563 OUT_CB_REG(R500_ZB_STENCILREFMASK_BF, 0);
564 END_CB;
565
566 return (void*)dsa;
567 }
568
569 static void r300_dsa_inject_stencilref(struct r300_context *r300)
570 {
571 struct r300_dsa_state *dsa =
572 (struct r300_dsa_state*)r300->dsa_state.state;
573
574 if (!dsa)
575 return;
576
577 dsa->stencil_ref_mask =
578 (dsa->stencil_ref_mask & ~R300_STENCILREF_MASK) |
579 r300->stencil_ref.ref_value[0];
580 dsa->stencil_ref_bf =
581 (dsa->stencil_ref_bf & ~R300_STENCILREF_MASK) |
582 r300->stencil_ref.ref_value[1];
583 }
584
585 /* Bind DSA state. */
586 static void r300_bind_dsa_state(struct pipe_context* pipe,
587 void* state)
588 {
589 struct r300_context* r300 = r300_context(pipe);
590
591 if (!state) {
592 return;
593 }
594
595 UPDATE_STATE(state, r300->dsa_state);
596
597 r300_mark_atom_dirty(r300, &r300->hyperz_state); /* Will be updated before the emission. */
598 r300_dsa_inject_stencilref(r300);
599 }
600
601 /* Free DSA state. */
602 static void r300_delete_dsa_state(struct pipe_context* pipe,
603 void* state)
604 {
605 FREE(state);
606 }
607
608 static void r300_set_stencil_ref(struct pipe_context* pipe,
609 const struct pipe_stencil_ref* sr)
610 {
611 struct r300_context* r300 = r300_context(pipe);
612
613 r300->stencil_ref = *sr;
614
615 r300_dsa_inject_stencilref(r300);
616 r300_mark_atom_dirty(r300, &r300->dsa_state);
617 }
618
619 static void r300_tex_set_tiling_flags(struct r300_context *r300,
620 struct r300_texture *tex, unsigned level)
621 {
622 /* Check if the macrotile flag needs to be changed.
623 * Skip changing the flags otherwise. */
624 if (tex->desc.macrotile[tex->surface_level] !=
625 tex->desc.macrotile[level]) {
626 /* Tiling determines how DRM treats the buffer data.
627 * We must flush CS when changing it if the buffer is referenced. */
628 if (r300->rws->cs_is_buffer_referenced(r300->cs,
629 tex->cs_buffer, R300_REF_CS))
630 r300->context.flush(&r300->context, 0, NULL);
631
632 r300->rws->buffer_set_tiling(r300->rws, tex->buffer,
633 tex->desc.microtile, tex->desc.macrotile[level],
634 tex->desc.stride_in_bytes[0]);
635
636 tex->surface_level = level;
637 }
638 }
639
640 /* This switcheroo is needed just because of goddamned MACRO_SWITCH. */
641 static void r300_fb_set_tiling_flags(struct r300_context *r300,
642 const struct pipe_framebuffer_state *state)
643 {
644 unsigned i;
645
646 /* Set tiling flags for new surfaces. */
647 for (i = 0; i < state->nr_cbufs; i++) {
648 r300_tex_set_tiling_flags(r300,
649 r300_texture(state->cbufs[i]->texture),
650 state->cbufs[i]->u.tex.level);
651 }
652 if (state->zsbuf) {
653 r300_tex_set_tiling_flags(r300,
654 r300_texture(state->zsbuf->texture),
655 state->zsbuf->u.tex.level);
656 }
657 }
658
659 static void r300_print_fb_surf_info(struct pipe_surface *surf, unsigned index,
660 const char *binding)
661 {
662 struct pipe_resource *tex = surf->texture;
663 struct r300_texture *rtex = r300_texture(tex);
664
665 fprintf(stderr,
666 "r300: %s[%i] Dim: %ix%i, Firstlayer: %i, "
667 "Lastlayer: %i, Level: %i, Format: %s\n"
668
669 "r300: TEX: Macro: %s, Micro: %s, Pitch: %i, "
670 "Dim: %ix%ix%i, LastLevel: %i, Format: %s\n",
671
672 binding, index, surf->width, surf->height,
673 surf->u.tex.first_layer, surf->u.tex.last_layer, surf->u.tex.level,
674 util_format_short_name(surf->format),
675
676 rtex->desc.macrotile[0] ? "YES" : " NO",
677 rtex->desc.microtile ? "YES" : " NO",
678 rtex->desc.stride_in_pixels[0],
679 tex->width0, tex->height0, tex->depth0,
680 tex->last_level, util_format_short_name(tex->format));
681 }
682
683 void r300_mark_fb_state_dirty(struct r300_context *r300,
684 enum r300_fb_state_change change)
685 {
686 struct pipe_framebuffer_state *state = r300->fb_state.state;
687 boolean can_hyperz = r300->rws->get_value(r300->rws, R300_CAN_HYPERZ);
688
689 r300_mark_atom_dirty(r300, &r300->gpu_flush);
690 r300_mark_atom_dirty(r300, &r300->fb_state);
691
692 /* What is marked as dirty depends on the enum r300_fb_state_change. */
693 if (change == R300_CHANGED_FB_STATE) {
694 r300_mark_atom_dirty(r300, &r300->aa_state);
695 }
696
697 if (change == R300_CHANGED_FB_STATE ||
698 change == R300_CHANGED_CBZB_FLAG ||
699 change == R300_CHANGED_ZCLEAR_FLAG) {
700 r300_mark_atom_dirty(r300, &r300->hyperz_state);
701 }
702
703 if (change == R300_CHANGED_FB_STATE ||
704 change == R300_CHANGED_MULTIWRITE) {
705 r300_mark_atom_dirty(r300, &r300->fb_state_pipelined);
706 }
707
708 /* Now compute the fb_state atom size. */
709 r300->fb_state.size = 2 + (8 * state->nr_cbufs);
710
711 if (r300->cbzb_clear)
712 r300->fb_state.size += 10;
713 else if (state->zsbuf) {
714 r300->fb_state.size += 10;
715 if (can_hyperz)
716 r300->fb_state.size += r300->screen->caps.hiz_ram ? 8 : 4;
717 }
718
719 /* The size of the rest of atoms stays the same. */
720 }
721
722 static void
723 r300_set_framebuffer_state(struct pipe_context* pipe,
724 const struct pipe_framebuffer_state* state)
725 {
726 struct r300_context* r300 = r300_context(pipe);
727 struct r300_aa_state *aa = (struct r300_aa_state*)r300->aa_state.state;
728 struct pipe_framebuffer_state *old_state = r300->fb_state.state;
729 boolean can_hyperz = r300->rws->get_value(r300->rws, R300_CAN_HYPERZ);
730 unsigned max_width, max_height, i;
731 uint32_t zbuffer_bpp = 0;
732 int blocksize;
733
734 if (r300->screen->caps.is_r500) {
735 max_width = max_height = 4096;
736 } else if (r300->screen->caps.is_r400) {
737 max_width = max_height = 4021;
738 } else {
739 max_width = max_height = 2560;
740 }
741
742 if (state->width > max_width || state->height > max_height) {
743 fprintf(stderr, "r300: Implementation error: Render targets are too "
744 "big in %s, refusing to bind framebuffer state!\n", __FUNCTION__);
745 return;
746 }
747
748 /* If nr_cbufs is changed from zero to non-zero or vice versa... */
749 if (!!old_state->nr_cbufs != !!state->nr_cbufs) {
750 r300_mark_atom_dirty(r300, &r300->blend_state);
751 }
752 /* If zsbuf is set from NULL to non-NULL or vice versa.. */
753 if (!!old_state->zsbuf != !!state->zsbuf) {
754 r300_mark_atom_dirty(r300, &r300->dsa_state);
755 }
756
757 /* The tiling flags are dependent on the surface miplevel, unfortunately. */
758 r300_fb_set_tiling_flags(r300, state);
759
760 util_copy_framebuffer_state(r300->fb_state.state, state);
761
762 r300_mark_fb_state_dirty(r300, R300_CHANGED_FB_STATE);
763 r300->validate_buffers = TRUE;
764
765 r300->z_compression = false;
766
767 if (state->zsbuf) {
768 blocksize = util_format_get_blocksize(state->zsbuf->texture->format);
769 switch (blocksize) {
770 case 2:
771 zbuffer_bpp = 16;
772 break;
773 case 4:
774 zbuffer_bpp = 24;
775 break;
776 }
777 if (can_hyperz) {
778 struct r300_surface *zs_surf = r300_surface(state->zsbuf);
779 struct r300_texture *tex;
780 int compress = r300->screen->caps.is_rv350 ? RV350_Z_COMPRESS_88 : R300_Z_COMPRESS_44;
781 int level = zs_surf->base.u.tex.level;
782
783 tex = r300_texture(zs_surf->base.texture);
784
785 /* work out whether we can support hiz on this buffer */
786 r300_hiz_alloc_block(r300, zs_surf);
787
788 /* work out whether we can support zmask features on this buffer */
789 r300_zmask_alloc_block(r300, zs_surf, compress);
790
791 if (tex->zmask_mem[level]) {
792 /* compression causes hangs on 16-bit */
793 if (zbuffer_bpp == 24)
794 r300->z_compression = compress;
795 }
796 DBG(r300, DBG_HYPERZ,
797 "hyper-z features: hiz: %d @ %08x z-compression: %d z-fastfill: %d @ %08x\n", tex->hiz_mem[level] ? 1 : 0,
798 tex->hiz_mem[level] ? tex->hiz_mem[level]->ofs : 0xdeadbeef,
799 r300->z_compression, tex->zmask_mem[level] ? 1 : 0,
800 tex->zmask_mem[level] ? tex->zmask_mem[level]->ofs : 0xdeadbeef);
801 }
802
803 /* Polygon offset depends on the zbuffer bit depth. */
804 if (r300->zbuffer_bpp != zbuffer_bpp) {
805 r300->zbuffer_bpp = zbuffer_bpp;
806
807 if (r300->polygon_offset_enabled)
808 r300_mark_atom_dirty(r300, &r300->rs_state);
809 }
810 }
811
812 /* Set up AA config. */
813 if (r300->rws->get_value(r300->rws, R300_VID_DRM_2_3_0)) {
814 if (state->nr_cbufs && state->cbufs[0]->texture->nr_samples > 1) {
815 aa->aa_config = R300_GB_AA_CONFIG_AA_ENABLE;
816
817 switch (state->cbufs[0]->texture->nr_samples) {
818 case 2:
819 aa->aa_config |= R300_GB_AA_CONFIG_NUM_AA_SUBSAMPLES_2;
820 break;
821 case 3:
822 aa->aa_config |= R300_GB_AA_CONFIG_NUM_AA_SUBSAMPLES_3;
823 break;
824 case 4:
825 aa->aa_config |= R300_GB_AA_CONFIG_NUM_AA_SUBSAMPLES_4;
826 break;
827 case 6:
828 aa->aa_config |= R300_GB_AA_CONFIG_NUM_AA_SUBSAMPLES_6;
829 break;
830 }
831 } else {
832 aa->aa_config = 0;
833 }
834 }
835
836 if (DBG_ON(r300, DBG_FB)) {
837 fprintf(stderr, "r300: set_framebuffer_state:\n");
838 for (i = 0; i < state->nr_cbufs; i++) {
839 r300_print_fb_surf_info(state->cbufs[i], i, "CB");
840 }
841 if (state->zsbuf) {
842 r300_print_fb_surf_info(state->zsbuf, 0, "ZB");
843 }
844 }
845 }
846
847 /* Create fragment shader state. */
848 static void* r300_create_fs_state(struct pipe_context* pipe,
849 const struct pipe_shader_state* shader)
850 {
851 struct r300_fragment_shader* fs = NULL;
852
853 fs = (struct r300_fragment_shader*)CALLOC_STRUCT(r300_fragment_shader);
854
855 /* Copy state directly into shader. */
856 fs->state = *shader;
857 fs->state.tokens = tgsi_dup_tokens(shader->tokens);
858
859 return (void*)fs;
860 }
861
862 void r300_mark_fs_code_dirty(struct r300_context *r300)
863 {
864 struct r300_fragment_shader* fs = r300_fs(r300);
865
866 r300_mark_atom_dirty(r300, &r300->fs);
867 r300_mark_atom_dirty(r300, &r300->fs_rc_constant_state);
868 r300_mark_atom_dirty(r300, &r300->fs_constants);
869 r300->fs.size = fs->shader->cb_code_size;
870
871 if (r300->screen->caps.is_r500) {
872 r300->fs_rc_constant_state.size = fs->shader->rc_state_count * 7;
873 r300->fs_constants.size = fs->shader->externals_count * 4 + 3;
874 } else {
875 r300->fs_rc_constant_state.size = fs->shader->rc_state_count * 5;
876 r300->fs_constants.size = fs->shader->externals_count * 4 + 1;
877 }
878
879 ((struct r300_constant_buffer*)r300->fs_constants.state)->remap_table =
880 fs->shader->code.constants_remap_table;
881 }
882
883 /* Bind fragment shader state. */
884 static void r300_bind_fs_state(struct pipe_context* pipe, void* shader)
885 {
886 struct r300_context* r300 = r300_context(pipe);
887 struct r300_fragment_shader* fs = (struct r300_fragment_shader*)shader;
888 struct pipe_framebuffer_state *fb = r300->fb_state.state;
889 boolean last_multi_write;
890
891 if (fs == NULL) {
892 r300->fs.state = NULL;
893 return;
894 }
895
896 last_multi_write = r300_fragment_shader_writes_all(r300_fs(r300));
897
898 r300->fs.state = fs;
899 r300_pick_fragment_shader(r300);
900 r300_mark_fs_code_dirty(r300);
901
902 if (fb->nr_cbufs > 1 &&
903 last_multi_write != r300_fragment_shader_writes_all(fs)) {
904 r300_mark_fb_state_dirty(r300, R300_CHANGED_MULTIWRITE);
905 }
906
907 r300_mark_atom_dirty(r300, &r300->rs_block_state); /* Will be updated before the emission. */
908 }
909
910 /* Delete fragment shader state. */
911 static void r300_delete_fs_state(struct pipe_context* pipe, void* shader)
912 {
913 struct r300_fragment_shader* fs = (struct r300_fragment_shader*)shader;
914 struct r300_fragment_shader_code *tmp, *ptr = fs->first;
915
916 while (ptr) {
917 tmp = ptr;
918 ptr = ptr->next;
919 rc_constants_destroy(&tmp->code.constants);
920 FREE(tmp->cb_code);
921 FREE(tmp);
922 }
923 FREE((void*)fs->state.tokens);
924 FREE(shader);
925 }
926
927 static void r300_set_polygon_stipple(struct pipe_context* pipe,
928 const struct pipe_poly_stipple* state)
929 {
930 /* XXX no idea how to set this up, but not terribly important */
931 }
932
933 /* Create a new rasterizer state based on the CSO rasterizer state.
934 *
935 * This is a very large chunk of state, and covers most of the graphics
936 * backend (GB), geometry assembly (GA), and setup unit (SU) blocks.
937 *
938 * In a not entirely unironic sidenote, this state has nearly nothing to do
939 * with the actual block on the Radeon called the rasterizer (RS). */
940 static void* r300_create_rs_state(struct pipe_context* pipe,
941 const struct pipe_rasterizer_state* state)
942 {
943 struct r300_rs_state* rs = CALLOC_STRUCT(r300_rs_state);
944 float psiz;
945 uint32_t vap_control_status; /* R300_VAP_CNTL_STATUS: 0x2140 */
946 uint32_t point_size; /* R300_GA_POINT_SIZE: 0x421c */
947 uint32_t point_minmax; /* R300_GA_POINT_MINMAX: 0x4230 */
948 uint32_t line_control; /* R300_GA_LINE_CNTL: 0x4234 */
949 uint32_t polygon_offset_enable; /* R300_SU_POLY_OFFSET_ENABLE: 0x42b4 */
950 uint32_t cull_mode; /* R300_SU_CULL_MODE: 0x42b8 */
951 uint32_t line_stipple_config; /* R300_GA_LINE_STIPPLE_CONFIG: 0x4328 */
952 uint32_t line_stipple_value; /* R300_GA_LINE_STIPPLE_VALUE: 0x4260 */
953 uint32_t polygon_mode; /* R300_GA_POLY_MODE: 0x4288 */
954 uint32_t clip_rule; /* R300_SC_CLIP_RULE: 0x43D0 */
955
956 /* Point sprites texture coordinates, 0: lower left, 1: upper right */
957 float point_texcoord_left = 0; /* R300_GA_POINT_S0: 0x4200 */
958 float point_texcoord_bottom = 0;/* R300_GA_POINT_T0: 0x4204 */
959 float point_texcoord_right = 1; /* R300_GA_POINT_S1: 0x4208 */
960 float point_texcoord_top = 0; /* R300_GA_POINT_T1: 0x420c */
961 CB_LOCALS;
962
963 /* Copy rasterizer state. */
964 rs->rs = *state;
965 rs->rs_draw = *state;
966
967 rs->rs.sprite_coord_enable = state->point_quad_rasterization *
968 state->sprite_coord_enable;
969
970 /* Override some states for Draw. */
971 rs->rs_draw.sprite_coord_enable = 0; /* We can do this in HW. */
972
973 #ifdef PIPE_ARCH_LITTLE_ENDIAN
974 vap_control_status = R300_VC_NO_SWAP;
975 #else
976 vap_control_status = R300_VC_32BIT_SWAP;
977 #endif
978
979 /* If no TCL engine is present, turn off the HW TCL. */
980 if (!r300_screen(pipe->screen)->caps.has_tcl) {
981 vap_control_status |= R300_VAP_TCL_BYPASS;
982 }
983
984 /* Point size width and height. */
985 point_size =
986 pack_float_16_6x(state->point_size) |
987 (pack_float_16_6x(state->point_size) << R300_POINTSIZE_X_SHIFT);
988
989 /* Point size clamping. */
990 if (state->point_size_per_vertex) {
991 /* Per-vertex point size.
992 * Clamp to [0, max FB size] */
993 psiz = pipe->screen->get_paramf(pipe->screen,
994 PIPE_CAP_MAX_POINT_WIDTH);
995 point_minmax =
996 pack_float_16_6x(psiz) << R300_GA_POINT_MINMAX_MAX_SHIFT;
997 } else {
998 /* We cannot disable the point-size vertex output,
999 * so clamp it. */
1000 psiz = state->point_size;
1001 point_minmax =
1002 (pack_float_16_6x(psiz) << R300_GA_POINT_MINMAX_MIN_SHIFT) |
1003 (pack_float_16_6x(psiz) << R300_GA_POINT_MINMAX_MAX_SHIFT);
1004 }
1005
1006 /* Line control. */
1007 line_control = pack_float_16_6x(state->line_width) |
1008 R300_GA_LINE_CNTL_END_TYPE_COMP;
1009
1010 /* Enable polygon mode */
1011 polygon_mode = 0;
1012 if (state->fill_front != PIPE_POLYGON_MODE_FILL ||
1013 state->fill_back != PIPE_POLYGON_MODE_FILL) {
1014 polygon_mode = R300_GA_POLY_MODE_DUAL;
1015 }
1016
1017 /* Front face */
1018 if (state->front_ccw)
1019 cull_mode = R300_FRONT_FACE_CCW;
1020 else
1021 cull_mode = R300_FRONT_FACE_CW;
1022
1023 /* Polygon offset */
1024 polygon_offset_enable = 0;
1025 if (util_get_offset(state, state->fill_front)) {
1026 polygon_offset_enable |= R300_FRONT_ENABLE;
1027 }
1028 if (util_get_offset(state, state->fill_back)) {
1029 polygon_offset_enable |= R300_BACK_ENABLE;
1030 }
1031
1032 rs->polygon_offset_enable = polygon_offset_enable != 0;
1033
1034 /* Polygon mode */
1035 if (polygon_mode) {
1036 polygon_mode |=
1037 r300_translate_polygon_mode_front(state->fill_front);
1038 polygon_mode |=
1039 r300_translate_polygon_mode_back(state->fill_back);
1040 }
1041
1042 if (state->cull_face & PIPE_FACE_FRONT) {
1043 cull_mode |= R300_CULL_FRONT;
1044 }
1045 if (state->cull_face & PIPE_FACE_BACK) {
1046 cull_mode |= R300_CULL_BACK;
1047 }
1048
1049 if (state->line_stipple_enable) {
1050 line_stipple_config =
1051 R300_GA_LINE_STIPPLE_CONFIG_LINE_RESET_LINE |
1052 (fui((float)state->line_stipple_factor) &
1053 R300_GA_LINE_STIPPLE_CONFIG_STIPPLE_SCALE_MASK);
1054 /* XXX this might need to be scaled up */
1055 line_stipple_value = state->line_stipple_pattern;
1056 } else {
1057 line_stipple_config = 0;
1058 line_stipple_value = 0;
1059 }
1060
1061 if (state->flatshade) {
1062 rs->color_control = R300_SHADE_MODEL_FLAT;
1063 } else {
1064 rs->color_control = R300_SHADE_MODEL_SMOOTH;
1065 }
1066
1067 clip_rule = state->scissor ? 0xAAAA : 0xFFFF;
1068
1069 /* Point sprites coord mode */
1070 if (rs->rs.sprite_coord_enable) {
1071 switch (state->sprite_coord_mode) {
1072 case PIPE_SPRITE_COORD_UPPER_LEFT:
1073 point_texcoord_top = 0.0f;
1074 point_texcoord_bottom = 1.0f;
1075 break;
1076 case PIPE_SPRITE_COORD_LOWER_LEFT:
1077 point_texcoord_top = 1.0f;
1078 point_texcoord_bottom = 0.0f;
1079 break;
1080 }
1081 }
1082
1083 /* Build the main command buffer. */
1084 BEGIN_CB(rs->cb_main, RS_STATE_MAIN_SIZE);
1085 OUT_CB_REG(R300_VAP_CNTL_STATUS, vap_control_status);
1086 OUT_CB_REG(R300_GA_POINT_SIZE, point_size);
1087 OUT_CB_REG_SEQ(R300_GA_POINT_MINMAX, 2);
1088 OUT_CB(point_minmax);
1089 OUT_CB(line_control);
1090 OUT_CB_REG_SEQ(R300_SU_POLY_OFFSET_ENABLE, 2);
1091 OUT_CB(polygon_offset_enable);
1092 rs->cull_mode_index = 9;
1093 OUT_CB(cull_mode);
1094 OUT_CB_REG(R300_GA_LINE_STIPPLE_CONFIG, line_stipple_config);
1095 OUT_CB_REG(R300_GA_LINE_STIPPLE_VALUE, line_stipple_value);
1096 OUT_CB_REG(R300_GA_POLY_MODE, polygon_mode);
1097 OUT_CB_REG(R300_SC_CLIP_RULE, clip_rule);
1098 OUT_CB_REG_SEQ(R300_GA_POINT_S0, 4);
1099 OUT_CB_32F(point_texcoord_left);
1100 OUT_CB_32F(point_texcoord_bottom);
1101 OUT_CB_32F(point_texcoord_right);
1102 OUT_CB_32F(point_texcoord_top);
1103 END_CB;
1104
1105 /* Build the two command buffers for polygon offset setup. */
1106 if (polygon_offset_enable) {
1107 float scale = state->offset_scale * 12;
1108 float offset = state->offset_units * 4;
1109
1110 BEGIN_CB(rs->cb_poly_offset_zb16, 5);
1111 OUT_CB_REG_SEQ(R300_SU_POLY_OFFSET_FRONT_SCALE, 4);
1112 OUT_CB_32F(scale);
1113 OUT_CB_32F(offset);
1114 OUT_CB_32F(scale);
1115 OUT_CB_32F(offset);
1116 END_CB;
1117
1118 offset = state->offset_units * 2;
1119
1120 BEGIN_CB(rs->cb_poly_offset_zb24, 5);
1121 OUT_CB_REG_SEQ(R300_SU_POLY_OFFSET_FRONT_SCALE, 4);
1122 OUT_CB_32F(scale);
1123 OUT_CB_32F(offset);
1124 OUT_CB_32F(scale);
1125 OUT_CB_32F(offset);
1126 END_CB;
1127 }
1128
1129 return (void*)rs;
1130 }
1131
1132 /* Bind rasterizer state. */
1133 static void r300_bind_rs_state(struct pipe_context* pipe, void* state)
1134 {
1135 struct r300_context* r300 = r300_context(pipe);
1136 struct r300_rs_state* rs = (struct r300_rs_state*)state;
1137 int last_sprite_coord_enable = r300->sprite_coord_enable;
1138 boolean last_two_sided_color = r300->two_sided_color;
1139
1140 if (r300->draw && rs) {
1141 draw_set_rasterizer_state(r300->draw, &rs->rs_draw, state);
1142 }
1143
1144 if (rs) {
1145 r300->polygon_offset_enabled = rs->polygon_offset_enable;
1146 r300->sprite_coord_enable = rs->rs.sprite_coord_enable;
1147 r300->two_sided_color = rs->rs.light_twoside;
1148 } else {
1149 r300->polygon_offset_enabled = FALSE;
1150 r300->sprite_coord_enable = 0;
1151 r300->two_sided_color = FALSE;
1152 }
1153
1154 UPDATE_STATE(state, r300->rs_state);
1155 r300->rs_state.size = RS_STATE_MAIN_SIZE + (r300->polygon_offset_enabled ? 5 : 0);
1156
1157 if (last_sprite_coord_enable != r300->sprite_coord_enable ||
1158 last_two_sided_color != r300->two_sided_color) {
1159 r300_mark_atom_dirty(r300, &r300->rs_block_state);
1160 }
1161 }
1162
1163 /* Free rasterizer state. */
1164 static void r300_delete_rs_state(struct pipe_context* pipe, void* state)
1165 {
1166 FREE(state);
1167 }
1168
1169 static void*
1170 r300_create_sampler_state(struct pipe_context* pipe,
1171 const struct pipe_sampler_state* state)
1172 {
1173 struct r300_context* r300 = r300_context(pipe);
1174 struct r300_sampler_state* sampler = CALLOC_STRUCT(r300_sampler_state);
1175 boolean is_r500 = r300->screen->caps.is_r500;
1176 int lod_bias;
1177
1178 sampler->state = *state;
1179
1180 /* r300 doesn't handle CLAMP and MIRROR_CLAMP correctly when either MAG
1181 * or MIN filter is NEAREST. Since texwrap produces same results
1182 * for CLAMP and CLAMP_TO_EDGE, we use them instead. */
1183 if (sampler->state.min_img_filter == PIPE_TEX_FILTER_NEAREST ||
1184 sampler->state.mag_img_filter == PIPE_TEX_FILTER_NEAREST) {
1185 /* Wrap S. */
1186 if (sampler->state.wrap_s == PIPE_TEX_WRAP_CLAMP)
1187 sampler->state.wrap_s = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
1188 else if (sampler->state.wrap_s == PIPE_TEX_WRAP_MIRROR_CLAMP)
1189 sampler->state.wrap_s = PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE;
1190
1191 /* Wrap T. */
1192 if (sampler->state.wrap_t == PIPE_TEX_WRAP_CLAMP)
1193 sampler->state.wrap_t = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
1194 else if (sampler->state.wrap_t == PIPE_TEX_WRAP_MIRROR_CLAMP)
1195 sampler->state.wrap_t = PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE;
1196
1197 /* Wrap R. */
1198 if (sampler->state.wrap_r == PIPE_TEX_WRAP_CLAMP)
1199 sampler->state.wrap_r = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
1200 else if (sampler->state.wrap_r == PIPE_TEX_WRAP_MIRROR_CLAMP)
1201 sampler->state.wrap_r = PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE;
1202 }
1203
1204 sampler->filter0 |=
1205 (r300_translate_wrap(sampler->state.wrap_s) << R300_TX_WRAP_S_SHIFT) |
1206 (r300_translate_wrap(sampler->state.wrap_t) << R300_TX_WRAP_T_SHIFT) |
1207 (r300_translate_wrap(sampler->state.wrap_r) << R300_TX_WRAP_R_SHIFT);
1208
1209 sampler->filter0 |= r300_translate_tex_filters(state->min_img_filter,
1210 state->mag_img_filter,
1211 state->min_mip_filter,
1212 state->max_anisotropy > 0);
1213
1214 sampler->filter0 |= r300_anisotropy(state->max_anisotropy);
1215
1216 /* Unfortunately, r300-r500 don't support floating-point mipmap lods. */
1217 /* We must pass these to the merge function to clamp them properly. */
1218 sampler->min_lod = (unsigned)MAX2(state->min_lod, 0);
1219 sampler->max_lod = (unsigned)MAX2(ceilf(state->max_lod), 0);
1220
1221 lod_bias = CLAMP((int)(state->lod_bias * 32 + 1), -(1 << 9), (1 << 9) - 1);
1222
1223 sampler->filter1 |= (lod_bias << R300_LOD_BIAS_SHIFT) & R300_LOD_BIAS_MASK;
1224
1225 /* This is very high quality anisotropic filtering for R5xx.
1226 * It's good for benchmarking the performance of texturing but
1227 * in practice we don't want to slow down the driver because it's
1228 * a pretty good performance killer. Feel free to play with it. */
1229 if (DBG_ON(r300, DBG_ANISOHQ) && is_r500) {
1230 sampler->filter1 |= r500_anisotropy(state->max_anisotropy);
1231 }
1232
1233 /* R500-specific fixups and optimizations */
1234 if (r300->screen->caps.is_r500) {
1235 sampler->filter1 |= R500_BORDER_FIX;
1236 }
1237
1238 return (void*)sampler;
1239 }
1240
1241 static void r300_bind_sampler_states(struct pipe_context* pipe,
1242 unsigned count,
1243 void** states)
1244 {
1245 struct r300_context* r300 = r300_context(pipe);
1246 struct r300_textures_state* state =
1247 (struct r300_textures_state*)r300->textures_state.state;
1248 unsigned tex_units = r300->screen->caps.num_tex_units;
1249
1250 if (count > tex_units) {
1251 return;
1252 }
1253
1254 memcpy(state->sampler_states, states, sizeof(void*) * count);
1255 state->sampler_state_count = count;
1256
1257 r300_mark_atom_dirty(r300, &r300->textures_state);
1258 }
1259
1260 static void r300_lacks_vertex_textures(struct pipe_context* pipe,
1261 unsigned count,
1262 void** states)
1263 {
1264 }
1265
1266 static void r300_delete_sampler_state(struct pipe_context* pipe, void* state)
1267 {
1268 FREE(state);
1269 }
1270
1271 static uint32_t r300_assign_texture_cache_region(unsigned index, unsigned num)
1272 {
1273 /* This looks like a hack, but I believe it's suppose to work like
1274 * that. To illustrate how this works, let's assume you have 5 textures.
1275 * From docs, 5 and the successive numbers are:
1276 *
1277 * FOURTH_1 = 5
1278 * FOURTH_2 = 6
1279 * FOURTH_3 = 7
1280 * EIGHTH_0 = 8
1281 * EIGHTH_1 = 9
1282 *
1283 * First 3 textures will get 3/4 of size of the cache, divived evenly
1284 * between them. The last 1/4 of the cache must be divided between
1285 * the last 2 textures, each will therefore get 1/8 of the cache.
1286 * Why not just to use "5 + texture_index" ?
1287 *
1288 * This simple trick works for all "num" <= 16.
1289 */
1290 if (num <= 1)
1291 return R300_TX_CACHE(R300_TX_CACHE_WHOLE);
1292 else
1293 return R300_TX_CACHE(num + index);
1294 }
1295
1296 static void r300_set_fragment_sampler_views(struct pipe_context* pipe,
1297 unsigned count,
1298 struct pipe_sampler_view** views)
1299 {
1300 struct r300_context* r300 = r300_context(pipe);
1301 struct r300_textures_state* state =
1302 (struct r300_textures_state*)r300->textures_state.state;
1303 struct r300_texture *texture;
1304 unsigned i, real_num_views = 0, view_index = 0;
1305 unsigned tex_units = r300->screen->caps.num_tex_units;
1306 boolean dirty_tex = FALSE;
1307
1308 if (count > tex_units) {
1309 return;
1310 }
1311
1312 /* Calculate the real number of views. */
1313 for (i = 0; i < count; i++) {
1314 if (views[i])
1315 real_num_views++;
1316 }
1317
1318 for (i = 0; i < count; i++) {
1319 pipe_sampler_view_reference(
1320 (struct pipe_sampler_view**)&state->sampler_views[i],
1321 views[i]);
1322
1323 if (!views[i]) {
1324 continue;
1325 }
1326
1327 /* A new sampler view (= texture)... */
1328 dirty_tex = TRUE;
1329
1330 /* Set the texrect factor in the fragment shader.
1331 * Needed for RECT and NPOT fallback. */
1332 texture = r300_texture(views[i]->texture);
1333 if (texture->desc.is_npot) {
1334 r300_mark_atom_dirty(r300, &r300->fs_rc_constant_state);
1335 }
1336
1337 state->sampler_views[i]->texcache_region =
1338 r300_assign_texture_cache_region(view_index, real_num_views);
1339 view_index++;
1340 }
1341
1342 for (i = count; i < tex_units; i++) {
1343 if (state->sampler_views[i]) {
1344 pipe_sampler_view_reference(
1345 (struct pipe_sampler_view**)&state->sampler_views[i],
1346 NULL);
1347 }
1348 }
1349
1350 state->sampler_view_count = count;
1351
1352 r300_mark_atom_dirty(r300, &r300->textures_state);
1353 r300->validate_buffers = TRUE;
1354
1355 if (dirty_tex) {
1356 r300_mark_atom_dirty(r300, &r300->texture_cache_inval);
1357 }
1358 }
1359
1360 static struct pipe_sampler_view *
1361 r300_create_sampler_view(struct pipe_context *pipe,
1362 struct pipe_resource *texture,
1363 const struct pipe_sampler_view *templ)
1364 {
1365 struct r300_sampler_view *view = CALLOC_STRUCT(r300_sampler_view);
1366 struct r300_texture *tex = r300_texture(texture);
1367 boolean is_r500 = r300_screen(pipe->screen)->caps.is_r500;
1368 boolean dxtc_swizzle = r300_screen(pipe->screen)->caps.dxtc_swizzle;
1369
1370 if (view) {
1371 view->base = *templ;
1372 view->base.reference.count = 1;
1373 view->base.context = pipe;
1374 view->base.texture = NULL;
1375 pipe_resource_reference(&view->base.texture, texture);
1376
1377 view->swizzle[0] = templ->swizzle_r;
1378 view->swizzle[1] = templ->swizzle_g;
1379 view->swizzle[2] = templ->swizzle_b;
1380 view->swizzle[3] = templ->swizzle_a;
1381
1382 view->format = tex->tx_format;
1383 view->format.format1 |= r300_translate_texformat(templ->format,
1384 view->swizzle,
1385 is_r500,
1386 dxtc_swizzle);
1387 if (is_r500) {
1388 view->format.format2 |= r500_tx_format_msb_bit(templ->format);
1389 }
1390 }
1391
1392 return (struct pipe_sampler_view*)view;
1393 }
1394
1395 static void
1396 r300_sampler_view_destroy(struct pipe_context *pipe,
1397 struct pipe_sampler_view *view)
1398 {
1399 pipe_resource_reference(&view->texture, NULL);
1400 FREE(view);
1401 }
1402
1403 static void r300_set_scissor_state(struct pipe_context* pipe,
1404 const struct pipe_scissor_state* state)
1405 {
1406 struct r300_context* r300 = r300_context(pipe);
1407
1408 memcpy(r300->scissor_state.state, state,
1409 sizeof(struct pipe_scissor_state));
1410
1411 r300_mark_atom_dirty(r300, &r300->scissor_state);
1412 }
1413
1414 static void r300_set_viewport_state(struct pipe_context* pipe,
1415 const struct pipe_viewport_state* state)
1416 {
1417 struct r300_context* r300 = r300_context(pipe);
1418 struct r300_viewport_state* viewport =
1419 (struct r300_viewport_state*)r300->viewport_state.state;
1420
1421 r300->viewport = *state;
1422
1423 if (r300->draw) {
1424 draw_set_viewport_state(r300->draw, state);
1425 viewport->vte_control = R300_VTX_XY_FMT | R300_VTX_Z_FMT;
1426 return;
1427 }
1428
1429 /* Do the transform in HW. */
1430 viewport->vte_control = R300_VTX_W0_FMT;
1431
1432 if (state->scale[0] != 1.0f) {
1433 viewport->xscale = state->scale[0];
1434 viewport->vte_control |= R300_VPORT_X_SCALE_ENA;
1435 }
1436 if (state->scale[1] != 1.0f) {
1437 viewport->yscale = state->scale[1];
1438 viewport->vte_control |= R300_VPORT_Y_SCALE_ENA;
1439 }
1440 if (state->scale[2] != 1.0f) {
1441 viewport->zscale = state->scale[2];
1442 viewport->vte_control |= R300_VPORT_Z_SCALE_ENA;
1443 }
1444 if (state->translate[0] != 0.0f) {
1445 viewport->xoffset = state->translate[0];
1446 viewport->vte_control |= R300_VPORT_X_OFFSET_ENA;
1447 }
1448 if (state->translate[1] != 0.0f) {
1449 viewport->yoffset = state->translate[1];
1450 viewport->vte_control |= R300_VPORT_Y_OFFSET_ENA;
1451 }
1452 if (state->translate[2] != 0.0f) {
1453 viewport->zoffset = state->translate[2];
1454 viewport->vte_control |= R300_VPORT_Z_OFFSET_ENA;
1455 }
1456
1457 r300_mark_atom_dirty(r300, &r300->viewport_state);
1458 if (r300->fs.state && r300_fs(r300)->shader->inputs.wpos != ATTR_UNUSED) {
1459 r300_mark_atom_dirty(r300, &r300->fs_rc_constant_state);
1460 }
1461 }
1462
1463 static void r300_set_vertex_buffers(struct pipe_context* pipe,
1464 unsigned count,
1465 const struct pipe_vertex_buffer* buffers)
1466 {
1467 struct r300_context* r300 = r300_context(pipe);
1468 struct pipe_vertex_buffer *vbo;
1469 unsigned i, max_index = (1 << 24) - 1;
1470 boolean any_user_buffer = FALSE;
1471 boolean any_nonuser_buffer = FALSE;
1472 struct pipe_vertex_buffer dummy_vb = {0};
1473
1474 /* There must be at least one vertex buffer set, otherwise it locks up. */
1475 if (!count) {
1476 dummy_vb.buffer = r300->dummy_vb;
1477 dummy_vb.max_index = r300->dummy_vb->width0 / 4;
1478 buffers = &dummy_vb;
1479 count = 1;
1480 }
1481
1482 if (count == r300->vertex_buffer_count &&
1483 memcmp(r300->vertex_buffer, buffers,
1484 sizeof(struct pipe_vertex_buffer) * count) == 0) {
1485 return;
1486 }
1487
1488 if (r300->screen->caps.has_tcl) {
1489 /* HW TCL. */
1490 r300->incompatible_vb_layout = FALSE;
1491
1492 /* Check if the strides and offsets are aligned to the size of DWORD. */
1493 for (i = 0; i < count; i++) {
1494 if (buffers[i].buffer) {
1495 if (buffers[i].stride % 4 != 0 ||
1496 buffers[i].buffer_offset % 4 != 0) {
1497 r300->incompatible_vb_layout = TRUE;
1498 break;
1499 }
1500 }
1501 }
1502
1503 for (i = 0; i < count; i++) {
1504 /* Why, yes, I AM casting away constness. How did you know? */
1505 vbo = (struct pipe_vertex_buffer*)&buffers[i];
1506
1507 /* Skip NULL buffers */
1508 if (!buffers[i].buffer) {
1509 continue;
1510 }
1511
1512 if (r300_buffer_is_user_buffer(vbo->buffer)) {
1513 any_user_buffer = TRUE;
1514 }
1515 any_nonuser_buffer = TRUE;
1516
1517 /* The stride of zero means we will be fetching only the first
1518 * vertex, so don't care about max_index. */
1519 if (!vbo->stride)
1520 continue;
1521
1522 if (vbo->max_index == ~0) {
1523 vbo->max_index =
1524 (vbo->buffer->width0 - vbo->buffer_offset) / vbo->stride;
1525 }
1526
1527 max_index = MIN2(vbo->max_index, max_index);
1528 }
1529
1530 r300->any_user_vbs = any_user_buffer;
1531 r300->vertex_buffer_max_index = max_index;
1532 r300->vertex_arrays_dirty = TRUE;
1533 if (any_nonuser_buffer)
1534 r300->validate_buffers = TRUE;
1535 if (!any_user_buffer)
1536 r300->upload_vb_validated = FALSE;
1537 } else {
1538 /* SW TCL. */
1539 draw_set_vertex_buffers(r300->draw, count, buffers);
1540 }
1541
1542 /* Common code. */
1543 for (i = 0; i < count; i++) {
1544 /* Reference our buffer. */
1545 pipe_resource_reference(&r300->vertex_buffer[i].buffer, buffers[i].buffer);
1546 }
1547 for (; i < r300->vertex_buffer_count; i++) {
1548 /* Dereference any old buffers. */
1549 pipe_resource_reference(&r300->vertex_buffer[i].buffer, NULL);
1550 }
1551
1552 memcpy(r300->vertex_buffer, buffers,
1553 sizeof(struct pipe_vertex_buffer) * count);
1554 r300->vertex_buffer_count = count;
1555 }
1556
1557 static void r300_set_index_buffer(struct pipe_context* pipe,
1558 const struct pipe_index_buffer *ib)
1559 {
1560 struct r300_context* r300 = r300_context(pipe);
1561
1562 if (ib && ib->buffer) {
1563 pipe_resource_reference(&r300->index_buffer.buffer, ib->buffer);
1564 memcpy(&r300->index_buffer, ib, sizeof(r300->index_buffer));
1565
1566 if (r300->screen->caps.has_tcl &&
1567 !r300_buffer_is_user_buffer(ib->buffer)) {
1568 r300->validate_buffers = TRUE;
1569 r300->upload_ib_validated = FALSE;
1570 }
1571 }
1572 else {
1573 pipe_resource_reference(&r300->index_buffer.buffer, NULL);
1574 memset(&r300->index_buffer, 0, sizeof(r300->index_buffer));
1575 }
1576
1577 if (!r300->screen->caps.has_tcl) {
1578 draw_set_index_buffer(r300->draw, ib);
1579 }
1580 }
1581
1582 /* Initialize the PSC tables. */
1583 static void r300_vertex_psc(struct r300_vertex_element_state *velems)
1584 {
1585 struct r300_vertex_stream_state *vstream = &velems->vertex_stream;
1586 uint16_t type, swizzle;
1587 enum pipe_format format;
1588 unsigned i;
1589
1590 if (velems->count > 16) {
1591 fprintf(stderr, "r300: More than 16 vertex elements are not supported,"
1592 " requested %i, using 16.\n", velems->count);
1593 velems->count = 16;
1594 }
1595
1596 /* Vertex shaders have no semantics on their inputs,
1597 * so PSC should just route stuff based on the vertex elements,
1598 * and not on attrib information. */
1599 for (i = 0; i < velems->count; i++) {
1600 format = velems->hw_format[i];
1601
1602 type = r300_translate_vertex_data_type(format);
1603 if (type == R300_INVALID_FORMAT) {
1604 fprintf(stderr, "r300: Bad vertex format %s.\n",
1605 util_format_short_name(format));
1606 assert(0);
1607 abort();
1608 }
1609
1610 type |= i << R300_DST_VEC_LOC_SHIFT;
1611 swizzle = r300_translate_vertex_data_swizzle(format);
1612
1613 if (i & 1) {
1614 vstream->vap_prog_stream_cntl[i >> 1] |= type << 16;
1615 vstream->vap_prog_stream_cntl_ext[i >> 1] |= swizzle << 16;
1616 } else {
1617 vstream->vap_prog_stream_cntl[i >> 1] |= type;
1618 vstream->vap_prog_stream_cntl_ext[i >> 1] |= swizzle;
1619 }
1620 }
1621
1622 /* Set the last vector in the PSC. */
1623 if (i) {
1624 i -= 1;
1625 }
1626 vstream->vap_prog_stream_cntl[i >> 1] |=
1627 (R300_LAST_VEC << (i & 1 ? 16 : 0));
1628
1629 vstream->count = (i >> 1) + 1;
1630 }
1631
1632 #define FORMAT_REPLACE(what, withwhat) \
1633 case PIPE_FORMAT_##what: *format = PIPE_FORMAT_##withwhat; break
1634
1635 static void* r300_create_vertex_elements_state(struct pipe_context* pipe,
1636 unsigned count,
1637 const struct pipe_vertex_element* attribs)
1638 {
1639 struct r300_vertex_element_state *velems;
1640 unsigned i;
1641 enum pipe_format *format;
1642 struct pipe_vertex_element dummy_attrib = {0};
1643
1644 /* R300 Programmable Stream Control (PSC) doesn't support 0 vertex elements. */
1645 if (!count) {
1646 dummy_attrib.src_format = PIPE_FORMAT_R8G8B8A8_UNORM;
1647 attribs = &dummy_attrib;
1648 count = 1;
1649 }
1650
1651 assert(count <= PIPE_MAX_ATTRIBS);
1652 velems = CALLOC_STRUCT(r300_vertex_element_state);
1653 if (velems != NULL) {
1654 velems->count = count;
1655 memcpy(velems->velem, attribs, sizeof(struct pipe_vertex_element) * count);
1656
1657 if (r300_screen(pipe->screen)->caps.has_tcl) {
1658 /* Set the best hw format in case the original format is not
1659 * supported by hw. */
1660 for (i = 0; i < count; i++) {
1661 velems->hw_format[i] = velems->velem[i].src_format;
1662 format = &velems->hw_format[i];
1663
1664 /* This is basically the list of unsupported formats.
1665 * For now we don't care about the alignment, that's going to
1666 * be sorted out after the PSC setup. */
1667 switch (*format) {
1668 FORMAT_REPLACE(R64_FLOAT, R32_FLOAT);
1669 FORMAT_REPLACE(R64G64_FLOAT, R32G32_FLOAT);
1670 FORMAT_REPLACE(R64G64B64_FLOAT, R32G32B32_FLOAT);
1671 FORMAT_REPLACE(R64G64B64A64_FLOAT, R32G32B32A32_FLOAT);
1672
1673 FORMAT_REPLACE(R32_UNORM, R32_FLOAT);
1674 FORMAT_REPLACE(R32G32_UNORM, R32G32_FLOAT);
1675 FORMAT_REPLACE(R32G32B32_UNORM, R32G32B32_FLOAT);
1676 FORMAT_REPLACE(R32G32B32A32_UNORM, R32G32B32A32_FLOAT);
1677
1678 FORMAT_REPLACE(R32_USCALED, R32_FLOAT);
1679 FORMAT_REPLACE(R32G32_USCALED, R32G32_FLOAT);
1680 FORMAT_REPLACE(R32G32B32_USCALED, R32G32B32_FLOAT);
1681 FORMAT_REPLACE(R32G32B32A32_USCALED,R32G32B32A32_FLOAT);
1682
1683 FORMAT_REPLACE(R32_SNORM, R32_FLOAT);
1684 FORMAT_REPLACE(R32G32_SNORM, R32G32_FLOAT);
1685 FORMAT_REPLACE(R32G32B32_SNORM, R32G32B32_FLOAT);
1686 FORMAT_REPLACE(R32G32B32A32_SNORM, R32G32B32A32_FLOAT);
1687
1688 FORMAT_REPLACE(R32_SSCALED, R32_FLOAT);
1689 FORMAT_REPLACE(R32G32_SSCALED, R32G32_FLOAT);
1690 FORMAT_REPLACE(R32G32B32_SSCALED, R32G32B32_FLOAT);
1691 FORMAT_REPLACE(R32G32B32A32_SSCALED,R32G32B32A32_FLOAT);
1692
1693 FORMAT_REPLACE(R32_FIXED, R32_FLOAT);
1694 FORMAT_REPLACE(R32G32_FIXED, R32G32_FLOAT);
1695 FORMAT_REPLACE(R32G32B32_FIXED, R32G32B32_FLOAT);
1696 FORMAT_REPLACE(R32G32B32A32_FIXED, R32G32B32A32_FLOAT);
1697
1698 default:;
1699 }
1700
1701 velems->incompatible_layout =
1702 velems->incompatible_layout ||
1703 velems->velem[i].src_format != velems->hw_format[i] ||
1704 velems->velem[i].src_offset % 4 != 0;
1705 }
1706
1707 /* Now setup PSC.
1708 * The unused components will be replaced by (..., 0, 1). */
1709 r300_vertex_psc(velems);
1710
1711 /* Align the formats to the size of DWORD.
1712 * We only care about the blocksizes of the formats since
1713 * swizzles are already set up.
1714 * Also compute the vertex size. */
1715 for (i = 0; i < count; i++) {
1716 /* This is OK because we check for aligned strides too
1717 * elsewhere. */
1718 velems->hw_format_size[i] =
1719 align(util_format_get_blocksize(velems->hw_format[i]), 4);
1720 velems->vertex_size_dwords += velems->hw_format_size[i] / 4;
1721 }
1722 }
1723 }
1724 return velems;
1725 }
1726
1727 static void r300_bind_vertex_elements_state(struct pipe_context *pipe,
1728 void *state)
1729 {
1730 struct r300_context *r300 = r300_context(pipe);
1731 struct r300_vertex_element_state *velems = state;
1732
1733 if (velems == NULL) {
1734 return;
1735 }
1736
1737 r300->velems = velems;
1738
1739 if (r300->draw) {
1740 draw_set_vertex_elements(r300->draw, velems->count, velems->velem);
1741 return;
1742 }
1743
1744 UPDATE_STATE(&velems->vertex_stream, r300->vertex_stream_state);
1745 r300->vertex_stream_state.size = (1 + velems->vertex_stream.count) * 2;
1746 r300->vertex_arrays_dirty = TRUE;
1747 }
1748
1749 static void r300_delete_vertex_elements_state(struct pipe_context *pipe, void *state)
1750 {
1751 FREE(state);
1752 }
1753
1754 static void* r300_create_vs_state(struct pipe_context* pipe,
1755 const struct pipe_shader_state* shader)
1756 {
1757 struct r300_context* r300 = r300_context(pipe);
1758 struct r300_vertex_shader* vs = CALLOC_STRUCT(r300_vertex_shader);
1759
1760 /* Copy state directly into shader. */
1761 vs->state = *shader;
1762 vs->state.tokens = tgsi_dup_tokens(shader->tokens);
1763
1764 if (r300->screen->caps.has_tcl) {
1765 r300_init_vs_outputs(vs);
1766 r300_translate_vertex_shader(r300, vs);
1767 } else {
1768 r300_draw_init_vertex_shader(r300->draw, vs);
1769 }
1770
1771 return vs;
1772 }
1773
1774 static void r300_bind_vs_state(struct pipe_context* pipe, void* shader)
1775 {
1776 struct r300_context* r300 = r300_context(pipe);
1777 struct r300_vertex_shader* vs = (struct r300_vertex_shader*)shader;
1778
1779 if (vs == NULL) {
1780 r300->vs_state.state = NULL;
1781 return;
1782 }
1783 if (vs == r300->vs_state.state) {
1784 return;
1785 }
1786 r300->vs_state.state = vs;
1787
1788 /* The majority of the RS block bits is dependent on the vertex shader. */
1789 r300_mark_atom_dirty(r300, &r300->rs_block_state); /* Will be updated before the emission. */
1790
1791 if (r300->screen->caps.has_tcl) {
1792 unsigned fc_op_dwords = r300->screen->caps.is_r500 ? 3 : 2;
1793 r300_mark_atom_dirty(r300, &r300->vs_state);
1794 r300->vs_state.size =
1795 vs->code.length + 9 +
1796 (vs->code.num_fc_ops ? vs->code.num_fc_ops * fc_op_dwords + 4 : 0);
1797
1798 r300_mark_atom_dirty(r300, &r300->vs_constants);
1799 r300->vs_constants.size =
1800 2 +
1801 (vs->externals_count ? vs->externals_count * 4 + 3 : 0) +
1802 (vs->immediates_count ? vs->immediates_count * 4 + 3 : 0);
1803
1804 ((struct r300_constant_buffer*)r300->vs_constants.state)->remap_table =
1805 vs->code.constants_remap_table;
1806
1807 r300_mark_atom_dirty(r300, &r300->pvs_flush);
1808 } else {
1809 draw_bind_vertex_shader(r300->draw,
1810 (struct draw_vertex_shader*)vs->draw_vs);
1811 }
1812 }
1813
1814 static void r300_delete_vs_state(struct pipe_context* pipe, void* shader)
1815 {
1816 struct r300_context* r300 = r300_context(pipe);
1817 struct r300_vertex_shader* vs = (struct r300_vertex_shader*)shader;
1818
1819 if (r300->screen->caps.has_tcl) {
1820 rc_constants_destroy(&vs->code.constants);
1821 if (vs->code.constants_remap_table)
1822 FREE(vs->code.constants_remap_table);
1823 } else {
1824 draw_delete_vertex_shader(r300->draw,
1825 (struct draw_vertex_shader*)vs->draw_vs);
1826 }
1827
1828 FREE((void*)vs->state.tokens);
1829 FREE(shader);
1830 }
1831
1832 static void r300_set_constant_buffer(struct pipe_context *pipe,
1833 uint shader, uint index,
1834 struct pipe_resource *buf)
1835 {
1836 struct r300_context* r300 = r300_context(pipe);
1837 struct r300_constant_buffer *cbuf;
1838 struct r300_buffer *rbuf = r300_buffer(buf);
1839 uint32_t *mapped;
1840
1841 switch (shader) {
1842 case PIPE_SHADER_VERTEX:
1843 cbuf = (struct r300_constant_buffer*)r300->vs_constants.state;
1844 break;
1845 case PIPE_SHADER_FRAGMENT:
1846 cbuf = (struct r300_constant_buffer*)r300->fs_constants.state;
1847 break;
1848 default:
1849 return;
1850 }
1851
1852 if (buf == NULL || buf->width0 == 0)
1853 return;
1854
1855 if (rbuf->user_buffer)
1856 mapped = (uint32_t*)rbuf->user_buffer;
1857 else if (rbuf->constant_buffer)
1858 mapped = (uint32_t*)rbuf->constant_buffer;
1859 else
1860 return;
1861
1862 if (shader == PIPE_SHADER_FRAGMENT ||
1863 (shader == PIPE_SHADER_VERTEX && r300->screen->caps.has_tcl)) {
1864 assert((buf->width0 % (4 * sizeof(float))) == 0);
1865 cbuf->ptr = mapped;
1866 }
1867
1868 if (shader == PIPE_SHADER_VERTEX) {
1869 if (r300->screen->caps.has_tcl) {
1870 struct r300_vertex_shader *vs =
1871 (struct r300_vertex_shader*)r300->vs_state.state;
1872
1873 if (!vs) {
1874 cbuf->buffer_base = 0;
1875 return;
1876 }
1877
1878 cbuf->buffer_base = r300->vs_const_base;
1879 r300->vs_const_base += vs->code.constants.Count;
1880 if (r300->vs_const_base > R500_MAX_PVS_CONST_VECS) {
1881 r300->vs_const_base = vs->code.constants.Count;
1882 cbuf->buffer_base = 0;
1883 r300_mark_atom_dirty(r300, &r300->pvs_flush);
1884 }
1885 r300_mark_atom_dirty(r300, &r300->vs_constants);
1886 } else if (r300->draw) {
1887 draw_set_mapped_constant_buffer(r300->draw, PIPE_SHADER_VERTEX,
1888 0, mapped, buf->width0);
1889 }
1890 } else if (shader == PIPE_SHADER_FRAGMENT) {
1891 r300_mark_atom_dirty(r300, &r300->fs_constants);
1892 }
1893 }
1894
1895 void r300_init_state_functions(struct r300_context* r300)
1896 {
1897 r300->context.create_blend_state = r300_create_blend_state;
1898 r300->context.bind_blend_state = r300_bind_blend_state;
1899 r300->context.delete_blend_state = r300_delete_blend_state;
1900
1901 r300->context.set_blend_color = r300_set_blend_color;
1902
1903 r300->context.set_clip_state = r300_set_clip_state;
1904 r300->context.set_sample_mask = r300_set_sample_mask;
1905
1906 r300->context.set_constant_buffer = r300_set_constant_buffer;
1907
1908 r300->context.create_depth_stencil_alpha_state = r300_create_dsa_state;
1909 r300->context.bind_depth_stencil_alpha_state = r300_bind_dsa_state;
1910 r300->context.delete_depth_stencil_alpha_state = r300_delete_dsa_state;
1911
1912 r300->context.set_stencil_ref = r300_set_stencil_ref;
1913
1914 r300->context.set_framebuffer_state = r300_set_framebuffer_state;
1915
1916 r300->context.create_fs_state = r300_create_fs_state;
1917 r300->context.bind_fs_state = r300_bind_fs_state;
1918 r300->context.delete_fs_state = r300_delete_fs_state;
1919
1920 r300->context.set_polygon_stipple = r300_set_polygon_stipple;
1921
1922 r300->context.create_rasterizer_state = r300_create_rs_state;
1923 r300->context.bind_rasterizer_state = r300_bind_rs_state;
1924 r300->context.delete_rasterizer_state = r300_delete_rs_state;
1925
1926 r300->context.create_sampler_state = r300_create_sampler_state;
1927 r300->context.bind_fragment_sampler_states = r300_bind_sampler_states;
1928 r300->context.bind_vertex_sampler_states = r300_lacks_vertex_textures;
1929 r300->context.delete_sampler_state = r300_delete_sampler_state;
1930
1931 r300->context.set_fragment_sampler_views = r300_set_fragment_sampler_views;
1932 r300->context.create_sampler_view = r300_create_sampler_view;
1933 r300->context.sampler_view_destroy = r300_sampler_view_destroy;
1934
1935 r300->context.set_scissor_state = r300_set_scissor_state;
1936
1937 r300->context.set_viewport_state = r300_set_viewport_state;
1938
1939 r300->context.set_vertex_buffers = r300_set_vertex_buffers;
1940 r300->context.set_index_buffer = r300_set_index_buffer;
1941
1942 r300->context.create_vertex_elements_state = r300_create_vertex_elements_state;
1943 r300->context.bind_vertex_elements_state = r300_bind_vertex_elements_state;
1944 r300->context.delete_vertex_elements_state = r300_delete_vertex_elements_state;
1945
1946 r300->context.create_vs_state = r300_create_vs_state;
1947 r300->context.bind_vs_state = r300_bind_vs_state;
1948 r300->context.delete_vs_state = r300_delete_vs_state;
1949 }