Revert "r300g: fix occlusion queries when depth test is disabled or zbuffer is missing"
[mesa.git] / src / gallium / drivers / r300 / r300_state.c
1 /*
2 * Copyright 2008 Corbin Simpson <MostAwesomeDude@gmail.com>
3 * Copyright 2009 Marek Olšák <maraeo@gmail.com>
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * on the rights to use, copy, modify, merge, publish, distribute, sub
9 * license, and/or sell copies of the Software, and to permit persons to whom
10 * the Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE. */
23
24 #include "draw/draw_context.h"
25
26 #include "util/u_framebuffer.h"
27 #include "util/u_half.h"
28 #include "util/u_helpers.h"
29 #include "util/u_math.h"
30 #include "util/u_mm.h"
31 #include "util/u_memory.h"
32 #include "util/u_pack_color.h"
33 #include "util/u_transfer.h"
34
35 #include "tgsi/tgsi_parse.h"
36
37 #include "pipe/p_config.h"
38
39 #include "r300_cb.h"
40 #include "r300_context.h"
41 #include "r300_emit.h"
42 #include "r300_reg.h"
43 #include "r300_screen.h"
44 #include "r300_screen_buffer.h"
45 #include "r300_state_inlines.h"
46 #include "r300_fs.h"
47 #include "r300_texture.h"
48 #include "r300_vs.h"
49
50 /* r300_state: Functions used to intialize state context by translating
51 * Gallium state objects into semi-native r300 state objects. */
52
53 #define UPDATE_STATE(cso, atom) \
54 if (cso != atom.state) { \
55 atom.state = cso; \
56 r300_mark_atom_dirty(r300, &(atom)); \
57 }
58
59 static boolean blend_discard_if_src_alpha_0(unsigned srcRGB, unsigned srcA,
60 unsigned dstRGB, unsigned dstA)
61 {
62 /* If the blend equation is ADD or REVERSE_SUBTRACT,
63 * SRC_ALPHA == 0, and the following state is set, the colorbuffer
64 * will not be changed.
65 * Notice that the dst factors are the src factors inverted. */
66 return (srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
67 srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE ||
68 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
69 (srcA == PIPE_BLENDFACTOR_SRC_COLOR ||
70 srcA == PIPE_BLENDFACTOR_SRC_ALPHA ||
71 srcA == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE ||
72 srcA == PIPE_BLENDFACTOR_ZERO) &&
73 (dstRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
74 dstRGB == PIPE_BLENDFACTOR_ONE) &&
75 (dstA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
76 dstA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
77 dstA == PIPE_BLENDFACTOR_ONE);
78 }
79
80 static boolean blend_discard_if_src_alpha_1(unsigned srcRGB, unsigned srcA,
81 unsigned dstRGB, unsigned dstA)
82 {
83 /* If the blend equation is ADD or REVERSE_SUBTRACT,
84 * SRC_ALPHA == 1, and the following state is set, the colorbuffer
85 * will not be changed.
86 * Notice that the dst factors are the src factors inverted. */
87 return (srcRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
88 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
89 (srcA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
90 srcA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
91 srcA == PIPE_BLENDFACTOR_ZERO) &&
92 (dstRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
93 dstRGB == PIPE_BLENDFACTOR_ONE) &&
94 (dstA == PIPE_BLENDFACTOR_SRC_COLOR ||
95 dstA == PIPE_BLENDFACTOR_SRC_ALPHA ||
96 dstA == PIPE_BLENDFACTOR_ONE);
97 }
98
99 static boolean blend_discard_if_src_color_0(unsigned srcRGB, unsigned srcA,
100 unsigned dstRGB, unsigned dstA)
101 {
102 /* If the blend equation is ADD or REVERSE_SUBTRACT,
103 * SRC_COLOR == (0,0,0), and the following state is set, the colorbuffer
104 * will not be changed.
105 * Notice that the dst factors are the src factors inverted. */
106 return (srcRGB == PIPE_BLENDFACTOR_SRC_COLOR ||
107 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
108 (srcA == PIPE_BLENDFACTOR_ZERO) &&
109 (dstRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
110 dstRGB == PIPE_BLENDFACTOR_ONE) &&
111 (dstA == PIPE_BLENDFACTOR_ONE);
112 }
113
114 static boolean blend_discard_if_src_color_1(unsigned srcRGB, unsigned srcA,
115 unsigned dstRGB, unsigned dstA)
116 {
117 /* If the blend equation is ADD or REVERSE_SUBTRACT,
118 * SRC_COLOR == (1,1,1), and the following state is set, the colorbuffer
119 * will not be changed.
120 * Notice that the dst factors are the src factors inverted. */
121 return (srcRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
122 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
123 (srcA == PIPE_BLENDFACTOR_ZERO) &&
124 (dstRGB == PIPE_BLENDFACTOR_SRC_COLOR ||
125 dstRGB == PIPE_BLENDFACTOR_ONE) &&
126 (dstA == PIPE_BLENDFACTOR_ONE);
127 }
128
129 static boolean blend_discard_if_src_alpha_color_0(unsigned srcRGB, unsigned srcA,
130 unsigned dstRGB, unsigned dstA)
131 {
132 /* If the blend equation is ADD or REVERSE_SUBTRACT,
133 * SRC_ALPHA_COLOR == (0,0,0,0), and the following state is set,
134 * the colorbuffer will not be changed.
135 * Notice that the dst factors are the src factors inverted. */
136 return (srcRGB == PIPE_BLENDFACTOR_SRC_COLOR ||
137 srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
138 srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE ||
139 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
140 (srcA == PIPE_BLENDFACTOR_SRC_COLOR ||
141 srcA == PIPE_BLENDFACTOR_SRC_ALPHA ||
142 srcA == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE ||
143 srcA == PIPE_BLENDFACTOR_ZERO) &&
144 (dstRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
145 dstRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
146 dstRGB == PIPE_BLENDFACTOR_ONE) &&
147 (dstA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
148 dstA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
149 dstA == PIPE_BLENDFACTOR_ONE);
150 }
151
152 static boolean blend_discard_if_src_alpha_color_1(unsigned srcRGB, unsigned srcA,
153 unsigned dstRGB, unsigned dstA)
154 {
155 /* If the blend equation is ADD or REVERSE_SUBTRACT,
156 * SRC_ALPHA_COLOR == (1,1,1,1), and the following state is set,
157 * the colorbuffer will not be changed.
158 * Notice that the dst factors are the src factors inverted. */
159 return (srcRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
160 srcRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
161 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
162 (srcA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
163 srcA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
164 srcA == PIPE_BLENDFACTOR_ZERO) &&
165 (dstRGB == PIPE_BLENDFACTOR_SRC_COLOR ||
166 dstRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
167 dstRGB == PIPE_BLENDFACTOR_ONE) &&
168 (dstA == PIPE_BLENDFACTOR_SRC_COLOR ||
169 dstA == PIPE_BLENDFACTOR_SRC_ALPHA ||
170 dstA == PIPE_BLENDFACTOR_ONE);
171 }
172
173 /* The hardware colormask is clunky a must be swizzled depending on the format.
174 * This was figured out by trial-and-error. */
175 static unsigned bgra_cmask(unsigned mask)
176 {
177 return ((mask & PIPE_MASK_R) << 2) |
178 ((mask & PIPE_MASK_B) >> 2) |
179 (mask & (PIPE_MASK_G | PIPE_MASK_A));
180 }
181
182 static unsigned rgba_cmask(unsigned mask)
183 {
184 return mask & PIPE_MASK_RGBA;
185 }
186
187 static unsigned rrrr_cmask(unsigned mask)
188 {
189 return (mask & PIPE_MASK_R) |
190 ((mask & PIPE_MASK_R) << 1) |
191 ((mask & PIPE_MASK_R) << 2) |
192 ((mask & PIPE_MASK_R) << 3);
193 }
194
195 static unsigned aaaa_cmask(unsigned mask)
196 {
197 return ((mask & PIPE_MASK_A) >> 3) |
198 ((mask & PIPE_MASK_A) >> 2) |
199 ((mask & PIPE_MASK_A) >> 1) |
200 (mask & PIPE_MASK_A);
201 }
202
203 static unsigned grrg_cmask(unsigned mask)
204 {
205 return ((mask & PIPE_MASK_R) << 1) |
206 ((mask & PIPE_MASK_R) << 2) |
207 ((mask & PIPE_MASK_G) >> 1) |
208 ((mask & PIPE_MASK_G) << 2);
209 }
210
211 static unsigned arra_cmask(unsigned mask)
212 {
213 return ((mask & PIPE_MASK_R) << 1) |
214 ((mask & PIPE_MASK_R) << 2) |
215 ((mask & PIPE_MASK_A) >> 3) |
216 (mask & PIPE_MASK_A);
217 }
218
219 /* Create a new blend state based on the CSO blend state.
220 *
221 * This encompasses alpha blending, logic/raster ops, and blend dithering. */
222 static void* r300_create_blend_state(struct pipe_context* pipe,
223 const struct pipe_blend_state* state)
224 {
225 struct r300_screen* r300screen = r300_screen(pipe->screen);
226 struct r300_blend_state* blend = CALLOC_STRUCT(r300_blend_state);
227 uint32_t blend_control = 0; /* R300_RB3D_CBLEND: 0x4e04 */
228 uint32_t blend_control_noclamp = 0; /* R300_RB3D_CBLEND: 0x4e04 */
229 uint32_t alpha_blend_control = 0; /* R300_RB3D_ABLEND: 0x4e08 */
230 uint32_t alpha_blend_control_noclamp = 0; /* R300_RB3D_ABLEND: 0x4e08 */
231 uint32_t rop = 0; /* R300_RB3D_ROPCNTL: 0x4e18 */
232 uint32_t dither = 0; /* R300_RB3D_DITHER_CTL: 0x4e50 */
233 int i;
234 CB_LOCALS;
235
236 blend->state = *state;
237
238 if (state->rt[0].blend_enable)
239 {
240 unsigned eqRGB = state->rt[0].rgb_func;
241 unsigned srcRGB = state->rt[0].rgb_src_factor;
242 unsigned dstRGB = state->rt[0].rgb_dst_factor;
243
244 unsigned eqA = state->rt[0].alpha_func;
245 unsigned srcA = state->rt[0].alpha_src_factor;
246 unsigned dstA = state->rt[0].alpha_dst_factor;
247
248 /* despite the name, ALPHA_BLEND_ENABLE has nothing to do with alpha,
249 * this is just the crappy D3D naming */
250 blend_control = blend_control_noclamp =
251 R300_ALPHA_BLEND_ENABLE |
252 ( r300_translate_blend_factor(srcRGB) << R300_SRC_BLEND_SHIFT) |
253 ( r300_translate_blend_factor(dstRGB) << R300_DST_BLEND_SHIFT);
254 blend_control |=
255 r300_translate_blend_function(eqRGB, TRUE);
256 blend_control_noclamp |=
257 r300_translate_blend_function(eqRGB, FALSE);
258
259 /* Optimization: some operations do not require the destination color.
260 *
261 * When SRC_ALPHA_SATURATE is used, colorbuffer reads must be enabled,
262 * otherwise blending gives incorrect results. It seems to be
263 * a hardware bug. */
264 if (eqRGB == PIPE_BLEND_MIN || eqA == PIPE_BLEND_MIN ||
265 eqRGB == PIPE_BLEND_MAX || eqA == PIPE_BLEND_MAX ||
266 dstRGB != PIPE_BLENDFACTOR_ZERO ||
267 dstA != PIPE_BLENDFACTOR_ZERO ||
268 srcRGB == PIPE_BLENDFACTOR_DST_COLOR ||
269 srcRGB == PIPE_BLENDFACTOR_DST_ALPHA ||
270 srcRGB == PIPE_BLENDFACTOR_INV_DST_COLOR ||
271 srcRGB == PIPE_BLENDFACTOR_INV_DST_ALPHA ||
272 srcA == PIPE_BLENDFACTOR_DST_COLOR ||
273 srcA == PIPE_BLENDFACTOR_DST_ALPHA ||
274 srcA == PIPE_BLENDFACTOR_INV_DST_COLOR ||
275 srcA == PIPE_BLENDFACTOR_INV_DST_ALPHA ||
276 srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE) {
277 /* Enable reading from the colorbuffer. */
278 blend_control |= R300_READ_ENABLE;
279 blend_control_noclamp |= R300_READ_ENABLE;
280
281 if (r300screen->caps.is_r500) {
282 /* Optimization: Depending on incoming pixels, we can
283 * conditionally disable the reading in hardware... */
284 if (eqRGB != PIPE_BLEND_MIN && eqA != PIPE_BLEND_MIN &&
285 eqRGB != PIPE_BLEND_MAX && eqA != PIPE_BLEND_MAX) {
286 /* Disable reading if SRC_ALPHA == 0. */
287 if ((dstRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
288 dstRGB == PIPE_BLENDFACTOR_ZERO) &&
289 (dstA == PIPE_BLENDFACTOR_SRC_COLOR ||
290 dstA == PIPE_BLENDFACTOR_SRC_ALPHA ||
291 dstA == PIPE_BLENDFACTOR_ZERO)) {
292 blend_control |= R500_SRC_ALPHA_0_NO_READ;
293 }
294
295 /* Disable reading if SRC_ALPHA == 1. */
296 if ((dstRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
297 dstRGB == PIPE_BLENDFACTOR_ZERO) &&
298 (dstA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
299 dstA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
300 dstA == PIPE_BLENDFACTOR_ZERO)) {
301 blend_control |= R500_SRC_ALPHA_1_NO_READ;
302 }
303 }
304 }
305 }
306
307 /* Optimization: discard pixels which don't change the colorbuffer.
308 *
309 * The code below is non-trivial and some math is involved.
310 *
311 * Discarding pixels must be disabled when FP16 AA is enabled.
312 * This is a hardware bug. Also, this implementation wouldn't work
313 * with FP blending enabled and equation clamping disabled.
314 *
315 * Equations other than ADD are rarely used and therefore won't be
316 * optimized. */
317 if ((eqRGB == PIPE_BLEND_ADD || eqRGB == PIPE_BLEND_REVERSE_SUBTRACT) &&
318 (eqA == PIPE_BLEND_ADD || eqA == PIPE_BLEND_REVERSE_SUBTRACT)) {
319 /* ADD: X+Y
320 * REVERSE_SUBTRACT: Y-X
321 *
322 * The idea is:
323 * If X = src*srcFactor = 0 and Y = dst*dstFactor = 1,
324 * then CB will not be changed.
325 *
326 * Given the srcFactor and dstFactor variables, we can derive
327 * what src and dst should be equal to and discard appropriate
328 * pixels.
329 */
330 if (blend_discard_if_src_alpha_0(srcRGB, srcA, dstRGB, dstA)) {
331 blend_control |= R300_DISCARD_SRC_PIXELS_SRC_ALPHA_0;
332 } else if (blend_discard_if_src_alpha_1(srcRGB, srcA,
333 dstRGB, dstA)) {
334 blend_control |= R300_DISCARD_SRC_PIXELS_SRC_ALPHA_1;
335 } else if (blend_discard_if_src_color_0(srcRGB, srcA,
336 dstRGB, dstA)) {
337 blend_control |= R300_DISCARD_SRC_PIXELS_SRC_COLOR_0;
338 } else if (blend_discard_if_src_color_1(srcRGB, srcA,
339 dstRGB, dstA)) {
340 blend_control |= R300_DISCARD_SRC_PIXELS_SRC_COLOR_1;
341 } else if (blend_discard_if_src_alpha_color_0(srcRGB, srcA,
342 dstRGB, dstA)) {
343 blend_control |=
344 R300_DISCARD_SRC_PIXELS_SRC_ALPHA_COLOR_0;
345 } else if (blend_discard_if_src_alpha_color_1(srcRGB, srcA,
346 dstRGB, dstA)) {
347 blend_control |=
348 R300_DISCARD_SRC_PIXELS_SRC_ALPHA_COLOR_1;
349 }
350 }
351
352 /* separate alpha */
353 if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB) {
354 blend_control |= R300_SEPARATE_ALPHA_ENABLE;
355 blend_control_noclamp |= R300_SEPARATE_ALPHA_ENABLE;
356 alpha_blend_control = alpha_blend_control_noclamp =
357 (r300_translate_blend_factor(srcA) << R300_SRC_BLEND_SHIFT) |
358 (r300_translate_blend_factor(dstA) << R300_DST_BLEND_SHIFT);
359 alpha_blend_control |=
360 r300_translate_blend_function(eqA, TRUE);
361 alpha_blend_control_noclamp |=
362 r300_translate_blend_function(eqA, FALSE);
363 }
364 }
365
366 /* PIPE_LOGICOP_* don't need to be translated, fortunately. */
367 if (state->logicop_enable) {
368 rop = R300_RB3D_ROPCNTL_ROP_ENABLE |
369 (state->logicop_func) << R300_RB3D_ROPCNTL_ROP_SHIFT;
370 }
371
372 /* Neither fglrx nor classic r300 ever set this, regardless of dithering
373 * state. Since it's an optional implementation detail, we can leave it
374 * out and never dither.
375 *
376 * This could be revisited if we ever get quality or conformance hints.
377 *
378 if (state->dither) {
379 dither = R300_RB3D_DITHER_CTL_DITHER_MODE_LUT |
380 R300_RB3D_DITHER_CTL_ALPHA_DITHER_MODE_LUT;
381 }
382 */
383
384 /* Build a command buffer. */
385 {
386 unsigned (*func[COLORMASK_NUM_SWIZZLES])(unsigned) = {
387 bgra_cmask,
388 rgba_cmask,
389 rrrr_cmask,
390 aaaa_cmask,
391 grrg_cmask,
392 arra_cmask
393 };
394
395 for (i = 0; i < COLORMASK_NUM_SWIZZLES; i++) {
396 BEGIN_CB(blend->cb_clamp[i], 8);
397 OUT_CB_REG(R300_RB3D_ROPCNTL, rop);
398 OUT_CB_REG_SEQ(R300_RB3D_CBLEND, 3);
399 OUT_CB(blend_control);
400 OUT_CB(alpha_blend_control);
401 OUT_CB(func[i](state->rt[0].colormask));
402 OUT_CB_REG(R300_RB3D_DITHER_CTL, dither);
403 END_CB;
404 }
405 }
406
407 /* Build a command buffer. */
408 BEGIN_CB(blend->cb_noclamp, 8);
409 OUT_CB_REG(R300_RB3D_ROPCNTL, rop);
410 OUT_CB_REG_SEQ(R300_RB3D_CBLEND, 3);
411 OUT_CB(blend_control_noclamp);
412 OUT_CB(alpha_blend_control_noclamp);
413 OUT_CB(rgba_cmask(state->rt[0].colormask));
414 OUT_CB_REG(R300_RB3D_DITHER_CTL, dither);
415 END_CB;
416
417 /* The same as above, but with no colorbuffer reads and writes. */
418 BEGIN_CB(blend->cb_no_readwrite, 8);
419 OUT_CB_REG(R300_RB3D_ROPCNTL, rop);
420 OUT_CB_REG_SEQ(R300_RB3D_CBLEND, 3);
421 OUT_CB(0);
422 OUT_CB(0);
423 OUT_CB(0);
424 OUT_CB_REG(R300_RB3D_DITHER_CTL, dither);
425 END_CB;
426
427 return (void*)blend;
428 }
429
430 /* Bind blend state. */
431 static void r300_bind_blend_state(struct pipe_context* pipe,
432 void* state)
433 {
434 struct r300_context* r300 = r300_context(pipe);
435
436 UPDATE_STATE(state, r300->blend_state);
437 }
438
439 /* Free blend state. */
440 static void r300_delete_blend_state(struct pipe_context* pipe,
441 void* state)
442 {
443 FREE(state);
444 }
445
446 /* Convert float to 10bit integer */
447 static unsigned float_to_fixed10(float f)
448 {
449 return CLAMP((unsigned)(f * 1023.9f), 0, 1023);
450 }
451
452 /* Set blend color.
453 * Setup both R300 and R500 registers, figure out later which one to write. */
454 static void r300_set_blend_color(struct pipe_context* pipe,
455 const struct pipe_blend_color* color)
456 {
457 struct r300_context* r300 = r300_context(pipe);
458 struct pipe_framebuffer_state *fb = r300->fb_state.state;
459 struct r300_blend_color_state *state =
460 (struct r300_blend_color_state*)r300->blend_color_state.state;
461 struct pipe_blend_color c;
462 enum pipe_format format = fb->nr_cbufs ? fb->cbufs[0]->format : 0;
463 CB_LOCALS;
464
465 state->state = *color; /* Save it, so that we can reuse it in set_fb_state */
466 c = *color;
467
468 /* The blend color is dependent on the colorbuffer format. */
469 if (fb->nr_cbufs) {
470 switch (format) {
471 case PIPE_FORMAT_R8_UNORM:
472 case PIPE_FORMAT_L8_UNORM:
473 case PIPE_FORMAT_I8_UNORM:
474 c.color[1] = c.color[0];
475 break;
476
477 case PIPE_FORMAT_A8_UNORM:
478 c.color[1] = c.color[3];
479 break;
480
481 case PIPE_FORMAT_R8G8_UNORM:
482 c.color[2] = c.color[1];
483 break;
484
485 case PIPE_FORMAT_L8A8_UNORM:
486 c.color[2] = c.color[3];
487 break;
488
489 default:;
490 }
491 }
492
493 if (r300->screen->caps.is_r500) {
494 BEGIN_CB(state->cb, 3);
495 OUT_CB_REG_SEQ(R500_RB3D_CONSTANT_COLOR_AR, 2);
496
497 switch (format) {
498 case PIPE_FORMAT_R16G16B16A16_FLOAT:
499 OUT_CB(util_float_to_half(c.color[2]) |
500 (util_float_to_half(c.color[3]) << 16));
501 OUT_CB(util_float_to_half(c.color[0]) |
502 (util_float_to_half(c.color[1]) << 16));
503 break;
504
505 default:
506 OUT_CB(float_to_fixed10(c.color[0]) |
507 (float_to_fixed10(c.color[3]) << 16));
508 OUT_CB(float_to_fixed10(c.color[2]) |
509 (float_to_fixed10(c.color[1]) << 16));
510 }
511
512 END_CB;
513 } else {
514 union util_color uc;
515 util_pack_color(c.color, PIPE_FORMAT_B8G8R8A8_UNORM, &uc);
516
517 BEGIN_CB(state->cb, 2);
518 OUT_CB_REG(R300_RB3D_BLEND_COLOR, uc.ui);
519 END_CB;
520 }
521
522 r300_mark_atom_dirty(r300, &r300->blend_color_state);
523 }
524
525 static void r300_set_clip_state(struct pipe_context* pipe,
526 const struct pipe_clip_state* state)
527 {
528 struct r300_context* r300 = r300_context(pipe);
529 struct r300_clip_state *clip =
530 (struct r300_clip_state*)r300->clip_state.state;
531 CB_LOCALS;
532
533 if (r300->screen->caps.has_tcl) {
534 BEGIN_CB(clip->cb, r300->clip_state.size);
535 OUT_CB_REG(R300_VAP_PVS_VECTOR_INDX_REG,
536 (r300->screen->caps.is_r500 ?
537 R500_PVS_UCP_START : R300_PVS_UCP_START));
538 OUT_CB_ONE_REG(R300_VAP_PVS_UPLOAD_DATA, 6 * 4);
539 OUT_CB_TABLE(state->ucp, 6 * 4);
540 END_CB;
541
542 r300_mark_atom_dirty(r300, &r300->clip_state);
543 } else {
544 draw_set_clip_state(r300->draw, state);
545 }
546 }
547
548 static void
549 r300_set_sample_mask(struct pipe_context *pipe,
550 unsigned sample_mask)
551 {
552 }
553
554
555 /* Create a new depth, stencil, and alpha state based on the CSO dsa state.
556 *
557 * This contains the depth buffer, stencil buffer, alpha test, and such.
558 * On the Radeon, depth and stencil buffer setup are intertwined, which is
559 * the reason for some of the strange-looking assignments across registers. */
560 static void*
561 r300_create_dsa_state(struct pipe_context* pipe,
562 const struct pipe_depth_stencil_alpha_state* state)
563 {
564 struct r300_capabilities *caps = &r300_screen(pipe->screen)->caps;
565 struct r300_dsa_state* dsa = CALLOC_STRUCT(r300_dsa_state);
566 CB_LOCALS;
567
568 dsa->dsa = *state;
569
570 /* Depth test setup. - separate write mask depth for decomp flush */
571 if (state->depth.writemask) {
572 dsa->z_buffer_control |= R300_Z_WRITE_ENABLE;
573 }
574
575 if (state->depth.enabled) {
576 dsa->z_buffer_control |= R300_Z_ENABLE;
577
578 dsa->z_stencil_control |=
579 (r300_translate_depth_stencil_function(state->depth.func) <<
580 R300_Z_FUNC_SHIFT);
581 }
582
583 /* Stencil buffer setup. */
584 if (state->stencil[0].enabled) {
585 dsa->z_buffer_control |= R300_STENCIL_ENABLE;
586 dsa->z_stencil_control |=
587 (r300_translate_depth_stencil_function(state->stencil[0].func) <<
588 R300_S_FRONT_FUNC_SHIFT) |
589 (r300_translate_stencil_op(state->stencil[0].fail_op) <<
590 R300_S_FRONT_SFAIL_OP_SHIFT) |
591 (r300_translate_stencil_op(state->stencil[0].zpass_op) <<
592 R300_S_FRONT_ZPASS_OP_SHIFT) |
593 (r300_translate_stencil_op(state->stencil[0].zfail_op) <<
594 R300_S_FRONT_ZFAIL_OP_SHIFT);
595
596 dsa->stencil_ref_mask =
597 (state->stencil[0].valuemask << R300_STENCILMASK_SHIFT) |
598 (state->stencil[0].writemask << R300_STENCILWRITEMASK_SHIFT);
599
600 if (state->stencil[1].enabled) {
601 dsa->two_sided = TRUE;
602
603 dsa->z_buffer_control |= R300_STENCIL_FRONT_BACK;
604 dsa->z_stencil_control |=
605 (r300_translate_depth_stencil_function(state->stencil[1].func) <<
606 R300_S_BACK_FUNC_SHIFT) |
607 (r300_translate_stencil_op(state->stencil[1].fail_op) <<
608 R300_S_BACK_SFAIL_OP_SHIFT) |
609 (r300_translate_stencil_op(state->stencil[1].zpass_op) <<
610 R300_S_BACK_ZPASS_OP_SHIFT) |
611 (r300_translate_stencil_op(state->stencil[1].zfail_op) <<
612 R300_S_BACK_ZFAIL_OP_SHIFT);
613
614 dsa->stencil_ref_bf =
615 (state->stencil[1].valuemask << R300_STENCILMASK_SHIFT) |
616 (state->stencil[1].writemask << R300_STENCILWRITEMASK_SHIFT);
617
618 if (caps->is_r500) {
619 dsa->z_buffer_control |= R500_STENCIL_REFMASK_FRONT_BACK;
620 } else {
621 dsa->two_sided_stencil_ref =
622 (state->stencil[0].valuemask != state->stencil[1].valuemask ||
623 state->stencil[0].writemask != state->stencil[1].writemask);
624 }
625 }
626 }
627
628 /* Alpha test setup. */
629 if (state->alpha.enabled) {
630 dsa->alpha_function =
631 r300_translate_alpha_function(state->alpha.func) |
632 R300_FG_ALPHA_FUNC_ENABLE;
633
634 dsa->alpha_function |= float_to_ubyte(state->alpha.ref_value);
635 dsa->alpha_value = util_float_to_half(state->alpha.ref_value);
636
637 if (caps->is_r500) {
638 dsa->alpha_function_fp16 = dsa->alpha_function |
639 R500_FG_ALPHA_FUNC_FP16_ENABLE;
640 dsa->alpha_function |= R500_FG_ALPHA_FUNC_8BIT;
641 }
642 }
643
644 BEGIN_CB(&dsa->cb_begin, 10);
645 OUT_CB_REG(R300_FG_ALPHA_FUNC, dsa->alpha_function);
646 OUT_CB_REG_SEQ(R300_ZB_CNTL, 3);
647 OUT_CB(dsa->z_buffer_control);
648 OUT_CB(dsa->z_stencil_control);
649 OUT_CB(dsa->stencil_ref_mask);
650 OUT_CB_REG(R500_ZB_STENCILREFMASK_BF, dsa->stencil_ref_bf);
651 OUT_CB_REG(R500_FG_ALPHA_VALUE, dsa->alpha_value);
652 END_CB;
653
654 BEGIN_CB(&dsa->cb_begin_fp16, 10);
655 OUT_CB_REG(R300_FG_ALPHA_FUNC, dsa->alpha_function_fp16);
656 OUT_CB_REG_SEQ(R300_ZB_CNTL, 3);
657 OUT_CB(dsa->z_buffer_control);
658 OUT_CB(dsa->z_stencil_control);
659 OUT_CB(dsa->stencil_ref_mask);
660 OUT_CB_REG(R500_ZB_STENCILREFMASK_BF, dsa->stencil_ref_bf);
661 OUT_CB_REG(R500_FG_ALPHA_VALUE, dsa->alpha_value);
662 END_CB;
663
664 BEGIN_CB(dsa->cb_zb_no_readwrite, 10);
665 OUT_CB_REG(R300_FG_ALPHA_FUNC, dsa->alpha_function);
666 OUT_CB_REG_SEQ(R300_ZB_CNTL, 3);
667 OUT_CB(0);
668 OUT_CB(0);
669 OUT_CB(0);
670 OUT_CB_REG(R500_ZB_STENCILREFMASK_BF, 0);
671 OUT_CB_REG(R500_FG_ALPHA_VALUE, dsa->alpha_value);
672 END_CB;
673
674 BEGIN_CB(dsa->cb_fp16_zb_no_readwrite, 10);
675 OUT_CB_REG(R300_FG_ALPHA_FUNC, dsa->alpha_function_fp16);
676 OUT_CB_REG_SEQ(R300_ZB_CNTL, 3);
677 OUT_CB(0);
678 OUT_CB(0);
679 OUT_CB(0);
680 OUT_CB_REG(R500_ZB_STENCILREFMASK_BF, 0);
681 OUT_CB_REG(R500_FG_ALPHA_VALUE, dsa->alpha_value);
682 END_CB;
683
684 return (void*)dsa;
685 }
686
687 static void r300_dsa_inject_stencilref(struct r300_context *r300)
688 {
689 struct r300_dsa_state *dsa =
690 (struct r300_dsa_state*)r300->dsa_state.state;
691
692 if (!dsa)
693 return;
694
695 dsa->stencil_ref_mask =
696 (dsa->stencil_ref_mask & ~R300_STENCILREF_MASK) |
697 r300->stencil_ref.ref_value[0];
698 dsa->stencil_ref_bf =
699 (dsa->stencil_ref_bf & ~R300_STENCILREF_MASK) |
700 r300->stencil_ref.ref_value[1];
701 }
702
703 /* Bind DSA state. */
704 static void r300_bind_dsa_state(struct pipe_context* pipe,
705 void* state)
706 {
707 struct r300_context* r300 = r300_context(pipe);
708
709 if (!state) {
710 return;
711 }
712
713 UPDATE_STATE(state, r300->dsa_state);
714
715 r300_mark_atom_dirty(r300, &r300->hyperz_state); /* Will be updated before the emission. */
716 r300_dsa_inject_stencilref(r300);
717 }
718
719 /* Free DSA state. */
720 static void r300_delete_dsa_state(struct pipe_context* pipe,
721 void* state)
722 {
723 FREE(state);
724 }
725
726 static void r300_set_stencil_ref(struct pipe_context* pipe,
727 const struct pipe_stencil_ref* sr)
728 {
729 struct r300_context* r300 = r300_context(pipe);
730
731 r300->stencil_ref = *sr;
732
733 r300_dsa_inject_stencilref(r300);
734 r300_mark_atom_dirty(r300, &r300->dsa_state);
735 }
736
737 static void r300_tex_set_tiling_flags(struct r300_context *r300,
738 struct r300_resource *tex,
739 unsigned level)
740 {
741 /* Check if the macrotile flag needs to be changed.
742 * Skip changing the flags otherwise. */
743 if (tex->tex.macrotile[tex->surface_level] !=
744 tex->tex.macrotile[level]) {
745 r300->rws->buffer_set_tiling(tex->buf, r300->cs,
746 tex->tex.microtile, tex->tex.macrotile[level],
747 0, 0, 0, 0, 0,
748 tex->tex.stride_in_bytes[0]);
749
750 tex->surface_level = level;
751 }
752 }
753
754 /* This switcheroo is needed just because of goddamned MACRO_SWITCH. */
755 static void r300_fb_set_tiling_flags(struct r300_context *r300,
756 const struct pipe_framebuffer_state *state)
757 {
758 unsigned i;
759
760 /* Set tiling flags for new surfaces. */
761 for (i = 0; i < state->nr_cbufs; i++) {
762 r300_tex_set_tiling_flags(r300,
763 r300_resource(state->cbufs[i]->texture),
764 state->cbufs[i]->u.tex.level);
765 }
766 if (state->zsbuf) {
767 r300_tex_set_tiling_flags(r300,
768 r300_resource(state->zsbuf->texture),
769 state->zsbuf->u.tex.level);
770 }
771 }
772
773 static void r300_print_fb_surf_info(struct pipe_surface *surf, unsigned index,
774 const char *binding)
775 {
776 struct pipe_resource *tex = surf->texture;
777 struct r300_resource *rtex = r300_resource(tex);
778
779 fprintf(stderr,
780 "r300: %s[%i] Dim: %ix%i, Firstlayer: %i, "
781 "Lastlayer: %i, Level: %i, Format: %s\n"
782
783 "r300: TEX: Macro: %s, Micro: %s, "
784 "Dim: %ix%ix%i, LastLevel: %i, Format: %s\n",
785
786 binding, index, surf->width, surf->height,
787 surf->u.tex.first_layer, surf->u.tex.last_layer, surf->u.tex.level,
788 util_format_short_name(surf->format),
789
790 rtex->tex.macrotile[0] ? "YES" : " NO",
791 rtex->tex.microtile ? "YES" : " NO",
792 tex->width0, tex->height0, tex->depth0,
793 tex->last_level, util_format_short_name(surf->format));
794 }
795
796 void r300_mark_fb_state_dirty(struct r300_context *r300,
797 enum r300_fb_state_change change)
798 {
799 struct pipe_framebuffer_state *state = r300->fb_state.state;
800
801 r300_mark_atom_dirty(r300, &r300->gpu_flush);
802 r300_mark_atom_dirty(r300, &r300->fb_state);
803
804 /* What is marked as dirty depends on the enum r300_fb_state_change. */
805 if (change == R300_CHANGED_FB_STATE) {
806 r300_mark_atom_dirty(r300, &r300->aa_state);
807 r300_mark_atom_dirty(r300, &r300->dsa_state); /* for AlphaRef */
808 r300_set_blend_color(&r300->context, r300->blend_color_state.state);
809 }
810
811 if (change == R300_CHANGED_FB_STATE ||
812 change == R300_CHANGED_HYPERZ_FLAG) {
813 r300_mark_atom_dirty(r300, &r300->hyperz_state);
814 }
815
816 if (change == R300_CHANGED_FB_STATE ||
817 change == R300_CHANGED_MULTIWRITE) {
818 r300_mark_atom_dirty(r300, &r300->fb_state_pipelined);
819 }
820
821 /* Now compute the fb_state atom size. */
822 r300->fb_state.size = 2 + (8 * state->nr_cbufs);
823
824 if (r300->cbzb_clear)
825 r300->fb_state.size += 10;
826 else if (state->zsbuf) {
827 r300->fb_state.size += 10;
828 if (r300->hyperz_enabled)
829 r300->fb_state.size += 8;
830 }
831
832 /* The size of the rest of atoms stays the same. */
833 }
834
835 static void
836 r300_set_framebuffer_state(struct pipe_context* pipe,
837 const struct pipe_framebuffer_state* state)
838 {
839 struct r300_context* r300 = r300_context(pipe);
840 struct r300_aa_state *aa = (struct r300_aa_state*)r300->aa_state.state;
841 struct pipe_framebuffer_state *old_state = r300->fb_state.state;
842 unsigned max_width, max_height, i;
843 uint32_t zbuffer_bpp = 0;
844 boolean unlock_zbuffer = FALSE;
845
846 if (r300->screen->caps.is_r500) {
847 max_width = max_height = 4096;
848 } else if (r300->screen->caps.is_r400) {
849 max_width = max_height = 4021;
850 } else {
851 max_width = max_height = 2560;
852 }
853
854 if (state->width > max_width || state->height > max_height) {
855 fprintf(stderr, "r300: Implementation error: Render targets are too "
856 "big in %s, refusing to bind framebuffer state!\n", __FUNCTION__);
857 return;
858 }
859
860 if (old_state->zsbuf && r300->zmask_in_use && !r300->locked_zbuffer) {
861 /* There is a zmask in use, what are we gonna do? */
862 if (state->zsbuf) {
863 if (!pipe_surface_equal(old_state->zsbuf, state->zsbuf)) {
864 /* Decompress the currently bound zbuffer before we bind another one. */
865 r300_decompress_zmask(r300);
866 r300->hiz_in_use = FALSE;
867 }
868 } else {
869 /* We don't bind another zbuffer, so lock the current one. */
870 pipe_surface_reference(&r300->locked_zbuffer, old_state->zsbuf);
871 }
872 } else if (r300->locked_zbuffer) {
873 /* We have a locked zbuffer now, what are we gonna do? */
874 if (state->zsbuf) {
875 if (!pipe_surface_equal(r300->locked_zbuffer, state->zsbuf)) {
876 /* We are binding some other zbuffer, so decompress the locked one,
877 * it gets unlocked automatically. */
878 r300_decompress_zmask_locked_unsafe(r300);
879 r300->hiz_in_use = FALSE;
880 } else {
881 /* We are binding the locked zbuffer again, so unlock it. */
882 unlock_zbuffer = TRUE;
883 }
884 }
885 }
886 assert(state->zsbuf || (r300->locked_zbuffer && !unlock_zbuffer) || !r300->zmask_in_use);
887
888 /* Need to reset clamping or colormask. */
889 r300_mark_atom_dirty(r300, &r300->blend_state);
890
891 /* If zsbuf is set from NULL to non-NULL or vice versa.. */
892 if (!!old_state->zsbuf != !!state->zsbuf) {
893 r300_mark_atom_dirty(r300, &r300->dsa_state);
894 }
895
896 if (r300->screen->info.drm_minor < 12) {
897 /* The tiling flags are dependent on the surface miplevel, unfortunately.
898 * This workarounds a bad design decision in old kernels which were
899 * rewriting tile fields in registers. */
900 r300_fb_set_tiling_flags(r300, state);
901 }
902
903 util_copy_framebuffer_state(r300->fb_state.state, state);
904
905 if (unlock_zbuffer) {
906 pipe_surface_reference(&r300->locked_zbuffer, NULL);
907 }
908
909 r300_mark_fb_state_dirty(r300, R300_CHANGED_FB_STATE);
910
911 if (state->zsbuf) {
912 switch (util_format_get_blocksize(state->zsbuf->format)) {
913 case 2:
914 zbuffer_bpp = 16;
915 break;
916 case 4:
917 zbuffer_bpp = 24;
918 break;
919 }
920
921 /* Polygon offset depends on the zbuffer bit depth. */
922 if (r300->zbuffer_bpp != zbuffer_bpp) {
923 r300->zbuffer_bpp = zbuffer_bpp;
924
925 if (r300->polygon_offset_enabled)
926 r300_mark_atom_dirty(r300, &r300->rs_state);
927 }
928 }
929
930 /* Set up AA config. */
931 if (state->nr_cbufs && state->cbufs[0]->texture->nr_samples > 1) {
932 aa->aa_config = R300_GB_AA_CONFIG_AA_ENABLE;
933
934 switch (state->cbufs[0]->texture->nr_samples) {
935 case 2:
936 aa->aa_config |= R300_GB_AA_CONFIG_NUM_AA_SUBSAMPLES_2;
937 break;
938 case 3:
939 aa->aa_config |= R300_GB_AA_CONFIG_NUM_AA_SUBSAMPLES_3;
940 break;
941 case 4:
942 aa->aa_config |= R300_GB_AA_CONFIG_NUM_AA_SUBSAMPLES_4;
943 break;
944 case 6:
945 aa->aa_config |= R300_GB_AA_CONFIG_NUM_AA_SUBSAMPLES_6;
946 break;
947 }
948 } else {
949 aa->aa_config = 0;
950 }
951
952 if (DBG_ON(r300, DBG_FB)) {
953 fprintf(stderr, "r300: set_framebuffer_state:\n");
954 for (i = 0; i < state->nr_cbufs; i++) {
955 r300_print_fb_surf_info(state->cbufs[i], i, "CB");
956 }
957 if (state->zsbuf) {
958 r300_print_fb_surf_info(state->zsbuf, 0, "ZB");
959 }
960 }
961 }
962
963 /* Create fragment shader state. */
964 static void* r300_create_fs_state(struct pipe_context* pipe,
965 const struct pipe_shader_state* shader)
966 {
967 struct r300_fragment_shader* fs = NULL;
968
969 fs = (struct r300_fragment_shader*)CALLOC_STRUCT(r300_fragment_shader);
970
971 /* Copy state directly into shader. */
972 fs->state = *shader;
973 fs->state.tokens = tgsi_dup_tokens(shader->tokens);
974
975 return (void*)fs;
976 }
977
978 void r300_mark_fs_code_dirty(struct r300_context *r300)
979 {
980 struct r300_fragment_shader* fs = r300_fs(r300);
981
982 r300_mark_atom_dirty(r300, &r300->fs);
983 r300_mark_atom_dirty(r300, &r300->fs_rc_constant_state);
984 r300_mark_atom_dirty(r300, &r300->fs_constants);
985 r300->fs.size = fs->shader->cb_code_size;
986
987 if (r300->screen->caps.is_r500) {
988 r300->fs_rc_constant_state.size = fs->shader->rc_state_count * 7;
989 r300->fs_constants.size = fs->shader->externals_count * 4 + 3;
990 } else {
991 r300->fs_rc_constant_state.size = fs->shader->rc_state_count * 5;
992 r300->fs_constants.size = fs->shader->externals_count * 4 + 1;
993 }
994
995 ((struct r300_constant_buffer*)r300->fs_constants.state)->remap_table =
996 fs->shader->code.constants_remap_table;
997 }
998
999 /* Bind fragment shader state. */
1000 static void r300_bind_fs_state(struct pipe_context* pipe, void* shader)
1001 {
1002 struct r300_context* r300 = r300_context(pipe);
1003 struct r300_fragment_shader* fs = (struct r300_fragment_shader*)shader;
1004
1005 if (fs == NULL) {
1006 r300->fs.state = NULL;
1007 return;
1008 }
1009
1010 r300->fs.state = fs;
1011 r300->fs_status = FRAGMENT_SHADER_DIRTY;
1012
1013 r300_mark_atom_dirty(r300, &r300->rs_block_state); /* Will be updated before the emission. */
1014 }
1015
1016 /* Delete fragment shader state. */
1017 static void r300_delete_fs_state(struct pipe_context* pipe, void* shader)
1018 {
1019 struct r300_fragment_shader* fs = (struct r300_fragment_shader*)shader;
1020 struct r300_fragment_shader_code *tmp, *ptr = fs->first;
1021
1022 while (ptr) {
1023 tmp = ptr;
1024 ptr = ptr->next;
1025 rc_constants_destroy(&tmp->code.constants);
1026 FREE(tmp->cb_code);
1027 FREE(tmp);
1028 }
1029 FREE((void*)fs->state.tokens);
1030 FREE(shader);
1031 }
1032
1033 static void r300_set_polygon_stipple(struct pipe_context* pipe,
1034 const struct pipe_poly_stipple* state)
1035 {
1036 /* XXX no idea how to set this up, but not terribly important */
1037 }
1038
1039 /* Create a new rasterizer state based on the CSO rasterizer state.
1040 *
1041 * This is a very large chunk of state, and covers most of the graphics
1042 * backend (GB), geometry assembly (GA), and setup unit (SU) blocks.
1043 *
1044 * In a not entirely unironic sidenote, this state has nearly nothing to do
1045 * with the actual block on the Radeon called the rasterizer (RS). */
1046 static void* r300_create_rs_state(struct pipe_context* pipe,
1047 const struct pipe_rasterizer_state* state)
1048 {
1049 struct r300_rs_state* rs = CALLOC_STRUCT(r300_rs_state);
1050 uint32_t vap_control_status; /* R300_VAP_CNTL_STATUS: 0x2140 */
1051 uint32_t vap_clip_cntl; /* R300_VAP_CLIP_CNTL: 0x221C */
1052 uint32_t point_size; /* R300_GA_POINT_SIZE: 0x421c */
1053 uint32_t point_minmax; /* R300_GA_POINT_MINMAX: 0x4230 */
1054 uint32_t line_control; /* R300_GA_LINE_CNTL: 0x4234 */
1055 uint32_t polygon_offset_enable; /* R300_SU_POLY_OFFSET_ENABLE: 0x42b4 */
1056 uint32_t cull_mode; /* R300_SU_CULL_MODE: 0x42b8 */
1057 uint32_t line_stipple_config; /* R300_GA_LINE_STIPPLE_CONFIG: 0x4328 */
1058 uint32_t line_stipple_value; /* R300_GA_LINE_STIPPLE_VALUE: 0x4260 */
1059 uint32_t polygon_mode; /* R300_GA_POLY_MODE: 0x4288 */
1060 uint32_t clip_rule; /* R300_SC_CLIP_RULE: 0x43D0 */
1061 uint32_t round_mode; /* R300_GA_ROUND_MODE: 0x428c */
1062
1063 /* Point sprites texture coordinates, 0: lower left, 1: upper right */
1064 float point_texcoord_left = 0; /* R300_GA_POINT_S0: 0x4200 */
1065 float point_texcoord_bottom = 0;/* R300_GA_POINT_T0: 0x4204 */
1066 float point_texcoord_right = 1; /* R300_GA_POINT_S1: 0x4208 */
1067 float point_texcoord_top = 0; /* R300_GA_POINT_T1: 0x420c */
1068 boolean vclamp = state->clamp_vertex_color ||
1069 !r300_context(pipe)->screen->caps.is_r500;
1070 CB_LOCALS;
1071
1072 /* Copy rasterizer state. */
1073 rs->rs = *state;
1074 rs->rs_draw = *state;
1075
1076 rs->rs.sprite_coord_enable = state->point_quad_rasterization *
1077 state->sprite_coord_enable;
1078
1079 /* Override some states for Draw. */
1080 rs->rs_draw.sprite_coord_enable = 0; /* We can do this in HW. */
1081 rs->rs_draw.offset_point = 0;
1082 rs->rs_draw.offset_line = 0;
1083 rs->rs_draw.offset_tri = 0;
1084 rs->rs_draw.offset_clamp = 0;
1085
1086 #ifdef PIPE_ARCH_LITTLE_ENDIAN
1087 vap_control_status = R300_VC_NO_SWAP;
1088 #else
1089 vap_control_status = R300_VC_32BIT_SWAP;
1090 #endif
1091
1092 /* If no TCL engine is present, turn off the HW TCL. */
1093 if (!r300_screen(pipe->screen)->caps.has_tcl) {
1094 vap_control_status |= R300_VAP_TCL_BYPASS;
1095 }
1096
1097 /* Point size width and height. */
1098 point_size =
1099 pack_float_16_6x(state->point_size) |
1100 (pack_float_16_6x(state->point_size) << R300_POINTSIZE_X_SHIFT);
1101
1102 /* Point size clamping. */
1103 if (state->point_size_per_vertex) {
1104 /* Per-vertex point size.
1105 * Clamp to [0, max FB size] */
1106 float min_psiz = util_get_min_point_size(state);
1107 float max_psiz = pipe->screen->get_paramf(pipe->screen,
1108 PIPE_CAPF_MAX_POINT_WIDTH);
1109 point_minmax =
1110 (pack_float_16_6x(min_psiz) << R300_GA_POINT_MINMAX_MIN_SHIFT) |
1111 (pack_float_16_6x(max_psiz) << R300_GA_POINT_MINMAX_MAX_SHIFT);
1112 } else {
1113 /* We cannot disable the point-size vertex output,
1114 * so clamp it. */
1115 float psiz = state->point_size;
1116 point_minmax =
1117 (pack_float_16_6x(psiz) << R300_GA_POINT_MINMAX_MIN_SHIFT) |
1118 (pack_float_16_6x(psiz) << R300_GA_POINT_MINMAX_MAX_SHIFT);
1119 }
1120
1121 /* Line control. */
1122 line_control = pack_float_16_6x(state->line_width) |
1123 R300_GA_LINE_CNTL_END_TYPE_COMP;
1124
1125 /* Enable polygon mode */
1126 polygon_mode = 0;
1127 if (state->fill_front != PIPE_POLYGON_MODE_FILL ||
1128 state->fill_back != PIPE_POLYGON_MODE_FILL) {
1129 polygon_mode = R300_GA_POLY_MODE_DUAL;
1130 }
1131
1132 /* Front face */
1133 if (state->front_ccw)
1134 cull_mode = R300_FRONT_FACE_CCW;
1135 else
1136 cull_mode = R300_FRONT_FACE_CW;
1137
1138 /* Polygon offset */
1139 polygon_offset_enable = 0;
1140 if (util_get_offset(state, state->fill_front)) {
1141 polygon_offset_enable |= R300_FRONT_ENABLE;
1142 }
1143 if (util_get_offset(state, state->fill_back)) {
1144 polygon_offset_enable |= R300_BACK_ENABLE;
1145 }
1146
1147 rs->polygon_offset_enable = polygon_offset_enable != 0;
1148
1149 /* Polygon mode */
1150 if (polygon_mode) {
1151 polygon_mode |=
1152 r300_translate_polygon_mode_front(state->fill_front);
1153 polygon_mode |=
1154 r300_translate_polygon_mode_back(state->fill_back);
1155 }
1156
1157 if (state->cull_face & PIPE_FACE_FRONT) {
1158 cull_mode |= R300_CULL_FRONT;
1159 }
1160 if (state->cull_face & PIPE_FACE_BACK) {
1161 cull_mode |= R300_CULL_BACK;
1162 }
1163
1164 if (state->line_stipple_enable) {
1165 line_stipple_config =
1166 R300_GA_LINE_STIPPLE_CONFIG_LINE_RESET_LINE |
1167 (fui((float)state->line_stipple_factor) &
1168 R300_GA_LINE_STIPPLE_CONFIG_STIPPLE_SCALE_MASK);
1169 /* XXX this might need to be scaled up */
1170 line_stipple_value = state->line_stipple_pattern;
1171 } else {
1172 line_stipple_config = 0;
1173 line_stipple_value = 0;
1174 }
1175
1176 if (state->flatshade) {
1177 rs->color_control = R300_SHADE_MODEL_FLAT;
1178 } else {
1179 rs->color_control = R300_SHADE_MODEL_SMOOTH;
1180 }
1181
1182 clip_rule = state->scissor ? 0xAAAA : 0xFFFF;
1183
1184 /* Point sprites coord mode */
1185 if (rs->rs.sprite_coord_enable) {
1186 switch (state->sprite_coord_mode) {
1187 case PIPE_SPRITE_COORD_UPPER_LEFT:
1188 point_texcoord_top = 0.0f;
1189 point_texcoord_bottom = 1.0f;
1190 break;
1191 case PIPE_SPRITE_COORD_LOWER_LEFT:
1192 point_texcoord_top = 1.0f;
1193 point_texcoord_bottom = 0.0f;
1194 break;
1195 }
1196 }
1197
1198 if (r300_screen(pipe->screen)->caps.has_tcl) {
1199 vap_clip_cntl = (state->clip_plane_enable & 63) |
1200 R300_PS_UCP_MODE_CLIP_AS_TRIFAN;
1201 } else {
1202 vap_clip_cntl = R300_CLIP_DISABLE;
1203 }
1204
1205 /* Vertex color clamping. FP20 means no clamping. */
1206 round_mode =
1207 R300_GA_ROUND_MODE_GEOMETRY_ROUND_NEAREST |
1208 (!vclamp ? (R300_GA_ROUND_MODE_RGB_CLAMP_FP20 |
1209 R300_GA_ROUND_MODE_ALPHA_CLAMP_FP20) : 0);
1210
1211 /* Build the main command buffer. */
1212 BEGIN_CB(rs->cb_main, RS_STATE_MAIN_SIZE);
1213 OUT_CB_REG(R300_VAP_CNTL_STATUS, vap_control_status);
1214 OUT_CB_REG(R300_VAP_CLIP_CNTL, vap_clip_cntl);
1215 OUT_CB_REG(R300_GA_POINT_SIZE, point_size);
1216 OUT_CB_REG_SEQ(R300_GA_POINT_MINMAX, 2);
1217 OUT_CB(point_minmax);
1218 OUT_CB(line_control);
1219 OUT_CB_REG_SEQ(R300_SU_POLY_OFFSET_ENABLE, 2);
1220 OUT_CB(polygon_offset_enable);
1221 rs->cull_mode_index = 11;
1222 OUT_CB(cull_mode);
1223 OUT_CB_REG(R300_GA_LINE_STIPPLE_CONFIG, line_stipple_config);
1224 OUT_CB_REG(R300_GA_LINE_STIPPLE_VALUE, line_stipple_value);
1225 OUT_CB_REG(R300_GA_POLY_MODE, polygon_mode);
1226 OUT_CB_REG(R300_GA_ROUND_MODE, round_mode);
1227 OUT_CB_REG(R300_SC_CLIP_RULE, clip_rule);
1228 OUT_CB_REG_SEQ(R300_GA_POINT_S0, 4);
1229 OUT_CB_32F(point_texcoord_left);
1230 OUT_CB_32F(point_texcoord_bottom);
1231 OUT_CB_32F(point_texcoord_right);
1232 OUT_CB_32F(point_texcoord_top);
1233 END_CB;
1234
1235 /* Build the two command buffers for polygon offset setup. */
1236 if (polygon_offset_enable) {
1237 float scale = state->offset_scale * 12;
1238 float offset = state->offset_units * 4;
1239
1240 BEGIN_CB(rs->cb_poly_offset_zb16, 5);
1241 OUT_CB_REG_SEQ(R300_SU_POLY_OFFSET_FRONT_SCALE, 4);
1242 OUT_CB_32F(scale);
1243 OUT_CB_32F(offset);
1244 OUT_CB_32F(scale);
1245 OUT_CB_32F(offset);
1246 END_CB;
1247
1248 offset = state->offset_units * 2;
1249
1250 BEGIN_CB(rs->cb_poly_offset_zb24, 5);
1251 OUT_CB_REG_SEQ(R300_SU_POLY_OFFSET_FRONT_SCALE, 4);
1252 OUT_CB_32F(scale);
1253 OUT_CB_32F(offset);
1254 OUT_CB_32F(scale);
1255 OUT_CB_32F(offset);
1256 END_CB;
1257 }
1258
1259 return (void*)rs;
1260 }
1261
1262 /* Bind rasterizer state. */
1263 static void r300_bind_rs_state(struct pipe_context* pipe, void* state)
1264 {
1265 struct r300_context* r300 = r300_context(pipe);
1266 struct r300_rs_state* rs = (struct r300_rs_state*)state;
1267 int last_sprite_coord_enable = r300->sprite_coord_enable;
1268 boolean last_two_sided_color = r300->two_sided_color;
1269
1270 if (r300->draw && rs) {
1271 draw_set_rasterizer_state(r300->draw, &rs->rs_draw, state);
1272 }
1273
1274 if (rs) {
1275 r300->polygon_offset_enabled = rs->polygon_offset_enable;
1276 r300->sprite_coord_enable = rs->rs.sprite_coord_enable;
1277 r300->two_sided_color = rs->rs.light_twoside;
1278 } else {
1279 r300->polygon_offset_enabled = FALSE;
1280 r300->sprite_coord_enable = 0;
1281 r300->two_sided_color = FALSE;
1282 }
1283
1284 UPDATE_STATE(state, r300->rs_state);
1285 r300->rs_state.size = RS_STATE_MAIN_SIZE + (r300->polygon_offset_enabled ? 5 : 0);
1286
1287 if (last_sprite_coord_enable != r300->sprite_coord_enable ||
1288 last_two_sided_color != r300->two_sided_color) {
1289 r300_mark_atom_dirty(r300, &r300->rs_block_state);
1290 }
1291 }
1292
1293 /* Free rasterizer state. */
1294 static void r300_delete_rs_state(struct pipe_context* pipe, void* state)
1295 {
1296 FREE(state);
1297 }
1298
1299 static void*
1300 r300_create_sampler_state(struct pipe_context* pipe,
1301 const struct pipe_sampler_state* state)
1302 {
1303 struct r300_context* r300 = r300_context(pipe);
1304 struct r300_sampler_state* sampler = CALLOC_STRUCT(r300_sampler_state);
1305 boolean is_r500 = r300->screen->caps.is_r500;
1306 int lod_bias;
1307
1308 sampler->state = *state;
1309
1310 /* r300 doesn't handle CLAMP and MIRROR_CLAMP correctly when either MAG
1311 * or MIN filter is NEAREST. Since texwrap produces same results
1312 * for CLAMP and CLAMP_TO_EDGE, we use them instead. */
1313 if (sampler->state.min_img_filter == PIPE_TEX_FILTER_NEAREST ||
1314 sampler->state.mag_img_filter == PIPE_TEX_FILTER_NEAREST) {
1315 /* Wrap S. */
1316 if (sampler->state.wrap_s == PIPE_TEX_WRAP_CLAMP)
1317 sampler->state.wrap_s = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
1318 else if (sampler->state.wrap_s == PIPE_TEX_WRAP_MIRROR_CLAMP)
1319 sampler->state.wrap_s = PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE;
1320
1321 /* Wrap T. */
1322 if (sampler->state.wrap_t == PIPE_TEX_WRAP_CLAMP)
1323 sampler->state.wrap_t = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
1324 else if (sampler->state.wrap_t == PIPE_TEX_WRAP_MIRROR_CLAMP)
1325 sampler->state.wrap_t = PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE;
1326
1327 /* Wrap R. */
1328 if (sampler->state.wrap_r == PIPE_TEX_WRAP_CLAMP)
1329 sampler->state.wrap_r = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
1330 else if (sampler->state.wrap_r == PIPE_TEX_WRAP_MIRROR_CLAMP)
1331 sampler->state.wrap_r = PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE;
1332 }
1333
1334 sampler->filter0 |=
1335 (r300_translate_wrap(sampler->state.wrap_s) << R300_TX_WRAP_S_SHIFT) |
1336 (r300_translate_wrap(sampler->state.wrap_t) << R300_TX_WRAP_T_SHIFT) |
1337 (r300_translate_wrap(sampler->state.wrap_r) << R300_TX_WRAP_R_SHIFT);
1338
1339 sampler->filter0 |= r300_translate_tex_filters(state->min_img_filter,
1340 state->mag_img_filter,
1341 state->min_mip_filter,
1342 state->max_anisotropy > 1);
1343
1344 sampler->filter0 |= r300_anisotropy(state->max_anisotropy);
1345
1346 /* Unfortunately, r300-r500 don't support floating-point mipmap lods. */
1347 /* We must pass these to the merge function to clamp them properly. */
1348 sampler->min_lod = (unsigned)MAX2(state->min_lod, 0);
1349 sampler->max_lod = (unsigned)MAX2(ceilf(state->max_lod), 0);
1350
1351 lod_bias = CLAMP((int)(state->lod_bias * 32 + 1), -(1 << 9), (1 << 9) - 1);
1352
1353 sampler->filter1 |= (lod_bias << R300_LOD_BIAS_SHIFT) & R300_LOD_BIAS_MASK;
1354
1355 /* This is very high quality anisotropic filtering for R5xx.
1356 * It's good for benchmarking the performance of texturing but
1357 * in practice we don't want to slow down the driver because it's
1358 * a pretty good performance killer. Feel free to play with it. */
1359 if (DBG_ON(r300, DBG_ANISOHQ) && is_r500) {
1360 sampler->filter1 |= r500_anisotropy(state->max_anisotropy);
1361 }
1362
1363 /* R500-specific fixups and optimizations */
1364 if (r300->screen->caps.is_r500) {
1365 sampler->filter1 |= R500_BORDER_FIX;
1366 }
1367
1368 return (void*)sampler;
1369 }
1370
1371 static void r300_bind_sampler_states(struct pipe_context* pipe,
1372 unsigned count,
1373 void** states)
1374 {
1375 struct r300_context* r300 = r300_context(pipe);
1376 struct r300_textures_state* state =
1377 (struct r300_textures_state*)r300->textures_state.state;
1378 unsigned tex_units = r300->screen->caps.num_tex_units;
1379
1380 if (count > tex_units) {
1381 return;
1382 }
1383
1384 memcpy(state->sampler_states, states, sizeof(void*) * count);
1385 state->sampler_state_count = count;
1386
1387 r300_mark_atom_dirty(r300, &r300->textures_state);
1388 }
1389
1390 static void r300_lacks_vertex_textures(struct pipe_context* pipe,
1391 unsigned count,
1392 void** states)
1393 {
1394 }
1395
1396 static void r300_delete_sampler_state(struct pipe_context* pipe, void* state)
1397 {
1398 FREE(state);
1399 }
1400
1401 static uint32_t r300_assign_texture_cache_region(unsigned index, unsigned num)
1402 {
1403 /* This looks like a hack, but I believe it's suppose to work like
1404 * that. To illustrate how this works, let's assume you have 5 textures.
1405 * From docs, 5 and the successive numbers are:
1406 *
1407 * FOURTH_1 = 5
1408 * FOURTH_2 = 6
1409 * FOURTH_3 = 7
1410 * EIGHTH_0 = 8
1411 * EIGHTH_1 = 9
1412 *
1413 * First 3 textures will get 3/4 of size of the cache, divived evenly
1414 * between them. The last 1/4 of the cache must be divided between
1415 * the last 2 textures, each will therefore get 1/8 of the cache.
1416 * Why not just to use "5 + texture_index" ?
1417 *
1418 * This simple trick works for all "num" <= 16.
1419 */
1420 if (num <= 1)
1421 return R300_TX_CACHE(R300_TX_CACHE_WHOLE);
1422 else
1423 return R300_TX_CACHE(num + index);
1424 }
1425
1426 static void r300_set_fragment_sampler_views(struct pipe_context* pipe,
1427 unsigned count,
1428 struct pipe_sampler_view** views)
1429 {
1430 struct r300_context* r300 = r300_context(pipe);
1431 struct r300_textures_state* state =
1432 (struct r300_textures_state*)r300->textures_state.state;
1433 struct r300_resource *texture;
1434 unsigned i, real_num_views = 0, view_index = 0;
1435 unsigned tex_units = r300->screen->caps.num_tex_units;
1436 boolean dirty_tex = FALSE;
1437
1438 if (count > tex_units) {
1439 return;
1440 }
1441
1442 /* Calculate the real number of views. */
1443 for (i = 0; i < count; i++) {
1444 if (views[i])
1445 real_num_views++;
1446 }
1447
1448 for (i = 0; i < count; i++) {
1449 pipe_sampler_view_reference(
1450 (struct pipe_sampler_view**)&state->sampler_views[i],
1451 views[i]);
1452
1453 if (!views[i]) {
1454 continue;
1455 }
1456
1457 /* A new sampler view (= texture)... */
1458 dirty_tex = TRUE;
1459
1460 /* Set the texrect factor in the fragment shader.
1461 * Needed for RECT and NPOT fallback. */
1462 texture = r300_resource(views[i]->texture);
1463 if (texture->tex.is_npot) {
1464 r300_mark_atom_dirty(r300, &r300->fs_rc_constant_state);
1465 }
1466
1467 state->sampler_views[i]->texcache_region =
1468 r300_assign_texture_cache_region(view_index, real_num_views);
1469 view_index++;
1470 }
1471
1472 for (i = count; i < tex_units; i++) {
1473 if (state->sampler_views[i]) {
1474 pipe_sampler_view_reference(
1475 (struct pipe_sampler_view**)&state->sampler_views[i],
1476 NULL);
1477 }
1478 }
1479
1480 state->sampler_view_count = count;
1481
1482 r300_mark_atom_dirty(r300, &r300->textures_state);
1483
1484 if (dirty_tex) {
1485 r300_mark_atom_dirty(r300, &r300->texture_cache_inval);
1486 }
1487 }
1488
1489 struct pipe_sampler_view *
1490 r300_create_sampler_view_custom(struct pipe_context *pipe,
1491 struct pipe_resource *texture,
1492 const struct pipe_sampler_view *templ,
1493 unsigned width0_override,
1494 unsigned height0_override)
1495 {
1496 struct r300_sampler_view *view = CALLOC_STRUCT(r300_sampler_view);
1497 struct r300_resource *tex = r300_resource(texture);
1498 boolean is_r500 = r300_screen(pipe->screen)->caps.is_r500;
1499 boolean dxtc_swizzle = r300_screen(pipe->screen)->caps.dxtc_swizzle;
1500
1501 if (view) {
1502 unsigned hwformat;
1503
1504 view->base = *templ;
1505 view->base.reference.count = 1;
1506 view->base.context = pipe;
1507 view->base.texture = NULL;
1508 pipe_resource_reference(&view->base.texture, texture);
1509
1510 view->width0_override = width0_override;
1511 view->height0_override = height0_override;
1512 view->swizzle[0] = templ->swizzle_r;
1513 view->swizzle[1] = templ->swizzle_g;
1514 view->swizzle[2] = templ->swizzle_b;
1515 view->swizzle[3] = templ->swizzle_a;
1516
1517 hwformat = r300_translate_texformat(templ->format,
1518 view->swizzle,
1519 is_r500,
1520 dxtc_swizzle);
1521
1522 if (hwformat == ~0) {
1523 fprintf(stderr, "r300: Ooops. Got unsupported format %s in %s.\n",
1524 util_format_short_name(templ->format), __func__);
1525 }
1526 assert(hwformat != ~0);
1527
1528 r300_texture_setup_format_state(r300_screen(pipe->screen), tex,
1529 templ->format, 0,
1530 width0_override, height0_override,
1531 &view->format);
1532 view->format.format1 |= hwformat;
1533 if (is_r500) {
1534 view->format.format2 |= r500_tx_format_msb_bit(templ->format);
1535 }
1536 }
1537
1538 return (struct pipe_sampler_view*)view;
1539 }
1540
1541 static struct pipe_sampler_view *
1542 r300_create_sampler_view(struct pipe_context *pipe,
1543 struct pipe_resource *texture,
1544 const struct pipe_sampler_view *templ)
1545 {
1546 return r300_create_sampler_view_custom(pipe, texture, templ,
1547 r300_resource(texture)->tex.width0,
1548 r300_resource(texture)->tex.height0);
1549 }
1550
1551
1552 static void
1553 r300_sampler_view_destroy(struct pipe_context *pipe,
1554 struct pipe_sampler_view *view)
1555 {
1556 pipe_resource_reference(&view->texture, NULL);
1557 FREE(view);
1558 }
1559
1560 static void r300_set_scissor_state(struct pipe_context* pipe,
1561 const struct pipe_scissor_state* state)
1562 {
1563 struct r300_context* r300 = r300_context(pipe);
1564
1565 memcpy(r300->scissor_state.state, state,
1566 sizeof(struct pipe_scissor_state));
1567
1568 r300_mark_atom_dirty(r300, &r300->scissor_state);
1569 }
1570
1571 static void r300_set_viewport_state(struct pipe_context* pipe,
1572 const struct pipe_viewport_state* state)
1573 {
1574 struct r300_context* r300 = r300_context(pipe);
1575 struct r300_viewport_state* viewport =
1576 (struct r300_viewport_state*)r300->viewport_state.state;
1577
1578 r300->viewport = *state;
1579
1580 if (r300->draw) {
1581 draw_set_viewport_state(r300->draw, state);
1582 viewport->vte_control = R300_VTX_XY_FMT | R300_VTX_Z_FMT;
1583 return;
1584 }
1585
1586 /* Do the transform in HW. */
1587 viewport->vte_control = R300_VTX_W0_FMT;
1588
1589 if (state->scale[0] != 1.0f) {
1590 viewport->xscale = state->scale[0];
1591 viewport->vte_control |= R300_VPORT_X_SCALE_ENA;
1592 }
1593 if (state->scale[1] != 1.0f) {
1594 viewport->yscale = state->scale[1];
1595 viewport->vte_control |= R300_VPORT_Y_SCALE_ENA;
1596 }
1597 if (state->scale[2] != 1.0f) {
1598 viewport->zscale = state->scale[2];
1599 viewport->vte_control |= R300_VPORT_Z_SCALE_ENA;
1600 }
1601 if (state->translate[0] != 0.0f) {
1602 viewport->xoffset = state->translate[0];
1603 viewport->vte_control |= R300_VPORT_X_OFFSET_ENA;
1604 }
1605 if (state->translate[1] != 0.0f) {
1606 viewport->yoffset = state->translate[1];
1607 viewport->vte_control |= R300_VPORT_Y_OFFSET_ENA;
1608 }
1609 if (state->translate[2] != 0.0f) {
1610 viewport->zoffset = state->translate[2];
1611 viewport->vte_control |= R300_VPORT_Z_OFFSET_ENA;
1612 }
1613
1614 r300_mark_atom_dirty(r300, &r300->viewport_state);
1615 if (r300->fs.state && r300_fs(r300)->shader &&
1616 r300_fs(r300)->shader->inputs.wpos != ATTR_UNUSED) {
1617 r300_mark_atom_dirty(r300, &r300->fs_rc_constant_state);
1618 }
1619 }
1620
1621 static void r300_set_vertex_buffers_hwtcl(struct pipe_context* pipe,
1622 unsigned start_slot, unsigned count,
1623 const struct pipe_vertex_buffer* buffers)
1624 {
1625 struct r300_context* r300 = r300_context(pipe);
1626
1627 util_set_vertex_buffers_count(r300->vertex_buffer,
1628 &r300->nr_vertex_buffers,
1629 buffers, start_slot, count);
1630
1631 /* There must be at least one vertex buffer set, otherwise it locks up. */
1632 if (!r300->nr_vertex_buffers) {
1633 util_set_vertex_buffers_count(r300->vertex_buffer,
1634 &r300->nr_vertex_buffers,
1635 &r300->dummy_vb, 0, 1);
1636 }
1637
1638 r300->vertex_arrays_dirty = TRUE;
1639 }
1640
1641 static void r300_set_vertex_buffers_swtcl(struct pipe_context* pipe,
1642 unsigned start_slot, unsigned count,
1643 const struct pipe_vertex_buffer* buffers)
1644 {
1645 struct r300_context* r300 = r300_context(pipe);
1646 unsigned i;
1647
1648 util_set_vertex_buffers_count(r300->vertex_buffer,
1649 &r300->nr_vertex_buffers,
1650 buffers, start_slot, count);
1651 draw_set_vertex_buffers(r300->draw, start_slot, count, buffers);
1652
1653 for (i = 0; i < count; i++) {
1654 if (buffers[i].user_buffer) {
1655 draw_set_mapped_vertex_buffer(r300->draw, start_slot + i,
1656 buffers[i].user_buffer);
1657 } else if (buffers[i].buffer) {
1658 draw_set_mapped_vertex_buffer(r300->draw, start_slot + i,
1659 r300_resource(buffers[i].buffer)->malloced_buffer);
1660 }
1661 }
1662 }
1663
1664 static void r300_set_index_buffer_hwtcl(struct pipe_context* pipe,
1665 const struct pipe_index_buffer *ib)
1666 {
1667 struct r300_context* r300 = r300_context(pipe);
1668
1669 if (ib) {
1670 pipe_resource_reference(&r300->index_buffer.buffer, ib->buffer);
1671 memcpy(&r300->index_buffer, ib, sizeof(*ib));
1672 } else {
1673 pipe_resource_reference(&r300->index_buffer.buffer, NULL);
1674 }
1675 }
1676
1677 static void r300_set_index_buffer_swtcl(struct pipe_context* pipe,
1678 const struct pipe_index_buffer *ib)
1679 {
1680 struct r300_context* r300 = r300_context(pipe);
1681
1682 if (ib) {
1683 const void *buf = NULL;
1684 if (ib->user_buffer) {
1685 buf = ib->user_buffer;
1686 } else if (ib->buffer) {
1687 buf = r300_resource(ib->buffer)->malloced_buffer;
1688 }
1689 draw_set_indexes(r300->draw,
1690 (const ubyte *) buf + ib->offset,
1691 ib->index_size);
1692 }
1693 }
1694
1695 /* Initialize the PSC tables. */
1696 static void r300_vertex_psc(struct r300_vertex_element_state *velems)
1697 {
1698 struct r300_vertex_stream_state *vstream = &velems->vertex_stream;
1699 uint16_t type, swizzle;
1700 enum pipe_format format;
1701 unsigned i;
1702
1703 /* Vertex shaders have no semantics on their inputs,
1704 * so PSC should just route stuff based on the vertex elements,
1705 * and not on attrib information. */
1706 for (i = 0; i < velems->count; i++) {
1707 format = velems->velem[i].src_format;
1708
1709 type = r300_translate_vertex_data_type(format);
1710 if (type == R300_INVALID_FORMAT) {
1711 fprintf(stderr, "r300: Bad vertex format %s.\n",
1712 util_format_short_name(format));
1713 assert(0);
1714 abort();
1715 }
1716
1717 type |= i << R300_DST_VEC_LOC_SHIFT;
1718 swizzle = r300_translate_vertex_data_swizzle(format);
1719
1720 if (i & 1) {
1721 vstream->vap_prog_stream_cntl[i >> 1] |= type << 16;
1722 vstream->vap_prog_stream_cntl_ext[i >> 1] |= swizzle << 16;
1723 } else {
1724 vstream->vap_prog_stream_cntl[i >> 1] |= type;
1725 vstream->vap_prog_stream_cntl_ext[i >> 1] |= swizzle;
1726 }
1727 }
1728
1729 /* Set the last vector in the PSC. */
1730 if (i) {
1731 i -= 1;
1732 }
1733 vstream->vap_prog_stream_cntl[i >> 1] |=
1734 (R300_LAST_VEC << (i & 1 ? 16 : 0));
1735
1736 vstream->count = (i >> 1) + 1;
1737 }
1738
1739 static void* r300_create_vertex_elements_state(struct pipe_context* pipe,
1740 unsigned count,
1741 const struct pipe_vertex_element* attribs)
1742 {
1743 struct r300_vertex_element_state *velems;
1744 unsigned i;
1745 struct pipe_vertex_element dummy_attrib = {0};
1746
1747 /* R300 Programmable Stream Control (PSC) doesn't support 0 vertex elements. */
1748 if (!count) {
1749 dummy_attrib.src_format = PIPE_FORMAT_R8G8B8A8_UNORM;
1750 attribs = &dummy_attrib;
1751 count = 1;
1752 } else if (count > 16) {
1753 fprintf(stderr, "r300: More than 16 vertex elements are not supported,"
1754 " requested %i, using 16.\n", count);
1755 count = 16;
1756 }
1757
1758 velems = CALLOC_STRUCT(r300_vertex_element_state);
1759 if (!velems)
1760 return NULL;
1761
1762 velems->count = count;
1763 memcpy(velems->velem, attribs, sizeof(struct pipe_vertex_element) * count);
1764
1765 if (r300_screen(pipe->screen)->caps.has_tcl) {
1766 /* Setup PSC.
1767 * The unused components will be replaced by (..., 0, 1). */
1768 r300_vertex_psc(velems);
1769
1770 for (i = 0; i < count; i++) {
1771 velems->format_size[i] =
1772 align(util_format_get_blocksize(velems->velem[i].src_format), 4);
1773 velems->vertex_size_dwords += velems->format_size[i] / 4;
1774 }
1775 }
1776
1777 return velems;
1778 }
1779
1780 static void r300_bind_vertex_elements_state(struct pipe_context *pipe,
1781 void *state)
1782 {
1783 struct r300_context *r300 = r300_context(pipe);
1784 struct r300_vertex_element_state *velems = state;
1785
1786 if (velems == NULL) {
1787 return;
1788 }
1789
1790 r300->velems = velems;
1791
1792 if (r300->draw) {
1793 draw_set_vertex_elements(r300->draw, velems->count, velems->velem);
1794 return;
1795 }
1796
1797 UPDATE_STATE(&velems->vertex_stream, r300->vertex_stream_state);
1798 r300->vertex_stream_state.size = (1 + velems->vertex_stream.count) * 2;
1799 r300->vertex_arrays_dirty = TRUE;
1800 }
1801
1802 static void r300_delete_vertex_elements_state(struct pipe_context *pipe, void *state)
1803 {
1804 FREE(state);
1805 }
1806
1807 static void* r300_create_vs_state(struct pipe_context* pipe,
1808 const struct pipe_shader_state* shader)
1809 {
1810 struct r300_context* r300 = r300_context(pipe);
1811 struct r300_vertex_shader* vs = CALLOC_STRUCT(r300_vertex_shader);
1812
1813 /* Copy state directly into shader. */
1814 vs->state = *shader;
1815 vs->state.tokens = tgsi_dup_tokens(shader->tokens);
1816
1817 if (r300->screen->caps.has_tcl) {
1818 r300_init_vs_outputs(r300, vs);
1819 r300_translate_vertex_shader(r300, vs);
1820 } else {
1821 r300_draw_init_vertex_shader(r300, vs);
1822 }
1823
1824 return vs;
1825 }
1826
1827 static void r300_bind_vs_state(struct pipe_context* pipe, void* shader)
1828 {
1829 struct r300_context* r300 = r300_context(pipe);
1830 struct r300_vertex_shader* vs = (struct r300_vertex_shader*)shader;
1831
1832 if (vs == NULL) {
1833 r300->vs_state.state = NULL;
1834 return;
1835 }
1836 if (vs == r300->vs_state.state) {
1837 return;
1838 }
1839 r300->vs_state.state = vs;
1840
1841 /* The majority of the RS block bits is dependent on the vertex shader. */
1842 r300_mark_atom_dirty(r300, &r300->rs_block_state); /* Will be updated before the emission. */
1843
1844 if (r300->screen->caps.has_tcl) {
1845 unsigned fc_op_dwords = r300->screen->caps.is_r500 ? 3 : 2;
1846 r300_mark_atom_dirty(r300, &r300->vs_state);
1847 r300->vs_state.size = vs->code.length + 9 +
1848 (R300_VS_MAX_FC_OPS * fc_op_dwords + 4);
1849
1850 r300_mark_atom_dirty(r300, &r300->vs_constants);
1851 r300->vs_constants.size =
1852 2 +
1853 (vs->externals_count ? vs->externals_count * 4 + 3 : 0) +
1854 (vs->immediates_count ? vs->immediates_count * 4 + 3 : 0);
1855
1856 ((struct r300_constant_buffer*)r300->vs_constants.state)->remap_table =
1857 vs->code.constants_remap_table;
1858
1859 r300_mark_atom_dirty(r300, &r300->pvs_flush);
1860 } else {
1861 draw_bind_vertex_shader(r300->draw,
1862 (struct draw_vertex_shader*)vs->draw_vs);
1863 }
1864 }
1865
1866 static void r300_delete_vs_state(struct pipe_context* pipe, void* shader)
1867 {
1868 struct r300_context* r300 = r300_context(pipe);
1869 struct r300_vertex_shader* vs = (struct r300_vertex_shader*)shader;
1870
1871 if (r300->screen->caps.has_tcl) {
1872 rc_constants_destroy(&vs->code.constants);
1873 FREE(vs->code.constants_remap_table);
1874 } else {
1875 draw_delete_vertex_shader(r300->draw,
1876 (struct draw_vertex_shader*)vs->draw_vs);
1877 }
1878
1879 FREE((void*)vs->state.tokens);
1880 FREE(shader);
1881 }
1882
1883 static void r300_set_constant_buffer(struct pipe_context *pipe,
1884 uint shader, uint index,
1885 struct pipe_constant_buffer *cb)
1886 {
1887 struct r300_context* r300 = r300_context(pipe);
1888 struct r300_constant_buffer *cbuf;
1889 uint32_t *mapped;
1890
1891 if (!cb)
1892 return;
1893
1894 switch (shader) {
1895 case PIPE_SHADER_VERTEX:
1896 cbuf = (struct r300_constant_buffer*)r300->vs_constants.state;
1897 break;
1898 case PIPE_SHADER_FRAGMENT:
1899 cbuf = (struct r300_constant_buffer*)r300->fs_constants.state;
1900 break;
1901 default:
1902 return;
1903 }
1904
1905
1906 if (cb->user_buffer)
1907 mapped = (uint32_t*)cb->user_buffer;
1908 else {
1909 struct r300_resource *rbuf = r300_resource(cb->buffer);
1910
1911 if (rbuf && rbuf->malloced_buffer)
1912 mapped = (uint32_t*)rbuf->malloced_buffer;
1913 else
1914 return;
1915 }
1916
1917 if (shader == PIPE_SHADER_FRAGMENT ||
1918 (shader == PIPE_SHADER_VERTEX && r300->screen->caps.has_tcl)) {
1919 cbuf->ptr = mapped;
1920 }
1921
1922 if (shader == PIPE_SHADER_VERTEX) {
1923 if (r300->screen->caps.has_tcl) {
1924 struct r300_vertex_shader *vs =
1925 (struct r300_vertex_shader*)r300->vs_state.state;
1926
1927 if (!vs) {
1928 cbuf->buffer_base = 0;
1929 return;
1930 }
1931
1932 cbuf->buffer_base = r300->vs_const_base;
1933 r300->vs_const_base += vs->code.constants.Count;
1934 if (r300->vs_const_base > R500_MAX_PVS_CONST_VECS) {
1935 r300->vs_const_base = vs->code.constants.Count;
1936 cbuf->buffer_base = 0;
1937 r300_mark_atom_dirty(r300, &r300->pvs_flush);
1938 }
1939 r300_mark_atom_dirty(r300, &r300->vs_constants);
1940 } else if (r300->draw) {
1941 draw_set_mapped_constant_buffer(r300->draw, PIPE_SHADER_VERTEX,
1942 0, mapped, cb->buffer_size);
1943 }
1944 } else if (shader == PIPE_SHADER_FRAGMENT) {
1945 r300_mark_atom_dirty(r300, &r300->fs_constants);
1946 }
1947 }
1948
1949 static void r300_texture_barrier(struct pipe_context *pipe)
1950 {
1951 struct r300_context *r300 = r300_context(pipe);
1952
1953 r300_mark_atom_dirty(r300, &r300->gpu_flush);
1954 r300_mark_atom_dirty(r300, &r300->texture_cache_inval);
1955 }
1956
1957 void r300_init_state_functions(struct r300_context* r300)
1958 {
1959 r300->context.create_blend_state = r300_create_blend_state;
1960 r300->context.bind_blend_state = r300_bind_blend_state;
1961 r300->context.delete_blend_state = r300_delete_blend_state;
1962
1963 r300->context.set_blend_color = r300_set_blend_color;
1964
1965 r300->context.set_clip_state = r300_set_clip_state;
1966 r300->context.set_sample_mask = r300_set_sample_mask;
1967
1968 r300->context.set_constant_buffer = r300_set_constant_buffer;
1969
1970 r300->context.create_depth_stencil_alpha_state = r300_create_dsa_state;
1971 r300->context.bind_depth_stencil_alpha_state = r300_bind_dsa_state;
1972 r300->context.delete_depth_stencil_alpha_state = r300_delete_dsa_state;
1973
1974 r300->context.set_stencil_ref = r300_set_stencil_ref;
1975
1976 r300->context.set_framebuffer_state = r300_set_framebuffer_state;
1977
1978 r300->context.create_fs_state = r300_create_fs_state;
1979 r300->context.bind_fs_state = r300_bind_fs_state;
1980 r300->context.delete_fs_state = r300_delete_fs_state;
1981
1982 r300->context.set_polygon_stipple = r300_set_polygon_stipple;
1983
1984 r300->context.create_rasterizer_state = r300_create_rs_state;
1985 r300->context.bind_rasterizer_state = r300_bind_rs_state;
1986 r300->context.delete_rasterizer_state = r300_delete_rs_state;
1987
1988 r300->context.create_sampler_state = r300_create_sampler_state;
1989 r300->context.bind_fragment_sampler_states = r300_bind_sampler_states;
1990 r300->context.bind_vertex_sampler_states = r300_lacks_vertex_textures;
1991 r300->context.delete_sampler_state = r300_delete_sampler_state;
1992
1993 r300->context.set_fragment_sampler_views = r300_set_fragment_sampler_views;
1994 r300->context.create_sampler_view = r300_create_sampler_view;
1995 r300->context.sampler_view_destroy = r300_sampler_view_destroy;
1996
1997 r300->context.set_scissor_state = r300_set_scissor_state;
1998
1999 r300->context.set_viewport_state = r300_set_viewport_state;
2000
2001 if (r300->screen->caps.has_tcl) {
2002 r300->context.set_vertex_buffers = r300_set_vertex_buffers_hwtcl;
2003 r300->context.set_index_buffer = r300_set_index_buffer_hwtcl;
2004 } else {
2005 r300->context.set_vertex_buffers = r300_set_vertex_buffers_swtcl;
2006 r300->context.set_index_buffer = r300_set_index_buffer_swtcl;
2007 }
2008
2009 r300->context.create_vertex_elements_state = r300_create_vertex_elements_state;
2010 r300->context.bind_vertex_elements_state = r300_bind_vertex_elements_state;
2011 r300->context.delete_vertex_elements_state = r300_delete_vertex_elements_state;
2012
2013 r300->context.create_vs_state = r300_create_vs_state;
2014 r300->context.bind_vs_state = r300_bind_vs_state;
2015 r300->context.delete_vs_state = r300_delete_vs_state;
2016
2017 r300->context.texture_barrier = r300_texture_barrier;
2018 }