r300g: Account for CS space used per atom.
[mesa.git] / src / gallium / drivers / r300 / r300_state.c
1 /*
2 * Copyright 2008 Corbin Simpson <MostAwesomeDude@gmail.com>
3 * Copyright 2009 Marek Olšák <maraeo@gmail.com>
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * on the rights to use, copy, modify, merge, publish, distribute, sub
9 * license, and/or sell copies of the Software, and to permit persons to whom
10 * the Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE. */
23
24 #include "draw/draw_context.h"
25
26 #include "util/u_math.h"
27 #include "util/u_memory.h"
28 #include "util/u_pack_color.h"
29
30 #include "tgsi/tgsi_parse.h"
31
32 #include "pipe/p_config.h"
33 #include "pipe/internal/p_winsys_screen.h"
34
35 #include "r300_context.h"
36 #include "r300_reg.h"
37 #include "r300_screen.h"
38 #include "r300_state_inlines.h"
39 #include "r300_fs.h"
40 #include "r300_vs.h"
41
42 /* r300_state: Functions used to intialize state context by translating
43 * Gallium state objects into semi-native r300 state objects. */
44
45 static boolean blend_discard_if_src_alpha_0(unsigned srcRGB, unsigned srcA,
46 unsigned dstRGB, unsigned dstA)
47 {
48 /* If the blend equation is ADD or REVERSE_SUBTRACT,
49 * SRC_ALPHA == 0, and the following state is set, the colorbuffer
50 * will not be changed.
51 * Notice that the dst factors are the src factors inverted. */
52 return (srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
53 srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE ||
54 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
55 (srcA == PIPE_BLENDFACTOR_SRC_COLOR ||
56 srcA == PIPE_BLENDFACTOR_SRC_ALPHA ||
57 srcA == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE ||
58 srcA == PIPE_BLENDFACTOR_ZERO) &&
59 (dstRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
60 dstRGB == PIPE_BLENDFACTOR_ONE) &&
61 (dstA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
62 dstA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
63 dstA == PIPE_BLENDFACTOR_ONE);
64 }
65
66 static boolean blend_discard_if_src_alpha_1(unsigned srcRGB, unsigned srcA,
67 unsigned dstRGB, unsigned dstA)
68 {
69 /* If the blend equation is ADD or REVERSE_SUBTRACT,
70 * SRC_ALPHA == 1, and the following state is set, the colorbuffer
71 * will not be changed.
72 * Notice that the dst factors are the src factors inverted. */
73 return (srcRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
74 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
75 (srcA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
76 srcA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
77 srcA == PIPE_BLENDFACTOR_ZERO) &&
78 (dstRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
79 dstRGB == PIPE_BLENDFACTOR_ONE) &&
80 (dstA == PIPE_BLENDFACTOR_SRC_COLOR ||
81 dstA == PIPE_BLENDFACTOR_SRC_ALPHA ||
82 dstA == PIPE_BLENDFACTOR_ONE);
83 }
84
85 static boolean blend_discard_if_src_color_0(unsigned srcRGB, unsigned srcA,
86 unsigned dstRGB, unsigned dstA)
87 {
88 /* If the blend equation is ADD or REVERSE_SUBTRACT,
89 * SRC_COLOR == (0,0,0), and the following state is set, the colorbuffer
90 * will not be changed.
91 * Notice that the dst factors are the src factors inverted. */
92 return (srcRGB == PIPE_BLENDFACTOR_SRC_COLOR ||
93 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
94 (srcA == PIPE_BLENDFACTOR_ZERO) &&
95 (dstRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
96 dstRGB == PIPE_BLENDFACTOR_ONE) &&
97 (dstA == PIPE_BLENDFACTOR_ONE);
98 }
99
100 static boolean blend_discard_if_src_color_1(unsigned srcRGB, unsigned srcA,
101 unsigned dstRGB, unsigned dstA)
102 {
103 /* If the blend equation is ADD or REVERSE_SUBTRACT,
104 * SRC_COLOR == (1,1,1), and the following state is set, the colorbuffer
105 * will not be changed.
106 * Notice that the dst factors are the src factors inverted. */
107 return (srcRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
108 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
109 (srcA == PIPE_BLENDFACTOR_ZERO) &&
110 (dstRGB == PIPE_BLENDFACTOR_SRC_COLOR ||
111 dstRGB == PIPE_BLENDFACTOR_ONE) &&
112 (dstA == PIPE_BLENDFACTOR_ONE);
113 }
114
115 static boolean blend_discard_if_src_alpha_color_0(unsigned srcRGB, unsigned srcA,
116 unsigned dstRGB, unsigned dstA)
117 {
118 /* If the blend equation is ADD or REVERSE_SUBTRACT,
119 * SRC_ALPHA_COLOR == (0,0,0,0), and the following state is set,
120 * the colorbuffer will not be changed.
121 * Notice that the dst factors are the src factors inverted. */
122 return (srcRGB == PIPE_BLENDFACTOR_SRC_COLOR ||
123 srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
124 srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE ||
125 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
126 (srcA == PIPE_BLENDFACTOR_SRC_COLOR ||
127 srcA == PIPE_BLENDFACTOR_SRC_ALPHA ||
128 srcA == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE ||
129 srcA == PIPE_BLENDFACTOR_ZERO) &&
130 (dstRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
131 dstRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
132 dstRGB == PIPE_BLENDFACTOR_ONE) &&
133 (dstA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
134 dstA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
135 dstA == PIPE_BLENDFACTOR_ONE);
136 }
137
138 static boolean blend_discard_if_src_alpha_color_1(unsigned srcRGB, unsigned srcA,
139 unsigned dstRGB, unsigned dstA)
140 {
141 /* If the blend equation is ADD or REVERSE_SUBTRACT,
142 * SRC_ALPHA_COLOR == (1,1,1,1), and the following state is set,
143 * the colorbuffer will not be changed.
144 * Notice that the dst factors are the src factors inverted. */
145 return (srcRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
146 srcRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
147 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
148 (srcA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
149 srcA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
150 srcA == PIPE_BLENDFACTOR_ZERO) &&
151 (dstRGB == PIPE_BLENDFACTOR_SRC_COLOR ||
152 dstRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
153 dstRGB == PIPE_BLENDFACTOR_ONE) &&
154 (dstA == PIPE_BLENDFACTOR_SRC_COLOR ||
155 dstA == PIPE_BLENDFACTOR_SRC_ALPHA ||
156 dstA == PIPE_BLENDFACTOR_ONE);
157 }
158
159 /* Create a new blend state based on the CSO blend state.
160 *
161 * This encompasses alpha blending, logic/raster ops, and blend dithering. */
162 static void* r300_create_blend_state(struct pipe_context* pipe,
163 const struct pipe_blend_state* state)
164 {
165 struct r300_blend_state* blend = CALLOC_STRUCT(r300_blend_state);
166
167 if (state->blend_enable)
168 {
169 unsigned eqRGB = state->rgb_func;
170 unsigned srcRGB = state->rgb_src_factor;
171 unsigned dstRGB = state->rgb_dst_factor;
172
173 unsigned eqA = state->alpha_func;
174 unsigned srcA = state->alpha_src_factor;
175 unsigned dstA = state->alpha_dst_factor;
176
177 /* despite the name, ALPHA_BLEND_ENABLE has nothing to do with alpha,
178 * this is just the crappy D3D naming */
179 blend->blend_control = R300_ALPHA_BLEND_ENABLE |
180 r300_translate_blend_function(eqRGB) |
181 ( r300_translate_blend_factor(srcRGB) << R300_SRC_BLEND_SHIFT) |
182 ( r300_translate_blend_factor(dstRGB) << R300_DST_BLEND_SHIFT);
183
184 /* Optimization: some operations do not require the destination color.
185 *
186 * When SRC_ALPHA_SATURATE is used, colorbuffer reads must be enabled,
187 * otherwise blending gives incorrect results. It seems to be
188 * a hardware bug. */
189 if (eqRGB == PIPE_BLEND_MIN || eqA == PIPE_BLEND_MIN ||
190 eqRGB == PIPE_BLEND_MAX || eqA == PIPE_BLEND_MAX ||
191 dstRGB != PIPE_BLENDFACTOR_ZERO ||
192 dstA != PIPE_BLENDFACTOR_ZERO ||
193 srcRGB == PIPE_BLENDFACTOR_DST_COLOR ||
194 srcRGB == PIPE_BLENDFACTOR_DST_ALPHA ||
195 srcRGB == PIPE_BLENDFACTOR_INV_DST_COLOR ||
196 srcRGB == PIPE_BLENDFACTOR_INV_DST_ALPHA ||
197 srcA == PIPE_BLENDFACTOR_DST_COLOR ||
198 srcA == PIPE_BLENDFACTOR_DST_ALPHA ||
199 srcA == PIPE_BLENDFACTOR_INV_DST_COLOR ||
200 srcA == PIPE_BLENDFACTOR_INV_DST_ALPHA ||
201 srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE) {
202 /* Enable reading from the colorbuffer. */
203 blend->blend_control |= R300_READ_ENABLE;
204
205 if (r300_screen(r300_context(pipe)->context.screen)->caps->is_r500) {
206 /* Optimization: Depending on incoming pixels, we can
207 * conditionally disable the reading in hardware... */
208 if (eqRGB != PIPE_BLEND_MIN && eqA != PIPE_BLEND_MIN &&
209 eqRGB != PIPE_BLEND_MAX && eqA != PIPE_BLEND_MAX) {
210 /* Disable reading if SRC_ALPHA == 0. */
211 if ((dstRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
212 dstRGB == PIPE_BLENDFACTOR_ZERO) &&
213 (dstA == PIPE_BLENDFACTOR_SRC_COLOR ||
214 dstA == PIPE_BLENDFACTOR_SRC_ALPHA ||
215 dstA == PIPE_BLENDFACTOR_ZERO)) {
216 blend->blend_control |= R500_SRC_ALPHA_0_NO_READ;
217 }
218
219 /* Disable reading if SRC_ALPHA == 1. */
220 if ((dstRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
221 dstRGB == PIPE_BLENDFACTOR_ZERO) &&
222 (dstA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
223 dstA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
224 dstA == PIPE_BLENDFACTOR_ZERO)) {
225 blend->blend_control |= R500_SRC_ALPHA_1_NO_READ;
226 }
227 }
228 }
229 }
230
231 /* Optimization: discard pixels which don't change the colorbuffer.
232 *
233 * The code below is non-trivial and some math is involved.
234 *
235 * Discarding pixels must be disabled when FP16 AA is enabled.
236 * This is a hardware bug. Also, this implementation wouldn't work
237 * with FP blending enabled and equation clamping disabled.
238 *
239 * Equations other than ADD are rarely used and therefore won't be
240 * optimized. */
241 if ((eqRGB == PIPE_BLEND_ADD || eqRGB == PIPE_BLEND_REVERSE_SUBTRACT) &&
242 (eqA == PIPE_BLEND_ADD || eqA == PIPE_BLEND_REVERSE_SUBTRACT)) {
243 /* ADD: X+Y
244 * REVERSE_SUBTRACT: Y-X
245 *
246 * The idea is:
247 * If X = src*srcFactor = 0 and Y = dst*dstFactor = 1,
248 * then CB will not be changed.
249 *
250 * Given the srcFactor and dstFactor variables, we can derive
251 * what src and dst should be equal to and discard appropriate
252 * pixels.
253 */
254 if (blend_discard_if_src_alpha_0(srcRGB, srcA, dstRGB, dstA)) {
255 blend->blend_control |= R300_DISCARD_SRC_PIXELS_SRC_ALPHA_0;
256 } else if (blend_discard_if_src_alpha_1(srcRGB, srcA,
257 dstRGB, dstA)) {
258 blend->blend_control |= R300_DISCARD_SRC_PIXELS_SRC_ALPHA_1;
259 } else if (blend_discard_if_src_color_0(srcRGB, srcA,
260 dstRGB, dstA)) {
261 blend->blend_control |= R300_DISCARD_SRC_PIXELS_SRC_COLOR_0;
262 } else if (blend_discard_if_src_color_1(srcRGB, srcA,
263 dstRGB, dstA)) {
264 blend->blend_control |= R300_DISCARD_SRC_PIXELS_SRC_COLOR_1;
265 } else if (blend_discard_if_src_alpha_color_0(srcRGB, srcA,
266 dstRGB, dstA)) {
267 blend->blend_control |=
268 R300_DISCARD_SRC_PIXELS_SRC_ALPHA_COLOR_0;
269 } else if (blend_discard_if_src_alpha_color_1(srcRGB, srcA,
270 dstRGB, dstA)) {
271 blend->blend_control |=
272 R300_DISCARD_SRC_PIXELS_SRC_ALPHA_COLOR_1;
273 }
274 }
275
276 /* separate alpha */
277 if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB) {
278 blend->blend_control |= R300_SEPARATE_ALPHA_ENABLE;
279 blend->alpha_blend_control =
280 r300_translate_blend_function(eqA) |
281 (r300_translate_blend_factor(srcA) << R300_SRC_BLEND_SHIFT) |
282 (r300_translate_blend_factor(dstA) << R300_DST_BLEND_SHIFT);
283 }
284 }
285
286 /* PIPE_LOGICOP_* don't need to be translated, fortunately. */
287 if (state->logicop_enable) {
288 blend->rop = R300_RB3D_ROPCNTL_ROP_ENABLE |
289 (state->logicop_func) << R300_RB3D_ROPCNTL_ROP_SHIFT;
290 }
291
292 /* Color Channel Mask */
293 if (state->colormask & PIPE_MASK_R) {
294 blend->color_channel_mask |= RB3D_COLOR_CHANNEL_MASK_RED_MASK0;
295 }
296 if (state->colormask & PIPE_MASK_G) {
297 blend->color_channel_mask |= RB3D_COLOR_CHANNEL_MASK_GREEN_MASK0;
298 }
299 if (state->colormask & PIPE_MASK_B) {
300 blend->color_channel_mask |= RB3D_COLOR_CHANNEL_MASK_BLUE_MASK0;
301 }
302 if (state->colormask & PIPE_MASK_A) {
303 blend->color_channel_mask |= RB3D_COLOR_CHANNEL_MASK_ALPHA_MASK0;
304 }
305
306 if (state->dither) {
307 blend->dither = R300_RB3D_DITHER_CTL_DITHER_MODE_LUT |
308 R300_RB3D_DITHER_CTL_ALPHA_DITHER_MODE_LUT;
309 }
310
311 return (void*)blend;
312 }
313
314 /* Bind blend state. */
315 static void r300_bind_blend_state(struct pipe_context* pipe,
316 void* state)
317 {
318 struct r300_context* r300 = r300_context(pipe);
319
320 r300->blend_state.state = state;
321 r300->blend_state.dirty = TRUE;
322 }
323
324 /* Free blend state. */
325 static void r300_delete_blend_state(struct pipe_context* pipe,
326 void* state)
327 {
328 FREE(state);
329 }
330
331 /* Convert float to 10bit integer */
332 static unsigned float_to_fixed10(float f)
333 {
334 return CLAMP((unsigned)(f * 1023.9f), 0, 1023);
335 }
336
337 /* Set blend color.
338 * Setup both R300 and R500 registers, figure out later which one to write. */
339 static void r300_set_blend_color(struct pipe_context* pipe,
340 const struct pipe_blend_color* color)
341 {
342 struct r300_context* r300 = r300_context(pipe);
343 struct r300_screen* r300screen = r300_screen(pipe->screen);
344 struct r300_blend_color_state* state =
345 (struct r300_blend_color_state*)r300->blend_color_state.state;
346 union util_color uc;
347
348 util_pack_color(color->color, PIPE_FORMAT_A8R8G8B8_UNORM, &uc);
349 state->blend_color = uc.ui;
350
351 /* XXX if FP16 blending is enabled, we should use the FP16 format */
352 state->blend_color_red_alpha =
353 float_to_fixed10(color->color[0]) |
354 (float_to_fixed10(color->color[3]) << 16);
355 state->blend_color_green_blue =
356 float_to_fixed10(color->color[2]) |
357 (float_to_fixed10(color->color[1]) << 16);
358
359 r300->blend_color_state.size = r300screen->caps->is_r500 ? 3 : 2;
360 r300->blend_color_state.dirty = TRUE;
361 }
362
363 static void r300_set_clip_state(struct pipe_context* pipe,
364 const struct pipe_clip_state* state)
365 {
366 struct r300_context* r300 = r300_context(pipe);
367
368 if (r300_screen(pipe->screen)->caps->has_tcl) {
369 memcpy(r300->clip_state.state, state, sizeof(struct pipe_clip_state));
370 r300->clip_state.size = 29;
371 } else {
372 draw_flush(r300->draw);
373 draw_set_clip_state(r300->draw, state);
374 r300->clip_state.size = 2;
375 }
376
377 r300->clip_state.dirty = TRUE;
378 }
379
380 /* Create a new depth, stencil, and alpha state based on the CSO dsa state.
381 *
382 * This contains the depth buffer, stencil buffer, alpha test, and such.
383 * On the Radeon, depth and stencil buffer setup are intertwined, which is
384 * the reason for some of the strange-looking assignments across registers. */
385 static void*
386 r300_create_dsa_state(struct pipe_context* pipe,
387 const struct pipe_depth_stencil_alpha_state* state)
388 {
389 struct r300_capabilities *caps =
390 r300_screen(r300_context(pipe)->context.screen)->caps;
391 struct r300_dsa_state* dsa = CALLOC_STRUCT(r300_dsa_state);
392
393 /* Depth test setup. */
394 if (state->depth.enabled) {
395 dsa->z_buffer_control |= R300_Z_ENABLE;
396
397 if (state->depth.writemask) {
398 dsa->z_buffer_control |= R300_Z_WRITE_ENABLE;
399 }
400
401 dsa->z_stencil_control |=
402 (r300_translate_depth_stencil_function(state->depth.func) <<
403 R300_Z_FUNC_SHIFT);
404 }
405
406 /* Stencil buffer setup. */
407 if (state->stencil[0].enabled) {
408 dsa->z_buffer_control |= R300_STENCIL_ENABLE;
409 dsa->z_stencil_control |=
410 (r300_translate_depth_stencil_function(state->stencil[0].func) <<
411 R300_S_FRONT_FUNC_SHIFT) |
412 (r300_translate_stencil_op(state->stencil[0].fail_op) <<
413 R300_S_FRONT_SFAIL_OP_SHIFT) |
414 (r300_translate_stencil_op(state->stencil[0].zpass_op) <<
415 R300_S_FRONT_ZPASS_OP_SHIFT) |
416 (r300_translate_stencil_op(state->stencil[0].zfail_op) <<
417 R300_S_FRONT_ZFAIL_OP_SHIFT);
418
419 dsa->stencil_ref_mask = (state->stencil[0].ref_value) |
420 (state->stencil[0].valuemask << R300_STENCILMASK_SHIFT) |
421 (state->stencil[0].writemask << R300_STENCILWRITEMASK_SHIFT);
422
423 if (state->stencil[1].enabled) {
424 dsa->z_buffer_control |= R300_STENCIL_FRONT_BACK;
425 dsa->z_stencil_control |=
426 (r300_translate_depth_stencil_function(state->stencil[1].func) <<
427 R300_S_BACK_FUNC_SHIFT) |
428 (r300_translate_stencil_op(state->stencil[1].fail_op) <<
429 R300_S_BACK_SFAIL_OP_SHIFT) |
430 (r300_translate_stencil_op(state->stencil[1].zpass_op) <<
431 R300_S_BACK_ZPASS_OP_SHIFT) |
432 (r300_translate_stencil_op(state->stencil[1].zfail_op) <<
433 R300_S_BACK_ZFAIL_OP_SHIFT);
434
435 /* XXX it seems r3xx doesn't support STENCILREFMASK_BF */
436 if (caps->is_r500)
437 {
438 dsa->z_buffer_control |= R500_STENCIL_REFMASK_FRONT_BACK;
439 dsa->stencil_ref_bf = (state->stencil[1].ref_value) |
440 (state->stencil[1].valuemask <<
441 R300_STENCILMASK_SHIFT) |
442 (state->stencil[1].writemask <<
443 R300_STENCILWRITEMASK_SHIFT);
444 }
445 }
446 }
447
448 /* Alpha test setup. */
449 if (state->alpha.enabled) {
450 dsa->alpha_function =
451 r300_translate_alpha_function(state->alpha.func) |
452 R300_FG_ALPHA_FUNC_ENABLE;
453
454 /* XXX figure out why emitting 10bit alpha ref causes CS to dump */
455 /* always use 8bit alpha ref */
456 dsa->alpha_function |= float_to_ubyte(state->alpha.ref_value);
457
458 if (caps->is_r500)
459 dsa->alpha_function |= R500_FG_ALPHA_FUNC_8BIT;
460 }
461
462 return (void*)dsa;
463 }
464
465 /* Bind DSA state. */
466 static void r300_bind_dsa_state(struct pipe_context* pipe,
467 void* state)
468 {
469 struct r300_context* r300 = r300_context(pipe);
470 struct r300_screen* r300screen = r300_screen(pipe->screen);
471
472 r300->dsa_state.state = state;
473 r300->dsa_state.size = r300screen->caps->is_r500 ? 8 : 6;
474 r300->dsa_state.dirty = TRUE;
475 }
476
477 /* Free DSA state. */
478 static void r300_delete_dsa_state(struct pipe_context* pipe,
479 void* state)
480 {
481 FREE(state);
482 }
483
484 static void
485 r300_set_framebuffer_state(struct pipe_context* pipe,
486 const struct pipe_framebuffer_state* state)
487 {
488 struct r300_context* r300 = r300_context(pipe);
489
490 if (r300->draw) {
491 draw_flush(r300->draw);
492 }
493
494 r300->framebuffer_state = *state;
495
496 /* Don't rely on the order of states being set for the first time. */
497 r300->dirty_state |= R300_NEW_FRAMEBUFFERS;
498
499 r300->blend_state.dirty = TRUE;
500 r300->dsa_state.dirty = TRUE;
501 r300->scissor_state.dirty = TRUE;
502 }
503
504 /* Create fragment shader state. */
505 static void* r300_create_fs_state(struct pipe_context* pipe,
506 const struct pipe_shader_state* shader)
507 {
508 struct r300_fragment_shader* fs = NULL;
509
510 fs = (struct r300_fragment_shader*)CALLOC_STRUCT(r300_fragment_shader);
511
512 /* Copy state directly into shader. */
513 fs->state = *shader;
514 fs->state.tokens = tgsi_dup_tokens(shader->tokens);
515
516 tgsi_scan_shader(shader->tokens, &fs->info);
517 r300_shader_read_fs_inputs(&fs->info, &fs->inputs);
518
519 return (void*)fs;
520 }
521
522 /* Bind fragment shader state. */
523 static void r300_bind_fs_state(struct pipe_context* pipe, void* shader)
524 {
525 struct r300_context* r300 = r300_context(pipe);
526 struct r300_fragment_shader* fs = (struct r300_fragment_shader*)shader;
527
528 if (fs == NULL) {
529 r300->fs = NULL;
530 return;
531 }
532
533 r300->fs = fs;
534 r300_pick_fragment_shader(r300);
535
536 if (r300->vs && r300_vertex_shader_setup_wpos(r300)) {
537 r300->dirty_state |= R300_NEW_VERTEX_FORMAT;
538 }
539
540 r300->dirty_state |= R300_NEW_FRAGMENT_SHADER | R300_NEW_FRAGMENT_SHADER_CONSTANTS;
541 }
542
543 /* Delete fragment shader state. */
544 static void r300_delete_fs_state(struct pipe_context* pipe, void* shader)
545 {
546 struct r300_fragment_shader* fs = (struct r300_fragment_shader*)shader;
547 struct r300_fragment_shader_code *tmp, *ptr = fs->first;
548
549 while (ptr) {
550 tmp = ptr;
551 ptr = ptr->next;
552 rc_constants_destroy(&tmp->code.constants);
553 FREE(tmp);
554 }
555 FREE((void*)fs->state.tokens);
556 FREE(shader);
557 }
558
559 static void r300_set_polygon_stipple(struct pipe_context* pipe,
560 const struct pipe_poly_stipple* state)
561 {
562 /* XXX no idea how to set this up, but not terribly important */
563 }
564
565 /* Create a new rasterizer state based on the CSO rasterizer state.
566 *
567 * This is a very large chunk of state, and covers most of the graphics
568 * backend (GB), geometry assembly (GA), and setup unit (SU) blocks.
569 *
570 * In a not entirely unironic sidenote, this state has nearly nothing to do
571 * with the actual block on the Radeon called the rasterizer (RS). */
572 static void* r300_create_rs_state(struct pipe_context* pipe,
573 const struct pipe_rasterizer_state* state)
574 {
575 struct r300_rs_state* rs = CALLOC_STRUCT(r300_rs_state);
576
577 /* Copy rasterizer state for Draw. */
578 rs->rs = *state;
579
580 #ifdef PIPE_ARCH_LITTLE_ENDIAN
581 rs->vap_control_status = R300_VC_NO_SWAP;
582 #else
583 rs->vap_control_status = R300_VC_32BIT_SWAP;
584 #endif
585
586 /* If bypassing TCL, or if no TCL engine is present, turn off the HW TCL.
587 * Else, enable HW TCL and force Draw's TCL off. */
588 if (state->bypass_vs_clip_and_viewport ||
589 !r300_screen(pipe->screen)->caps->has_tcl) {
590 rs->vap_control_status |= R300_VAP_TCL_BYPASS;
591 }
592
593 rs->point_size = pack_float_16_6x(state->point_size) |
594 (pack_float_16_6x(state->point_size) << R300_POINTSIZE_X_SHIFT);
595
596 rs->point_minmax =
597 ((int)(state->point_size_min * 6.0) <<
598 R300_GA_POINT_MINMAX_MIN_SHIFT) |
599 ((int)(state->point_size_max * 6.0) <<
600 R300_GA_POINT_MINMAX_MAX_SHIFT);
601
602 rs->line_control = pack_float_16_6x(state->line_width) |
603 R300_GA_LINE_CNTL_END_TYPE_COMP;
604
605 /* XXX I think there is something wrong with the polygon mode,
606 * XXX re-test when r300g is in a better shape */
607
608 /* Enable polygon mode */
609 if (state->fill_cw != PIPE_POLYGON_MODE_FILL ||
610 state->fill_ccw != PIPE_POLYGON_MODE_FILL) {
611 rs->polygon_mode = R300_GA_POLY_MODE_DUAL;
612 }
613
614 /* Radeons don't think in "CW/CCW", they think in "front/back". */
615 if (state->front_winding == PIPE_WINDING_CW) {
616 rs->cull_mode = R300_FRONT_FACE_CW;
617
618 /* Polygon offset */
619 if (state->offset_cw) {
620 rs->polygon_offset_enable |= R300_FRONT_ENABLE;
621 }
622 if (state->offset_ccw) {
623 rs->polygon_offset_enable |= R300_BACK_ENABLE;
624 }
625
626 /* Polygon mode */
627 if (rs->polygon_mode) {
628 rs->polygon_mode |=
629 r300_translate_polygon_mode_front(state->fill_cw);
630 rs->polygon_mode |=
631 r300_translate_polygon_mode_back(state->fill_ccw);
632 }
633 } else {
634 rs->cull_mode = R300_FRONT_FACE_CCW;
635
636 /* Polygon offset */
637 if (state->offset_ccw) {
638 rs->polygon_offset_enable |= R300_FRONT_ENABLE;
639 }
640 if (state->offset_cw) {
641 rs->polygon_offset_enable |= R300_BACK_ENABLE;
642 }
643
644 /* Polygon mode */
645 if (rs->polygon_mode) {
646 rs->polygon_mode |=
647 r300_translate_polygon_mode_front(state->fill_ccw);
648 rs->polygon_mode |=
649 r300_translate_polygon_mode_back(state->fill_cw);
650 }
651 }
652 if (state->front_winding & state->cull_mode) {
653 rs->cull_mode |= R300_CULL_FRONT;
654 }
655 if (~(state->front_winding) & state->cull_mode) {
656 rs->cull_mode |= R300_CULL_BACK;
657 }
658
659 if (rs->polygon_offset_enable) {
660 rs->depth_offset_front = rs->depth_offset_back =
661 fui(state->offset_units);
662 rs->depth_scale_front = rs->depth_scale_back =
663 fui(state->offset_scale);
664 }
665
666 if (state->line_stipple_enable) {
667 rs->line_stipple_config =
668 R300_GA_LINE_STIPPLE_CONFIG_LINE_RESET_LINE |
669 (fui((float)state->line_stipple_factor) &
670 R300_GA_LINE_STIPPLE_CONFIG_STIPPLE_SCALE_MASK);
671 /* XXX this might need to be scaled up */
672 rs->line_stipple_value = state->line_stipple_pattern;
673 }
674
675 if (state->flatshade) {
676 rs->color_control = R300_SHADE_MODEL_FLAT;
677 } else {
678 rs->color_control = R300_SHADE_MODEL_SMOOTH;
679 }
680
681 return (void*)rs;
682 }
683
684 /* Bind rasterizer state. */
685 static void r300_bind_rs_state(struct pipe_context* pipe, void* state)
686 {
687 struct r300_context* r300 = r300_context(pipe);
688 struct r300_rs_state* rs = (struct r300_rs_state*)state;
689
690 if (r300->draw) {
691 draw_flush(r300->draw);
692 draw_set_rasterizer_state(r300->draw, &rs->rs);
693 }
694
695 if (rs) {
696 r300->tcl_bypass = rs->rs.bypass_vs_clip_and_viewport;
697 } else {
698 r300->tcl_bypass = FALSE;
699 }
700
701 r300->rs_state.state = rs;
702 r300->rs_state.dirty = TRUE;
703 /* XXX Why is this still needed, dammit!? */
704 r300->scissor_state.dirty = TRUE;
705 r300->viewport_state.dirty = TRUE;
706
707 /* XXX Clean these up when we move to atom emits */
708 r300->dirty_state |= R300_NEW_RS_BLOCK;
709 if (r300->fs && r300->fs->inputs.wpos != ATTR_UNUSED) {
710 r300->dirty_state |= R300_NEW_FRAGMENT_SHADER_CONSTANTS;
711 }
712 }
713
714 /* Free rasterizer state. */
715 static void r300_delete_rs_state(struct pipe_context* pipe, void* state)
716 {
717 FREE(state);
718 }
719
720 static void*
721 r300_create_sampler_state(struct pipe_context* pipe,
722 const struct pipe_sampler_state* state)
723 {
724 struct r300_context* r300 = r300_context(pipe);
725 struct r300_sampler_state* sampler = CALLOC_STRUCT(r300_sampler_state);
726 int lod_bias;
727 union util_color uc;
728
729 sampler->state = *state;
730
731 sampler->filter0 |=
732 (r300_translate_wrap(state->wrap_s) << R300_TX_WRAP_S_SHIFT) |
733 (r300_translate_wrap(state->wrap_t) << R300_TX_WRAP_T_SHIFT) |
734 (r300_translate_wrap(state->wrap_r) << R300_TX_WRAP_R_SHIFT);
735
736 sampler->filter0 |= r300_translate_tex_filters(state->min_img_filter,
737 state->mag_img_filter,
738 state->min_mip_filter,
739 state->max_anisotropy > 1.0);
740
741 /* Unfortunately, r300-r500 don't support floating-point mipmap lods. */
742 /* We must pass these to the emit function to clamp them properly. */
743 sampler->min_lod = MAX2((unsigned)state->min_lod, 0);
744 sampler->max_lod = MAX2((unsigned)ceilf(state->max_lod), 0);
745
746 lod_bias = CLAMP((int)(state->lod_bias * 32), -(1 << 9), (1 << 9) - 1);
747
748 sampler->filter1 |= lod_bias << R300_LOD_BIAS_SHIFT;
749
750 sampler->filter1 |= r300_anisotropy(state->max_anisotropy);
751
752 util_pack_color(state->border_color, PIPE_FORMAT_A8R8G8B8_UNORM, &uc);
753 sampler->border_color = uc.ui;
754
755 /* R500-specific fixups and optimizations */
756 if (r300_screen(r300->context.screen)->caps->is_r500) {
757 sampler->filter1 |= R500_BORDER_FIX;
758 }
759
760 return (void*)sampler;
761 }
762
763 static void r300_bind_sampler_states(struct pipe_context* pipe,
764 unsigned count,
765 void** states)
766 {
767 struct r300_context* r300 = r300_context(pipe);
768 int i;
769
770 if (count > 8) {
771 return;
772 }
773
774 for (i = 0; i < count; i++) {
775 if (r300->sampler_states[i] != states[i]) {
776 r300->sampler_states[i] = (struct r300_sampler_state*)states[i];
777 r300->dirty_state |= (R300_NEW_SAMPLER << i);
778 }
779 }
780
781 r300->sampler_count = count;
782
783 /* Pick a fragment shader based on the texture compare state. */
784 if (r300->fs && (r300->dirty_state & R300_ANY_NEW_SAMPLERS)) {
785 if (r300_pick_fragment_shader(r300)) {
786 r300->dirty_state |= R300_NEW_FRAGMENT_SHADER |
787 R300_NEW_FRAGMENT_SHADER_CONSTANTS;
788 }
789 }
790 }
791
792 static void r300_lacks_vertex_textures(struct pipe_context* pipe,
793 unsigned count,
794 void** states)
795 {
796 }
797
798 static void r300_delete_sampler_state(struct pipe_context* pipe, void* state)
799 {
800 FREE(state);
801 }
802
803 static void r300_set_sampler_textures(struct pipe_context* pipe,
804 unsigned count,
805 struct pipe_texture** texture)
806 {
807 struct r300_context* r300 = r300_context(pipe);
808 boolean is_r500 = r300_screen(r300->context.screen)->caps->is_r500;
809 int i;
810
811 /* XXX magic num */
812 if (count > 8) {
813 return;
814 }
815
816 for (i = 0; i < count; i++) {
817 if (r300->textures[i] != (struct r300_texture*)texture[i]) {
818 pipe_texture_reference((struct pipe_texture**)&r300->textures[i],
819 texture[i]);
820 r300->dirty_state |= (R300_NEW_TEXTURE << i);
821
822 /* R300-specific - set the texrect factor in a fragment shader */
823 if (!is_r500 && r300->textures[i]->is_npot) {
824 /* XXX It would be nice to re-emit just 1 constant,
825 * XXX not all of them */
826 r300->dirty_state |= R300_NEW_FRAGMENT_SHADER_CONSTANTS;
827 }
828 }
829 }
830
831 for (i = count; i < 8; i++) {
832 if (r300->textures[i]) {
833 pipe_texture_reference((struct pipe_texture**)&r300->textures[i],
834 NULL);
835 r300->dirty_state |= (R300_NEW_TEXTURE << i);
836 }
837 }
838
839 r300->texture_count = count;
840 }
841
842 static void r300_set_scissor_state(struct pipe_context* pipe,
843 const struct pipe_scissor_state* state)
844 {
845 struct r300_context* r300 = r300_context(pipe);
846
847 memcpy(r300->scissor_state.state, state,
848 sizeof(struct pipe_scissor_state));
849
850 r300->scissor_state.dirty = TRUE;
851 }
852
853 static void r300_set_viewport_state(struct pipe_context* pipe,
854 const struct pipe_viewport_state* state)
855 {
856 struct r300_context* r300 = r300_context(pipe);
857 struct r300_viewport_state* viewport =
858 (struct r300_viewport_state*)r300->viewport_state.state;
859
860 /* Do the transform in HW. */
861 viewport->vte_control = R300_VTX_W0_FMT;
862
863 if (state->scale[0] != 1.0f) {
864 viewport->xscale = state->scale[0];
865 viewport->vte_control |= R300_VPORT_X_SCALE_ENA;
866 }
867 if (state->scale[1] != 1.0f) {
868 viewport->yscale = state->scale[1];
869 viewport->vte_control |= R300_VPORT_Y_SCALE_ENA;
870 }
871 if (state->scale[2] != 1.0f) {
872 viewport->zscale = state->scale[2];
873 viewport->vte_control |= R300_VPORT_Z_SCALE_ENA;
874 }
875 if (state->translate[0] != 0.0f) {
876 viewport->xoffset = state->translate[0];
877 viewport->vte_control |= R300_VPORT_X_OFFSET_ENA;
878 }
879 if (state->translate[1] != 0.0f) {
880 viewport->yoffset = state->translate[1];
881 viewport->vte_control |= R300_VPORT_Y_OFFSET_ENA;
882 }
883 if (state->translate[2] != 0.0f) {
884 viewport->zoffset = state->translate[2];
885 viewport->vte_control |= R300_VPORT_Z_OFFSET_ENA;
886 }
887
888 r300->viewport_state.dirty = TRUE;
889 if (r300->fs && r300->fs->inputs.wpos != ATTR_UNUSED) {
890 r300->dirty_state |= R300_NEW_FRAGMENT_SHADER_CONSTANTS;
891 }
892 }
893
894 static void r300_set_vertex_buffers(struct pipe_context* pipe,
895 unsigned count,
896 const struct pipe_vertex_buffer* buffers)
897 {
898 struct r300_context* r300 = r300_context(pipe);
899
900 memcpy(r300->vertex_buffer, buffers,
901 sizeof(struct pipe_vertex_buffer) * count);
902 r300->vertex_buffer_count = count;
903
904 if (r300->draw) {
905 draw_flush(r300->draw);
906 draw_set_vertex_buffers(r300->draw, count, buffers);
907 }
908
909 r300->dirty_state |= R300_NEW_VERTEX_FORMAT;
910 }
911
912 static void r300_set_vertex_elements(struct pipe_context* pipe,
913 unsigned count,
914 const struct pipe_vertex_element* elements)
915 {
916 struct r300_context* r300 = r300_context(pipe);
917
918 memcpy(r300->vertex_element,
919 elements,
920 sizeof(struct pipe_vertex_element) * count);
921 r300->vertex_element_count = count;
922
923 if (r300->draw) {
924 draw_flush(r300->draw);
925 draw_set_vertex_elements(r300->draw, count, elements);
926 }
927 }
928
929 static void* r300_create_vs_state(struct pipe_context* pipe,
930 const struct pipe_shader_state* shader)
931 {
932 struct r300_context* r300 = r300_context(pipe);
933
934 if (r300_screen(pipe->screen)->caps->has_tcl) {
935 struct r300_vertex_shader* vs = CALLOC_STRUCT(r300_vertex_shader);
936 /* Copy state directly into shader. */
937 vs->state = *shader;
938 vs->state.tokens = tgsi_dup_tokens(shader->tokens);
939
940 tgsi_scan_shader(shader->tokens, &vs->info);
941
942 return (void*)vs;
943 } else {
944 return draw_create_vertex_shader(r300->draw, shader);
945 }
946 }
947
948 static void r300_bind_vs_state(struct pipe_context* pipe, void* shader)
949 {
950 struct r300_context* r300 = r300_context(pipe);
951
952 if (r300_screen(pipe->screen)->caps->has_tcl) {
953 struct r300_vertex_shader* vs = (struct r300_vertex_shader*)shader;
954
955 if (vs == NULL) {
956 r300->vs = NULL;
957 return;
958 } else if (!vs->translated) {
959 r300_translate_vertex_shader(r300, vs);
960 }
961
962 r300->vs = vs;
963 if (r300->fs) {
964 r300_vertex_shader_setup_wpos(r300);
965 }
966
967 r300->dirty_state |=
968 R300_NEW_VERTEX_SHADER | R300_NEW_VERTEX_SHADER_CONSTANTS |
969 R300_NEW_VERTEX_FORMAT;
970 } else {
971 draw_flush(r300->draw);
972 draw_bind_vertex_shader(r300->draw,
973 (struct draw_vertex_shader*)shader);
974 }
975 }
976
977 static void r300_delete_vs_state(struct pipe_context* pipe, void* shader)
978 {
979 struct r300_context* r300 = r300_context(pipe);
980
981 if (r300_screen(pipe->screen)->caps->has_tcl) {
982 struct r300_vertex_shader* vs = (struct r300_vertex_shader*)shader;
983
984 rc_constants_destroy(&vs->code.constants);
985 FREE((void*)vs->state.tokens);
986 FREE(shader);
987 } else {
988 draw_delete_vertex_shader(r300->draw,
989 (struct draw_vertex_shader*)shader);
990 }
991 }
992
993 static void r300_set_constant_buffer(struct pipe_context *pipe,
994 uint shader, uint index,
995 const struct pipe_constant_buffer *buf)
996 {
997 struct r300_context* r300 = r300_context(pipe);
998 void *mapped;
999
1000 if (buf == NULL || buf->buffer->size == 0 ||
1001 (mapped = pipe_buffer_map(pipe->screen, buf->buffer, PIPE_BUFFER_USAGE_CPU_READ)) == NULL)
1002 {
1003 r300->shader_constants[shader].count = 0;
1004 return;
1005 }
1006
1007 assert((buf->buffer->size % 4 * sizeof(float)) == 0);
1008 memcpy(r300->shader_constants[shader].constants, mapped, buf->buffer->size);
1009 r300->shader_constants[shader].count = buf->buffer->size / (4 * sizeof(float));
1010 pipe_buffer_unmap(pipe->screen, buf->buffer);
1011
1012 if (shader == PIPE_SHADER_VERTEX)
1013 r300->dirty_state |= R300_NEW_VERTEX_SHADER_CONSTANTS;
1014 else if (shader == PIPE_SHADER_FRAGMENT)
1015 r300->dirty_state |= R300_NEW_FRAGMENT_SHADER_CONSTANTS;
1016 }
1017
1018 void r300_init_state_functions(struct r300_context* r300)
1019 {
1020 r300->context.create_blend_state = r300_create_blend_state;
1021 r300->context.bind_blend_state = r300_bind_blend_state;
1022 r300->context.delete_blend_state = r300_delete_blend_state;
1023
1024 r300->context.set_blend_color = r300_set_blend_color;
1025
1026 r300->context.set_clip_state = r300_set_clip_state;
1027
1028 r300->context.set_constant_buffer = r300_set_constant_buffer;
1029
1030 r300->context.create_depth_stencil_alpha_state = r300_create_dsa_state;
1031 r300->context.bind_depth_stencil_alpha_state = r300_bind_dsa_state;
1032 r300->context.delete_depth_stencil_alpha_state = r300_delete_dsa_state;
1033
1034 r300->context.set_framebuffer_state = r300_set_framebuffer_state;
1035
1036 r300->context.create_fs_state = r300_create_fs_state;
1037 r300->context.bind_fs_state = r300_bind_fs_state;
1038 r300->context.delete_fs_state = r300_delete_fs_state;
1039
1040 r300->context.set_polygon_stipple = r300_set_polygon_stipple;
1041
1042 r300->context.create_rasterizer_state = r300_create_rs_state;
1043 r300->context.bind_rasterizer_state = r300_bind_rs_state;
1044 r300->context.delete_rasterizer_state = r300_delete_rs_state;
1045
1046 r300->context.create_sampler_state = r300_create_sampler_state;
1047 r300->context.bind_fragment_sampler_states = r300_bind_sampler_states;
1048 r300->context.bind_vertex_sampler_states = r300_lacks_vertex_textures;
1049 r300->context.delete_sampler_state = r300_delete_sampler_state;
1050
1051 r300->context.set_fragment_sampler_textures = r300_set_sampler_textures;
1052
1053 r300->context.set_scissor_state = r300_set_scissor_state;
1054
1055 r300->context.set_viewport_state = r300_set_viewport_state;
1056
1057 r300->context.set_vertex_buffers = r300_set_vertex_buffers;
1058 r300->context.set_vertex_elements = r300_set_vertex_elements;
1059
1060 r300->context.create_vs_state = r300_create_vs_state;
1061 r300->context.bind_vs_state = r300_bind_vs_state;
1062 r300->context.delete_vs_state = r300_delete_vs_state;
1063 }