gallium: make max_anisotropy a unsigned bitfield member
[mesa.git] / src / gallium / drivers / r300 / r300_state.c
1 /*
2 * Copyright 2008 Corbin Simpson <MostAwesomeDude@gmail.com>
3 * Copyright 2009 Marek Olšák <maraeo@gmail.com>
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * on the rights to use, copy, modify, merge, publish, distribute, sub
9 * license, and/or sell copies of the Software, and to permit persons to whom
10 * the Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE. */
23
24 #include "draw/draw_context.h"
25
26 #include "util/u_math.h"
27 #include "util/u_memory.h"
28 #include "util/u_pack_color.h"
29
30 #include "tgsi/tgsi_parse.h"
31
32 #include "pipe/p_config.h"
33
34 #include "r300_context.h"
35 #include "r300_reg.h"
36 #include "r300_screen.h"
37 #include "r300_state_inlines.h"
38 #include "r300_fs.h"
39 #include "r300_vs.h"
40
41 /* r300_state: Functions used to intialize state context by translating
42 * Gallium state objects into semi-native r300 state objects. */
43
44 static boolean blend_discard_if_src_alpha_0(unsigned srcRGB, unsigned srcA,
45 unsigned dstRGB, unsigned dstA)
46 {
47 /* If the blend equation is ADD or REVERSE_SUBTRACT,
48 * SRC_ALPHA == 0, and the following state is set, the colorbuffer
49 * will not be changed.
50 * Notice that the dst factors are the src factors inverted. */
51 return (srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
52 srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE ||
53 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
54 (srcA == PIPE_BLENDFACTOR_SRC_COLOR ||
55 srcA == PIPE_BLENDFACTOR_SRC_ALPHA ||
56 srcA == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE ||
57 srcA == PIPE_BLENDFACTOR_ZERO) &&
58 (dstRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
59 dstRGB == PIPE_BLENDFACTOR_ONE) &&
60 (dstA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
61 dstA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
62 dstA == PIPE_BLENDFACTOR_ONE);
63 }
64
65 static boolean blend_discard_if_src_alpha_1(unsigned srcRGB, unsigned srcA,
66 unsigned dstRGB, unsigned dstA)
67 {
68 /* If the blend equation is ADD or REVERSE_SUBTRACT,
69 * SRC_ALPHA == 1, and the following state is set, the colorbuffer
70 * will not be changed.
71 * Notice that the dst factors are the src factors inverted. */
72 return (srcRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
73 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
74 (srcA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
75 srcA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
76 srcA == PIPE_BLENDFACTOR_ZERO) &&
77 (dstRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
78 dstRGB == PIPE_BLENDFACTOR_ONE) &&
79 (dstA == PIPE_BLENDFACTOR_SRC_COLOR ||
80 dstA == PIPE_BLENDFACTOR_SRC_ALPHA ||
81 dstA == PIPE_BLENDFACTOR_ONE);
82 }
83
84 static boolean blend_discard_if_src_color_0(unsigned srcRGB, unsigned srcA,
85 unsigned dstRGB, unsigned dstA)
86 {
87 /* If the blend equation is ADD or REVERSE_SUBTRACT,
88 * SRC_COLOR == (0,0,0), and the following state is set, the colorbuffer
89 * will not be changed.
90 * Notice that the dst factors are the src factors inverted. */
91 return (srcRGB == PIPE_BLENDFACTOR_SRC_COLOR ||
92 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
93 (srcA == PIPE_BLENDFACTOR_ZERO) &&
94 (dstRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
95 dstRGB == PIPE_BLENDFACTOR_ONE) &&
96 (dstA == PIPE_BLENDFACTOR_ONE);
97 }
98
99 static boolean blend_discard_if_src_color_1(unsigned srcRGB, unsigned srcA,
100 unsigned dstRGB, unsigned dstA)
101 {
102 /* If the blend equation is ADD or REVERSE_SUBTRACT,
103 * SRC_COLOR == (1,1,1), and the following state is set, the colorbuffer
104 * will not be changed.
105 * Notice that the dst factors are the src factors inverted. */
106 return (srcRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
107 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
108 (srcA == PIPE_BLENDFACTOR_ZERO) &&
109 (dstRGB == PIPE_BLENDFACTOR_SRC_COLOR ||
110 dstRGB == PIPE_BLENDFACTOR_ONE) &&
111 (dstA == PIPE_BLENDFACTOR_ONE);
112 }
113
114 static boolean blend_discard_if_src_alpha_color_0(unsigned srcRGB, unsigned srcA,
115 unsigned dstRGB, unsigned dstA)
116 {
117 /* If the blend equation is ADD or REVERSE_SUBTRACT,
118 * SRC_ALPHA_COLOR == (0,0,0,0), and the following state is set,
119 * the colorbuffer will not be changed.
120 * Notice that the dst factors are the src factors inverted. */
121 return (srcRGB == PIPE_BLENDFACTOR_SRC_COLOR ||
122 srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
123 srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE ||
124 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
125 (srcA == PIPE_BLENDFACTOR_SRC_COLOR ||
126 srcA == PIPE_BLENDFACTOR_SRC_ALPHA ||
127 srcA == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE ||
128 srcA == PIPE_BLENDFACTOR_ZERO) &&
129 (dstRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
130 dstRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
131 dstRGB == PIPE_BLENDFACTOR_ONE) &&
132 (dstA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
133 dstA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
134 dstA == PIPE_BLENDFACTOR_ONE);
135 }
136
137 static boolean blend_discard_if_src_alpha_color_1(unsigned srcRGB, unsigned srcA,
138 unsigned dstRGB, unsigned dstA)
139 {
140 /* If the blend equation is ADD or REVERSE_SUBTRACT,
141 * SRC_ALPHA_COLOR == (1,1,1,1), and the following state is set,
142 * the colorbuffer will not be changed.
143 * Notice that the dst factors are the src factors inverted. */
144 return (srcRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
145 srcRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
146 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
147 (srcA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
148 srcA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
149 srcA == PIPE_BLENDFACTOR_ZERO) &&
150 (dstRGB == PIPE_BLENDFACTOR_SRC_COLOR ||
151 dstRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
152 dstRGB == PIPE_BLENDFACTOR_ONE) &&
153 (dstA == PIPE_BLENDFACTOR_SRC_COLOR ||
154 dstA == PIPE_BLENDFACTOR_SRC_ALPHA ||
155 dstA == PIPE_BLENDFACTOR_ONE);
156 }
157
158 static unsigned bgra_cmask(unsigned mask)
159 {
160 /* Gallium uses RGBA color ordering while R300 expects BGRA. */
161
162 return ((mask & PIPE_MASK_R) << 2) |
163 ((mask & PIPE_MASK_B) >> 2) |
164 (mask & (PIPE_MASK_G | PIPE_MASK_A));
165 }
166
167 /* Create a new blend state based on the CSO blend state.
168 *
169 * This encompasses alpha blending, logic/raster ops, and blend dithering. */
170 static void* r300_create_blend_state(struct pipe_context* pipe,
171 const struct pipe_blend_state* state)
172 {
173 struct r300_screen* r300screen = r300_screen(pipe->screen);
174 struct r300_blend_state* blend = CALLOC_STRUCT(r300_blend_state);
175
176 if (state->rt[0].blend_enable)
177 {
178 unsigned eqRGB = state->rt[0].rgb_func;
179 unsigned srcRGB = state->rt[0].rgb_src_factor;
180 unsigned dstRGB = state->rt[0].rgb_dst_factor;
181
182 unsigned eqA = state->rt[0].alpha_func;
183 unsigned srcA = state->rt[0].alpha_src_factor;
184 unsigned dstA = state->rt[0].alpha_dst_factor;
185
186 /* despite the name, ALPHA_BLEND_ENABLE has nothing to do with alpha,
187 * this is just the crappy D3D naming */
188 blend->blend_control = R300_ALPHA_BLEND_ENABLE |
189 r300_translate_blend_function(eqRGB) |
190 ( r300_translate_blend_factor(srcRGB) << R300_SRC_BLEND_SHIFT) |
191 ( r300_translate_blend_factor(dstRGB) << R300_DST_BLEND_SHIFT);
192
193 /* Optimization: some operations do not require the destination color.
194 *
195 * When SRC_ALPHA_SATURATE is used, colorbuffer reads must be enabled,
196 * otherwise blending gives incorrect results. It seems to be
197 * a hardware bug. */
198 if (eqRGB == PIPE_BLEND_MIN || eqA == PIPE_BLEND_MIN ||
199 eqRGB == PIPE_BLEND_MAX || eqA == PIPE_BLEND_MAX ||
200 dstRGB != PIPE_BLENDFACTOR_ZERO ||
201 dstA != PIPE_BLENDFACTOR_ZERO ||
202 srcRGB == PIPE_BLENDFACTOR_DST_COLOR ||
203 srcRGB == PIPE_BLENDFACTOR_DST_ALPHA ||
204 srcRGB == PIPE_BLENDFACTOR_INV_DST_COLOR ||
205 srcRGB == PIPE_BLENDFACTOR_INV_DST_ALPHA ||
206 srcA == PIPE_BLENDFACTOR_DST_COLOR ||
207 srcA == PIPE_BLENDFACTOR_DST_ALPHA ||
208 srcA == PIPE_BLENDFACTOR_INV_DST_COLOR ||
209 srcA == PIPE_BLENDFACTOR_INV_DST_ALPHA ||
210 srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE) {
211 /* Enable reading from the colorbuffer. */
212 blend->blend_control |= R300_READ_ENABLE;
213
214 if (r300_screen(r300_context(pipe)->context.screen)->caps->is_r500) {
215 /* Optimization: Depending on incoming pixels, we can
216 * conditionally disable the reading in hardware... */
217 if (eqRGB != PIPE_BLEND_MIN && eqA != PIPE_BLEND_MIN &&
218 eqRGB != PIPE_BLEND_MAX && eqA != PIPE_BLEND_MAX) {
219 /* Disable reading if SRC_ALPHA == 0. */
220 if ((dstRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
221 dstRGB == PIPE_BLENDFACTOR_ZERO) &&
222 (dstA == PIPE_BLENDFACTOR_SRC_COLOR ||
223 dstA == PIPE_BLENDFACTOR_SRC_ALPHA ||
224 dstA == PIPE_BLENDFACTOR_ZERO)) {
225 blend->blend_control |= R500_SRC_ALPHA_0_NO_READ;
226 }
227
228 /* Disable reading if SRC_ALPHA == 1. */
229 if ((dstRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
230 dstRGB == PIPE_BLENDFACTOR_ZERO) &&
231 (dstA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
232 dstA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
233 dstA == PIPE_BLENDFACTOR_ZERO)) {
234 blend->blend_control |= R500_SRC_ALPHA_1_NO_READ;
235 }
236 }
237 }
238 }
239
240 /* Optimization: discard pixels which don't change the colorbuffer.
241 *
242 * The code below is non-trivial and some math is involved.
243 *
244 * Discarding pixels must be disabled when FP16 AA is enabled.
245 * This is a hardware bug. Also, this implementation wouldn't work
246 * with FP blending enabled and equation clamping disabled.
247 *
248 * Equations other than ADD are rarely used and therefore won't be
249 * optimized. */
250 if ((eqRGB == PIPE_BLEND_ADD || eqRGB == PIPE_BLEND_REVERSE_SUBTRACT) &&
251 (eqA == PIPE_BLEND_ADD || eqA == PIPE_BLEND_REVERSE_SUBTRACT)) {
252 /* ADD: X+Y
253 * REVERSE_SUBTRACT: Y-X
254 *
255 * The idea is:
256 * If X = src*srcFactor = 0 and Y = dst*dstFactor = 1,
257 * then CB will not be changed.
258 *
259 * Given the srcFactor and dstFactor variables, we can derive
260 * what src and dst should be equal to and discard appropriate
261 * pixels.
262 */
263 if (blend_discard_if_src_alpha_0(srcRGB, srcA, dstRGB, dstA)) {
264 blend->blend_control |= R300_DISCARD_SRC_PIXELS_SRC_ALPHA_0;
265 } else if (blend_discard_if_src_alpha_1(srcRGB, srcA,
266 dstRGB, dstA)) {
267 blend->blend_control |= R300_DISCARD_SRC_PIXELS_SRC_ALPHA_1;
268 } else if (blend_discard_if_src_color_0(srcRGB, srcA,
269 dstRGB, dstA)) {
270 blend->blend_control |= R300_DISCARD_SRC_PIXELS_SRC_COLOR_0;
271 } else if (blend_discard_if_src_color_1(srcRGB, srcA,
272 dstRGB, dstA)) {
273 blend->blend_control |= R300_DISCARD_SRC_PIXELS_SRC_COLOR_1;
274 } else if (blend_discard_if_src_alpha_color_0(srcRGB, srcA,
275 dstRGB, dstA)) {
276 blend->blend_control |=
277 R300_DISCARD_SRC_PIXELS_SRC_ALPHA_COLOR_0;
278 } else if (blend_discard_if_src_alpha_color_1(srcRGB, srcA,
279 dstRGB, dstA)) {
280 blend->blend_control |=
281 R300_DISCARD_SRC_PIXELS_SRC_ALPHA_COLOR_1;
282 }
283 }
284
285 /* separate alpha */
286 if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB) {
287 blend->blend_control |= R300_SEPARATE_ALPHA_ENABLE;
288 blend->alpha_blend_control =
289 r300_translate_blend_function(eqA) |
290 (r300_translate_blend_factor(srcA) << R300_SRC_BLEND_SHIFT) |
291 (r300_translate_blend_factor(dstA) << R300_DST_BLEND_SHIFT);
292 }
293 }
294
295 /* PIPE_LOGICOP_* don't need to be translated, fortunately. */
296 if (state->logicop_enable) {
297 blend->rop = R300_RB3D_ROPCNTL_ROP_ENABLE |
298 (state->logicop_func) << R300_RB3D_ROPCNTL_ROP_SHIFT;
299 }
300
301 /* Color channel masks for all MRTs. */
302 blend->color_channel_mask = bgra_cmask(state->rt[0].colormask);
303 if (r300screen->caps->is_r500 && state->independent_blend_enable) {
304 if (state->rt[1].blend_enable) {
305 blend->color_channel_mask |= bgra_cmask(state->rt[1].colormask) << 4;
306 }
307 if (state->rt[2].blend_enable) {
308 blend->color_channel_mask |= bgra_cmask(state->rt[2].colormask) << 8;
309 }
310 if (state->rt[3].blend_enable) {
311 blend->color_channel_mask |= bgra_cmask(state->rt[3].colormask) << 12;
312 }
313 }
314
315 if (state->dither) {
316 blend->dither = R300_RB3D_DITHER_CTL_DITHER_MODE_LUT |
317 R300_RB3D_DITHER_CTL_ALPHA_DITHER_MODE_LUT;
318 }
319
320 return (void*)blend;
321 }
322
323 /* Bind blend state. */
324 static void r300_bind_blend_state(struct pipe_context* pipe,
325 void* state)
326 {
327 struct r300_context* r300 = r300_context(pipe);
328
329 r300->blend_state.state = state;
330 r300->blend_state.dirty = TRUE;
331 }
332
333 /* Free blend state. */
334 static void r300_delete_blend_state(struct pipe_context* pipe,
335 void* state)
336 {
337 FREE(state);
338 }
339
340 /* Convert float to 10bit integer */
341 static unsigned float_to_fixed10(float f)
342 {
343 return CLAMP((unsigned)(f * 1023.9f), 0, 1023);
344 }
345
346 /* Set blend color.
347 * Setup both R300 and R500 registers, figure out later which one to write. */
348 static void r300_set_blend_color(struct pipe_context* pipe,
349 const struct pipe_blend_color* color)
350 {
351 struct r300_context* r300 = r300_context(pipe);
352 struct r300_screen* r300screen = r300_screen(pipe->screen);
353 struct r300_blend_color_state* state =
354 (struct r300_blend_color_state*)r300->blend_color_state.state;
355 union util_color uc;
356
357 util_pack_color(color->color, PIPE_FORMAT_A8R8G8B8_UNORM, &uc);
358 state->blend_color = uc.ui;
359
360 /* XXX if FP16 blending is enabled, we should use the FP16 format */
361 state->blend_color_red_alpha =
362 float_to_fixed10(color->color[0]) |
363 (float_to_fixed10(color->color[3]) << 16);
364 state->blend_color_green_blue =
365 float_to_fixed10(color->color[2]) |
366 (float_to_fixed10(color->color[1]) << 16);
367
368 r300->blend_color_state.size = r300screen->caps->is_r500 ? 3 : 2;
369 r300->blend_color_state.dirty = TRUE;
370 }
371
372 static void r300_set_clip_state(struct pipe_context* pipe,
373 const struct pipe_clip_state* state)
374 {
375 struct r300_context* r300 = r300_context(pipe);
376
377 if (r300_screen(pipe->screen)->caps->has_tcl) {
378 memcpy(r300->clip_state.state, state, sizeof(struct pipe_clip_state));
379 r300->clip_state.size = 29;
380 } else {
381 draw_flush(r300->draw);
382 draw_set_clip_state(r300->draw, state);
383 r300->clip_state.size = 2;
384 }
385
386 r300->clip_state.dirty = TRUE;
387 }
388
389 /* Create a new depth, stencil, and alpha state based on the CSO dsa state.
390 *
391 * This contains the depth buffer, stencil buffer, alpha test, and such.
392 * On the Radeon, depth and stencil buffer setup are intertwined, which is
393 * the reason for some of the strange-looking assignments across registers. */
394 static void*
395 r300_create_dsa_state(struct pipe_context* pipe,
396 const struct pipe_depth_stencil_alpha_state* state)
397 {
398 struct r300_capabilities *caps =
399 r300_screen(r300_context(pipe)->context.screen)->caps;
400 struct r300_dsa_state* dsa = CALLOC_STRUCT(r300_dsa_state);
401
402 /* Depth test setup. */
403 if (state->depth.enabled) {
404 dsa->z_buffer_control |= R300_Z_ENABLE;
405
406 if (state->depth.writemask) {
407 dsa->z_buffer_control |= R300_Z_WRITE_ENABLE;
408 }
409
410 dsa->z_stencil_control |=
411 (r300_translate_depth_stencil_function(state->depth.func) <<
412 R300_Z_FUNC_SHIFT);
413 }
414
415 /* Stencil buffer setup. */
416 if (state->stencil[0].enabled) {
417 dsa->z_buffer_control |= R300_STENCIL_ENABLE;
418 dsa->z_stencil_control |=
419 (r300_translate_depth_stencil_function(state->stencil[0].func) <<
420 R300_S_FRONT_FUNC_SHIFT) |
421 (r300_translate_stencil_op(state->stencil[0].fail_op) <<
422 R300_S_FRONT_SFAIL_OP_SHIFT) |
423 (r300_translate_stencil_op(state->stencil[0].zpass_op) <<
424 R300_S_FRONT_ZPASS_OP_SHIFT) |
425 (r300_translate_stencil_op(state->stencil[0].zfail_op) <<
426 R300_S_FRONT_ZFAIL_OP_SHIFT);
427
428 dsa->stencil_ref_mask =
429 (state->stencil[0].valuemask << R300_STENCILMASK_SHIFT) |
430 (state->stencil[0].writemask << R300_STENCILWRITEMASK_SHIFT);
431
432 if (state->stencil[1].enabled) {
433 dsa->z_buffer_control |= R300_STENCIL_FRONT_BACK;
434 dsa->z_stencil_control |=
435 (r300_translate_depth_stencil_function(state->stencil[1].func) <<
436 R300_S_BACK_FUNC_SHIFT) |
437 (r300_translate_stencil_op(state->stencil[1].fail_op) <<
438 R300_S_BACK_SFAIL_OP_SHIFT) |
439 (r300_translate_stencil_op(state->stencil[1].zpass_op) <<
440 R300_S_BACK_ZPASS_OP_SHIFT) |
441 (r300_translate_stencil_op(state->stencil[1].zfail_op) <<
442 R300_S_BACK_ZFAIL_OP_SHIFT);
443
444 if (caps->is_r500)
445 {
446 dsa->z_buffer_control |= R500_STENCIL_REFMASK_FRONT_BACK;
447 dsa->stencil_ref_bf =
448 (state->stencil[1].valuemask <<
449 R300_STENCILMASK_SHIFT) |
450 (state->stencil[1].writemask <<
451 R300_STENCILWRITEMASK_SHIFT);
452 }
453 }
454 }
455
456 /* Alpha test setup. */
457 if (state->alpha.enabled) {
458 dsa->alpha_function =
459 r300_translate_alpha_function(state->alpha.func) |
460 R300_FG_ALPHA_FUNC_ENABLE;
461
462 /* We could use 10bit alpha ref but who needs that? */
463 dsa->alpha_function |= float_to_ubyte(state->alpha.ref_value);
464
465 if (caps->is_r500)
466 dsa->alpha_function |= R500_FG_ALPHA_FUNC_8BIT;
467 }
468
469 return (void*)dsa;
470 }
471
472 /* Bind DSA state. */
473 static void r300_bind_dsa_state(struct pipe_context* pipe,
474 void* state)
475 {
476 struct r300_context* r300 = r300_context(pipe);
477 struct r300_screen* r300screen = r300_screen(pipe->screen);
478
479 r300->dsa_state.state = state;
480 r300->dsa_state.size = r300screen->caps->is_r500 ? 8 : 6;
481 r300->dsa_state.dirty = TRUE;
482 }
483
484 /* Free DSA state. */
485 static void r300_delete_dsa_state(struct pipe_context* pipe,
486 void* state)
487 {
488 FREE(state);
489 }
490
491 static void r300_set_stencil_ref(struct pipe_context* pipe,
492 const struct pipe_stencil_ref* sr)
493 {
494 struct r300_context* r300 = r300_context(pipe);
495 r300->stencil_ref = *sr;
496 r300->dsa_state.dirty = TRUE;
497 }
498
499 static void
500 r300_set_framebuffer_state(struct pipe_context* pipe,
501 const struct pipe_framebuffer_state* state)
502 {
503 struct r300_context* r300 = r300_context(pipe);
504 uint32_t zbuffer_bpp = 0;
505
506 r300->fb_state.size = (10 * state->nr_cbufs) +
507 (2 * (4 - state->nr_cbufs)) +
508 (state->zsbuf ? 10 : 0) + 6;
509
510 if (state->nr_cbufs > 4) {
511 debug_printf("r300: Implementation error: Too many MRTs in %s, "
512 "refusing to bind framebuffer state!\n", __FUNCTION__);
513 return;
514 }
515
516 if (r300->draw) {
517 draw_flush(r300->draw);
518 }
519
520 memcpy(r300->fb_state.state, state, sizeof(struct pipe_framebuffer_state));
521
522 /* Don't rely on the order of states being set for the first time. */
523 /* XXX wait what */
524 r300->blend_state.dirty = TRUE;
525 r300->dsa_state.dirty = TRUE;
526 r300->fb_state.dirty = TRUE;
527 r300->scissor_state.dirty = TRUE;
528
529 /* Polygon offset depends on the zbuffer bit depth. */
530 if (state->zsbuf && r300->polygon_offset_enabled) {
531 switch (util_format_get_blocksize(state->zsbuf->texture->format)) {
532 case 2:
533 zbuffer_bpp = 16;
534 break;
535 case 4:
536 zbuffer_bpp = 24;
537 break;
538 }
539
540 if (r300->zbuffer_bpp != zbuffer_bpp) {
541 r300->zbuffer_bpp = zbuffer_bpp;
542 r300->rs_state.dirty = TRUE;
543 }
544 }
545 }
546
547 /* Create fragment shader state. */
548 static void* r300_create_fs_state(struct pipe_context* pipe,
549 const struct pipe_shader_state* shader)
550 {
551 struct r300_fragment_shader* fs = NULL;
552
553 fs = (struct r300_fragment_shader*)CALLOC_STRUCT(r300_fragment_shader);
554
555 /* Copy state directly into shader. */
556 fs->state = *shader;
557 fs->state.tokens = tgsi_dup_tokens(shader->tokens);
558
559 tgsi_scan_shader(shader->tokens, &fs->info);
560 r300_shader_read_fs_inputs(&fs->info, &fs->inputs);
561
562 return (void*)fs;
563 }
564
565 /* Bind fragment shader state. */
566 static void r300_bind_fs_state(struct pipe_context* pipe, void* shader)
567 {
568 struct r300_context* r300 = r300_context(pipe);
569 struct r300_fragment_shader* fs = (struct r300_fragment_shader*)shader;
570
571 if (fs == NULL) {
572 r300->fs = NULL;
573 return;
574 }
575
576 r300->fs = fs;
577 r300_pick_fragment_shader(r300);
578
579 if (r300->vs && r300_vertex_shader_setup_wpos(r300)) {
580 r300->vertex_format_state.dirty = TRUE;
581 }
582
583 r300->dirty_state |= R300_NEW_FRAGMENT_SHADER | R300_NEW_FRAGMENT_SHADER_CONSTANTS;
584 }
585
586 /* Delete fragment shader state. */
587 static void r300_delete_fs_state(struct pipe_context* pipe, void* shader)
588 {
589 struct r300_fragment_shader* fs = (struct r300_fragment_shader*)shader;
590 struct r300_fragment_shader_code *tmp, *ptr = fs->first;
591
592 while (ptr) {
593 tmp = ptr;
594 ptr = ptr->next;
595 rc_constants_destroy(&tmp->code.constants);
596 FREE(tmp);
597 }
598 FREE((void*)fs->state.tokens);
599 FREE(shader);
600 }
601
602 static void r300_set_polygon_stipple(struct pipe_context* pipe,
603 const struct pipe_poly_stipple* state)
604 {
605 /* XXX no idea how to set this up, but not terribly important */
606 }
607
608 /* Create a new rasterizer state based on the CSO rasterizer state.
609 *
610 * This is a very large chunk of state, and covers most of the graphics
611 * backend (GB), geometry assembly (GA), and setup unit (SU) blocks.
612 *
613 * In a not entirely unironic sidenote, this state has nearly nothing to do
614 * with the actual block on the Radeon called the rasterizer (RS). */
615 static void* r300_create_rs_state(struct pipe_context* pipe,
616 const struct pipe_rasterizer_state* state)
617 {
618 struct r300_rs_state* rs = CALLOC_STRUCT(r300_rs_state);
619
620 /* Copy rasterizer state for Draw. */
621 rs->rs = *state;
622
623 #ifdef PIPE_ARCH_LITTLE_ENDIAN
624 rs->vap_control_status = R300_VC_NO_SWAP;
625 #else
626 rs->vap_control_status = R300_VC_32BIT_SWAP;
627 #endif
628
629 /* If bypassing TCL, or if no TCL engine is present, turn off the HW TCL.
630 * Else, enable HW TCL and force Draw's TCL off. */
631 if (state->bypass_vs_clip_and_viewport ||
632 !r300_screen(pipe->screen)->caps->has_tcl) {
633 rs->vap_control_status |= R300_VAP_TCL_BYPASS;
634 }
635
636 rs->point_size = pack_float_16_6x(state->point_size) |
637 (pack_float_16_6x(state->point_size) << R300_POINTSIZE_X_SHIFT);
638
639 /* set hw limits - clamping done by state tracker in vs or point_size
640 XXX always need to emit this? */
641 rs->point_minmax =
642 ((int)(0.0 * 6.0) <<
643 R300_GA_POINT_MINMAX_MIN_SHIFT) |
644 ((int)(4096.0 * 6.0) <<
645 R300_GA_POINT_MINMAX_MAX_SHIFT);
646
647 rs->line_control = pack_float_16_6x(state->line_width) |
648 R300_GA_LINE_CNTL_END_TYPE_COMP;
649
650 /* Enable polygon mode */
651 if (state->fill_cw != PIPE_POLYGON_MODE_FILL ||
652 state->fill_ccw != PIPE_POLYGON_MODE_FILL) {
653 rs->polygon_mode = R300_GA_POLY_MODE_DUAL;
654 }
655
656 /* Radeons don't think in "CW/CCW", they think in "front/back". */
657 if (state->front_winding == PIPE_WINDING_CW) {
658 rs->cull_mode = R300_FRONT_FACE_CW;
659
660 /* Polygon offset */
661 if (state->offset_cw) {
662 rs->polygon_offset_enable |= R300_FRONT_ENABLE;
663 }
664 if (state->offset_ccw) {
665 rs->polygon_offset_enable |= R300_BACK_ENABLE;
666 }
667
668 /* Polygon mode */
669 if (rs->polygon_mode) {
670 rs->polygon_mode |=
671 r300_translate_polygon_mode_front(state->fill_cw);
672 rs->polygon_mode |=
673 r300_translate_polygon_mode_back(state->fill_ccw);
674 }
675 } else {
676 rs->cull_mode = R300_FRONT_FACE_CCW;
677
678 /* Polygon offset */
679 if (state->offset_ccw) {
680 rs->polygon_offset_enable |= R300_FRONT_ENABLE;
681 }
682 if (state->offset_cw) {
683 rs->polygon_offset_enable |= R300_BACK_ENABLE;
684 }
685
686 /* Polygon mode */
687 if (rs->polygon_mode) {
688 rs->polygon_mode |=
689 r300_translate_polygon_mode_front(state->fill_ccw);
690 rs->polygon_mode |=
691 r300_translate_polygon_mode_back(state->fill_cw);
692 }
693 }
694 if (state->front_winding & state->cull_mode) {
695 rs->cull_mode |= R300_CULL_FRONT;
696 }
697 if (~(state->front_winding) & state->cull_mode) {
698 rs->cull_mode |= R300_CULL_BACK;
699 }
700
701 if (rs->polygon_offset_enable) {
702 rs->depth_offset = state->offset_units;
703 rs->depth_scale = state->offset_scale;
704 }
705
706 if (state->line_stipple_enable) {
707 rs->line_stipple_config =
708 R300_GA_LINE_STIPPLE_CONFIG_LINE_RESET_LINE |
709 (fui((float)state->line_stipple_factor) &
710 R300_GA_LINE_STIPPLE_CONFIG_STIPPLE_SCALE_MASK);
711 /* XXX this might need to be scaled up */
712 rs->line_stipple_value = state->line_stipple_pattern;
713 }
714
715 if (state->flatshade) {
716 rs->color_control = R300_SHADE_MODEL_FLAT;
717 } else {
718 rs->color_control = R300_SHADE_MODEL_SMOOTH;
719 }
720
721 return (void*)rs;
722 }
723
724 /* Bind rasterizer state. */
725 static void r300_bind_rs_state(struct pipe_context* pipe, void* state)
726 {
727 struct r300_context* r300 = r300_context(pipe);
728 struct r300_rs_state* rs = (struct r300_rs_state*)state;
729
730 if (r300->draw) {
731 draw_flush(r300->draw);
732 draw_set_rasterizer_state(r300->draw, &rs->rs);
733 }
734
735 if (rs) {
736 r300->tcl_bypass = rs->rs.bypass_vs_clip_and_viewport;
737 r300->polygon_offset_enabled = rs->rs.offset_cw || rs->rs.offset_ccw;
738 } else {
739 r300->tcl_bypass = FALSE;
740 r300->polygon_offset_enabled = FALSE;
741 }
742
743 r300->rs_state.state = rs;
744 r300->rs_state.dirty = TRUE;
745 /* XXX Why is this still needed, dammit!? */
746 r300->scissor_state.dirty = TRUE;
747 r300->viewport_state.dirty = TRUE;
748
749 /* XXX Clean these up when we move to atom emits */
750 if (r300->fs && r300->fs->inputs.wpos != ATTR_UNUSED) {
751 r300->dirty_state |= R300_NEW_FRAGMENT_SHADER_CONSTANTS;
752 }
753 }
754
755 /* Free rasterizer state. */
756 static void r300_delete_rs_state(struct pipe_context* pipe, void* state)
757 {
758 FREE(state);
759 }
760
761 static void*
762 r300_create_sampler_state(struct pipe_context* pipe,
763 const struct pipe_sampler_state* state)
764 {
765 struct r300_context* r300 = r300_context(pipe);
766 struct r300_sampler_state* sampler = CALLOC_STRUCT(r300_sampler_state);
767 int lod_bias;
768 union util_color uc;
769
770 sampler->state = *state;
771
772 sampler->filter0 |=
773 (r300_translate_wrap(state->wrap_s) << R300_TX_WRAP_S_SHIFT) |
774 (r300_translate_wrap(state->wrap_t) << R300_TX_WRAP_T_SHIFT) |
775 (r300_translate_wrap(state->wrap_r) << R300_TX_WRAP_R_SHIFT);
776
777 sampler->filter0 |= r300_translate_tex_filters(state->min_img_filter,
778 state->mag_img_filter,
779 state->min_mip_filter,
780 state->max_anisotropy > 0);
781
782 /* Unfortunately, r300-r500 don't support floating-point mipmap lods. */
783 /* We must pass these to the emit function to clamp them properly. */
784 sampler->min_lod = MAX2((unsigned)state->min_lod, 0);
785 sampler->max_lod = MAX2((unsigned)ceilf(state->max_lod), 0);
786
787 lod_bias = CLAMP((int)(state->lod_bias * 32), -(1 << 9), (1 << 9) - 1);
788
789 sampler->filter1 |= lod_bias << R300_LOD_BIAS_SHIFT;
790
791 sampler->filter1 |= r300_anisotropy(state->max_anisotropy);
792
793 util_pack_color(state->border_color, PIPE_FORMAT_A8R8G8B8_UNORM, &uc);
794 sampler->border_color = uc.ui;
795
796 /* R500-specific fixups and optimizations */
797 if (r300_screen(r300->context.screen)->caps->is_r500) {
798 sampler->filter1 |= R500_BORDER_FIX;
799 }
800
801 return (void*)sampler;
802 }
803
804 static void r300_bind_sampler_states(struct pipe_context* pipe,
805 unsigned count,
806 void** states)
807 {
808 struct r300_context* r300 = r300_context(pipe);
809 int i;
810
811 if (count > 8) {
812 return;
813 }
814
815 for (i = 0; i < count; i++) {
816 if (r300->sampler_states[i] != states[i]) {
817 r300->sampler_states[i] = (struct r300_sampler_state*)states[i];
818 r300->dirty_state |= (R300_NEW_SAMPLER << i);
819 }
820 }
821
822 r300->sampler_count = count;
823
824 /* Pick a fragment shader based on the texture compare state. */
825 if (r300->fs && (r300->dirty_state & R300_ANY_NEW_SAMPLERS)) {
826 if (r300_pick_fragment_shader(r300)) {
827 r300->dirty_state |= R300_NEW_FRAGMENT_SHADER |
828 R300_NEW_FRAGMENT_SHADER_CONSTANTS;
829 }
830 }
831 }
832
833 static void r300_lacks_vertex_textures(struct pipe_context* pipe,
834 unsigned count,
835 void** states)
836 {
837 }
838
839 static void r300_delete_sampler_state(struct pipe_context* pipe, void* state)
840 {
841 FREE(state);
842 }
843
844 static void r300_set_sampler_textures(struct pipe_context* pipe,
845 unsigned count,
846 struct pipe_texture** texture)
847 {
848 struct r300_context* r300 = r300_context(pipe);
849 boolean is_r500 = r300_screen(r300->context.screen)->caps->is_r500;
850 int i;
851
852 /* XXX magic num */
853 if (count > 8) {
854 return;
855 }
856
857 for (i = 0; i < count; i++) {
858 if (r300->textures[i] != (struct r300_texture*)texture[i]) {
859 pipe_texture_reference((struct pipe_texture**)&r300->textures[i],
860 texture[i]);
861 r300->dirty_state |= (R300_NEW_TEXTURE << i);
862
863 /* R300-specific - set the texrect factor in a fragment shader */
864 if (!is_r500 && r300->textures[i]->is_npot) {
865 /* XXX It would be nice to re-emit just 1 constant,
866 * XXX not all of them */
867 r300->dirty_state |= R300_NEW_FRAGMENT_SHADER_CONSTANTS;
868 }
869 }
870 }
871
872 for (i = count; i < 8; i++) {
873 if (r300->textures[i]) {
874 pipe_texture_reference((struct pipe_texture**)&r300->textures[i],
875 NULL);
876 r300->dirty_state |= (R300_NEW_TEXTURE << i);
877 }
878 }
879
880 r300->texture_count = count;
881 }
882
883 static void r300_set_scissor_state(struct pipe_context* pipe,
884 const struct pipe_scissor_state* state)
885 {
886 struct r300_context* r300 = r300_context(pipe);
887
888 memcpy(r300->scissor_state.state, state,
889 sizeof(struct pipe_scissor_state));
890
891 r300->scissor_state.dirty = TRUE;
892 }
893
894 static void r300_set_viewport_state(struct pipe_context* pipe,
895 const struct pipe_viewport_state* state)
896 {
897 struct r300_context* r300 = r300_context(pipe);
898 struct r300_viewport_state* viewport =
899 (struct r300_viewport_state*)r300->viewport_state.state;
900
901 /* Do the transform in HW. */
902 viewport->vte_control = R300_VTX_W0_FMT;
903
904 if (state->scale[0] != 1.0f) {
905 viewport->xscale = state->scale[0];
906 viewport->vte_control |= R300_VPORT_X_SCALE_ENA;
907 }
908 if (state->scale[1] != 1.0f) {
909 viewport->yscale = state->scale[1];
910 viewport->vte_control |= R300_VPORT_Y_SCALE_ENA;
911 }
912 if (state->scale[2] != 1.0f) {
913 viewport->zscale = state->scale[2];
914 viewport->vte_control |= R300_VPORT_Z_SCALE_ENA;
915 }
916 if (state->translate[0] != 0.0f) {
917 viewport->xoffset = state->translate[0];
918 viewport->vte_control |= R300_VPORT_X_OFFSET_ENA;
919 }
920 if (state->translate[1] != 0.0f) {
921 viewport->yoffset = state->translate[1];
922 viewport->vte_control |= R300_VPORT_Y_OFFSET_ENA;
923 }
924 if (state->translate[2] != 0.0f) {
925 viewport->zoffset = state->translate[2];
926 viewport->vte_control |= R300_VPORT_Z_OFFSET_ENA;
927 }
928
929 r300->viewport_state.dirty = TRUE;
930 if (r300->fs && r300->fs->inputs.wpos != ATTR_UNUSED) {
931 r300->dirty_state |= R300_NEW_FRAGMENT_SHADER_CONSTANTS;
932 }
933 }
934
935 static void r300_set_vertex_buffers(struct pipe_context* pipe,
936 unsigned count,
937 const struct pipe_vertex_buffer* buffers)
938 {
939 struct r300_context* r300 = r300_context(pipe);
940
941 memcpy(r300->vertex_buffer, buffers,
942 sizeof(struct pipe_vertex_buffer) * count);
943 r300->vertex_buffer_count = count;
944
945 if (r300->draw) {
946 draw_flush(r300->draw);
947 draw_set_vertex_buffers(r300->draw, count, buffers);
948 }
949
950 r300->vertex_format_state.dirty = TRUE;
951 }
952
953 static boolean r300_validate_aos(struct r300_context *r300)
954 {
955 struct pipe_vertex_buffer *vbuf = r300->vertex_buffer;
956 struct pipe_vertex_element *velem = r300->vertex_element;
957 int i;
958
959 /* Check if formats and strides are aligned to the size of DWORD. */
960 for (i = 0; i < r300->vertex_element_count; i++) {
961 if (vbuf[velem[i].vertex_buffer_index].stride % 4 != 0 ||
962 util_format_get_blocksize(velem[i].src_format) % 4 != 0) {
963 return FALSE;
964 }
965 }
966 return TRUE;
967 }
968
969 static void r300_set_vertex_elements(struct pipe_context* pipe,
970 unsigned count,
971 const struct pipe_vertex_element* elements)
972 {
973 struct r300_context* r300 = r300_context(pipe);
974
975 memcpy(r300->vertex_element,
976 elements,
977 sizeof(struct pipe_vertex_element) * count);
978 r300->vertex_element_count = count;
979
980 if (r300->draw) {
981 draw_flush(r300->draw);
982 draw_set_vertex_elements(r300->draw, count, elements);
983 }
984
985 if (!r300_validate_aos(r300)) {
986 /* XXX We should fallback using draw. */
987 assert(0);
988 abort();
989 }
990 }
991
992 static void* r300_create_vs_state(struct pipe_context* pipe,
993 const struct pipe_shader_state* shader)
994 {
995 struct r300_context* r300 = r300_context(pipe);
996
997 if (r300_screen(pipe->screen)->caps->has_tcl) {
998 struct r300_vertex_shader* vs = CALLOC_STRUCT(r300_vertex_shader);
999 /* Copy state directly into shader. */
1000 vs->state = *shader;
1001 vs->state.tokens = tgsi_dup_tokens(shader->tokens);
1002
1003 tgsi_scan_shader(shader->tokens, &vs->info);
1004
1005 return (void*)vs;
1006 } else {
1007 return draw_create_vertex_shader(r300->draw, shader);
1008 }
1009 }
1010
1011 static void r300_bind_vs_state(struct pipe_context* pipe, void* shader)
1012 {
1013 struct r300_context* r300 = r300_context(pipe);
1014
1015 if (r300_screen(pipe->screen)->caps->has_tcl) {
1016 struct r300_vertex_shader* vs = (struct r300_vertex_shader*)shader;
1017
1018 if (vs == NULL) {
1019 r300->vs = NULL;
1020 return;
1021 } else if (!vs->translated) {
1022 r300_translate_vertex_shader(r300, vs);
1023 }
1024
1025 r300->vs = vs;
1026 if (r300->fs) {
1027 r300_vertex_shader_setup_wpos(r300);
1028 }
1029
1030 r300->vertex_format_state.dirty = TRUE;
1031
1032 r300->dirty_state |=
1033 R300_NEW_VERTEX_SHADER | R300_NEW_VERTEX_SHADER_CONSTANTS;
1034 } else {
1035 draw_flush(r300->draw);
1036 draw_bind_vertex_shader(r300->draw,
1037 (struct draw_vertex_shader*)shader);
1038 }
1039 }
1040
1041 static void r300_delete_vs_state(struct pipe_context* pipe, void* shader)
1042 {
1043 struct r300_context* r300 = r300_context(pipe);
1044
1045 if (r300_screen(pipe->screen)->caps->has_tcl) {
1046 struct r300_vertex_shader* vs = (struct r300_vertex_shader*)shader;
1047
1048 rc_constants_destroy(&vs->code.constants);
1049 FREE((void*)vs->state.tokens);
1050 FREE(shader);
1051 } else {
1052 draw_delete_vertex_shader(r300->draw,
1053 (struct draw_vertex_shader*)shader);
1054 }
1055 }
1056
1057 static void r300_set_constant_buffer(struct pipe_context *pipe,
1058 uint shader, uint index,
1059 struct pipe_buffer *buf)
1060 {
1061 struct r300_context* r300 = r300_context(pipe);
1062 void *mapped;
1063
1064 if (buf == NULL || buf->size == 0 ||
1065 (mapped = pipe_buffer_map(pipe->screen, buf, PIPE_BUFFER_USAGE_CPU_READ)) == NULL)
1066 {
1067 r300->shader_constants[shader].count = 0;
1068 return;
1069 }
1070
1071 assert((buf->size % 4 * sizeof(float)) == 0);
1072 memcpy(r300->shader_constants[shader].constants, mapped, buf->size);
1073 r300->shader_constants[shader].count = buf->size / (4 * sizeof(float));
1074 pipe_buffer_unmap(pipe->screen, buf);
1075
1076 if (shader == PIPE_SHADER_VERTEX)
1077 r300->dirty_state |= R300_NEW_VERTEX_SHADER_CONSTANTS;
1078 else if (shader == PIPE_SHADER_FRAGMENT)
1079 r300->dirty_state |= R300_NEW_FRAGMENT_SHADER_CONSTANTS;
1080 }
1081
1082 void r300_init_state_functions(struct r300_context* r300)
1083 {
1084 r300->context.create_blend_state = r300_create_blend_state;
1085 r300->context.bind_blend_state = r300_bind_blend_state;
1086 r300->context.delete_blend_state = r300_delete_blend_state;
1087
1088 r300->context.set_blend_color = r300_set_blend_color;
1089
1090 r300->context.set_clip_state = r300_set_clip_state;
1091
1092 r300->context.set_constant_buffer = r300_set_constant_buffer;
1093
1094 r300->context.create_depth_stencil_alpha_state = r300_create_dsa_state;
1095 r300->context.bind_depth_stencil_alpha_state = r300_bind_dsa_state;
1096 r300->context.delete_depth_stencil_alpha_state = r300_delete_dsa_state;
1097
1098 r300->context.set_stencil_ref = r300_set_stencil_ref;
1099
1100 r300->context.set_framebuffer_state = r300_set_framebuffer_state;
1101
1102 r300->context.create_fs_state = r300_create_fs_state;
1103 r300->context.bind_fs_state = r300_bind_fs_state;
1104 r300->context.delete_fs_state = r300_delete_fs_state;
1105
1106 r300->context.set_polygon_stipple = r300_set_polygon_stipple;
1107
1108 r300->context.create_rasterizer_state = r300_create_rs_state;
1109 r300->context.bind_rasterizer_state = r300_bind_rs_state;
1110 r300->context.delete_rasterizer_state = r300_delete_rs_state;
1111
1112 r300->context.create_sampler_state = r300_create_sampler_state;
1113 r300->context.bind_fragment_sampler_states = r300_bind_sampler_states;
1114 r300->context.bind_vertex_sampler_states = r300_lacks_vertex_textures;
1115 r300->context.delete_sampler_state = r300_delete_sampler_state;
1116
1117 r300->context.set_fragment_sampler_textures = r300_set_sampler_textures;
1118
1119 r300->context.set_scissor_state = r300_set_scissor_state;
1120
1121 r300->context.set_viewport_state = r300_set_viewport_state;
1122
1123 r300->context.set_vertex_buffers = r300_set_vertex_buffers;
1124 r300->context.set_vertex_elements = r300_set_vertex_elements;
1125
1126 r300->context.create_vs_state = r300_create_vs_state;
1127 r300->context.bind_vs_state = r300_bind_vs_state;
1128 r300->context.delete_vs_state = r300_delete_vs_state;
1129 }