r300g: optimize emission of fragment shader constants
[mesa.git] / src / gallium / drivers / r300 / r300_state.c
1 /*
2 * Copyright 2008 Corbin Simpson <MostAwesomeDude@gmail.com>
3 * Copyright 2009 Marek Olšák <maraeo@gmail.com>
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * on the rights to use, copy, modify, merge, publish, distribute, sub
9 * license, and/or sell copies of the Software, and to permit persons to whom
10 * the Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE. */
23
24 #include "draw/draw_context.h"
25
26 #include "util/u_math.h"
27 #include "util/u_memory.h"
28 #include "util/u_pack_color.h"
29
30 #include "tgsi/tgsi_parse.h"
31
32 #include "pipe/p_config.h"
33
34 #include "r300_cb.h"
35 #include "r300_context.h"
36 #include "r300_emit.h"
37 #include "r300_reg.h"
38 #include "r300_screen.h"
39 #include "r300_screen_buffer.h"
40 #include "r300_state_inlines.h"
41 #include "r300_fs.h"
42 #include "r300_texture.h"
43 #include "r300_vs.h"
44 #include "r300_winsys.h"
45
46 /* r300_state: Functions used to intialize state context by translating
47 * Gallium state objects into semi-native r300 state objects. */
48
49 #define UPDATE_STATE(cso, atom) \
50 if (cso != atom.state) { \
51 atom.state = cso; \
52 atom.dirty = TRUE; \
53 }
54
55 static boolean blend_discard_if_src_alpha_0(unsigned srcRGB, unsigned srcA,
56 unsigned dstRGB, unsigned dstA)
57 {
58 /* If the blend equation is ADD or REVERSE_SUBTRACT,
59 * SRC_ALPHA == 0, and the following state is set, the colorbuffer
60 * will not be changed.
61 * Notice that the dst factors are the src factors inverted. */
62 return (srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
63 srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE ||
64 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
65 (srcA == PIPE_BLENDFACTOR_SRC_COLOR ||
66 srcA == PIPE_BLENDFACTOR_SRC_ALPHA ||
67 srcA == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE ||
68 srcA == PIPE_BLENDFACTOR_ZERO) &&
69 (dstRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
70 dstRGB == PIPE_BLENDFACTOR_ONE) &&
71 (dstA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
72 dstA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
73 dstA == PIPE_BLENDFACTOR_ONE);
74 }
75
76 static boolean blend_discard_if_src_alpha_1(unsigned srcRGB, unsigned srcA,
77 unsigned dstRGB, unsigned dstA)
78 {
79 /* If the blend equation is ADD or REVERSE_SUBTRACT,
80 * SRC_ALPHA == 1, and the following state is set, the colorbuffer
81 * will not be changed.
82 * Notice that the dst factors are the src factors inverted. */
83 return (srcRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
84 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
85 (srcA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
86 srcA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
87 srcA == PIPE_BLENDFACTOR_ZERO) &&
88 (dstRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
89 dstRGB == PIPE_BLENDFACTOR_ONE) &&
90 (dstA == PIPE_BLENDFACTOR_SRC_COLOR ||
91 dstA == PIPE_BLENDFACTOR_SRC_ALPHA ||
92 dstA == PIPE_BLENDFACTOR_ONE);
93 }
94
95 static boolean blend_discard_if_src_color_0(unsigned srcRGB, unsigned srcA,
96 unsigned dstRGB, unsigned dstA)
97 {
98 /* If the blend equation is ADD or REVERSE_SUBTRACT,
99 * SRC_COLOR == (0,0,0), and the following state is set, the colorbuffer
100 * will not be changed.
101 * Notice that the dst factors are the src factors inverted. */
102 return (srcRGB == PIPE_BLENDFACTOR_SRC_COLOR ||
103 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
104 (srcA == PIPE_BLENDFACTOR_ZERO) &&
105 (dstRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
106 dstRGB == PIPE_BLENDFACTOR_ONE) &&
107 (dstA == PIPE_BLENDFACTOR_ONE);
108 }
109
110 static boolean blend_discard_if_src_color_1(unsigned srcRGB, unsigned srcA,
111 unsigned dstRGB, unsigned dstA)
112 {
113 /* If the blend equation is ADD or REVERSE_SUBTRACT,
114 * SRC_COLOR == (1,1,1), and the following state is set, the colorbuffer
115 * will not be changed.
116 * Notice that the dst factors are the src factors inverted. */
117 return (srcRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
118 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
119 (srcA == PIPE_BLENDFACTOR_ZERO) &&
120 (dstRGB == PIPE_BLENDFACTOR_SRC_COLOR ||
121 dstRGB == PIPE_BLENDFACTOR_ONE) &&
122 (dstA == PIPE_BLENDFACTOR_ONE);
123 }
124
125 static boolean blend_discard_if_src_alpha_color_0(unsigned srcRGB, unsigned srcA,
126 unsigned dstRGB, unsigned dstA)
127 {
128 /* If the blend equation is ADD or REVERSE_SUBTRACT,
129 * SRC_ALPHA_COLOR == (0,0,0,0), and the following state is set,
130 * the colorbuffer will not be changed.
131 * Notice that the dst factors are the src factors inverted. */
132 return (srcRGB == PIPE_BLENDFACTOR_SRC_COLOR ||
133 srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
134 srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE ||
135 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
136 (srcA == PIPE_BLENDFACTOR_SRC_COLOR ||
137 srcA == PIPE_BLENDFACTOR_SRC_ALPHA ||
138 srcA == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE ||
139 srcA == PIPE_BLENDFACTOR_ZERO) &&
140 (dstRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
141 dstRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
142 dstRGB == PIPE_BLENDFACTOR_ONE) &&
143 (dstA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
144 dstA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
145 dstA == PIPE_BLENDFACTOR_ONE);
146 }
147
148 static boolean blend_discard_if_src_alpha_color_1(unsigned srcRGB, unsigned srcA,
149 unsigned dstRGB, unsigned dstA)
150 {
151 /* If the blend equation is ADD or REVERSE_SUBTRACT,
152 * SRC_ALPHA_COLOR == (1,1,1,1), and the following state is set,
153 * the colorbuffer will not be changed.
154 * Notice that the dst factors are the src factors inverted. */
155 return (srcRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
156 srcRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
157 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
158 (srcA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
159 srcA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
160 srcA == PIPE_BLENDFACTOR_ZERO) &&
161 (dstRGB == PIPE_BLENDFACTOR_SRC_COLOR ||
162 dstRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
163 dstRGB == PIPE_BLENDFACTOR_ONE) &&
164 (dstA == PIPE_BLENDFACTOR_SRC_COLOR ||
165 dstA == PIPE_BLENDFACTOR_SRC_ALPHA ||
166 dstA == PIPE_BLENDFACTOR_ONE);
167 }
168
169 static unsigned bgra_cmask(unsigned mask)
170 {
171 /* Gallium uses RGBA color ordering while R300 expects BGRA. */
172
173 return ((mask & PIPE_MASK_R) << 2) |
174 ((mask & PIPE_MASK_B) >> 2) |
175 (mask & (PIPE_MASK_G | PIPE_MASK_A));
176 }
177
178 /* Create a new blend state based on the CSO blend state.
179 *
180 * This encompasses alpha blending, logic/raster ops, and blend dithering. */
181 static void* r300_create_blend_state(struct pipe_context* pipe,
182 const struct pipe_blend_state* state)
183 {
184 struct r300_screen* r300screen = r300_screen(pipe->screen);
185 struct r300_blend_state* blend = CALLOC_STRUCT(r300_blend_state);
186 uint32_t blend_control = 0; /* R300_RB3D_CBLEND: 0x4e04 */
187 uint32_t alpha_blend_control = 0; /* R300_RB3D_ABLEND: 0x4e08 */
188 uint32_t color_channel_mask = 0; /* R300_RB3D_COLOR_CHANNEL_MASK: 0x4e0c */
189 uint32_t rop = 0; /* R300_RB3D_ROPCNTL: 0x4e18 */
190 uint32_t dither = 0; /* R300_RB3D_DITHER_CTL: 0x4e50 */
191 CB_LOCALS;
192
193 if (state->rt[0].blend_enable)
194 {
195 unsigned eqRGB = state->rt[0].rgb_func;
196 unsigned srcRGB = state->rt[0].rgb_src_factor;
197 unsigned dstRGB = state->rt[0].rgb_dst_factor;
198
199 unsigned eqA = state->rt[0].alpha_func;
200 unsigned srcA = state->rt[0].alpha_src_factor;
201 unsigned dstA = state->rt[0].alpha_dst_factor;
202
203 /* despite the name, ALPHA_BLEND_ENABLE has nothing to do with alpha,
204 * this is just the crappy D3D naming */
205 blend_control = R300_ALPHA_BLEND_ENABLE |
206 r300_translate_blend_function(eqRGB) |
207 ( r300_translate_blend_factor(srcRGB) << R300_SRC_BLEND_SHIFT) |
208 ( r300_translate_blend_factor(dstRGB) << R300_DST_BLEND_SHIFT);
209
210 /* Optimization: some operations do not require the destination color.
211 *
212 * When SRC_ALPHA_SATURATE is used, colorbuffer reads must be enabled,
213 * otherwise blending gives incorrect results. It seems to be
214 * a hardware bug. */
215 if (eqRGB == PIPE_BLEND_MIN || eqA == PIPE_BLEND_MIN ||
216 eqRGB == PIPE_BLEND_MAX || eqA == PIPE_BLEND_MAX ||
217 dstRGB != PIPE_BLENDFACTOR_ZERO ||
218 dstA != PIPE_BLENDFACTOR_ZERO ||
219 srcRGB == PIPE_BLENDFACTOR_DST_COLOR ||
220 srcRGB == PIPE_BLENDFACTOR_DST_ALPHA ||
221 srcRGB == PIPE_BLENDFACTOR_INV_DST_COLOR ||
222 srcRGB == PIPE_BLENDFACTOR_INV_DST_ALPHA ||
223 srcA == PIPE_BLENDFACTOR_DST_COLOR ||
224 srcA == PIPE_BLENDFACTOR_DST_ALPHA ||
225 srcA == PIPE_BLENDFACTOR_INV_DST_COLOR ||
226 srcA == PIPE_BLENDFACTOR_INV_DST_ALPHA ||
227 srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE) {
228 /* Enable reading from the colorbuffer. */
229 blend_control |= R300_READ_ENABLE;
230
231 if (r300screen->caps.is_r500) {
232 /* Optimization: Depending on incoming pixels, we can
233 * conditionally disable the reading in hardware... */
234 if (eqRGB != PIPE_BLEND_MIN && eqA != PIPE_BLEND_MIN &&
235 eqRGB != PIPE_BLEND_MAX && eqA != PIPE_BLEND_MAX) {
236 /* Disable reading if SRC_ALPHA == 0. */
237 if ((dstRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
238 dstRGB == PIPE_BLENDFACTOR_ZERO) &&
239 (dstA == PIPE_BLENDFACTOR_SRC_COLOR ||
240 dstA == PIPE_BLENDFACTOR_SRC_ALPHA ||
241 dstA == PIPE_BLENDFACTOR_ZERO)) {
242 blend_control |= R500_SRC_ALPHA_0_NO_READ;
243 }
244
245 /* Disable reading if SRC_ALPHA == 1. */
246 if ((dstRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
247 dstRGB == PIPE_BLENDFACTOR_ZERO) &&
248 (dstA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
249 dstA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
250 dstA == PIPE_BLENDFACTOR_ZERO)) {
251 blend_control |= R500_SRC_ALPHA_1_NO_READ;
252 }
253 }
254 }
255 }
256
257 /* Optimization: discard pixels which don't change the colorbuffer.
258 *
259 * The code below is non-trivial and some math is involved.
260 *
261 * Discarding pixels must be disabled when FP16 AA is enabled.
262 * This is a hardware bug. Also, this implementation wouldn't work
263 * with FP blending enabled and equation clamping disabled.
264 *
265 * Equations other than ADD are rarely used and therefore won't be
266 * optimized. */
267 if ((eqRGB == PIPE_BLEND_ADD || eqRGB == PIPE_BLEND_REVERSE_SUBTRACT) &&
268 (eqA == PIPE_BLEND_ADD || eqA == PIPE_BLEND_REVERSE_SUBTRACT)) {
269 /* ADD: X+Y
270 * REVERSE_SUBTRACT: Y-X
271 *
272 * The idea is:
273 * If X = src*srcFactor = 0 and Y = dst*dstFactor = 1,
274 * then CB will not be changed.
275 *
276 * Given the srcFactor and dstFactor variables, we can derive
277 * what src and dst should be equal to and discard appropriate
278 * pixels.
279 */
280 if (blend_discard_if_src_alpha_0(srcRGB, srcA, dstRGB, dstA)) {
281 blend_control |= R300_DISCARD_SRC_PIXELS_SRC_ALPHA_0;
282 } else if (blend_discard_if_src_alpha_1(srcRGB, srcA,
283 dstRGB, dstA)) {
284 blend_control |= R300_DISCARD_SRC_PIXELS_SRC_ALPHA_1;
285 } else if (blend_discard_if_src_color_0(srcRGB, srcA,
286 dstRGB, dstA)) {
287 blend_control |= R300_DISCARD_SRC_PIXELS_SRC_COLOR_0;
288 } else if (blend_discard_if_src_color_1(srcRGB, srcA,
289 dstRGB, dstA)) {
290 blend_control |= R300_DISCARD_SRC_PIXELS_SRC_COLOR_1;
291 } else if (blend_discard_if_src_alpha_color_0(srcRGB, srcA,
292 dstRGB, dstA)) {
293 blend_control |=
294 R300_DISCARD_SRC_PIXELS_SRC_ALPHA_COLOR_0;
295 } else if (blend_discard_if_src_alpha_color_1(srcRGB, srcA,
296 dstRGB, dstA)) {
297 blend_control |=
298 R300_DISCARD_SRC_PIXELS_SRC_ALPHA_COLOR_1;
299 }
300 }
301
302 /* separate alpha */
303 if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB) {
304 blend_control |= R300_SEPARATE_ALPHA_ENABLE;
305 alpha_blend_control =
306 r300_translate_blend_function(eqA) |
307 (r300_translate_blend_factor(srcA) << R300_SRC_BLEND_SHIFT) |
308 (r300_translate_blend_factor(dstA) << R300_DST_BLEND_SHIFT);
309 }
310 }
311
312 /* PIPE_LOGICOP_* don't need to be translated, fortunately. */
313 if (state->logicop_enable) {
314 rop = R300_RB3D_ROPCNTL_ROP_ENABLE |
315 (state->logicop_func) << R300_RB3D_ROPCNTL_ROP_SHIFT;
316 }
317
318 /* Color channel masks for all MRTs. */
319 color_channel_mask = bgra_cmask(state->rt[0].colormask);
320 if (r300screen->caps.is_r500 && state->independent_blend_enable) {
321 if (state->rt[1].blend_enable) {
322 color_channel_mask |= bgra_cmask(state->rt[1].colormask) << 4;
323 }
324 if (state->rt[2].blend_enable) {
325 color_channel_mask |= bgra_cmask(state->rt[2].colormask) << 8;
326 }
327 if (state->rt[3].blend_enable) {
328 color_channel_mask |= bgra_cmask(state->rt[3].colormask) << 12;
329 }
330 }
331
332 /* Neither fglrx nor classic r300 ever set this, regardless of dithering
333 * state. Since it's an optional implementation detail, we can leave it
334 * out and never dither.
335 *
336 * This could be revisited if we ever get quality or conformance hints.
337 *
338 if (state->dither) {
339 dither = R300_RB3D_DITHER_CTL_DITHER_MODE_LUT |
340 R300_RB3D_DITHER_CTL_ALPHA_DITHER_MODE_LUT;
341 }
342 */
343
344 /* Build a command buffer. */
345 BEGIN_CB(blend->cb, 8);
346 OUT_CB_REG(R300_RB3D_ROPCNTL, rop);
347 OUT_CB_REG_SEQ(R300_RB3D_CBLEND, 3);
348 OUT_CB(blend_control);
349 OUT_CB(alpha_blend_control);
350 OUT_CB(color_channel_mask);
351 OUT_CB_REG(R300_RB3D_DITHER_CTL, dither);
352 END_CB;
353
354 /* The same as above, but with no colorbuffer reads and writes. */
355 BEGIN_CB(blend->cb_no_readwrite, 8);
356 OUT_CB_REG(R300_RB3D_ROPCNTL, rop);
357 OUT_CB_REG_SEQ(R300_RB3D_CBLEND, 3);
358 OUT_CB(0);
359 OUT_CB(0);
360 OUT_CB(0);
361 OUT_CB_REG(R300_RB3D_DITHER_CTL, dither);
362 END_CB;
363
364 return (void*)blend;
365 }
366
367 /* Bind blend state. */
368 static void r300_bind_blend_state(struct pipe_context* pipe,
369 void* state)
370 {
371 struct r300_context* r300 = r300_context(pipe);
372
373 UPDATE_STATE(state, r300->blend_state);
374 }
375
376 /* Free blend state. */
377 static void r300_delete_blend_state(struct pipe_context* pipe,
378 void* state)
379 {
380 FREE(state);
381 }
382
383 /* Convert float to 10bit integer */
384 static unsigned float_to_fixed10(float f)
385 {
386 return CLAMP((unsigned)(f * 1023.9f), 0, 1023);
387 }
388
389 /* Set blend color.
390 * Setup both R300 and R500 registers, figure out later which one to write. */
391 static void r300_set_blend_color(struct pipe_context* pipe,
392 const struct pipe_blend_color* color)
393 {
394 struct r300_context* r300 = r300_context(pipe);
395 struct r300_blend_color_state* state =
396 (struct r300_blend_color_state*)r300->blend_color_state.state;
397 CB_LOCALS;
398
399 if (r300->screen->caps.is_r500) {
400 /* XXX if FP16 blending is enabled, we should use the FP16 format */
401 BEGIN_CB(state->cb, 3);
402 OUT_CB_REG_SEQ(R500_RB3D_CONSTANT_COLOR_AR, 2);
403 OUT_CB(float_to_fixed10(color->color[0]) |
404 (float_to_fixed10(color->color[3]) << 16));
405 OUT_CB(float_to_fixed10(color->color[2]) |
406 (float_to_fixed10(color->color[1]) << 16));
407 END_CB;
408 } else {
409 union util_color uc;
410 util_pack_color(color->color, PIPE_FORMAT_B8G8R8A8_UNORM, &uc);
411
412 BEGIN_CB(state->cb, 2);
413 OUT_CB_REG(R300_RB3D_BLEND_COLOR, uc.ui);
414 END_CB;
415 }
416
417 r300->blend_color_state.dirty = TRUE;
418 }
419
420 static void r300_set_clip_state(struct pipe_context* pipe,
421 const struct pipe_clip_state* state)
422 {
423 struct r300_context* r300 = r300_context(pipe);
424 struct r300_clip_state *clip =
425 (struct r300_clip_state*)r300->clip_state.state;
426 CB_LOCALS;
427
428 clip->clip = *state;
429
430 if (r300->screen->caps.has_tcl) {
431 BEGIN_CB(clip->cb, 29);
432 OUT_CB_REG(R300_VAP_PVS_VECTOR_INDX_REG,
433 (r300->screen->caps.is_r500 ?
434 R500_PVS_UCP_START : R300_PVS_UCP_START));
435 OUT_CB_ONE_REG(R300_VAP_PVS_UPLOAD_DATA, 6 * 4);
436 OUT_CB_TABLE(state->ucp, 6 * 4);
437 OUT_CB_REG(R300_VAP_CLIP_CNTL, ((1 << state->nr) - 1) |
438 R300_PS_UCP_MODE_CLIP_AS_TRIFAN);
439 END_CB;
440
441 r300->clip_state.dirty = TRUE;
442 } else {
443 draw_flush(r300->draw);
444 draw_set_clip_state(r300->draw, state);
445 }
446 }
447
448 static void
449 r300_set_sample_mask(struct pipe_context *pipe,
450 unsigned sample_mask)
451 {
452 }
453
454
455 /* Create a new depth, stencil, and alpha state based on the CSO dsa state.
456 *
457 * This contains the depth buffer, stencil buffer, alpha test, and such.
458 * On the Radeon, depth and stencil buffer setup are intertwined, which is
459 * the reason for some of the strange-looking assignments across registers. */
460 static void*
461 r300_create_dsa_state(struct pipe_context* pipe,
462 const struct pipe_depth_stencil_alpha_state* state)
463 {
464 struct r300_capabilities *caps = &r300_screen(pipe->screen)->caps;
465 struct r300_dsa_state* dsa = CALLOC_STRUCT(r300_dsa_state);
466 CB_LOCALS;
467
468 /* Depth test setup. */
469 if (state->depth.enabled) {
470 dsa->z_buffer_control |= R300_Z_ENABLE;
471
472 if (state->depth.writemask) {
473 dsa->z_buffer_control |= R300_Z_WRITE_ENABLE;
474 }
475
476 dsa->z_stencil_control |=
477 (r300_translate_depth_stencil_function(state->depth.func) <<
478 R300_Z_FUNC_SHIFT);
479 }
480
481 /* Stencil buffer setup. */
482 if (state->stencil[0].enabled) {
483 dsa->z_buffer_control |= R300_STENCIL_ENABLE;
484 dsa->z_stencil_control |=
485 (r300_translate_depth_stencil_function(state->stencil[0].func) <<
486 R300_S_FRONT_FUNC_SHIFT) |
487 (r300_translate_stencil_op(state->stencil[0].fail_op) <<
488 R300_S_FRONT_SFAIL_OP_SHIFT) |
489 (r300_translate_stencil_op(state->stencil[0].zpass_op) <<
490 R300_S_FRONT_ZPASS_OP_SHIFT) |
491 (r300_translate_stencil_op(state->stencil[0].zfail_op) <<
492 R300_S_FRONT_ZFAIL_OP_SHIFT);
493
494 dsa->stencil_ref_mask =
495 (state->stencil[0].valuemask << R300_STENCILMASK_SHIFT) |
496 (state->stencil[0].writemask << R300_STENCILWRITEMASK_SHIFT);
497
498 if (state->stencil[1].enabled) {
499 dsa->two_sided = TRUE;
500
501 dsa->z_buffer_control |= R300_STENCIL_FRONT_BACK;
502 dsa->z_stencil_control |=
503 (r300_translate_depth_stencil_function(state->stencil[1].func) <<
504 R300_S_BACK_FUNC_SHIFT) |
505 (r300_translate_stencil_op(state->stencil[1].fail_op) <<
506 R300_S_BACK_SFAIL_OP_SHIFT) |
507 (r300_translate_stencil_op(state->stencil[1].zpass_op) <<
508 R300_S_BACK_ZPASS_OP_SHIFT) |
509 (r300_translate_stencil_op(state->stencil[1].zfail_op) <<
510 R300_S_BACK_ZFAIL_OP_SHIFT);
511
512 dsa->stencil_ref_bf =
513 (state->stencil[1].valuemask << R300_STENCILMASK_SHIFT) |
514 (state->stencil[1].writemask << R300_STENCILWRITEMASK_SHIFT);
515
516 if (caps->is_r500) {
517 dsa->z_buffer_control |= R500_STENCIL_REFMASK_FRONT_BACK;
518 } else {
519 dsa->two_sided_stencil_ref =
520 (state->stencil[0].valuemask != state->stencil[1].valuemask ||
521 state->stencil[0].writemask != state->stencil[1].writemask);
522 }
523 }
524 }
525
526 /* Alpha test setup. */
527 if (state->alpha.enabled) {
528 dsa->alpha_function =
529 r300_translate_alpha_function(state->alpha.func) |
530 R300_FG_ALPHA_FUNC_ENABLE;
531
532 /* We could use 10bit alpha ref but who needs that? */
533 dsa->alpha_function |= float_to_ubyte(state->alpha.ref_value);
534
535 if (caps->is_r500)
536 dsa->alpha_function |= R500_FG_ALPHA_FUNC_8BIT;
537 }
538
539 BEGIN_CB(&dsa->cb_begin, 8);
540 OUT_CB_REG(R300_FG_ALPHA_FUNC, dsa->alpha_function);
541 OUT_CB_REG_SEQ(R300_ZB_CNTL, 3);
542 OUT_CB(dsa->z_buffer_control);
543 OUT_CB(dsa->z_stencil_control);
544 OUT_CB(dsa->stencil_ref_mask);
545 OUT_CB_REG(R500_ZB_STENCILREFMASK_BF, dsa->stencil_ref_bf);
546 END_CB;
547
548 BEGIN_CB(dsa->cb_no_readwrite, 8);
549 OUT_CB_REG(R300_FG_ALPHA_FUNC, dsa->alpha_function);
550 OUT_CB_REG_SEQ(R300_ZB_CNTL, 3);
551 OUT_CB(0);
552 OUT_CB(0);
553 OUT_CB(0);
554 OUT_CB_REG(R500_ZB_STENCILREFMASK_BF, 0);
555 END_CB;
556
557 return (void*)dsa;
558 }
559
560 static void r300_dsa_inject_stencilref(struct r300_context *r300)
561 {
562 struct r300_dsa_state *dsa =
563 (struct r300_dsa_state*)r300->dsa_state.state;
564
565 if (!dsa)
566 return;
567
568 dsa->stencil_ref_mask =
569 (dsa->stencil_ref_mask & ~R300_STENCILREF_MASK) |
570 r300->stencil_ref.ref_value[0];
571 dsa->stencil_ref_bf =
572 (dsa->stencil_ref_bf & ~R300_STENCILREF_MASK) |
573 r300->stencil_ref.ref_value[1];
574 }
575
576 /* Bind DSA state. */
577 static void r300_bind_dsa_state(struct pipe_context* pipe,
578 void* state)
579 {
580 struct r300_context* r300 = r300_context(pipe);
581
582 if (!state) {
583 return;
584 }
585
586 UPDATE_STATE(state, r300->dsa_state);
587
588 r300_dsa_inject_stencilref(r300);
589 }
590
591 /* Free DSA state. */
592 static void r300_delete_dsa_state(struct pipe_context* pipe,
593 void* state)
594 {
595 FREE(state);
596 }
597
598 static void r300_set_stencil_ref(struct pipe_context* pipe,
599 const struct pipe_stencil_ref* sr)
600 {
601 struct r300_context* r300 = r300_context(pipe);
602
603 r300->stencil_ref = *sr;
604
605 r300_dsa_inject_stencilref(r300);
606 r300->dsa_state.dirty = TRUE;
607 }
608
609 /* This switcheroo is needed just because of goddamned MACRO_SWITCH. */
610 static void r300_fb_set_tiling_flags(struct r300_context *r300,
611 const struct pipe_framebuffer_state *old_state,
612 const struct pipe_framebuffer_state *new_state)
613 {
614 struct r300_texture *tex;
615 unsigned i, level;
616
617 /* Set tiling flags for new surfaces. */
618 for (i = 0; i < new_state->nr_cbufs; i++) {
619 tex = r300_texture(new_state->cbufs[i]->texture);
620 level = new_state->cbufs[i]->level;
621
622 r300->rws->buffer_set_tiling(r300->rws, tex->buffer,
623 tex->pitch[0] * util_format_get_blocksize(tex->b.b.format),
624 tex->microtile,
625 tex->mip_macrotile[level]);
626 }
627 if (new_state->zsbuf) {
628 tex = r300_texture(new_state->zsbuf->texture);
629 level = new_state->zsbuf->level;
630
631 r300->rws->buffer_set_tiling(r300->rws, tex->buffer,
632 tex->pitch[0] * util_format_get_blocksize(tex->b.b.format),
633 tex->microtile,
634 tex->mip_macrotile[level]);
635 }
636 }
637
638 static void r300_print_fb_surf_info(struct pipe_surface *surf, unsigned index,
639 const char *binding)
640 {
641 struct pipe_resource *tex = surf->texture;
642 struct r300_texture *rtex = r300_texture(tex);
643
644 fprintf(stderr,
645 "r300: %s[%i] Dim: %ix%i, Offset: %i, ZSlice: %i, "
646 "Face: %i, Level: %i, Format: %s\n"
647
648 "r300: TEX: Macro: %s, Micro: %s, Pitch: %i, "
649 "Dim: %ix%ix%i, LastLevel: %i, Format: %s\n",
650
651 binding, index, surf->width, surf->height, surf->offset,
652 surf->zslice, surf->face, surf->level,
653 util_format_short_name(surf->format),
654
655 rtex->macrotile ? "YES" : " NO", rtex->microtile ? "YES" : " NO",
656 rtex->hwpitch[0], tex->width0, tex->height0, tex->depth0,
657 tex->last_level, util_format_short_name(tex->format));
658 }
659
660 static void
661 r300_set_framebuffer_state(struct pipe_context* pipe,
662 const struct pipe_framebuffer_state* state)
663 {
664 struct r300_context* r300 = r300_context(pipe);
665 struct pipe_framebuffer_state *old_state = r300->fb_state.state;
666 unsigned max_width, max_height, i;
667 uint32_t zbuffer_bpp = 0;
668
669 if (state->nr_cbufs > 4) {
670 fprintf(stderr, "r300: Implementation error: Too many MRTs in %s, "
671 "refusing to bind framebuffer state!\n", __FUNCTION__);
672 return;
673 }
674
675 if (r300->screen->caps.is_r500) {
676 max_width = max_height = 4096;
677 } else if (r300->screen->caps.is_r400) {
678 max_width = max_height = 4021;
679 } else {
680 max_width = max_height = 2560;
681 }
682
683 if (state->width > max_width || state->height > max_height) {
684 fprintf(stderr, "r300: Implementation error: Render targets are too "
685 "big in %s, refusing to bind framebuffer state!\n", __FUNCTION__);
686 return;
687 }
688
689 if (r300->draw) {
690 draw_flush(r300->draw);
691 }
692
693 r300->fb_state.dirty = TRUE;
694
695 /* If nr_cbufs is changed from zero to non-zero or vice versa... */
696 if (!!old_state->nr_cbufs != !!state->nr_cbufs) {
697 r300->blend_state.dirty = TRUE;
698 }
699 /* If zsbuf is set from NULL to non-NULL or vice versa.. */
700 if (!!old_state->zsbuf != !!state->zsbuf) {
701 r300->dsa_state.dirty = TRUE;
702 }
703
704 /* The tiling flags are dependent on the surface miplevel, unfortunately. */
705 r300_fb_set_tiling_flags(r300, r300->fb_state.state, state);
706
707 memcpy(r300->fb_state.state, state, sizeof(struct pipe_framebuffer_state));
708
709 r300->fb_state.size = (10 * state->nr_cbufs) + (2 * (4 - state->nr_cbufs)) +
710 (state->zsbuf ? 10 : 0) + 9;
711
712 /* Polygon offset depends on the zbuffer bit depth. */
713 if (state->zsbuf && r300->polygon_offset_enabled) {
714 switch (util_format_get_blocksize(state->zsbuf->texture->format)) {
715 case 2:
716 zbuffer_bpp = 16;
717 break;
718 case 4:
719 zbuffer_bpp = 24;
720 break;
721 }
722
723 if (r300->zbuffer_bpp != zbuffer_bpp) {
724 r300->zbuffer_bpp = zbuffer_bpp;
725 r300->rs_state.dirty = TRUE;
726 }
727 }
728
729 if (DBG_ON(r300, DBG_FB)) {
730 fprintf(stderr, "r300: set_framebuffer_state:\n");
731 for (i = 0; i < state->nr_cbufs; i++) {
732 r300_print_fb_surf_info(state->cbufs[i], i, "CB");
733 }
734 if (state->zsbuf) {
735 r300_print_fb_surf_info(state->zsbuf, 0, "ZB");
736 }
737 }
738 }
739
740 /* Create fragment shader state. */
741 static void* r300_create_fs_state(struct pipe_context* pipe,
742 const struct pipe_shader_state* shader)
743 {
744 struct r300_fragment_shader* fs = NULL;
745
746 fs = (struct r300_fragment_shader*)CALLOC_STRUCT(r300_fragment_shader);
747
748 /* Copy state directly into shader. */
749 fs->state = *shader;
750 fs->state.tokens = tgsi_dup_tokens(shader->tokens);
751
752 return (void*)fs;
753 }
754
755 void r300_mark_fs_code_dirty(struct r300_context *r300)
756 {
757 struct r300_fragment_shader* fs = r300_fs(r300);
758
759 r300->fs.dirty = TRUE;
760 r300->fs_rc_constant_state.dirty = TRUE;
761 r300->fs_constants.dirty = TRUE;
762 r300->fs.size = fs->shader->cb_code_size;
763
764 if (r300->screen->caps.is_r500) {
765 r300->fs_rc_constant_state.size = fs->shader->rc_state_count * 7;
766 r300->fs_constants.size = fs->shader->externals_count * 4 + 3;
767 } else {
768 r300->fs_rc_constant_state.size = fs->shader->rc_state_count * 5;
769 r300->fs_constants.size = fs->shader->externals_count * 4 + 1;
770 }
771 }
772
773 /* Bind fragment shader state. */
774 static void r300_bind_fs_state(struct pipe_context* pipe, void* shader)
775 {
776 struct r300_context* r300 = r300_context(pipe);
777 struct r300_fragment_shader* fs = (struct r300_fragment_shader*)shader;
778
779 if (fs == NULL) {
780 r300->fs.state = NULL;
781 return;
782 }
783
784 r300->fs.state = fs;
785 r300_pick_fragment_shader(r300);
786 r300_mark_fs_code_dirty(r300);
787
788 r300->rs_block_state.dirty = TRUE; /* Will be updated before the emission. */
789 }
790
791 /* Delete fragment shader state. */
792 static void r300_delete_fs_state(struct pipe_context* pipe, void* shader)
793 {
794 struct r300_fragment_shader* fs = (struct r300_fragment_shader*)shader;
795 struct r300_fragment_shader_code *tmp, *ptr = fs->first;
796
797 while (ptr) {
798 tmp = ptr;
799 ptr = ptr->next;
800 rc_constants_destroy(&tmp->code.constants);
801 FREE(tmp->cb_code);
802 FREE(tmp);
803 }
804 FREE((void*)fs->state.tokens);
805 FREE(shader);
806 }
807
808 static void r300_set_polygon_stipple(struct pipe_context* pipe,
809 const struct pipe_poly_stipple* state)
810 {
811 /* XXX no idea how to set this up, but not terribly important */
812 }
813
814 /* Create a new rasterizer state based on the CSO rasterizer state.
815 *
816 * This is a very large chunk of state, and covers most of the graphics
817 * backend (GB), geometry assembly (GA), and setup unit (SU) blocks.
818 *
819 * In a not entirely unironic sidenote, this state has nearly nothing to do
820 * with the actual block on the Radeon called the rasterizer (RS). */
821 static void* r300_create_rs_state(struct pipe_context* pipe,
822 const struct pipe_rasterizer_state* state)
823 {
824 struct r300_rs_state* rs = CALLOC_STRUCT(r300_rs_state);
825 int i;
826 float psiz;
827
828 /* Copy rasterizer state. */
829 rs->rs = *state;
830 rs->rs_draw = *state;
831
832 /* Override some states for Draw. */
833 rs->rs_draw.sprite_coord_enable = 0; /* We can do this in HW. */
834
835 #ifdef PIPE_ARCH_LITTLE_ENDIAN
836 rs->vap_control_status = R300_VC_NO_SWAP;
837 #else
838 rs->vap_control_status = R300_VC_32BIT_SWAP;
839 #endif
840
841 /* If no TCL engine is present, turn off the HW TCL. */
842 if (!r300_screen(pipe->screen)->caps.has_tcl) {
843 rs->vap_control_status |= R300_VAP_TCL_BYPASS;
844 }
845
846 /* Point size width and height. */
847 rs->point_size =
848 pack_float_16_6x(state->point_size) |
849 (pack_float_16_6x(state->point_size) << R300_POINTSIZE_X_SHIFT);
850
851 /* Point size clamping. */
852 if (state->point_size_per_vertex) {
853 /* Per-vertex point size.
854 * Clamp to [0, max FB size] */
855 psiz = pipe->screen->get_paramf(pipe->screen,
856 PIPE_CAP_MAX_POINT_WIDTH);
857 rs->point_minmax =
858 pack_float_16_6x(psiz) << R300_GA_POINT_MINMAX_MAX_SHIFT;
859 } else {
860 /* We cannot disable the point-size vertex output,
861 * so clamp it. */
862 psiz = state->point_size;
863 rs->point_minmax =
864 (pack_float_16_6x(psiz) << R300_GA_POINT_MINMAX_MIN_SHIFT) |
865 (pack_float_16_6x(psiz) << R300_GA_POINT_MINMAX_MAX_SHIFT);
866 }
867
868 /* Line control. */
869 rs->line_control = pack_float_16_6x(state->line_width) |
870 R300_GA_LINE_CNTL_END_TYPE_COMP;
871
872 /* Enable polygon mode */
873 if (state->fill_front != PIPE_POLYGON_MODE_FILL ||
874 state->fill_back != PIPE_POLYGON_MODE_FILL) {
875 rs->polygon_mode = R300_GA_POLY_MODE_DUAL;
876 }
877
878 /* Front face */
879 if (state->front_ccw)
880 rs->cull_mode = R300_FRONT_FACE_CCW;
881 else
882 rs->cull_mode = R300_FRONT_FACE_CW;
883
884 /* Polygon offset */
885 if (util_get_offset(state, state->fill_front)) {
886 rs->polygon_offset_enable |= R300_FRONT_ENABLE;
887 }
888 if (util_get_offset(state, state->fill_back)) {
889 rs->polygon_offset_enable |= R300_BACK_ENABLE;
890 }
891
892 /* Polygon mode */
893 if (rs->polygon_mode) {
894 rs->polygon_mode |=
895 r300_translate_polygon_mode_front(state->fill_front);
896 rs->polygon_mode |=
897 r300_translate_polygon_mode_back(state->fill_back);
898 }
899
900 if (state->cull_face & PIPE_FACE_FRONT) {
901 rs->cull_mode |= R300_CULL_FRONT;
902 }
903 if (state->cull_face & PIPE_FACE_BACK) {
904 rs->cull_mode |= R300_CULL_BACK;
905 }
906
907 if (rs->polygon_offset_enable) {
908 rs->depth_offset = state->offset_units;
909 rs->depth_scale = state->offset_scale;
910 }
911
912 if (state->line_stipple_enable) {
913 rs->line_stipple_config =
914 R300_GA_LINE_STIPPLE_CONFIG_LINE_RESET_LINE |
915 (fui((float)state->line_stipple_factor) &
916 R300_GA_LINE_STIPPLE_CONFIG_STIPPLE_SCALE_MASK);
917 /* XXX this might need to be scaled up */
918 rs->line_stipple_value = state->line_stipple_pattern;
919 }
920
921 if (state->flatshade) {
922 rs->color_control = R300_SHADE_MODEL_FLAT;
923 } else {
924 rs->color_control = R300_SHADE_MODEL_SMOOTH;
925 }
926
927 rs->clip_rule = state->scissor ? 0xAAAA : 0xFFFF;
928
929 /* Point sprites */
930 if (state->sprite_coord_enable) {
931 rs->stuffing_enable = R300_GB_POINT_STUFF_ENABLE;
932 for (i = 0; i < 8; i++) {
933 if (state->sprite_coord_enable & (1 << i))
934 rs->stuffing_enable |=
935 R300_GB_TEX_STR << (R300_GB_TEX0_SOURCE_SHIFT + (i*2));
936 }
937
938 rs->point_texcoord_left = 0.0f;
939 rs->point_texcoord_right = 1.0f;
940
941 switch (state->sprite_coord_mode) {
942 case PIPE_SPRITE_COORD_UPPER_LEFT:
943 rs->point_texcoord_top = 0.0f;
944 rs->point_texcoord_bottom = 1.0f;
945 break;
946 case PIPE_SPRITE_COORD_LOWER_LEFT:
947 rs->point_texcoord_top = 1.0f;
948 rs->point_texcoord_bottom = 0.0f;
949 break;
950 }
951 }
952
953 return (void*)rs;
954 }
955
956 /* Bind rasterizer state. */
957 static void r300_bind_rs_state(struct pipe_context* pipe, void* state)
958 {
959 struct r300_context* r300 = r300_context(pipe);
960 struct r300_rs_state* rs = (struct r300_rs_state*)state;
961 int last_sprite_coord_enable = r300->sprite_coord_enable;
962 boolean last_two_sided_color = r300->two_sided_color;
963
964 if (r300->draw && rs) {
965 draw_flush(r300->draw);
966 draw_set_rasterizer_state(r300->draw, &rs->rs_draw, state);
967 }
968
969 if (rs) {
970 r300->polygon_offset_enabled = (rs->rs.offset_point ||
971 rs->rs.offset_line ||
972 rs->rs.offset_tri);
973 r300->sprite_coord_enable = rs->rs.sprite_coord_enable;
974 r300->two_sided_color = rs->rs.light_twoside;
975 } else {
976 r300->polygon_offset_enabled = FALSE;
977 r300->sprite_coord_enable = 0;
978 r300->two_sided_color = FALSE;
979 }
980
981 UPDATE_STATE(state, r300->rs_state);
982 r300->rs_state.size = 27 + (r300->polygon_offset_enabled ? 5 : 0);
983
984 if (last_sprite_coord_enable != r300->sprite_coord_enable ||
985 last_two_sided_color != r300->two_sided_color) {
986 r300->rs_block_state.dirty = TRUE;
987 }
988 }
989
990 /* Free rasterizer state. */
991 static void r300_delete_rs_state(struct pipe_context* pipe, void* state)
992 {
993 FREE(state);
994 }
995
996 static void*
997 r300_create_sampler_state(struct pipe_context* pipe,
998 const struct pipe_sampler_state* state)
999 {
1000 struct r300_context* r300 = r300_context(pipe);
1001 struct r300_sampler_state* sampler = CALLOC_STRUCT(r300_sampler_state);
1002 boolean is_r500 = r300->screen->caps.is_r500;
1003 int lod_bias;
1004 union util_color uc;
1005
1006 sampler->state = *state;
1007
1008 sampler->filter0 |=
1009 (r300_translate_wrap(state->wrap_s) << R300_TX_WRAP_S_SHIFT) |
1010 (r300_translate_wrap(state->wrap_t) << R300_TX_WRAP_T_SHIFT) |
1011 (r300_translate_wrap(state->wrap_r) << R300_TX_WRAP_R_SHIFT);
1012
1013 sampler->filter0 |= r300_translate_tex_filters(state->min_img_filter,
1014 state->mag_img_filter,
1015 state->min_mip_filter,
1016 state->max_anisotropy > 0);
1017
1018 sampler->filter0 |= r300_anisotropy(state->max_anisotropy);
1019
1020 /* Unfortunately, r300-r500 don't support floating-point mipmap lods. */
1021 /* We must pass these to the merge function to clamp them properly. */
1022 sampler->min_lod = MAX2((unsigned)state->min_lod, 0);
1023 sampler->max_lod = MAX2((unsigned)ceilf(state->max_lod), 0);
1024
1025 lod_bias = CLAMP((int)(state->lod_bias * 32 + 1), -(1 << 9), (1 << 9) - 1);
1026
1027 sampler->filter1 |= lod_bias << R300_LOD_BIAS_SHIFT;
1028
1029 /* This is very high quality anisotropic filtering for R5xx.
1030 * It's good for benchmarking the performance of texturing but
1031 * in practice we don't want to slow down the driver because it's
1032 * a pretty good performance killer. Feel free to play with it. */
1033 if (DBG_ON(r300, DBG_ANISOHQ) && is_r500) {
1034 sampler->filter1 |= r500_anisotropy(state->max_anisotropy);
1035 }
1036
1037 util_pack_color(state->border_color, PIPE_FORMAT_B8G8R8A8_UNORM, &uc);
1038 sampler->border_color = uc.ui;
1039
1040 /* R500-specific fixups and optimizations */
1041 if (r300->screen->caps.is_r500) {
1042 sampler->filter1 |= R500_BORDER_FIX;
1043 }
1044
1045 return (void*)sampler;
1046 }
1047
1048 static void r300_bind_sampler_states(struct pipe_context* pipe,
1049 unsigned count,
1050 void** states)
1051 {
1052 struct r300_context* r300 = r300_context(pipe);
1053 struct r300_textures_state* state =
1054 (struct r300_textures_state*)r300->textures_state.state;
1055 unsigned tex_units = r300->screen->caps.num_tex_units;
1056
1057 if (count > tex_units) {
1058 return;
1059 }
1060
1061 memcpy(state->sampler_states, states, sizeof(void*) * count);
1062 state->sampler_state_count = count;
1063
1064 r300->textures_state.dirty = TRUE;
1065 }
1066
1067 static void r300_lacks_vertex_textures(struct pipe_context* pipe,
1068 unsigned count,
1069 void** states)
1070 {
1071 }
1072
1073 static void r300_delete_sampler_state(struct pipe_context* pipe, void* state)
1074 {
1075 FREE(state);
1076 }
1077
1078 static void r300_set_fragment_sampler_views(struct pipe_context* pipe,
1079 unsigned count,
1080 struct pipe_sampler_view** views)
1081 {
1082 struct r300_context* r300 = r300_context(pipe);
1083 struct r300_textures_state* state =
1084 (struct r300_textures_state*)r300->textures_state.state;
1085 struct r300_texture *texture;
1086 unsigned i;
1087 unsigned tex_units = r300->screen->caps.num_tex_units;
1088 boolean dirty_tex = FALSE;
1089
1090 if (count > tex_units) {
1091 return;
1092 }
1093
1094 for (i = 0; i < count; i++) {
1095 if (&state->sampler_views[i]->base != views[i]) {
1096 pipe_sampler_view_reference(
1097 (struct pipe_sampler_view**)&state->sampler_views[i],
1098 views[i]);
1099
1100 if (!views[i]) {
1101 continue;
1102 }
1103
1104 /* A new sampler view (= texture)... */
1105 dirty_tex = TRUE;
1106
1107 /* Set the texrect factor in the fragment shader.
1108 * Needed for RECT and NPOT fallback. */
1109 texture = r300_texture(views[i]->texture);
1110 if (texture->uses_pitch) {
1111 r300->fs_rc_constant_state.dirty = TRUE;
1112 }
1113 }
1114 }
1115
1116 for (i = count; i < tex_units; i++) {
1117 if (state->sampler_views[i]) {
1118 pipe_sampler_view_reference(
1119 (struct pipe_sampler_view**)&state->sampler_views[i],
1120 NULL);
1121 }
1122 }
1123
1124 state->sampler_view_count = count;
1125
1126 r300->textures_state.dirty = TRUE;
1127
1128 if (dirty_tex) {
1129 r300->texture_cache_inval.dirty = TRUE;
1130 }
1131 }
1132
1133 static struct pipe_sampler_view *
1134 r300_create_sampler_view(struct pipe_context *pipe,
1135 struct pipe_resource *texture,
1136 const struct pipe_sampler_view *templ)
1137 {
1138 struct r300_sampler_view *view = CALLOC_STRUCT(r300_sampler_view);
1139 struct r300_texture *tex = r300_texture(texture);
1140
1141 if (view) {
1142 view->base = *templ;
1143 view->base.reference.count = 1;
1144 view->base.context = pipe;
1145 view->base.texture = NULL;
1146 pipe_resource_reference(&view->base.texture, texture);
1147
1148 view->swizzle[0] = templ->swizzle_r;
1149 view->swizzle[1] = templ->swizzle_g;
1150 view->swizzle[2] = templ->swizzle_b;
1151 view->swizzle[3] = templ->swizzle_a;
1152
1153 view->format = tex->tx_format;
1154 view->format.format1 |= r300_translate_texformat(templ->format,
1155 view->swizzle);
1156 if (r300_screen(pipe->screen)->caps.is_r500) {
1157 view->format.format2 |= r500_tx_format_msb_bit(templ->format);
1158 }
1159 }
1160
1161 return (struct pipe_sampler_view*)view;
1162 }
1163
1164 static void
1165 r300_sampler_view_destroy(struct pipe_context *pipe,
1166 struct pipe_sampler_view *view)
1167 {
1168 pipe_resource_reference(&view->texture, NULL);
1169 FREE(view);
1170 }
1171
1172 static void r300_set_scissor_state(struct pipe_context* pipe,
1173 const struct pipe_scissor_state* state)
1174 {
1175 struct r300_context* r300 = r300_context(pipe);
1176
1177 memcpy(r300->scissor_state.state, state,
1178 sizeof(struct pipe_scissor_state));
1179
1180 r300->scissor_state.dirty = TRUE;
1181 }
1182
1183 static void r300_set_viewport_state(struct pipe_context* pipe,
1184 const struct pipe_viewport_state* state)
1185 {
1186 struct r300_context* r300 = r300_context(pipe);
1187 struct r300_viewport_state* viewport =
1188 (struct r300_viewport_state*)r300->viewport_state.state;
1189
1190 r300->viewport = *state;
1191
1192 if (r300->draw) {
1193 draw_flush(r300->draw);
1194 draw_set_viewport_state(r300->draw, state);
1195 viewport->vte_control = R300_VTX_XY_FMT | R300_VTX_Z_FMT;
1196 return;
1197 }
1198
1199 /* Do the transform in HW. */
1200 viewport->vte_control = R300_VTX_W0_FMT;
1201
1202 if (state->scale[0] != 1.0f) {
1203 viewport->xscale = state->scale[0];
1204 viewport->vte_control |= R300_VPORT_X_SCALE_ENA;
1205 }
1206 if (state->scale[1] != 1.0f) {
1207 viewport->yscale = state->scale[1];
1208 viewport->vte_control |= R300_VPORT_Y_SCALE_ENA;
1209 }
1210 if (state->scale[2] != 1.0f) {
1211 viewport->zscale = state->scale[2];
1212 viewport->vte_control |= R300_VPORT_Z_SCALE_ENA;
1213 }
1214 if (state->translate[0] != 0.0f) {
1215 viewport->xoffset = state->translate[0];
1216 viewport->vte_control |= R300_VPORT_X_OFFSET_ENA;
1217 }
1218 if (state->translate[1] != 0.0f) {
1219 viewport->yoffset = state->translate[1];
1220 viewport->vte_control |= R300_VPORT_Y_OFFSET_ENA;
1221 }
1222 if (state->translate[2] != 0.0f) {
1223 viewport->zoffset = state->translate[2];
1224 viewport->vte_control |= R300_VPORT_Z_OFFSET_ENA;
1225 }
1226
1227 r300->viewport_state.dirty = TRUE;
1228 if (r300->fs.state && r300_fs(r300)->shader->inputs.wpos != ATTR_UNUSED) {
1229 r300->fs_rc_constant_state.dirty = TRUE;
1230 }
1231 }
1232
1233 static void r300_set_vertex_buffers(struct pipe_context* pipe,
1234 unsigned count,
1235 const struct pipe_vertex_buffer* buffers)
1236 {
1237 struct r300_context* r300 = r300_context(pipe);
1238 struct pipe_vertex_buffer *vbo;
1239 unsigned i, max_index = (1 << 24) - 1;
1240 boolean any_user_buffer = FALSE;
1241
1242 if (count == r300->vertex_buffer_count &&
1243 memcmp(r300->vertex_buffer, buffers,
1244 sizeof(struct pipe_vertex_buffer) * count) == 0) {
1245 return;
1246 }
1247
1248 if (r300->screen->caps.has_tcl) {
1249 /* HW TCL. */
1250 r300->incompatible_vb_layout = FALSE;
1251
1252 /* Check if the strides and offsets are aligned to the size of DWORD. */
1253 for (i = 0; i < count; i++) {
1254 if (buffers[i].buffer) {
1255 if (buffers[i].stride % 4 != 0 ||
1256 buffers[i].buffer_offset % 4 != 0) {
1257 r300->incompatible_vb_layout = TRUE;
1258 break;
1259 }
1260 }
1261 }
1262
1263 for (i = 0; i < count; i++) {
1264 /* Why, yes, I AM casting away constness. How did you know? */
1265 vbo = (struct pipe_vertex_buffer*)&buffers[i];
1266
1267 /* Skip NULL buffers */
1268 if (!buffers[i].buffer) {
1269 continue;
1270 }
1271
1272 if (r300_buffer_is_user_buffer(vbo->buffer)) {
1273 any_user_buffer = TRUE;
1274 }
1275
1276 if (vbo->max_index == ~0) {
1277 /* if no VBO stride then only one vertex value so max index is 1 */
1278 /* should think about converting to VS constants like svga does */
1279 if (!vbo->stride)
1280 vbo->max_index = 1;
1281 else
1282 vbo->max_index =
1283 (vbo->buffer->width0 - vbo->buffer_offset) / vbo->stride;
1284 }
1285
1286 max_index = MIN2(vbo->max_index, max_index);
1287 }
1288
1289 r300->any_user_vbs = any_user_buffer;
1290 r300->vertex_buffer_max_index = max_index;
1291
1292 } else {
1293 /* SW TCL. */
1294 draw_flush(r300->draw);
1295 draw_set_vertex_buffers(r300->draw, count, buffers);
1296 }
1297
1298 /* Common code. */
1299 for (i = 0; i < count; i++) {
1300 /* Reference our buffer. */
1301 pipe_resource_reference(&r300->vertex_buffer[i].buffer, buffers[i].buffer);
1302 }
1303 for (; i < r300->vertex_buffer_count; i++) {
1304 /* Dereference any old buffers. */
1305 pipe_resource_reference(&r300->vertex_buffer[i].buffer, NULL);
1306 }
1307
1308 memcpy(r300->vertex_buffer, buffers,
1309 sizeof(struct pipe_vertex_buffer) * count);
1310 r300->vertex_buffer_count = count;
1311 }
1312
1313 /* Initialize the PSC tables. */
1314 static void r300_vertex_psc(struct r300_vertex_element_state *velems)
1315 {
1316 struct r300_vertex_stream_state *vstream = &velems->vertex_stream;
1317 uint16_t type, swizzle;
1318 enum pipe_format format;
1319 unsigned i;
1320
1321 if (velems->count > 16) {
1322 fprintf(stderr, "r300: More than 16 vertex elements are not supported,"
1323 " requested %i, using 16.\n", velems->count);
1324 velems->count = 16;
1325 }
1326
1327 /* Vertex shaders have no semantics on their inputs,
1328 * so PSC should just route stuff based on the vertex elements,
1329 * and not on attrib information. */
1330 for (i = 0; i < velems->count; i++) {
1331 format = velems->hw_format[i];
1332
1333 type = r300_translate_vertex_data_type(format);
1334 if (type == R300_INVALID_FORMAT) {
1335 fprintf(stderr, "r300: Bad vertex format %s.\n",
1336 util_format_short_name(format));
1337 assert(0);
1338 abort();
1339 }
1340
1341 type |= i << R300_DST_VEC_LOC_SHIFT;
1342 swizzle = r300_translate_vertex_data_swizzle(format);
1343
1344 if (i & 1) {
1345 vstream->vap_prog_stream_cntl[i >> 1] |= type << 16;
1346 vstream->vap_prog_stream_cntl_ext[i >> 1] |= swizzle << 16;
1347 } else {
1348 vstream->vap_prog_stream_cntl[i >> 1] |= type;
1349 vstream->vap_prog_stream_cntl_ext[i >> 1] |= swizzle;
1350 }
1351 }
1352
1353 /* Set the last vector in the PSC. */
1354 if (i) {
1355 i -= 1;
1356 }
1357 vstream->vap_prog_stream_cntl[i >> 1] |=
1358 (R300_LAST_VEC << (i & 1 ? 16 : 0));
1359
1360 vstream->count = (i >> 1) + 1;
1361 }
1362
1363 #define FORMAT_REPLACE(what, withwhat) \
1364 case PIPE_FORMAT_##what: *format = PIPE_FORMAT_##withwhat; break
1365
1366 static void* r300_create_vertex_elements_state(struct pipe_context* pipe,
1367 unsigned count,
1368 const struct pipe_vertex_element* attribs)
1369 {
1370 struct r300_vertex_element_state *velems;
1371 unsigned i;
1372 enum pipe_format *format;
1373
1374 assert(count <= PIPE_MAX_ATTRIBS);
1375 velems = CALLOC_STRUCT(r300_vertex_element_state);
1376 if (velems != NULL) {
1377 velems->count = count;
1378 memcpy(velems->velem, attribs, sizeof(struct pipe_vertex_element) * count);
1379
1380 if (r300_screen(pipe->screen)->caps.has_tcl) {
1381 /* Set the best hw format in case the original format is not
1382 * supported by hw. */
1383 for (i = 0; i < count; i++) {
1384 velems->hw_format[i] = velems->velem[i].src_format;
1385 format = &velems->hw_format[i];
1386
1387 /* This is basically the list of unsupported formats.
1388 * For now we don't care about the alignment, that's going to
1389 * be sorted out after the PSC setup. */
1390 switch (*format) {
1391 FORMAT_REPLACE(R64_FLOAT, R32_FLOAT);
1392 FORMAT_REPLACE(R64G64_FLOAT, R32G32_FLOAT);
1393 FORMAT_REPLACE(R64G64B64_FLOAT, R32G32B32_FLOAT);
1394 FORMAT_REPLACE(R64G64B64A64_FLOAT, R32G32B32A32_FLOAT);
1395
1396 FORMAT_REPLACE(R32_UNORM, R32_FLOAT);
1397 FORMAT_REPLACE(R32G32_UNORM, R32G32_FLOAT);
1398 FORMAT_REPLACE(R32G32B32_UNORM, R32G32B32_FLOAT);
1399 FORMAT_REPLACE(R32G32B32A32_UNORM, R32G32B32A32_FLOAT);
1400
1401 FORMAT_REPLACE(R32_USCALED, R32_FLOAT);
1402 FORMAT_REPLACE(R32G32_USCALED, R32G32_FLOAT);
1403 FORMAT_REPLACE(R32G32B32_USCALED, R32G32B32_FLOAT);
1404 FORMAT_REPLACE(R32G32B32A32_USCALED,R32G32B32A32_FLOAT);
1405
1406 FORMAT_REPLACE(R32_SNORM, R32_FLOAT);
1407 FORMAT_REPLACE(R32G32_SNORM, R32G32_FLOAT);
1408 FORMAT_REPLACE(R32G32B32_SNORM, R32G32B32_FLOAT);
1409 FORMAT_REPLACE(R32G32B32A32_SNORM, R32G32B32A32_FLOAT);
1410
1411 FORMAT_REPLACE(R32_SSCALED, R32_FLOAT);
1412 FORMAT_REPLACE(R32G32_SSCALED, R32G32_FLOAT);
1413 FORMAT_REPLACE(R32G32B32_SSCALED, R32G32B32_FLOAT);
1414 FORMAT_REPLACE(R32G32B32A32_SSCALED,R32G32B32A32_FLOAT);
1415
1416 FORMAT_REPLACE(R32_FIXED, R32_FLOAT);
1417 FORMAT_REPLACE(R32G32_FIXED, R32G32_FLOAT);
1418 FORMAT_REPLACE(R32G32B32_FIXED, R32G32B32_FLOAT);
1419 FORMAT_REPLACE(R32G32B32A32_FIXED, R32G32B32A32_FLOAT);
1420
1421 default:;
1422 }
1423
1424 velems->incompatible_layout =
1425 velems->incompatible_layout ||
1426 velems->velem[i].src_format != velems->hw_format[i] ||
1427 velems->velem[i].src_offset % 4 != 0;
1428 }
1429
1430 /* Now setup PSC.
1431 * The unused components will be replaced by (..., 0, 1). */
1432 r300_vertex_psc(velems);
1433
1434 /* Align the formats to the size of DWORD.
1435 * We only care about the blocksizes of the formats since
1436 * swizzles are already set up. */
1437 for (i = 0; i < count; i++) {
1438 /* This is OK because we check for aligned strides too. */
1439 velems->hw_format_size[i] =
1440 align(util_format_get_blocksize(velems->hw_format[i]), 4);
1441 }
1442 }
1443 }
1444 return velems;
1445 }
1446
1447 static void r300_bind_vertex_elements_state(struct pipe_context *pipe,
1448 void *state)
1449 {
1450 struct r300_context *r300 = r300_context(pipe);
1451 struct r300_vertex_element_state *velems = state;
1452
1453 if (velems == NULL) {
1454 return;
1455 }
1456
1457 r300->velems = velems;
1458
1459 if (r300->draw) {
1460 draw_flush(r300->draw);
1461 draw_set_vertex_elements(r300->draw, velems->count, velems->velem);
1462 return;
1463 }
1464
1465 UPDATE_STATE(&velems->vertex_stream, r300->vertex_stream_state);
1466 r300->vertex_stream_state.size = (1 + velems->vertex_stream.count) * 2;
1467 }
1468
1469 static void r300_delete_vertex_elements_state(struct pipe_context *pipe, void *state)
1470 {
1471 FREE(state);
1472 }
1473
1474 static void* r300_create_vs_state(struct pipe_context* pipe,
1475 const struct pipe_shader_state* shader)
1476 {
1477 struct r300_context* r300 = r300_context(pipe);
1478
1479 struct r300_vertex_shader* vs = CALLOC_STRUCT(r300_vertex_shader);
1480
1481 /* Copy state directly into shader. */
1482 vs->state = *shader;
1483 vs->state.tokens = tgsi_dup_tokens(shader->tokens);
1484
1485 if (r300->screen->caps.has_tcl) {
1486 r300_init_vs_outputs(vs);
1487 r300_translate_vertex_shader(r300, vs);
1488 } else {
1489 r300_draw_init_vertex_shader(r300->draw, vs);
1490 }
1491
1492 return vs;
1493 }
1494
1495 static void r300_bind_vs_state(struct pipe_context* pipe, void* shader)
1496 {
1497 struct r300_context* r300 = r300_context(pipe);
1498 struct r300_vertex_shader* vs = (struct r300_vertex_shader*)shader;
1499
1500 if (vs == NULL) {
1501 r300->vs_state.state = NULL;
1502 return;
1503 }
1504 if (vs == r300->vs_state.state) {
1505 return;
1506 }
1507 r300->vs_state.state = vs;
1508
1509 /* The majority of the RS block bits is dependent on the vertex shader. */
1510 r300->rs_block_state.dirty = TRUE; /* Will be updated before the emission. */
1511
1512 if (r300->screen->caps.has_tcl) {
1513 r300->vs_state.dirty = TRUE;
1514 r300->vs_state.size =
1515 vs->code.length + 9 +
1516 (vs->immediates_count ? vs->immediates_count * 4 + 3 : 0);
1517
1518 if (vs->externals_count) {
1519 r300->vs_constants.dirty = TRUE;
1520 r300->vs_constants.size = vs->externals_count * 4 + 3;
1521 } else {
1522 r300->vs_constants.size = 0;
1523 }
1524
1525 r300->pvs_flush.dirty = TRUE;
1526 } else {
1527 draw_flush(r300->draw);
1528 draw_bind_vertex_shader(r300->draw,
1529 (struct draw_vertex_shader*)vs->draw_vs);
1530 }
1531 }
1532
1533 static void r300_delete_vs_state(struct pipe_context* pipe, void* shader)
1534 {
1535 struct r300_context* r300 = r300_context(pipe);
1536 struct r300_vertex_shader* vs = (struct r300_vertex_shader*)shader;
1537
1538 if (r300->screen->caps.has_tcl) {
1539 rc_constants_destroy(&vs->code.constants);
1540 } else {
1541 draw_delete_vertex_shader(r300->draw,
1542 (struct draw_vertex_shader*)vs->draw_vs);
1543 }
1544
1545 FREE((void*)vs->state.tokens);
1546 FREE(shader);
1547 }
1548
1549 static void r300_set_constant_buffer(struct pipe_context *pipe,
1550 uint shader, uint index,
1551 struct pipe_resource *buf)
1552 {
1553 struct r300_context* r300 = r300_context(pipe);
1554 struct r300_constant_buffer *cbuf;
1555 struct pipe_transfer *tr;
1556 float *mapped;
1557 int max_size = 0, max_size_bytes = 0, clamped_size = 0;
1558
1559 switch (shader) {
1560 case PIPE_SHADER_VERTEX:
1561 cbuf = (struct r300_constant_buffer*)r300->vs_constants.state;
1562 max_size = 256;
1563 break;
1564 case PIPE_SHADER_FRAGMENT:
1565 cbuf = (struct r300_constant_buffer*)r300->fs_constants.state;
1566 if (r300->screen->caps.is_r500) {
1567 max_size = 256;
1568 } else {
1569 max_size = 32;
1570 }
1571 break;
1572 default:
1573 assert(0);
1574 return;
1575 }
1576 max_size_bytes = max_size * 4 * sizeof(float);
1577
1578 if (buf == NULL || buf->width0 == 0 ||
1579 (mapped = pipe_buffer_map(pipe, buf, PIPE_TRANSFER_READ, &tr)) == NULL)
1580 {
1581 cbuf->count = 0;
1582 return;
1583 }
1584
1585 if (shader == PIPE_SHADER_FRAGMENT ||
1586 (shader == PIPE_SHADER_VERTEX && r300->screen->caps.has_tcl)) {
1587 assert((buf->width0 % (4 * sizeof(float))) == 0);
1588
1589 /* Check the size of the constant buffer. */
1590 /* XXX Subtract immediates and RC_STATE_* variables. */
1591 if (buf->width0 > max_size_bytes) {
1592 fprintf(stderr, "r300: Max size of the constant buffer is "
1593 "%i*4 floats.\n", max_size);
1594 }
1595
1596 clamped_size = MIN2(buf->width0, max_size_bytes);
1597 cbuf->count = clamped_size / (4 * sizeof(float));
1598
1599 if (shader == PIPE_SHADER_FRAGMENT && !r300->screen->caps.is_r500) {
1600 unsigned i,j;
1601
1602 /* Convert constants to float24. */
1603 for (i = 0; i < cbuf->count; i++)
1604 for (j = 0; j < 4; j++)
1605 cbuf->constants[i][j] = pack_float24(mapped[i*4+j]);
1606 } else {
1607 memcpy(cbuf->constants, mapped, clamped_size);
1608 }
1609 }
1610
1611 if (shader == PIPE_SHADER_VERTEX) {
1612 if (r300->screen->caps.has_tcl) {
1613 if (r300->vs_constants.size) {
1614 r300->vs_constants.dirty = TRUE;
1615 }
1616 r300->pvs_flush.dirty = TRUE;
1617 } else if (r300->draw) {
1618 draw_set_mapped_constant_buffer(r300->draw, PIPE_SHADER_VERTEX,
1619 0, mapped, buf->width0);
1620 }
1621 } else if (shader == PIPE_SHADER_FRAGMENT) {
1622 r300->fs_constants.dirty = TRUE;
1623 }
1624
1625 pipe_buffer_unmap(pipe, buf, tr);
1626 }
1627
1628 void r300_init_state_functions(struct r300_context* r300)
1629 {
1630 r300->context.create_blend_state = r300_create_blend_state;
1631 r300->context.bind_blend_state = r300_bind_blend_state;
1632 r300->context.delete_blend_state = r300_delete_blend_state;
1633
1634 r300->context.set_blend_color = r300_set_blend_color;
1635
1636 r300->context.set_clip_state = r300_set_clip_state;
1637 r300->context.set_sample_mask = r300_set_sample_mask;
1638
1639 r300->context.set_constant_buffer = r300_set_constant_buffer;
1640
1641 r300->context.create_depth_stencil_alpha_state = r300_create_dsa_state;
1642 r300->context.bind_depth_stencil_alpha_state = r300_bind_dsa_state;
1643 r300->context.delete_depth_stencil_alpha_state = r300_delete_dsa_state;
1644
1645 r300->context.set_stencil_ref = r300_set_stencil_ref;
1646
1647 r300->context.set_framebuffer_state = r300_set_framebuffer_state;
1648
1649 r300->context.create_fs_state = r300_create_fs_state;
1650 r300->context.bind_fs_state = r300_bind_fs_state;
1651 r300->context.delete_fs_state = r300_delete_fs_state;
1652
1653 r300->context.set_polygon_stipple = r300_set_polygon_stipple;
1654
1655 r300->context.create_rasterizer_state = r300_create_rs_state;
1656 r300->context.bind_rasterizer_state = r300_bind_rs_state;
1657 r300->context.delete_rasterizer_state = r300_delete_rs_state;
1658
1659 r300->context.create_sampler_state = r300_create_sampler_state;
1660 r300->context.bind_fragment_sampler_states = r300_bind_sampler_states;
1661 r300->context.bind_vertex_sampler_states = r300_lacks_vertex_textures;
1662 r300->context.delete_sampler_state = r300_delete_sampler_state;
1663
1664 r300->context.set_fragment_sampler_views = r300_set_fragment_sampler_views;
1665 r300->context.create_sampler_view = r300_create_sampler_view;
1666 r300->context.sampler_view_destroy = r300_sampler_view_destroy;
1667
1668 r300->context.set_scissor_state = r300_set_scissor_state;
1669
1670 r300->context.set_viewport_state = r300_set_viewport_state;
1671
1672 r300->context.set_vertex_buffers = r300_set_vertex_buffers;
1673
1674 r300->context.create_vertex_elements_state = r300_create_vertex_elements_state;
1675 r300->context.bind_vertex_elements_state = r300_bind_vertex_elements_state;
1676 r300->context.delete_vertex_elements_state = r300_delete_vertex_elements_state;
1677
1678 r300->context.create_vs_state = r300_create_vs_state;
1679 r300->context.bind_vs_state = r300_bind_vs_state;
1680 r300->context.delete_vs_state = r300_delete_vs_state;
1681 }