a1e116f4b61882d772272eeb43b12794c7278ba5
[mesa.git] / src / gallium / drivers / r300 / r300_state_derived.c
1 /*
2 * Copyright 2008 Corbin Simpson <MostAwesomeDude@gmail.com>
3 * Copyright 2009 Marek Olšák <maraeo@gmail.com>
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * on the rights to use, copy, modify, merge, publish, distribute, sub
9 * license, and/or sell copies of the Software, and to permit persons to whom
10 * the Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE. */
23
24 #include "draw/draw_context.h"
25
26 #include "util/u_math.h"
27 #include "util/u_memory.h"
28 #include "util/u_pack_color.h"
29
30 #include "r300_context.h"
31 #include "r300_fs.h"
32 #include "r300_screen.h"
33 #include "r300_shader_semantics.h"
34 #include "r300_state_inlines.h"
35 #include "r300_texture.h"
36 #include "r300_vs.h"
37
38 /* r300_state_derived: Various bits of state which are dependent upon
39 * currently bound CSO data. */
40
41 enum r300_rs_swizzle {
42 SWIZ_XYZW = 0,
43 SWIZ_X001,
44 SWIZ_XY01,
45 SWIZ_0001,
46 };
47
48 enum r300_rs_col_write_type {
49 WRITE_COLOR = 0,
50 WRITE_FACE
51 };
52
53 static void r300_draw_emit_attrib(struct r300_context* r300,
54 enum attrib_emit emit,
55 enum interp_mode interp,
56 int index)
57 {
58 struct r300_vertex_shader* vs = r300->vs_state.state;
59 struct tgsi_shader_info* info = &vs->info;
60 int output;
61
62 output = draw_find_shader_output(r300->draw,
63 info->output_semantic_name[index],
64 info->output_semantic_index[index]);
65 draw_emit_vertex_attr(&r300->vertex_info, emit, interp, output);
66 }
67
68 static void r300_draw_emit_all_attribs(struct r300_context* r300)
69 {
70 struct r300_vertex_shader* vs = r300->vs_state.state;
71 struct r300_shader_semantics* vs_outputs = &vs->outputs;
72 int i, gen_count;
73
74 /* Position. */
75 if (vs_outputs->pos != ATTR_UNUSED) {
76 r300_draw_emit_attrib(r300, EMIT_4F, INTERP_PERSPECTIVE,
77 vs_outputs->pos);
78 } else {
79 assert(0);
80 }
81
82 /* Point size. */
83 if (vs_outputs->psize != ATTR_UNUSED) {
84 r300_draw_emit_attrib(r300, EMIT_1F_PSIZE, INTERP_POS,
85 vs_outputs->psize);
86 }
87
88 /* Colors. */
89 for (i = 0; i < ATTR_COLOR_COUNT; i++) {
90 if (vs_outputs->color[i] != ATTR_UNUSED) {
91 r300_draw_emit_attrib(r300, EMIT_4F, INTERP_LINEAR,
92 vs_outputs->color[i]);
93 }
94 }
95
96 /* Back-face colors. */
97 for (i = 0; i < ATTR_COLOR_COUNT; i++) {
98 if (vs_outputs->bcolor[i] != ATTR_UNUSED) {
99 r300_draw_emit_attrib(r300, EMIT_4F, INTERP_LINEAR,
100 vs_outputs->bcolor[i]);
101 }
102 }
103
104 /* Texture coordinates. */
105 /* Only 8 generic vertex attributes can be used. If there are more,
106 * they won't be rasterized. */
107 gen_count = 0;
108 for (i = 0; i < ATTR_GENERIC_COUNT && gen_count < 8; i++) {
109 if (vs_outputs->generic[i] != ATTR_UNUSED &&
110 !(r300->sprite_coord_enable & (1 << i))) {
111 r300_draw_emit_attrib(r300, EMIT_4F, INTERP_PERSPECTIVE,
112 vs_outputs->generic[i]);
113 gen_count++;
114 }
115 }
116
117 /* Fog coordinates. */
118 if (gen_count < 8 && vs_outputs->fog != ATTR_UNUSED) {
119 r300_draw_emit_attrib(r300, EMIT_4F, INTERP_PERSPECTIVE,
120 vs_outputs->fog);
121 gen_count++;
122 }
123
124 /* WPOS. */
125 if (r300_fs(r300)->shader->inputs.wpos != ATTR_UNUSED && gen_count < 8) {
126 DBG(r300, DBG_SWTCL, "draw_emit_attrib: WPOS, index: %i\n",
127 vs_outputs->wpos);
128 r300_draw_emit_attrib(r300, EMIT_4F, INTERP_PERSPECTIVE,
129 vs_outputs->wpos);
130 }
131 }
132
133 /* Update the PSC tables for SW TCL, using Draw. */
134 static void r300_swtcl_vertex_psc(struct r300_context *r300)
135 {
136 struct r300_vertex_stream_state *vstream = r300->vertex_stream_state.state;
137 struct vertex_info *vinfo = &r300->vertex_info;
138 uint16_t type, swizzle;
139 enum pipe_format format;
140 unsigned i, attrib_count;
141 int* vs_output_tab = r300->stream_loc_notcl;
142
143 memset(vstream, 0, sizeof(struct r300_vertex_stream_state));
144
145 /* For each Draw attribute, route it to the fragment shader according
146 * to the vs_output_tab. */
147 attrib_count = vinfo->num_attribs;
148 DBG(r300, DBG_SWTCL, "r300: attrib count: %d\n", attrib_count);
149 for (i = 0; i < attrib_count; i++) {
150 if (vs_output_tab[i] == -1) {
151 assert(0);
152 abort();
153 }
154
155 format = draw_translate_vinfo_format(vinfo->attrib[i].emit);
156
157 DBG(r300, DBG_SWTCL,
158 "r300: swtcl_vertex_psc [%i] <- %s\n",
159 vs_output_tab[i], util_format_short_name(format));
160
161 /* Obtain the type of data in this attribute. */
162 type = r300_translate_vertex_data_type(format);
163 if (type == R300_INVALID_FORMAT) {
164 fprintf(stderr, "r300: Bad vertex format %s.\n",
165 util_format_short_name(format));
166 assert(0);
167 abort();
168 }
169
170 type |= vs_output_tab[i] << R300_DST_VEC_LOC_SHIFT;
171
172 /* Obtain the swizzle for this attribute. Note that the default
173 * swizzle in the hardware is not XYZW! */
174 swizzle = r300_translate_vertex_data_swizzle(format);
175
176 /* Add the attribute to the PSC table. */
177 if (i & 1) {
178 vstream->vap_prog_stream_cntl[i >> 1] |= type << 16;
179 vstream->vap_prog_stream_cntl_ext[i >> 1] |= swizzle << 16;
180 } else {
181 vstream->vap_prog_stream_cntl[i >> 1] |= type;
182 vstream->vap_prog_stream_cntl_ext[i >> 1] |= swizzle;
183 }
184 }
185
186 /* Set the last vector in the PSC. */
187 if (i) {
188 i -= 1;
189 }
190 vstream->vap_prog_stream_cntl[i >> 1] |=
191 (R300_LAST_VEC << (i & 1 ? 16 : 0));
192
193 vstream->count = (i >> 1) + 1;
194 r300_mark_atom_dirty(r300, &r300->vertex_stream_state);
195 r300->vertex_stream_state.size = (1 + vstream->count) * 2;
196 }
197
198 static void r300_rs_col(struct r300_rs_block* rs, int id, int ptr,
199 enum r300_rs_swizzle swiz)
200 {
201 rs->ip[id] |= R300_RS_COL_PTR(ptr);
202 if (swiz == SWIZ_0001) {
203 rs->ip[id] |= R300_RS_COL_FMT(R300_RS_COL_FMT_0001);
204 } else {
205 rs->ip[id] |= R300_RS_COL_FMT(R300_RS_COL_FMT_RGBA);
206 }
207 rs->inst[id] |= R300_RS_INST_COL_ID(id);
208 }
209
210 static void r300_rs_col_write(struct r300_rs_block* rs, int id, int fp_offset,
211 enum r300_rs_col_write_type type)
212 {
213 assert(type == WRITE_COLOR);
214 rs->inst[id] |= R300_RS_INST_COL_CN_WRITE |
215 R300_RS_INST_COL_ADDR(fp_offset);
216 }
217
218 static void r300_rs_tex(struct r300_rs_block* rs, int id, int ptr,
219 enum r300_rs_swizzle swiz)
220 {
221 if (swiz == SWIZ_X001) {
222 rs->ip[id] |= R300_RS_TEX_PTR(ptr) |
223 R300_RS_SEL_S(R300_RS_SEL_C0) |
224 R300_RS_SEL_T(R300_RS_SEL_K0) |
225 R300_RS_SEL_R(R300_RS_SEL_K0) |
226 R300_RS_SEL_Q(R300_RS_SEL_K1);
227 } else if (swiz == SWIZ_XY01) {
228 rs->ip[id] |= R300_RS_TEX_PTR(ptr) |
229 R300_RS_SEL_S(R300_RS_SEL_C0) |
230 R300_RS_SEL_T(R300_RS_SEL_C1) |
231 R300_RS_SEL_R(R300_RS_SEL_K0) |
232 R300_RS_SEL_Q(R300_RS_SEL_K1);
233 } else {
234 rs->ip[id] |= R300_RS_TEX_PTR(ptr) |
235 R300_RS_SEL_S(R300_RS_SEL_C0) |
236 R300_RS_SEL_T(R300_RS_SEL_C1) |
237 R300_RS_SEL_R(R300_RS_SEL_C2) |
238 R300_RS_SEL_Q(R300_RS_SEL_C3);
239 }
240 rs->inst[id] |= R300_RS_INST_TEX_ID(id);
241 }
242
243 static void r300_rs_tex_write(struct r300_rs_block* rs, int id, int fp_offset)
244 {
245 rs->inst[id] |= R300_RS_INST_TEX_CN_WRITE |
246 R300_RS_INST_TEX_ADDR(fp_offset);
247 }
248
249 static void r500_rs_col(struct r300_rs_block* rs, int id, int ptr,
250 enum r300_rs_swizzle swiz)
251 {
252 rs->ip[id] |= R500_RS_COL_PTR(ptr);
253 if (swiz == SWIZ_0001) {
254 rs->ip[id] |= R500_RS_COL_FMT(R300_RS_COL_FMT_0001);
255 } else {
256 rs->ip[id] |= R500_RS_COL_FMT(R300_RS_COL_FMT_RGBA);
257 }
258 rs->inst[id] |= R500_RS_INST_COL_ID(id);
259 }
260
261 static void r500_rs_col_write(struct r300_rs_block* rs, int id, int fp_offset,
262 enum r300_rs_col_write_type type)
263 {
264 if (type == WRITE_FACE)
265 rs->inst[id] |= R500_RS_INST_COL_CN_WRITE_BACKFACE |
266 R500_RS_INST_COL_ADDR(fp_offset);
267 else
268 rs->inst[id] |= R500_RS_INST_COL_CN_WRITE |
269 R500_RS_INST_COL_ADDR(fp_offset);
270
271 }
272
273 static void r500_rs_tex(struct r300_rs_block* rs, int id, int ptr,
274 enum r300_rs_swizzle swiz)
275 {
276 if (swiz == SWIZ_X001) {
277 rs->ip[id] |= R500_RS_SEL_S(ptr) |
278 R500_RS_SEL_T(R500_RS_IP_PTR_K0) |
279 R500_RS_SEL_R(R500_RS_IP_PTR_K0) |
280 R500_RS_SEL_Q(R500_RS_IP_PTR_K1);
281 } else if (swiz == SWIZ_XY01) {
282 rs->ip[id] |= R500_RS_SEL_S(ptr) |
283 R500_RS_SEL_T(ptr + 1) |
284 R500_RS_SEL_R(R500_RS_IP_PTR_K0) |
285 R500_RS_SEL_Q(R500_RS_IP_PTR_K1);
286 } else {
287 rs->ip[id] |= R500_RS_SEL_S(ptr) |
288 R500_RS_SEL_T(ptr + 1) |
289 R500_RS_SEL_R(ptr + 2) |
290 R500_RS_SEL_Q(ptr + 3);
291 }
292 rs->inst[id] |= R500_RS_INST_TEX_ID(id);
293 }
294
295 static void r500_rs_tex_write(struct r300_rs_block* rs, int id, int fp_offset)
296 {
297 rs->inst[id] |= R500_RS_INST_TEX_CN_WRITE |
298 R500_RS_INST_TEX_ADDR(fp_offset);
299 }
300
301 /* Set up the RS block.
302 *
303 * This is the part of the chipset that is responsible for linking vertex
304 * and fragment shaders and stuffed texture coordinates.
305 *
306 * The rasterizer reads data from VAP, which produces vertex shader outputs,
307 * and GA, which produces stuffed texture coordinates. VAP outputs have
308 * precedence over GA. All outputs must be rasterized otherwise it locks up.
309 * If there are more outputs rasterized than is set in VAP/GA, it locks up
310 * too. The funky part is that this info has been pretty much obtained by trial
311 * and error. */
312 static void r300_update_rs_block(struct r300_context *r300)
313 {
314 struct r300_vertex_shader *vs = r300->vs_state.state;
315 struct r300_shader_semantics *vs_outputs = &vs->outputs;
316 struct r300_shader_semantics *fs_inputs = &r300_fs(r300)->shader->inputs;
317 struct r300_rs_block rs = {0};
318 int i, col_count = 0, tex_count = 0, fp_offset = 0, count, loc = 0, tex_ptr = 0;
319 void (*rX00_rs_col)(struct r300_rs_block*, int, int, enum r300_rs_swizzle);
320 void (*rX00_rs_col_write)(struct r300_rs_block*, int, int, enum r300_rs_col_write_type);
321 void (*rX00_rs_tex)(struct r300_rs_block*, int, int, enum r300_rs_swizzle);
322 void (*rX00_rs_tex_write)(struct r300_rs_block*, int, int);
323 boolean any_bcolor_used = vs_outputs->bcolor[0] != ATTR_UNUSED ||
324 vs_outputs->bcolor[1] != ATTR_UNUSED;
325 int *stream_loc_notcl = r300->stream_loc_notcl;
326 uint32_t stuffing_enable = 0;
327
328 if (r300->screen->caps.is_r500) {
329 rX00_rs_col = r500_rs_col;
330 rX00_rs_col_write = r500_rs_col_write;
331 rX00_rs_tex = r500_rs_tex;
332 rX00_rs_tex_write = r500_rs_tex_write;
333 } else {
334 rX00_rs_col = r300_rs_col;
335 rX00_rs_col_write = r300_rs_col_write;
336 rX00_rs_tex = r300_rs_tex;
337 rX00_rs_tex_write = r300_rs_tex_write;
338 }
339
340 /* 0x5555 copied from classic, which means:
341 * Select user color 0 for COLOR0 up to COLOR7.
342 * What the hell does that mean? */
343 rs.vap_vtx_state_cntl = 0x5555;
344
345 /* The position is always present in VAP. */
346 rs.vap_vsm_vtx_assm |= R300_INPUT_CNTL_POS;
347 rs.vap_out_vtx_fmt[0] |= R300_VAP_OUTPUT_VTX_FMT_0__POS_PRESENT;
348 stream_loc_notcl[loc++] = 0;
349
350 /* Set up the point size in VAP. */
351 if (vs_outputs->psize != ATTR_UNUSED) {
352 rs.vap_out_vtx_fmt[0] |= R300_VAP_OUTPUT_VTX_FMT_0__PT_SIZE_PRESENT;
353 stream_loc_notcl[loc++] = 1;
354 }
355
356 /* Set up and rasterize colors. */
357 for (i = 0; i < ATTR_COLOR_COUNT; i++) {
358 if (vs_outputs->color[i] != ATTR_UNUSED || any_bcolor_used ||
359 vs_outputs->color[1] != ATTR_UNUSED) {
360 /* Set up the color in VAP. */
361 rs.vap_vsm_vtx_assm |= R300_INPUT_CNTL_COLOR;
362 rs.vap_out_vtx_fmt[0] |=
363 R300_VAP_OUTPUT_VTX_FMT_0__COLOR_0_PRESENT << i;
364 stream_loc_notcl[loc++] = 2 + i;
365
366 /* Rasterize it. */
367 rX00_rs_col(&rs, col_count, col_count, SWIZ_XYZW);
368
369 /* Write it to the FS input register if it's needed by the FS. */
370 if (fs_inputs->color[i] != ATTR_UNUSED) {
371 rX00_rs_col_write(&rs, col_count, fp_offset, WRITE_COLOR);
372 fp_offset++;
373
374 DBG(r300, DBG_RS,
375 "r300: Rasterized color %i written to FS.\n", i);
376 } else {
377 DBG(r300, DBG_RS, "r300: Rasterized color %i unused.\n", i);
378 }
379 col_count++;
380 } else {
381 /* Skip the FS input register, leave it uninitialized. */
382 /* If we try to set it to (0,0,0,1), it will lock up. */
383 if (fs_inputs->color[i] != ATTR_UNUSED) {
384 fp_offset++;
385
386 DBG(r300, DBG_RS, "r300: FS input color %i unassigned%s.\n",
387 i);
388 }
389 }
390 }
391
392 /* Set up back-face colors. The rasterizer will do the color selection
393 * automatically. */
394 if (any_bcolor_used) {
395 if (r300->two_sided_color) {
396 /* Rasterize as back-face colors. */
397 for (i = 0; i < ATTR_COLOR_COUNT; i++) {
398 rs.vap_vsm_vtx_assm |= R300_INPUT_CNTL_COLOR;
399 rs.vap_out_vtx_fmt[0] |= R300_VAP_OUTPUT_VTX_FMT_0__COLOR_0_PRESENT << (2+i);
400 stream_loc_notcl[loc++] = 4 + i;
401 }
402 } else {
403 /* Rasterize two fake texcoords to prevent from the two-sided color
404 * selection. */
405 /* XXX Consider recompiling the vertex shader to save 2 RS units. */
406 for (i = 0; i < 2; i++) {
407 rs.vap_vsm_vtx_assm |= (R300_INPUT_CNTL_TC0 << tex_count);
408 rs.vap_out_vtx_fmt[1] |= (4 << (3 * tex_count));
409 stream_loc_notcl[loc++] = 6 + tex_count;
410
411 /* Rasterize it. */
412 rX00_rs_tex(&rs, tex_count, tex_ptr, SWIZ_XYZW);
413 tex_count++;
414 tex_ptr += 4;
415 }
416 }
417 }
418
419 /* gl_FrontFacing.
420 * Note that we can use either the two-sided color selection based on
421 * the front and back vertex shader colors, or gl_FrontFacing,
422 * but not both! It locks up otherwise.
423 *
424 * In Direct3D 9, the two-sided color selection can be used
425 * with shaders 2.0 only, while gl_FrontFacing can be used
426 * with shaders 3.0 only. The hardware apparently hasn't been designed
427 * to support both at the same time. */
428 if (r300->screen->caps.is_r500 && fs_inputs->face != ATTR_UNUSED &&
429 !(any_bcolor_used && r300->two_sided_color)) {
430 rX00_rs_col(&rs, col_count, col_count, SWIZ_XYZW);
431 rX00_rs_col_write(&rs, col_count, fp_offset, WRITE_FACE);
432 fp_offset++;
433 col_count++;
434 DBG(r300, DBG_RS, "r300: Rasterized FACE written to FS.\n");
435 } else if (fs_inputs->face != ATTR_UNUSED) {
436 fprintf(stderr, "r300: ERROR: FS input FACE unassigned.\n");
437 }
438
439 /* Rasterize texture coordinates. */
440 for (i = 0; i < ATTR_GENERIC_COUNT && tex_count < 8; i++) {
441 bool sprite_coord = false;
442
443 if (fs_inputs->generic[i] != ATTR_UNUSED) {
444 sprite_coord = !!(r300->sprite_coord_enable & (1 << i));
445 }
446
447 if (vs_outputs->generic[i] != ATTR_UNUSED || sprite_coord) {
448 if (!sprite_coord) {
449 /* Set up the texture coordinates in VAP. */
450 rs.vap_vsm_vtx_assm |= (R300_INPUT_CNTL_TC0 << tex_count);
451 rs.vap_out_vtx_fmt[1] |= (4 << (3 * tex_count));
452 stream_loc_notcl[loc++] = 6 + tex_count;
453 } else
454 stuffing_enable |=
455 R300_GB_TEX_ST << (R300_GB_TEX0_SOURCE_SHIFT + (tex_count*2));
456
457 /* Rasterize it. */
458 rX00_rs_tex(&rs, tex_count, tex_ptr,
459 sprite_coord ? SWIZ_XY01 : SWIZ_XYZW);
460
461 /* Write it to the FS input register if it's needed by the FS. */
462 if (fs_inputs->generic[i] != ATTR_UNUSED) {
463 rX00_rs_tex_write(&rs, tex_count, fp_offset);
464 fp_offset++;
465
466 DBG(r300, DBG_RS,
467 "r300: Rasterized generic %i written to FS%s in texcoord %d.\n",
468 i, sprite_coord ? " (sprite coord)" : "", tex_count);
469 } else {
470 DBG(r300, DBG_RS,
471 "r300: Rasterized generic %i unused%s.\n",
472 i, sprite_coord ? " (sprite coord)" : "");
473 }
474 tex_count++;
475 tex_ptr += sprite_coord ? 2 : 4;
476 } else {
477 /* Skip the FS input register, leave it uninitialized. */
478 /* If we try to set it to (0,0,0,1), it will lock up. */
479 if (fs_inputs->generic[i] != ATTR_UNUSED) {
480 fp_offset++;
481
482 DBG(r300, DBG_RS, "r300: FS input generic %i unassigned%s.\n",
483 i, sprite_coord ? " (sprite coord)" : "");
484 }
485 }
486 }
487
488 for (; i < ATTR_GENERIC_COUNT; i++) {
489 if (fs_inputs->generic[i] != ATTR_UNUSED) {
490 fprintf(stderr, "r300: ERROR: FS input generic %i unassigned, "
491 "not enough hardware slots (it's not a bug, do not "
492 "report it).\n", i);
493 }
494 }
495
496 /* Rasterize fog coordinates. */
497 if (vs_outputs->fog != ATTR_UNUSED && tex_count < 8) {
498 /* Set up the fog coordinates in VAP. */
499 rs.vap_vsm_vtx_assm |= (R300_INPUT_CNTL_TC0 << tex_count);
500 rs.vap_out_vtx_fmt[1] |= (4 << (3 * tex_count));
501 stream_loc_notcl[loc++] = 6 + tex_count;
502
503 /* Rasterize it. */
504 rX00_rs_tex(&rs, tex_count, tex_ptr, SWIZ_X001);
505
506 /* Write it to the FS input register if it's needed by the FS. */
507 if (fs_inputs->fog != ATTR_UNUSED) {
508 rX00_rs_tex_write(&rs, tex_count, fp_offset);
509 fp_offset++;
510
511 DBG(r300, DBG_RS, "r300: Rasterized fog written to FS.\n");
512 } else {
513 DBG(r300, DBG_RS, "r300: Rasterized fog unused.\n");
514 }
515 tex_count++;
516 tex_ptr += 4;
517 } else {
518 /* Skip the FS input register, leave it uninitialized. */
519 /* If we try to set it to (0,0,0,1), it will lock up. */
520 if (fs_inputs->fog != ATTR_UNUSED) {
521 fp_offset++;
522
523 if (tex_count < 8) {
524 DBG(r300, DBG_RS, "r300: FS input fog unassigned.\n");
525 } else {
526 fprintf(stderr, "r300: ERROR: FS input fog unassigned, "
527 "not enough hardware slots. (it's not a bug, "
528 "do not report it)\n");
529 }
530 }
531 }
532
533 /* Rasterize WPOS. */
534 /* Don't set it in VAP if the FS doesn't need it. */
535 if (fs_inputs->wpos != ATTR_UNUSED && tex_count < 8) {
536 /* Set up the WPOS coordinates in VAP. */
537 rs.vap_vsm_vtx_assm |= (R300_INPUT_CNTL_TC0 << tex_count);
538 rs.vap_out_vtx_fmt[1] |= (4 << (3 * tex_count));
539 stream_loc_notcl[loc++] = 6 + tex_count;
540
541 /* Rasterize it. */
542 rX00_rs_tex(&rs, tex_count, tex_ptr, SWIZ_XYZW);
543
544 /* Write it to the FS input register. */
545 rX00_rs_tex_write(&rs, tex_count, fp_offset);
546
547 DBG(r300, DBG_RS, "r300: Rasterized WPOS written to FS.\n");
548
549 fp_offset++;
550 tex_count++;
551 tex_ptr += 4;
552 } else {
553 if (fs_inputs->wpos != ATTR_UNUSED && tex_count >= 8) {
554 fprintf(stderr, "r300: ERROR: FS input WPOS unassigned, "
555 "not enough hardware slots. (it's not a bug, do not "
556 "report it)\n");
557 }
558 }
559
560 /* Invalidate the rest of the no-TCL (GA) stream locations. */
561 for (; loc < 16;) {
562 stream_loc_notcl[loc++] = -1;
563 }
564
565 /* Rasterize at least one color, or bad things happen. */
566 if (col_count == 0 && tex_count == 0) {
567 rX00_rs_col(&rs, 0, 0, SWIZ_0001);
568 col_count++;
569
570 DBG(r300, DBG_RS, "r300: Rasterized color 0 to prevent lockups.\n");
571 }
572
573 DBG(r300, DBG_RS, "r300: --- Rasterizer status ---: colors: %i, "
574 "generics: %i.\n", col_count, tex_count);
575
576 rs.count = MIN2(tex_ptr, 32) | (col_count << R300_IC_COUNT_SHIFT) |
577 R300_HIRES_EN;
578
579 count = MAX3(col_count, tex_count, 1);
580 rs.inst_count = count - 1;
581
582 /* set the GB enable flags */
583 if (r300->sprite_coord_enable)
584 stuffing_enable |= R300_GB_POINT_STUFF_ENABLE;
585
586 rs.gb_enable = stuffing_enable;
587
588 /* Now, after all that, see if we actually need to update the state. */
589 if (memcmp(r300->rs_block_state.state, &rs, sizeof(struct r300_rs_block))) {
590 memcpy(r300->rs_block_state.state, &rs, sizeof(struct r300_rs_block));
591 r300->rs_block_state.size = 13 + count*2;
592 }
593 }
594
595 static uint32_t r300_get_border_color(enum pipe_format format,
596 const float border[4],
597 boolean is_r500)
598 {
599 const struct util_format_description *desc;
600 float border_swizzled[4] = {0};
601 unsigned i;
602 union util_color uc = {0};
603
604 desc = util_format_description(format);
605
606 /* Do depth formats first. */
607 if (util_format_is_depth_or_stencil(format)) {
608 switch (format) {
609 case PIPE_FORMAT_Z16_UNORM:
610 return util_pack_z(PIPE_FORMAT_Z16_UNORM, border[0]);
611 case PIPE_FORMAT_X8Z24_UNORM:
612 case PIPE_FORMAT_S8_USCALED_Z24_UNORM:
613 if (is_r500) {
614 return util_pack_z(PIPE_FORMAT_X8Z24_UNORM, border[0]);
615 } else {
616 return util_pack_z(PIPE_FORMAT_Z16_UNORM, border[0]) << 16;
617 }
618 default:
619 assert(0);
620 return 0;
621 }
622 }
623
624 /* Apply inverse swizzle of the format. */
625 for (i = 0; i < 4; i++) {
626 switch (desc->swizzle[i]) {
627 case UTIL_FORMAT_SWIZZLE_X:
628 border_swizzled[2] = border[i];
629 break;
630 case UTIL_FORMAT_SWIZZLE_Y:
631 border_swizzled[1] = border[i];
632 break;
633 case UTIL_FORMAT_SWIZZLE_Z:
634 border_swizzled[0] = border[i];
635 break;
636 case UTIL_FORMAT_SWIZZLE_W:
637 border_swizzled[3] = border[i];
638 break;
639 }
640 }
641
642 /* Compressed formats. */
643 if (util_format_is_compressed(format)) {
644 switch (format) {
645 case PIPE_FORMAT_RGTC1_SNORM:
646 case PIPE_FORMAT_RGTC1_UNORM:
647 /* Add 1/32 to round the border color instead of truncating. */
648 /* The Y component is used for the border color. */
649 border_swizzled[1] = border_swizzled[2] + 1.0f/32;
650 util_pack_color(border_swizzled, PIPE_FORMAT_B4G4R4A4_UNORM, &uc);
651 return uc.ui;
652 case PIPE_FORMAT_RGTC2_SNORM:
653 border_swizzled[0] = border_swizzled[2];
654 util_pack_color(border_swizzled, PIPE_FORMAT_R8G8B8A8_SNORM, &uc);
655 return uc.ui;
656 case PIPE_FORMAT_RGTC2_UNORM:
657 util_pack_color(border_swizzled, PIPE_FORMAT_B8G8R8A8_UNORM, &uc);
658 return uc.ui;
659 default:
660 util_pack_color(border_swizzled, PIPE_FORMAT_R8G8B8A8_UNORM, &uc);
661 return uc.ui;
662 }
663 }
664
665 switch (desc->channel[0].size) {
666 case 2:
667 util_pack_color(border_swizzled, PIPE_FORMAT_B2G3R3_UNORM, &uc);
668 break;
669
670 case 4:
671 util_pack_color(border_swizzled, PIPE_FORMAT_B4G4R4A4_UNORM, &uc);
672 break;
673
674 case 5:
675 if (desc->channel[1].size == 5) {
676 util_pack_color(border_swizzled, PIPE_FORMAT_B5G5R5A1_UNORM, &uc);
677 } else if (desc->channel[1].size == 6) {
678 util_pack_color(border_swizzled, PIPE_FORMAT_B5G6R5_UNORM, &uc);
679 } else {
680 assert(0);
681 }
682 break;
683
684 default:
685 case 8:
686 util_pack_color(border_swizzled, PIPE_FORMAT_B8G8R8A8_UNORM, &uc);
687 break;
688
689 case 10:
690 util_pack_color(border_swizzled, PIPE_FORMAT_B10G10R10A2_UNORM, &uc);
691 break;
692
693 case 16:
694 if (desc->nr_channels <= 2) {
695 border_swizzled[0] = border_swizzled[2];
696 if (desc->channel[0].type == UTIL_FORMAT_TYPE_FLOAT) {
697 util_pack_color(border_swizzled, PIPE_FORMAT_R16G16_FLOAT, &uc);
698 } else {
699 util_pack_color(border_swizzled, PIPE_FORMAT_R16G16_UNORM, &uc);
700 }
701 } else {
702 util_pack_color(border_swizzled, PIPE_FORMAT_B8G8R8A8_UNORM, &uc);
703 }
704 break;
705
706 case 32:
707 if (desc->nr_channels == 1) {
708 border_swizzled[0] = border_swizzled[2];
709 util_pack_color(border_swizzled, PIPE_FORMAT_R32_FLOAT, &uc);
710 } else {
711 util_pack_color(border_swizzled, PIPE_FORMAT_B8G8R8A8_UNORM, &uc);
712 }
713 break;
714 }
715
716 return uc.ui;
717 }
718
719 static boolean util_format_is_float(enum pipe_format format)
720 {
721 const struct util_format_description *desc = util_format_description(format);
722 unsigned i;
723
724 if (!format)
725 return FALSE;
726
727 /* Find the first non-void channel. */
728 for (i = 0; i < 4; i++)
729 if (desc->channel[i].type != UTIL_FORMAT_TYPE_VOID)
730 break;
731
732 if (i == 4)
733 return FALSE;
734
735 return desc->channel[i].type == UTIL_FORMAT_TYPE_FLOAT ? TRUE : FALSE;
736 }
737
738 static void r300_merge_textures_and_samplers(struct r300_context* r300)
739 {
740 struct r300_textures_state *state =
741 (struct r300_textures_state*)r300->textures_state.state;
742 struct r300_texture_sampler_state *texstate;
743 struct r300_sampler_state *sampler;
744 struct r300_sampler_view *view;
745 struct r300_resource *tex;
746 unsigned min_level, max_level, i, j, size;
747 unsigned count = MIN2(state->sampler_view_count,
748 state->sampler_state_count);
749
750 /* The KIL opcode fix, see below. */
751 if (!count && !r300->screen->caps.is_r500)
752 count = 1;
753
754 state->tx_enable = 0;
755 state->count = 0;
756 size = 2;
757
758 for (i = 0; i < count; i++) {
759 if (state->sampler_views[i] && state->sampler_states[i]) {
760 state->tx_enable |= 1 << i;
761
762 view = state->sampler_views[i];
763 tex = r300_resource(view->base.texture);
764 sampler = state->sampler_states[i];
765
766 texstate = &state->regs[i];
767 texstate->format = view->format;
768 texstate->filter0 = sampler->filter0;
769 texstate->filter1 = sampler->filter1;
770
771 /* Set the border color. */
772 texstate->border_color =
773 r300_get_border_color(view->base.format,
774 sampler->state.border_color,
775 r300->screen->caps.is_r500);
776
777 /* determine min/max levels */
778 max_level = MIN3(sampler->max_lod + view->base.u.tex.first_level,
779 tex->b.b.b.last_level, view->base.u.tex.last_level);
780 min_level = MIN2(sampler->min_lod + view->base.u.tex.first_level,
781 max_level);
782
783 if (tex->tex.is_npot && min_level > 0) {
784 /* Even though we do not implement mipmapping for NPOT
785 * textures, we should at least honor the minimum level
786 * which is allowed to be displayed. We do this by setting up
787 * the i-th mipmap level as the zero level. */
788 unsigned offset = tex->tex_offset +
789 tex->tex.offset_in_bytes[min_level];
790
791 r300_texture_setup_format_state(r300->screen, tex,
792 min_level,
793 &texstate->format);
794 texstate->format.tile_config |= offset & 0xffffffe0;
795 assert((offset & 0x1f) == 0);
796 } else {
797 texstate->format.tile_config |= tex->tex_offset & 0xffffffe0;
798 assert((tex->tex_offset & 0x1f) == 0);
799 }
800
801 /* Assign a texture cache region. */
802 texstate->format.format1 |= view->texcache_region;
803
804 /* Depth textures are kinda special. */
805 if (util_format_is_depth_or_stencil(tex->b.b.b.format)) {
806 unsigned char depth_swizzle[4];
807
808 if (!r300->screen->caps.is_r500 &&
809 util_format_get_blocksizebits(tex->b.b.b.format) == 32) {
810 /* X24x8 is sampled as Y16X16 on r3xx-r4xx.
811 * The depth here is at the Y component. */
812 for (j = 0; j < 4; j++)
813 depth_swizzle[j] = UTIL_FORMAT_SWIZZLE_Y;
814 } else {
815 for (j = 0; j < 4; j++)
816 depth_swizzle[j] = UTIL_FORMAT_SWIZZLE_X;
817 }
818
819 /* If compare mode is disabled, sampler view swizzles
820 * are stored in the format.
821 * Otherwise, the swizzles must be applied after the compare
822 * mode in the fragment shader. */
823 if (sampler->state.compare_mode == PIPE_TEX_COMPARE_NONE) {
824 texstate->format.format1 |=
825 r300_get_swizzle_combined(depth_swizzle,
826 view->swizzle, FALSE);
827 } else {
828 texstate->format.format1 |=
829 r300_get_swizzle_combined(depth_swizzle, 0, FALSE);
830 }
831 }
832
833 if (r300->screen->caps.dxtc_swizzle &&
834 util_format_is_compressed(tex->b.b.b.format)) {
835 texstate->filter1 |= R400_DXTC_SWIZZLE_ENABLE;
836 }
837
838 /* to emulate 1D textures through 2D ones correctly */
839 if (tex->b.b.b.target == PIPE_TEXTURE_1D) {
840 texstate->filter0 &= ~R300_TX_WRAP_T_MASK;
841 texstate->filter0 |= R300_TX_WRAP_T(R300_TX_CLAMP_TO_EDGE);
842 }
843
844 if (tex->tex.is_npot) {
845 /* NPOT textures don't support mip filter, unfortunately.
846 * This prevents incorrect rendering. */
847 texstate->filter0 &= ~R300_TX_MIN_FILTER_MIP_MASK;
848
849 /* Mask out the mirrored flag. */
850 if (texstate->filter0 & R300_TX_WRAP_S(R300_TX_MIRRORED)) {
851 texstate->filter0 &= ~R300_TX_WRAP_S(R300_TX_MIRRORED);
852 }
853 if (texstate->filter0 & R300_TX_WRAP_T(R300_TX_MIRRORED)) {
854 texstate->filter0 &= ~R300_TX_WRAP_T(R300_TX_MIRRORED);
855 }
856
857 /* Change repeat to clamp-to-edge.
858 * (the repeat bit has a value of 0, no masking needed). */
859 if ((texstate->filter0 & R300_TX_WRAP_S_MASK) ==
860 R300_TX_WRAP_S(R300_TX_REPEAT)) {
861 texstate->filter0 |= R300_TX_WRAP_S(R300_TX_CLAMP_TO_EDGE);
862 }
863 if ((texstate->filter0 & R300_TX_WRAP_T_MASK) ==
864 R300_TX_WRAP_T(R300_TX_REPEAT)) {
865 texstate->filter0 |= R300_TX_WRAP_T(R300_TX_CLAMP_TO_EDGE);
866 }
867 } else {
868 /* the MAX_MIP level is the largest (finest) one */
869 texstate->format.format0 |= R300_TX_NUM_LEVELS(max_level);
870 texstate->filter0 |= R300_TX_MAX_MIP_LEVEL(min_level);
871 }
872
873 /* Float textures only support nearest and mip-nearest filtering. */
874 if (util_format_is_float(tex->b.b.b.format)) {
875 /* No MAG linear filtering. */
876 if ((texstate->filter0 & R300_TX_MAG_FILTER_MASK) ==
877 R300_TX_MAG_FILTER_LINEAR) {
878 texstate->filter0 &= ~R300_TX_MAG_FILTER_MASK;
879 texstate->filter0 |= R300_TX_MAG_FILTER_NEAREST;
880 }
881 /* No MIN linear filtering. */
882 if ((texstate->filter0 & R300_TX_MIN_FILTER_MASK) ==
883 R300_TX_MIN_FILTER_LINEAR) {
884 texstate->filter0 &= ~R300_TX_MIN_FILTER_MASK;
885 texstate->filter0 |= R300_TX_MIN_FILTER_NEAREST;
886 }
887 /* No mipmap linear filtering. */
888 if ((texstate->filter0 & R300_TX_MIN_FILTER_MIP_MASK) ==
889 R300_TX_MIN_FILTER_MIP_LINEAR) {
890 texstate->filter0 &= ~R300_TX_MIN_FILTER_MIP_MASK;
891 texstate->filter0 |= R300_TX_MIN_FILTER_MIP_NEAREST;
892 }
893 /* No anisotropic filtering. */
894 texstate->filter0 &= ~R300_TX_MAX_ANISO_MASK;
895 texstate->filter1 &= ~R500_TX_MAX_ANISO_MASK;
896 texstate->filter1 &= ~R500_TX_ANISO_HIGH_QUALITY;
897 }
898
899 texstate->filter0 |= i << 28;
900
901 size += 16;
902 state->count = i+1;
903 } else {
904 /* For the KIL opcode to work on r3xx-r4xx, the texture unit
905 * assigned to this opcode (it's always the first one) must be
906 * enabled. Otherwise the opcode doesn't work.
907 *
908 * In order to not depend on the fragment shader, we just make
909 * the first unit enabled all the time. */
910 if (i == 0 && !r300->screen->caps.is_r500) {
911 pipe_sampler_view_reference(
912 (struct pipe_sampler_view**)&state->sampler_views[i],
913 &r300->texkill_sampler->base);
914
915 state->tx_enable |= 1 << i;
916
917 texstate = &state->regs[i];
918
919 /* Just set some valid state. */
920 texstate->format = r300->texkill_sampler->format;
921 texstate->filter0 =
922 r300_translate_tex_filters(PIPE_TEX_FILTER_NEAREST,
923 PIPE_TEX_FILTER_NEAREST,
924 PIPE_TEX_FILTER_NEAREST,
925 FALSE);
926 texstate->filter1 = 0;
927 texstate->border_color = 0;
928
929 texstate->filter0 |= i << 28;
930 size += 16;
931 state->count = i+1;
932 }
933 }
934 }
935
936 r300->textures_state.size = size;
937
938 /* Pick a fragment shader based on either the texture compare state
939 * or the uses_pitch flag. */
940 if (r300->fs.state && count) {
941 if (r300_pick_fragment_shader(r300)) {
942 r300_mark_fs_code_dirty(r300);
943 }
944 }
945 }
946
947 static void r300_decompress_depth_textures(struct r300_context *r300)
948 {
949 struct r300_textures_state *state =
950 (struct r300_textures_state*)r300->textures_state.state;
951 struct pipe_resource *tex;
952 unsigned count = MIN2(state->sampler_view_count,
953 state->sampler_state_count);
954 unsigned i;
955
956 if (!r300->hyperz_locked || !r300->locked_zbuffer) {
957 return;
958 }
959
960 for (i = 0; i < count; i++) {
961 if (state->sampler_views[i] && state->sampler_states[i]) {
962 tex = state->sampler_views[i]->base.texture;
963
964 if (tex == r300->locked_zbuffer->texture) {
965 r300_decompress_zmask_locked(r300);
966 return;
967 }
968 }
969 }
970 }
971
972 void r300_update_derived_state(struct r300_context* r300)
973 {
974 if (r300->textures_state.dirty) {
975 r300_decompress_depth_textures(r300);
976 r300_merge_textures_and_samplers(r300);
977 }
978
979 if (r300->rs_block_state.dirty) {
980 r300_update_rs_block(r300);
981
982 if (r300->draw) {
983 memset(&r300->vertex_info, 0, sizeof(struct vertex_info));
984 r300_draw_emit_all_attribs(r300);
985 draw_compute_vertex_size(&r300->vertex_info);
986 r300_swtcl_vertex_psc(r300);
987 }
988 }
989
990 r300_update_hyperz_state(r300);
991 }