r300g: implement gl_FrontFacing
[mesa.git] / src / gallium / drivers / r300 / r300_state_derived.c
1 /*
2 * Copyright 2008 Corbin Simpson <MostAwesomeDude@gmail.com>
3 * Copyright 2009 Marek Olšák <maraeo@gmail.com>
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * on the rights to use, copy, modify, merge, publish, distribute, sub
9 * license, and/or sell copies of the Software, and to permit persons to whom
10 * the Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE. */
23
24 #include "draw/draw_context.h"
25
26 #include "util/u_math.h"
27 #include "util/u_memory.h"
28
29 #include "r300_context.h"
30 #include "r300_fs.h"
31 #include "r300_hyperz.h"
32 #include "r300_screen.h"
33 #include "r300_shader_semantics.h"
34 #include "r300_state_derived.h"
35 #include "r300_state_inlines.h"
36 #include "r300_texture.h"
37 #include "r300_vs.h"
38
39 /* r300_state_derived: Various bits of state which are dependent upon
40 * currently bound CSO data. */
41
42 enum r300_rs_swizzle {
43 SWIZ_XYZW = 0,
44 SWIZ_X001,
45 SWIZ_XY01,
46 SWIZ_0001,
47 };
48
49 enum r300_rs_col_write_type {
50 WRITE_COLOR = 0,
51 WRITE_FACE
52 };
53
54 static void r300_draw_emit_attrib(struct r300_context* r300,
55 enum attrib_emit emit,
56 enum interp_mode interp,
57 int index)
58 {
59 struct r300_vertex_shader* vs = r300->vs_state.state;
60 struct tgsi_shader_info* info = &vs->info;
61 int output;
62
63 output = draw_find_shader_output(r300->draw,
64 info->output_semantic_name[index],
65 info->output_semantic_index[index]);
66 draw_emit_vertex_attr(&r300->vertex_info, emit, interp, output);
67 }
68
69 static void r300_draw_emit_all_attribs(struct r300_context* r300)
70 {
71 struct r300_vertex_shader* vs = r300->vs_state.state;
72 struct r300_shader_semantics* vs_outputs = &vs->outputs;
73 int i, gen_count;
74
75 /* Position. */
76 if (vs_outputs->pos != ATTR_UNUSED) {
77 r300_draw_emit_attrib(r300, EMIT_4F, INTERP_PERSPECTIVE,
78 vs_outputs->pos);
79 } else {
80 assert(0);
81 }
82
83 /* Point size. */
84 if (vs_outputs->psize != ATTR_UNUSED) {
85 r300_draw_emit_attrib(r300, EMIT_1F_PSIZE, INTERP_POS,
86 vs_outputs->psize);
87 }
88
89 /* Colors. */
90 for (i = 0; i < ATTR_COLOR_COUNT; i++) {
91 if (vs_outputs->color[i] != ATTR_UNUSED) {
92 r300_draw_emit_attrib(r300, EMIT_4F, INTERP_LINEAR,
93 vs_outputs->color[i]);
94 }
95 }
96
97 /* Back-face colors. */
98 for (i = 0; i < ATTR_COLOR_COUNT; i++) {
99 if (vs_outputs->bcolor[i] != ATTR_UNUSED) {
100 r300_draw_emit_attrib(r300, EMIT_4F, INTERP_LINEAR,
101 vs_outputs->bcolor[i]);
102 }
103 }
104
105 /* Texture coordinates. */
106 /* Only 8 generic vertex attributes can be used. If there are more,
107 * they won't be rasterized. */
108 gen_count = 0;
109 for (i = 0; i < ATTR_GENERIC_COUNT && gen_count < 8; i++) {
110 if (vs_outputs->generic[i] != ATTR_UNUSED &&
111 !(r300->sprite_coord_enable & (1 << i))) {
112 r300_draw_emit_attrib(r300, EMIT_4F, INTERP_PERSPECTIVE,
113 vs_outputs->generic[i]);
114 gen_count++;
115 }
116 }
117
118 /* Fog coordinates. */
119 if (gen_count < 8 && vs_outputs->fog != ATTR_UNUSED) {
120 r300_draw_emit_attrib(r300, EMIT_4F, INTERP_PERSPECTIVE,
121 vs_outputs->fog);
122 gen_count++;
123 }
124
125 /* WPOS. */
126 if (r300_fs(r300)->shader->inputs.wpos != ATTR_UNUSED && gen_count < 8) {
127 DBG(r300, DBG_SWTCL, "draw_emit_attrib: WPOS, index: %i\n",
128 vs_outputs->wpos);
129 r300_draw_emit_attrib(r300, EMIT_4F, INTERP_PERSPECTIVE,
130 vs_outputs->wpos);
131 }
132 }
133
134 /* Update the PSC tables for SW TCL, using Draw. */
135 static void r300_swtcl_vertex_psc(struct r300_context *r300)
136 {
137 struct r300_vertex_stream_state *vstream = r300->vertex_stream_state.state;
138 struct vertex_info *vinfo = &r300->vertex_info;
139 uint16_t type, swizzle;
140 enum pipe_format format;
141 unsigned i, attrib_count;
142 int* vs_output_tab = r300->stream_loc_notcl;
143
144 memset(vstream, 0, sizeof(struct r300_vertex_stream_state));
145
146 /* For each Draw attribute, route it to the fragment shader according
147 * to the vs_output_tab. */
148 attrib_count = vinfo->num_attribs;
149 DBG(r300, DBG_SWTCL, "r300: attrib count: %d\n", attrib_count);
150 for (i = 0; i < attrib_count; i++) {
151 if (vs_output_tab[i] == -1) {
152 assert(0);
153 abort();
154 }
155
156 format = draw_translate_vinfo_format(vinfo->attrib[i].emit);
157
158 DBG(r300, DBG_SWTCL,
159 "r300: swtcl_vertex_psc [%i] <- %s\n",
160 vs_output_tab[i], util_format_short_name(format));
161
162 /* Obtain the type of data in this attribute. */
163 type = r300_translate_vertex_data_type(format);
164 if (type == R300_INVALID_FORMAT) {
165 fprintf(stderr, "r300: Bad vertex format %s.\n",
166 util_format_short_name(format));
167 assert(0);
168 abort();
169 }
170
171 type |= vs_output_tab[i] << R300_DST_VEC_LOC_SHIFT;
172
173 /* Obtain the swizzle for this attribute. Note that the default
174 * swizzle in the hardware is not XYZW! */
175 swizzle = r300_translate_vertex_data_swizzle(format);
176
177 /* Add the attribute to the PSC table. */
178 if (i & 1) {
179 vstream->vap_prog_stream_cntl[i >> 1] |= type << 16;
180 vstream->vap_prog_stream_cntl_ext[i >> 1] |= swizzle << 16;
181 } else {
182 vstream->vap_prog_stream_cntl[i >> 1] |= type;
183 vstream->vap_prog_stream_cntl_ext[i >> 1] |= swizzle;
184 }
185 }
186
187 /* Set the last vector in the PSC. */
188 if (i) {
189 i -= 1;
190 }
191 vstream->vap_prog_stream_cntl[i >> 1] |=
192 (R300_LAST_VEC << (i & 1 ? 16 : 0));
193
194 vstream->count = (i >> 1) + 1;
195 r300->vertex_stream_state.dirty = TRUE;
196 r300->vertex_stream_state.size = (1 + vstream->count) * 2;
197 }
198
199 static void r300_rs_col(struct r300_rs_block* rs, int id, int ptr,
200 enum r300_rs_swizzle swiz)
201 {
202 rs->ip[id] |= R300_RS_COL_PTR(ptr);
203 if (swiz == SWIZ_0001) {
204 rs->ip[id] |= R300_RS_COL_FMT(R300_RS_COL_FMT_0001);
205 } else {
206 rs->ip[id] |= R300_RS_COL_FMT(R300_RS_COL_FMT_RGBA);
207 }
208 rs->inst[id] |= R300_RS_INST_COL_ID(id);
209 }
210
211 static void r300_rs_col_write(struct r300_rs_block* rs, int id, int fp_offset,
212 enum r300_rs_col_write_type type)
213 {
214 assert(type != WRITE_COLOR);
215 rs->inst[id] |= R300_RS_INST_COL_CN_WRITE |
216 R300_RS_INST_COL_ADDR(fp_offset);
217 }
218
219 static void r300_rs_tex(struct r300_rs_block* rs, int id, int ptr,
220 enum r300_rs_swizzle swiz)
221 {
222 if (swiz == SWIZ_X001) {
223 rs->ip[id] |= R300_RS_TEX_PTR(ptr) |
224 R300_RS_SEL_S(R300_RS_SEL_C0) |
225 R300_RS_SEL_T(R300_RS_SEL_K0) |
226 R300_RS_SEL_R(R300_RS_SEL_K0) |
227 R300_RS_SEL_Q(R300_RS_SEL_K1);
228 } else if (swiz == SWIZ_XY01) {
229 rs->ip[id] |= R300_RS_TEX_PTR(ptr) |
230 R300_RS_SEL_S(R300_RS_SEL_C0) |
231 R300_RS_SEL_T(R300_RS_SEL_C1) |
232 R300_RS_SEL_R(R300_RS_SEL_K0) |
233 R300_RS_SEL_Q(R300_RS_SEL_K1);
234 } else {
235 rs->ip[id] |= R300_RS_TEX_PTR(ptr) |
236 R300_RS_SEL_S(R300_RS_SEL_C0) |
237 R300_RS_SEL_T(R300_RS_SEL_C1) |
238 R300_RS_SEL_R(R300_RS_SEL_C2) |
239 R300_RS_SEL_Q(R300_RS_SEL_C3);
240 }
241 rs->inst[id] |= R300_RS_INST_TEX_ID(id);
242 }
243
244 static void r300_rs_tex_write(struct r300_rs_block* rs, int id, int fp_offset)
245 {
246 rs->inst[id] |= R300_RS_INST_TEX_CN_WRITE |
247 R300_RS_INST_TEX_ADDR(fp_offset);
248 }
249
250 static void r500_rs_col(struct r300_rs_block* rs, int id, int ptr,
251 enum r300_rs_swizzle swiz)
252 {
253 rs->ip[id] |= R500_RS_COL_PTR(ptr);
254 if (swiz == SWIZ_0001) {
255 rs->ip[id] |= R500_RS_COL_FMT(R300_RS_COL_FMT_0001);
256 } else {
257 rs->ip[id] |= R500_RS_COL_FMT(R300_RS_COL_FMT_RGBA);
258 }
259 rs->inst[id] |= R500_RS_INST_COL_ID(id);
260 }
261
262 static void r500_rs_col_write(struct r300_rs_block* rs, int id, int fp_offset,
263 enum r300_rs_col_write_type type)
264 {
265 if (type == WRITE_FACE)
266 rs->inst[id] |= R500_RS_INST_COL_CN_WRITE_BACKFACE |
267 R500_RS_INST_COL_ADDR(fp_offset);
268 else
269 rs->inst[id] |= R500_RS_INST_COL_CN_WRITE |
270 R500_RS_INST_COL_ADDR(fp_offset);
271
272 }
273
274 static void r500_rs_tex(struct r300_rs_block* rs, int id, int ptr,
275 enum r300_rs_swizzle swiz)
276 {
277 if (swiz == SWIZ_X001) {
278 rs->ip[id] |= R500_RS_SEL_S(ptr) |
279 R500_RS_SEL_T(R500_RS_IP_PTR_K0) |
280 R500_RS_SEL_R(R500_RS_IP_PTR_K0) |
281 R500_RS_SEL_Q(R500_RS_IP_PTR_K1);
282 } else if (swiz == SWIZ_XY01) {
283 rs->ip[id] |= R500_RS_SEL_S(ptr) |
284 R500_RS_SEL_T(ptr + 1) |
285 R500_RS_SEL_R(R500_RS_IP_PTR_K0) |
286 R500_RS_SEL_Q(R500_RS_IP_PTR_K1);
287 } else {
288 rs->ip[id] |= R500_RS_SEL_S(ptr) |
289 R500_RS_SEL_T(ptr + 1) |
290 R500_RS_SEL_R(ptr + 2) |
291 R500_RS_SEL_Q(ptr + 3);
292 }
293 rs->inst[id] |= R500_RS_INST_TEX_ID(id);
294 }
295
296 static void r500_rs_tex_write(struct r300_rs_block* rs, int id, int fp_offset)
297 {
298 rs->inst[id] |= R500_RS_INST_TEX_CN_WRITE |
299 R500_RS_INST_TEX_ADDR(fp_offset);
300 }
301
302 /* Set up the RS block.
303 *
304 * This is the part of the chipset that is responsible for linking vertex
305 * and fragment shaders and stuffed texture coordinates.
306 *
307 * The rasterizer reads data from VAP, which produces vertex shader outputs,
308 * and GA, which produces stuffed texture coordinates. VAP outputs have
309 * precedence over GA. All outputs must be rasterized otherwise it locks up.
310 * If there are more outputs rasterized than is set in VAP/GA, it locks up
311 * too. The funky part is that this info has been pretty much obtained by trial
312 * and error. */
313 static void r300_update_rs_block(struct r300_context *r300)
314 {
315 struct r300_vertex_shader *vs = r300->vs_state.state;
316 struct r300_shader_semantics *vs_outputs = &vs->outputs;
317 struct r300_shader_semantics *fs_inputs = &r300_fs(r300)->shader->inputs;
318 struct r300_rs_block rs = {0};
319 int i, col_count = 0, tex_count = 0, fp_offset = 0, count, loc = 0, tex_ptr = 0;
320 void (*rX00_rs_col)(struct r300_rs_block*, int, int, enum r300_rs_swizzle);
321 void (*rX00_rs_col_write)(struct r300_rs_block*, int, int, enum r300_rs_col_write_type);
322 void (*rX00_rs_tex)(struct r300_rs_block*, int, int, enum r300_rs_swizzle);
323 void (*rX00_rs_tex_write)(struct r300_rs_block*, int, int);
324 boolean any_bcolor_used = vs_outputs->bcolor[0] != ATTR_UNUSED ||
325 vs_outputs->bcolor[1] != ATTR_UNUSED;
326 int *stream_loc_notcl = r300->stream_loc_notcl;
327
328 if (r300->screen->caps.is_r500) {
329 rX00_rs_col = r500_rs_col;
330 rX00_rs_col_write = r500_rs_col_write;
331 rX00_rs_tex = r500_rs_tex;
332 rX00_rs_tex_write = r500_rs_tex_write;
333 } else {
334 rX00_rs_col = r300_rs_col;
335 rX00_rs_col_write = r300_rs_col_write;
336 rX00_rs_tex = r300_rs_tex;
337 rX00_rs_tex_write = r300_rs_tex_write;
338 }
339
340 /* The position is always present in VAP. */
341 rs.vap_vsm_vtx_assm |= R300_INPUT_CNTL_POS;
342 rs.vap_out_vtx_fmt[0] |= R300_VAP_OUTPUT_VTX_FMT_0__POS_PRESENT;
343 stream_loc_notcl[loc++] = 0;
344
345 /* Set up the point size in VAP. */
346 if (vs_outputs->psize != ATTR_UNUSED) {
347 rs.vap_out_vtx_fmt[0] |= R300_VAP_OUTPUT_VTX_FMT_0__PT_SIZE_PRESENT;
348 stream_loc_notcl[loc++] = 1;
349 }
350
351 /* Set up and rasterize colors. */
352 for (i = 0; i < ATTR_COLOR_COUNT; i++) {
353 if (vs_outputs->color[i] != ATTR_UNUSED || any_bcolor_used ||
354 vs_outputs->color[1] != ATTR_UNUSED) {
355 /* Set up the color in VAP. */
356 rs.vap_vsm_vtx_assm |= R300_INPUT_CNTL_COLOR;
357 rs.vap_out_vtx_fmt[0] |=
358 R300_VAP_OUTPUT_VTX_FMT_0__COLOR_0_PRESENT << i;
359 stream_loc_notcl[loc++] = 2 + i;
360
361 /* Rasterize it. */
362 rX00_rs_col(&rs, col_count, col_count, SWIZ_XYZW);
363
364 /* Write it to the FS input register if it's needed by the FS. */
365 if (fs_inputs->color[i] != ATTR_UNUSED) {
366 rX00_rs_col_write(&rs, col_count, fp_offset, WRITE_COLOR);
367 fp_offset++;
368
369 DBG(r300, DBG_RS,
370 "r300: Rasterized color %i written to FS.\n", i);
371 } else {
372 DBG(r300, DBG_RS, "r300: Rasterized color %i unused.\n", i);
373 }
374 col_count++;
375 } else {
376 /* Skip the FS input register, leave it uninitialized. */
377 /* If we try to set it to (0,0,0,1), it will lock up. */
378 if (fs_inputs->color[i] != ATTR_UNUSED) {
379 fp_offset++;
380
381 DBG(r300, DBG_RS, "r300: FS input color %i unassigned%s.\n",
382 i);
383 }
384 }
385 }
386
387 /* Set up back-face colors. The rasterizer will do the color selection
388 * automatically. */
389 if (any_bcolor_used) {
390 if (r300->two_sided_color) {
391 /* Rasterize as back-face colors. */
392 for (i = 0; i < ATTR_COLOR_COUNT; i++) {
393 rs.vap_vsm_vtx_assm |= R300_INPUT_CNTL_COLOR;
394 rs.vap_out_vtx_fmt[0] |= R300_VAP_OUTPUT_VTX_FMT_0__COLOR_0_PRESENT << (2+i);
395 stream_loc_notcl[loc++] = 4 + i;
396 }
397 } else {
398 /* Rasterize two fake texcoords to prevent from the two-sided color
399 * selection. */
400 /* XXX Consider recompiling the vertex shader to save 2 RS units. */
401 for (i = 0; i < 2; i++) {
402 rs.vap_vsm_vtx_assm |= (R300_INPUT_CNTL_TC0 << tex_count);
403 rs.vap_out_vtx_fmt[1] |= (4 << (3 * tex_count));
404 stream_loc_notcl[loc++] = 6 + tex_count;
405
406 /* Rasterize it. */
407 rX00_rs_tex(&rs, tex_count, tex_ptr, SWIZ_XYZW);
408 tex_count++;
409 tex_ptr += 4;
410 }
411 }
412 }
413
414 /* gl_FrontFacing.
415 * Note that we can use either the two-sided color selection based on
416 * the front and back vertex shader colors, or gl_FrontFacing,
417 * but not both! It locks up otherwise.
418 *
419 * In Direct3D 9, the two-sided color selection can be used
420 * with shaders 2.0 only, while gl_FrontFacing can be used
421 * with shaders 3.0 only. The hardware apparently hasn't been designed
422 * to support both at the same time. */
423 if (r300->screen->caps.is_r500 && fs_inputs->face != ATTR_UNUSED &&
424 !(any_bcolor_used && r300->two_sided_color)) {
425 rX00_rs_col(&rs, col_count, col_count, SWIZ_XYZW);
426 rX00_rs_col_write(&rs, col_count, fp_offset, WRITE_FACE);
427 fp_offset++;
428 col_count++;
429 DBG(r300, DBG_RS, "r300: Rasterized FACE written to FS.\n");
430 }
431
432 /* Rasterize texture coordinates. */
433 for (i = 0; i < ATTR_GENERIC_COUNT && tex_count < 8; i++) {
434 bool sprite_coord = !!(r300->sprite_coord_enable & (1 << i));
435
436 if (vs_outputs->generic[i] != ATTR_UNUSED || sprite_coord) {
437 if (!sprite_coord) {
438 /* Set up the texture coordinates in VAP. */
439 rs.vap_vsm_vtx_assm |= (R300_INPUT_CNTL_TC0 << tex_count);
440 rs.vap_out_vtx_fmt[1] |= (4 << (3 * tex_count));
441 stream_loc_notcl[loc++] = 6 + tex_count;
442 }
443
444 /* Rasterize it. */
445 rX00_rs_tex(&rs, tex_count, tex_ptr,
446 sprite_coord ? SWIZ_XY01 : SWIZ_XYZW);
447
448 /* Write it to the FS input register if it's needed by the FS. */
449 if (fs_inputs->generic[i] != ATTR_UNUSED) {
450 rX00_rs_tex_write(&rs, tex_count, fp_offset);
451 fp_offset++;
452
453 DBG(r300, DBG_RS,
454 "r300: Rasterized generic %i written to FS%s.\n",
455 i, sprite_coord ? " (sprite coord)" : "");
456 } else {
457 DBG(r300, DBG_RS,
458 "r300: Rasterized generic %i unused%s.\n",
459 i, sprite_coord ? " (sprite coord)" : "");
460 }
461 tex_count++;
462 tex_ptr += sprite_coord ? 2 : 4;
463 } else {
464 /* Skip the FS input register, leave it uninitialized. */
465 /* If we try to set it to (0,0,0,1), it will lock up. */
466 if (fs_inputs->generic[i] != ATTR_UNUSED) {
467 fp_offset++;
468
469 DBG(r300, DBG_RS, "r300: FS input generic %i unassigned%s.\n",
470 i, sprite_coord ? " (sprite coord)" : "");
471 }
472 }
473 }
474
475 /* Rasterize fog coordinates. */
476 if (vs_outputs->fog != ATTR_UNUSED && tex_count < 8) {
477 /* Set up the fog coordinates in VAP. */
478 rs.vap_vsm_vtx_assm |= (R300_INPUT_CNTL_TC0 << tex_count);
479 rs.vap_out_vtx_fmt[1] |= (4 << (3 * tex_count));
480 stream_loc_notcl[loc++] = 6 + tex_count;
481
482 /* Rasterize it. */
483 rX00_rs_tex(&rs, tex_count, tex_ptr, SWIZ_X001);
484
485 /* Write it to the FS input register if it's needed by the FS. */
486 if (fs_inputs->fog != ATTR_UNUSED) {
487 rX00_rs_tex_write(&rs, tex_count, fp_offset);
488 fp_offset++;
489
490 DBG(r300, DBG_RS, "r300: Rasterized fog written to FS.\n");
491 } else {
492 DBG(r300, DBG_RS, "r300: Rasterized fog unused.\n");
493 }
494 tex_count++;
495 tex_ptr += 4;
496 } else {
497 /* Skip the FS input register, leave it uninitialized. */
498 /* If we try to set it to (0,0,0,1), it will lock up. */
499 if (fs_inputs->fog != ATTR_UNUSED) {
500 fp_offset++;
501
502 DBG(r300, DBG_RS, "r300: FS input fog unassigned.\n");
503 }
504 }
505
506 /* Rasterize WPOS. */
507 /* Don't set it in VAP if the FS doesn't need it. */
508 if (fs_inputs->wpos != ATTR_UNUSED && tex_count < 8) {
509 /* Set up the WPOS coordinates in VAP. */
510 rs.vap_vsm_vtx_assm |= (R300_INPUT_CNTL_TC0 << tex_count);
511 rs.vap_out_vtx_fmt[1] |= (4 << (3 * tex_count));
512 stream_loc_notcl[loc++] = 6 + tex_count;
513
514 /* Rasterize it. */
515 rX00_rs_tex(&rs, tex_count, tex_ptr, SWIZ_XYZW);
516
517 /* Write it to the FS input register. */
518 rX00_rs_tex_write(&rs, tex_count, fp_offset);
519
520 DBG(r300, DBG_RS, "r300: Rasterized WPOS written to FS.\n");
521
522 fp_offset++;
523 tex_count++;
524 tex_ptr += 4;
525 }
526
527 /* Invalidate the rest of the no-TCL (GA) stream locations. */
528 for (; loc < 16;) {
529 stream_loc_notcl[loc++] = -1;
530 }
531
532 /* Rasterize at least one color, or bad things happen. */
533 if (col_count == 0 && tex_count == 0) {
534 rX00_rs_col(&rs, 0, 0, SWIZ_0001);
535 col_count++;
536
537 DBG(r300, DBG_RS, "r300: Rasterized color 0 to prevent lockups.\n");
538 }
539
540 DBG(r300, DBG_RS, "r300: --- Rasterizer status ---: colors: %i, "
541 "generics: %i.\n", col_count, tex_count);
542
543 rs.count = MIN2(tex_ptr, 32) | (col_count << R300_IC_COUNT_SHIFT) |
544 R300_HIRES_EN;
545
546 count = MAX3(col_count, tex_count, 1);
547 rs.inst_count = count - 1;
548
549 /* Now, after all that, see if we actually need to update the state. */
550 if (memcmp(r300->rs_block_state.state, &rs, sizeof(struct r300_rs_block))) {
551 memcpy(r300->rs_block_state.state, &rs, sizeof(struct r300_rs_block));
552 r300->rs_block_state.size = 11 + count*2;
553 }
554 }
555
556 static void r300_merge_textures_and_samplers(struct r300_context* r300)
557 {
558 struct r300_textures_state *state =
559 (struct r300_textures_state*)r300->textures_state.state;
560 struct r300_texture_sampler_state *texstate;
561 struct r300_sampler_state *sampler;
562 struct r300_sampler_view *view;
563 struct r300_texture *tex;
564 unsigned min_level, max_level, i, j, size;
565 unsigned count = MIN2(state->sampler_view_count,
566 state->sampler_state_count);
567
568 /* The KIL opcode fix, see below. */
569 if (!count && !r300->screen->caps.is_r500)
570 count = 1;
571
572 state->tx_enable = 0;
573 state->count = 0;
574 size = 2;
575
576 for (i = 0; i < count; i++) {
577 if (state->sampler_views[i] && state->sampler_states[i]) {
578 state->tx_enable |= 1 << i;
579
580 view = state->sampler_views[i];
581 tex = r300_texture(view->base.texture);
582 sampler = state->sampler_states[i];
583
584 texstate = &state->regs[i];
585 texstate->format = view->format;
586 texstate->filter0 = sampler->filter0;
587 texstate->filter1 = sampler->filter1;
588 texstate->border_color = sampler->border_color;
589
590 /* Assign a texture cache region. */
591 texstate->format.format1 |= view->texcache_region;
592
593 /* Depth textures are kinda special. */
594 if (util_format_is_depth_or_stencil(tex->desc.b.b.format)) {
595 unsigned char depth_swizzle[4];
596
597 if (!r300->screen->caps.is_r500 &&
598 util_format_get_blocksizebits(tex->desc.b.b.format) == 32) {
599 /* X24x8 is sampled as Y16X16 on r3xx-r4xx.
600 * The depth here is at the Y component. */
601 for (j = 0; j < 4; j++)
602 depth_swizzle[j] = UTIL_FORMAT_SWIZZLE_Y;
603 } else {
604 for (j = 0; j < 4; j++)
605 depth_swizzle[j] = UTIL_FORMAT_SWIZZLE_X;
606 }
607
608 /* If compare mode is disabled, sampler view swizzles
609 * are stored in the format.
610 * Otherwise, the swizzles must be applied after the compare
611 * mode in the fragment shader. */
612 if (sampler->state.compare_mode == PIPE_TEX_COMPARE_NONE) {
613 texstate->format.format1 |=
614 r300_get_swizzle_combined(depth_swizzle,
615 view->swizzle);
616 } else {
617 texstate->format.format1 |=
618 r300_get_swizzle_combined(depth_swizzle, 0);
619 }
620 }
621
622 /* to emulate 1D textures through 2D ones correctly */
623 if (tex->desc.b.b.target == PIPE_TEXTURE_1D) {
624 texstate->filter0 &= ~R300_TX_WRAP_T_MASK;
625 texstate->filter0 |= R300_TX_WRAP_T(R300_TX_CLAMP_TO_EDGE);
626 }
627
628 if (tex->desc.is_npot) {
629 /* NPOT textures don't support mip filter, unfortunately.
630 * This prevents incorrect rendering. */
631 texstate->filter0 &= ~R300_TX_MIN_FILTER_MIP_MASK;
632
633 /* Mask out the mirrored flag. */
634 if (texstate->filter0 & R300_TX_WRAP_S(R300_TX_MIRRORED)) {
635 texstate->filter0 &= ~R300_TX_WRAP_S(R300_TX_MIRRORED);
636 }
637 if (texstate->filter0 & R300_TX_WRAP_T(R300_TX_MIRRORED)) {
638 texstate->filter0 &= ~R300_TX_WRAP_T(R300_TX_MIRRORED);
639 }
640
641 /* Change repeat to clamp-to-edge.
642 * (the repeat bit has a value of 0, no masking needed). */
643 if ((texstate->filter0 & R300_TX_WRAP_S_MASK) ==
644 R300_TX_WRAP_S(R300_TX_REPEAT)) {
645 texstate->filter0 |= R300_TX_WRAP_S(R300_TX_CLAMP_TO_EDGE);
646 }
647 if ((texstate->filter0 & R300_TX_WRAP_T_MASK) ==
648 R300_TX_WRAP_T(R300_TX_REPEAT)) {
649 texstate->filter0 |= R300_TX_WRAP_T(R300_TX_CLAMP_TO_EDGE);
650 }
651 } else {
652 /* determine min/max levels */
653 /* the MAX_MIP level is the largest (finest) one */
654 max_level = MIN3(sampler->max_lod + view->base.first_level,
655 tex->desc.b.b.last_level, view->base.last_level);
656 min_level = MIN2(sampler->min_lod + view->base.first_level,
657 max_level);
658 texstate->format.format0 |= R300_TX_NUM_LEVELS(max_level);
659 texstate->filter0 |= R300_TX_MAX_MIP_LEVEL(min_level);
660 }
661
662 texstate->filter0 |= i << 28;
663
664 size += 16;
665 state->count = i+1;
666 } else {
667 /* For the KIL opcode to work on r3xx-r4xx, the texture unit
668 * assigned to this opcode (it's always the first one) must be
669 * enabled. Otherwise the opcode doesn't work.
670 *
671 * In order to not depend on the fragment shader, we just make
672 * the first unit enabled all the time. */
673 if (i == 0 && !r300->screen->caps.is_r500) {
674 pipe_sampler_view_reference(
675 (struct pipe_sampler_view**)&state->sampler_views[i],
676 &r300->texkill_sampler->base);
677
678 state->tx_enable |= 1 << i;
679
680 texstate = &state->regs[i];
681
682 /* Just set some valid state. */
683 texstate->format = r300->texkill_sampler->format;
684 texstate->filter0 =
685 r300_translate_tex_filters(PIPE_TEX_FILTER_NEAREST,
686 PIPE_TEX_FILTER_NEAREST,
687 PIPE_TEX_FILTER_NEAREST,
688 FALSE);
689 texstate->filter1 = 0;
690 texstate->border_color = 0;
691
692 texstate->filter0 |= i << 28;
693 size += 16;
694 state->count = i+1;
695 }
696 }
697 }
698
699 r300->textures_state.size = size;
700
701 /* Pick a fragment shader based on either the texture compare state
702 * or the uses_pitch flag. */
703 if (r300->fs.state && count) {
704 if (r300_pick_fragment_shader(r300)) {
705 r300_mark_fs_code_dirty(r300);
706 }
707 }
708 }
709
710 /* We can't use compressed zbuffers as samplers. */
711 static void r300_flush_depth_textures(struct r300_context *r300)
712 {
713 struct r300_textures_state *state =
714 (struct r300_textures_state*)r300->textures_state.state;
715 unsigned i, level;
716 unsigned count = MIN2(state->sampler_view_count,
717 state->sampler_state_count);
718
719 if (r300->z_decomp_rd)
720 return;
721
722 for (i = 0; i < count; i++)
723 if (state->sampler_views[i] && state->sampler_states[i]) {
724 struct pipe_resource *tex = state->sampler_views[i]->base.texture;
725
726 if (tex->target == PIPE_TEXTURE_3D ||
727 tex->target == PIPE_TEXTURE_CUBE)
728 continue;
729
730 /* Ignore non-depth textures.
731 * Also ignore reinterpreted depth textures, e.g. resource_copy. */
732 if (!util_format_is_depth_or_stencil(tex->format))
733 continue;
734
735 for (level = 0; level <= tex->last_level; level++)
736 if (r300_texture(tex)->dirty_zmask[level]) {
737 /* We don't handle 3D textures and cubemaps yet. */
738 r300_flush_depth_stencil(&r300->context, tex,
739 u_subresource(0, level), 0);
740 }
741 }
742 }
743
744 void r300_update_derived_state(struct r300_context* r300)
745 {
746 r300_flush_depth_textures(r300);
747
748 if (r300->textures_state.dirty) {
749 r300_merge_textures_and_samplers(r300);
750 }
751
752 if (r300->rs_block_state.dirty) {
753 r300_update_rs_block(r300);
754
755 if (r300->draw) {
756 memset(&r300->vertex_info, 0, sizeof(struct vertex_info));
757 r300_draw_emit_all_attribs(r300);
758 draw_compute_vertex_size(&r300->vertex_info);
759 r300_swtcl_vertex_psc(r300);
760 }
761 }
762
763 r300_update_hyperz_state(r300);
764 }