svga: remove a couple unneeded assertions
[mesa.git] / src / gallium / drivers / r600 / compute_memory_pool.c
1 /*
2 * Permission is hereby granted, free of charge, to any person obtaining a
3 * copy of this software and associated documentation files (the "Software"),
4 * to deal in the Software without restriction, including without limitation
5 * on the rights to use, copy, modify, merge, publish, distribute, sub
6 * license, and/or sell copies of the Software, and to permit persons to whom
7 * the Software is furnished to do so, subject to the following conditions:
8 *
9 * The above copyright notice and this permission notice (including the next
10 * paragraph) shall be included in all copies or substantial portions of the
11 * Software.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
20 *
21 * Authors:
22 * Adam Rak <adam.rak@streamnovation.com>
23 */
24
25 #include "pipe/p_defines.h"
26 #include "pipe/p_state.h"
27 #include "pipe/p_context.h"
28 #include "util/u_blitter.h"
29 #include "util/u_double_list.h"
30 #include "util/u_transfer.h"
31 #include "util/u_surface.h"
32 #include "util/u_pack_color.h"
33 #include "util/u_memory.h"
34 #include "util/u_inlines.h"
35 #include "util/u_framebuffer.h"
36 #include "r600_resource.h"
37 #include "r600_shader.h"
38 #include "r600_pipe.h"
39 #include "r600_formats.h"
40 #include "compute_memory_pool.h"
41 #include "evergreen_compute.h"
42 #include "evergreen_compute_internal.h"
43 #include <inttypes.h>
44
45 /**
46 * Creates a new pool
47 */
48 struct compute_memory_pool* compute_memory_pool_new(
49 struct r600_screen * rscreen)
50 {
51 struct compute_memory_pool* pool = (struct compute_memory_pool*)
52 CALLOC(sizeof(struct compute_memory_pool), 1);
53
54 COMPUTE_DBG(rscreen, "* compute_memory_pool_new()\n");
55
56 pool->screen = rscreen;
57 return pool;
58 }
59
60 static void compute_memory_pool_init(struct compute_memory_pool * pool,
61 unsigned initial_size_in_dw)
62 {
63
64 COMPUTE_DBG(pool->screen, "* compute_memory_pool_init() initial_size_in_dw = %ld\n",
65 initial_size_in_dw);
66
67 pool->shadow = (uint32_t*)CALLOC(initial_size_in_dw, 4);
68 pool->next_id = 1;
69 pool->size_in_dw = initial_size_in_dw;
70 pool->bo = (struct r600_resource*)r600_compute_buffer_alloc_vram(pool->screen,
71 pool->size_in_dw * 4);
72 }
73
74 /**
75 * Frees all stuff in the pool and the pool struct itself too
76 */
77 void compute_memory_pool_delete(struct compute_memory_pool* pool)
78 {
79 COMPUTE_DBG(pool->screen, "* compute_memory_pool_delete()\n");
80 free(pool->shadow);
81 if (pool->bo) {
82 pool->screen->b.b.resource_destroy((struct pipe_screen *)
83 pool->screen, (struct pipe_resource *)pool->bo);
84 }
85 free(pool);
86 }
87
88 /**
89 * Searches for an empty space in the pool, return with the pointer to the
90 * allocatable space in the pool, returns -1 on failure.
91 */
92 int64_t compute_memory_prealloc_chunk(
93 struct compute_memory_pool* pool,
94 int64_t size_in_dw)
95 {
96 struct compute_memory_item *item;
97
98 int last_end = 0;
99
100 assert(size_in_dw <= pool->size_in_dw);
101
102 COMPUTE_DBG(pool->screen, "* compute_memory_prealloc_chunk() size_in_dw = %ld\n",
103 size_in_dw);
104
105 for (item = pool->item_list; item; item = item->next) {
106 if (item->start_in_dw > -1) {
107 if (item->start_in_dw-last_end > size_in_dw) {
108 return last_end;
109 }
110
111 last_end = item->start_in_dw + item->size_in_dw;
112 last_end += (1024 - last_end % 1024);
113 }
114 }
115
116 if (pool->size_in_dw - last_end < size_in_dw) {
117 return -1;
118 }
119
120 return last_end;
121 }
122
123 /**
124 * Search for the chunk where we can link our new chunk after it.
125 */
126 struct compute_memory_item* compute_memory_postalloc_chunk(
127 struct compute_memory_pool* pool,
128 int64_t start_in_dw)
129 {
130 struct compute_memory_item* item;
131
132 COMPUTE_DBG(pool->screen, "* compute_memory_postalloc_chunck() start_in_dw = %ld\n",
133 start_in_dw);
134
135 /* Check if we can insert it in the front of the list */
136 if (pool->item_list && pool->item_list->start_in_dw > start_in_dw) {
137 return NULL;
138 }
139
140 for (item = pool->item_list; item; item = item->next) {
141 if (item->next) {
142 if (item->start_in_dw < start_in_dw
143 && item->next->start_in_dw > start_in_dw) {
144 return item;
145 }
146 }
147 else {
148 /* end of chain */
149 assert(item->start_in_dw < start_in_dw);
150 return item;
151 }
152 }
153
154 assert(0 && "unreachable");
155 return NULL;
156 }
157
158 /**
159 * Reallocates pool, conserves data
160 */
161 void compute_memory_grow_pool(struct compute_memory_pool* pool,
162 struct pipe_context * pipe, int new_size_in_dw)
163 {
164 COMPUTE_DBG(pool->screen, "* compute_memory_grow_pool() "
165 "new_size_in_dw = %d (%d bytes)\n",
166 new_size_in_dw, new_size_in_dw * 4);
167
168 assert(new_size_in_dw >= pool->size_in_dw);
169
170 if (!pool->bo) {
171 compute_memory_pool_init(pool, MAX2(new_size_in_dw, 1024 * 16));
172 } else {
173 new_size_in_dw += 1024 - (new_size_in_dw % 1024);
174
175 COMPUTE_DBG(pool->screen, " Aligned size = %d (%d bytes)\n",
176 new_size_in_dw, new_size_in_dw * 4);
177
178 compute_memory_shadow(pool, pipe, 1);
179 pool->shadow = realloc(pool->shadow, new_size_in_dw*4);
180 pool->size_in_dw = new_size_in_dw;
181 pool->screen->b.b.resource_destroy(
182 (struct pipe_screen *)pool->screen,
183 (struct pipe_resource *)pool->bo);
184 pool->bo = (struct r600_resource*)r600_compute_buffer_alloc_vram(
185 pool->screen,
186 pool->size_in_dw * 4);
187 compute_memory_shadow(pool, pipe, 0);
188 }
189 }
190
191 /**
192 * Copy pool from device to host, or host to device.
193 */
194 void compute_memory_shadow(struct compute_memory_pool* pool,
195 struct pipe_context * pipe, int device_to_host)
196 {
197 struct compute_memory_item chunk;
198
199 COMPUTE_DBG(pool->screen, "* compute_memory_shadow() device_to_host = %d\n",
200 device_to_host);
201
202 chunk.id = 0;
203 chunk.start_in_dw = 0;
204 chunk.size_in_dw = pool->size_in_dw;
205 chunk.prev = chunk.next = NULL;
206 compute_memory_transfer(pool, pipe, device_to_host, &chunk,
207 pool->shadow, 0, pool->size_in_dw*4);
208 }
209
210 /**
211 * Allocates pending allocations in the pool
212 */
213 void compute_memory_finalize_pending(struct compute_memory_pool* pool,
214 struct pipe_context * pipe)
215 {
216 struct compute_memory_item *pending_list = NULL, *end_p = NULL;
217 struct compute_memory_item *item, *next;
218
219 int64_t allocated = 0;
220 int64_t unallocated = 0;
221
222 int64_t start_in_dw = 0;
223
224 COMPUTE_DBG(pool->screen, "* compute_memory_finalize_pending()\n");
225
226 for (item = pool->item_list; item; item = item->next) {
227 COMPUTE_DBG(pool->screen, " + list: offset = %i id = %i size = %i "
228 "(%i bytes)\n",item->start_in_dw, item->id,
229 item->size_in_dw, item->size_in_dw * 4);
230 }
231
232 /* Search through the list of memory items in the pool */
233 for (item = pool->item_list; item; item = next) {
234 next = item->next;
235
236 /* Check if the item is pending. */
237 if (item->start_in_dw == -1) {
238 /* It is pending, so add it to the pending_list... */
239 if (end_p) {
240 end_p->next = item;
241 }
242 else {
243 pending_list = item;
244 }
245
246 /* ... and then remove it from the item list. */
247 if (item->prev) {
248 item->prev->next = next;
249 }
250 else {
251 pool->item_list = next;
252 }
253
254 if (next) {
255 next->prev = item->prev;
256 }
257
258 /* This sequence makes the item be at the end of the list */
259 item->prev = end_p;
260 item->next = NULL;
261 end_p = item;
262
263 /* Update the amount of space we will need to allocate. */
264 unallocated += item->size_in_dw+1024;
265 }
266 else {
267 /* The item is not pendng, so update the amount of space
268 * that has already been allocated. */
269 allocated += item->size_in_dw;
270 }
271 }
272
273 /* If we require more space than the size of the pool, then grow the
274 * pool.
275 *
276 * XXX: I'm pretty sure this won't work. Imagine this scenario:
277 *
278 * Offset Item Size
279 * 0 A 50
280 * 200 B 50
281 * 400 C 50
282 *
283 * Total size = 450
284 * Allocated size = 150
285 * Pending Item D Size = 200
286 *
287 * In this case, there are 300 units of free space in the pool, but
288 * they aren't contiguous, so it will be impossible to allocate Item D.
289 */
290 if (pool->size_in_dw < allocated+unallocated) {
291 compute_memory_grow_pool(pool, pipe, allocated+unallocated);
292 }
293
294 /* Loop through all the pending items, allocate space for them and
295 * add them back to the item_list. */
296 for (item = pending_list; item; item = next) {
297 next = item->next;
298
299 /* Search for free space in the pool for this item. */
300 while ((start_in_dw=compute_memory_prealloc_chunk(pool,
301 item->size_in_dw)) == -1) {
302 int64_t need = item->size_in_dw+2048 -
303 (pool->size_in_dw - allocated);
304
305 need += 1024 - (need % 1024);
306
307 if (need > 0) {
308 compute_memory_grow_pool(pool,
309 pipe,
310 pool->size_in_dw + need);
311 }
312 else {
313 need = pool->size_in_dw / 10;
314 need += 1024 - (need % 1024);
315 compute_memory_grow_pool(pool,
316 pipe,
317 pool->size_in_dw + need);
318 }
319 }
320 COMPUTE_DBG(pool->screen, " + Found space for Item %p id = %u "
321 "start_in_dw = %u (%u bytes) size_in_dw = %u (%u bytes)\n",
322 item, item->id, start_in_dw, start_in_dw * 4,
323 item->size_in_dw, item->size_in_dw * 4);
324
325 item->start_in_dw = start_in_dw;
326 item->next = NULL;
327 item->prev = NULL;
328
329 if (pool->item_list) {
330 struct compute_memory_item *pos;
331
332 pos = compute_memory_postalloc_chunk(pool, start_in_dw);
333 if (pos) {
334 item->prev = pos;
335 item->next = pos->next;
336 pos->next = item;
337 if (item->next) {
338 item->next->prev = item;
339 }
340 } else {
341 /* Add item to the front of the list */
342 item->next = pool->item_list;
343 item->prev = pool->item_list->prev;
344 pool->item_list->prev = item;
345 pool->item_list = item;
346 }
347 }
348 else {
349 pool->item_list = item;
350 }
351
352 allocated += item->size_in_dw;
353 }
354 }
355
356
357 void compute_memory_free(struct compute_memory_pool* pool, int64_t id)
358 {
359 struct compute_memory_item *item, *next;
360
361 COMPUTE_DBG(pool->screen, "* compute_memory_free() id + %ld \n", id);
362
363 for (item = pool->item_list; item; item = next) {
364 next = item->next;
365
366 if (item->id == id) {
367 if (item->prev) {
368 item->prev->next = item->next;
369 }
370 else {
371 pool->item_list = item->next;
372 }
373
374 if (item->next) {
375 item->next->prev = item->prev;
376 }
377
378 free(item);
379
380 return;
381 }
382 }
383
384 fprintf(stderr, "Internal error, invalid id %"PRIi64" "
385 "for compute_memory_free\n", id);
386
387 assert(0 && "error");
388 }
389
390 /**
391 * Creates pending allocations
392 */
393 struct compute_memory_item* compute_memory_alloc(
394 struct compute_memory_pool* pool,
395 int64_t size_in_dw)
396 {
397 struct compute_memory_item *new_item = NULL, *last_item = NULL;
398
399 COMPUTE_DBG(pool->screen, "* compute_memory_alloc() size_in_dw = %ld (%ld bytes)\n",
400 size_in_dw, 4 * size_in_dw);
401
402 new_item = (struct compute_memory_item *)
403 CALLOC(sizeof(struct compute_memory_item), 1);
404 new_item->size_in_dw = size_in_dw;
405 new_item->start_in_dw = -1; /* mark pending */
406 new_item->id = pool->next_id++;
407 new_item->pool = pool;
408
409 if (pool->item_list) {
410 for (last_item = pool->item_list; last_item->next;
411 last_item = last_item->next);
412
413 last_item->next = new_item;
414 new_item->prev = last_item;
415 }
416 else {
417 pool->item_list = new_item;
418 }
419
420 COMPUTE_DBG(pool->screen, " + Adding item %p id = %u size = %u (%u bytes)\n",
421 new_item, new_item->id, new_item->size_in_dw,
422 new_item->size_in_dw * 4);
423 return new_item;
424 }
425
426 /**
427 * Transfer data host<->device, offset and size is in bytes
428 */
429 void compute_memory_transfer(
430 struct compute_memory_pool* pool,
431 struct pipe_context * pipe,
432 int device_to_host,
433 struct compute_memory_item* chunk,
434 void* data,
435 int offset_in_chunk,
436 int size)
437 {
438 int64_t aligned_size = pool->size_in_dw;
439 struct pipe_resource* gart = (struct pipe_resource*)pool->bo;
440 int64_t internal_offset = chunk->start_in_dw*4 + offset_in_chunk;
441
442 struct pipe_transfer *xfer;
443 uint32_t *map;
444
445 assert(gart);
446
447 COMPUTE_DBG(pool->screen, "* compute_memory_transfer() device_to_host = %d, "
448 "offset_in_chunk = %d, size = %d\n", device_to_host,
449 offset_in_chunk, size);
450
451 if (device_to_host) {
452 map = pipe->transfer_map(pipe, gart, 0, PIPE_TRANSFER_READ,
453 &(struct pipe_box) { .width = aligned_size,
454 .height = 1, .depth = 1 }, &xfer);
455 assert(xfer);
456 assert(map);
457 memcpy(data, map + internal_offset, size);
458 pipe->transfer_unmap(pipe, xfer);
459 } else {
460 map = pipe->transfer_map(pipe, gart, 0, PIPE_TRANSFER_WRITE,
461 &(struct pipe_box) { .width = aligned_size,
462 .height = 1, .depth = 1 }, &xfer);
463 assert(xfer);
464 assert(map);
465 memcpy(map + internal_offset, data, size);
466 pipe->transfer_unmap(pipe, xfer);
467 }
468 }
469
470 /**
471 * Transfer data between chunk<->data, it is for VRAM<->GART transfers
472 */
473 void compute_memory_transfer_direct(
474 struct compute_memory_pool* pool,
475 int chunk_to_data,
476 struct compute_memory_item* chunk,
477 struct r600_resource* data,
478 int offset_in_chunk,
479 int offset_in_data,
480 int size)
481 {
482 ///TODO: DMA
483 }