r600g/compute: Add a function for moving items in the pool
[mesa.git] / src / gallium / drivers / r600 / compute_memory_pool.c
1 /*
2 * Permission is hereby granted, free of charge, to any person obtaining a
3 * copy of this software and associated documentation files (the "Software"),
4 * to deal in the Software without restriction, including without limitation
5 * on the rights to use, copy, modify, merge, publish, distribute, sub
6 * license, and/or sell copies of the Software, and to permit persons to whom
7 * the Software is furnished to do so, subject to the following conditions:
8 *
9 * The above copyright notice and this permission notice (including the next
10 * paragraph) shall be included in all copies or substantial portions of the
11 * Software.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
20 *
21 * Authors:
22 * Adam Rak <adam.rak@streamnovation.com>
23 */
24
25 #include "pipe/p_defines.h"
26 #include "pipe/p_state.h"
27 #include "pipe/p_context.h"
28 #include "util/u_blitter.h"
29 #include "util/u_double_list.h"
30 #include "util/u_transfer.h"
31 #include "util/u_surface.h"
32 #include "util/u_pack_color.h"
33 #include "util/u_math.h"
34 #include "util/u_memory.h"
35 #include "util/u_inlines.h"
36 #include "util/u_framebuffer.h"
37 #include "r600_shader.h"
38 #include "r600_pipe.h"
39 #include "r600_formats.h"
40 #include "compute_memory_pool.h"
41 #include "evergreen_compute.h"
42 #include "evergreen_compute_internal.h"
43 #include <inttypes.h>
44
45 #define ITEM_ALIGNMENT 1024
46 /**
47 * Creates a new pool
48 */
49 struct compute_memory_pool* compute_memory_pool_new(
50 struct r600_screen * rscreen)
51 {
52 struct compute_memory_pool* pool = (struct compute_memory_pool*)
53 CALLOC(sizeof(struct compute_memory_pool), 1);
54 if (pool == NULL)
55 return NULL;
56
57 COMPUTE_DBG(rscreen, "* compute_memory_pool_new()\n");
58
59 pool->screen = rscreen;
60 pool->item_list = (struct list_head *)
61 CALLOC(sizeof(struct list_head), 1);
62 pool->unallocated_list = (struct list_head *)
63 CALLOC(sizeof(struct list_head), 1);
64 list_inithead(pool->item_list);
65 list_inithead(pool->unallocated_list);
66 return pool;
67 }
68
69 static void compute_memory_pool_init(struct compute_memory_pool * pool,
70 unsigned initial_size_in_dw)
71 {
72
73 COMPUTE_DBG(pool->screen, "* compute_memory_pool_init() initial_size_in_dw = %ld\n",
74 initial_size_in_dw);
75
76 pool->shadow = (uint32_t*)CALLOC(initial_size_in_dw, 4);
77 if (pool->shadow == NULL)
78 return;
79
80 pool->size_in_dw = initial_size_in_dw;
81 pool->bo = (struct r600_resource*)r600_compute_buffer_alloc_vram(pool->screen,
82 pool->size_in_dw * 4);
83 }
84
85 /**
86 * Frees all stuff in the pool and the pool struct itself too
87 */
88 void compute_memory_pool_delete(struct compute_memory_pool* pool)
89 {
90 COMPUTE_DBG(pool->screen, "* compute_memory_pool_delete()\n");
91 free(pool->shadow);
92 if (pool->bo) {
93 pool->screen->b.b.resource_destroy((struct pipe_screen *)
94 pool->screen, (struct pipe_resource *)pool->bo);
95 }
96 free(pool);
97 }
98
99 /**
100 * Searches for an empty space in the pool, return with the pointer to the
101 * allocatable space in the pool, returns -1 on failure.
102 */
103 int64_t compute_memory_prealloc_chunk(
104 struct compute_memory_pool* pool,
105 int64_t size_in_dw)
106 {
107 struct compute_memory_item *item;
108
109 int last_end = 0;
110
111 assert(size_in_dw <= pool->size_in_dw);
112
113 COMPUTE_DBG(pool->screen, "* compute_memory_prealloc_chunk() size_in_dw = %ld\n",
114 size_in_dw);
115
116 LIST_FOR_EACH_ENTRY(item, pool->item_list, link) {
117 if (last_end + size_in_dw <= item->start_in_dw) {
118 return last_end;
119 }
120
121 last_end = item->start_in_dw + align(item->size_in_dw, ITEM_ALIGNMENT);
122 }
123
124 if (pool->size_in_dw - last_end < size_in_dw) {
125 return -1;
126 }
127
128 return last_end;
129 }
130
131 /**
132 * Search for the chunk where we can link our new chunk after it.
133 */
134 struct list_head *compute_memory_postalloc_chunk(
135 struct compute_memory_pool* pool,
136 int64_t start_in_dw)
137 {
138 struct compute_memory_item *item;
139 struct compute_memory_item *next;
140 struct list_head *next_link;
141
142 COMPUTE_DBG(pool->screen, "* compute_memory_postalloc_chunck() start_in_dw = %ld\n",
143 start_in_dw);
144
145 /* Check if we can insert it in the front of the list */
146 item = LIST_ENTRY(struct compute_memory_item, pool->item_list->next, link);
147 if (LIST_IS_EMPTY(pool->item_list) || item->start_in_dw > start_in_dw) {
148 return pool->item_list;
149 }
150
151 LIST_FOR_EACH_ENTRY(item, pool->item_list, link) {
152 next_link = item->link.next;
153
154 if (next_link != pool->item_list) {
155 next = container_of(next_link, item, link);
156 if (item->start_in_dw < start_in_dw
157 && next->start_in_dw > start_in_dw) {
158 return &item->link;
159 }
160 }
161 else {
162 /* end of chain */
163 assert(item->start_in_dw < start_in_dw);
164 return &item->link;
165 }
166 }
167
168 assert(0 && "unreachable");
169 return NULL;
170 }
171
172 /**
173 * Reallocates pool, conserves data.
174 * @returns -1 if it fails, 0 otherwise
175 */
176 int compute_memory_grow_pool(struct compute_memory_pool* pool,
177 struct pipe_context * pipe, int new_size_in_dw)
178 {
179 COMPUTE_DBG(pool->screen, "* compute_memory_grow_pool() "
180 "new_size_in_dw = %d (%d bytes)\n",
181 new_size_in_dw, new_size_in_dw * 4);
182
183 assert(new_size_in_dw >= pool->size_in_dw);
184
185 if (!pool->bo) {
186 compute_memory_pool_init(pool, MAX2(new_size_in_dw, 1024 * 16));
187 if (pool->shadow == NULL)
188 return -1;
189 } else {
190 new_size_in_dw = align(new_size_in_dw, ITEM_ALIGNMENT);
191
192 COMPUTE_DBG(pool->screen, " Aligned size = %d (%d bytes)\n",
193 new_size_in_dw, new_size_in_dw * 4);
194
195 compute_memory_shadow(pool, pipe, 1);
196 pool->shadow = realloc(pool->shadow, new_size_in_dw*4);
197 if (pool->shadow == NULL)
198 return -1;
199
200 pool->size_in_dw = new_size_in_dw;
201 pool->screen->b.b.resource_destroy(
202 (struct pipe_screen *)pool->screen,
203 (struct pipe_resource *)pool->bo);
204 pool->bo = (struct r600_resource*)r600_compute_buffer_alloc_vram(
205 pool->screen,
206 pool->size_in_dw * 4);
207 compute_memory_shadow(pool, pipe, 0);
208 }
209
210 return 0;
211 }
212
213 /**
214 * Copy pool from device to host, or host to device.
215 */
216 void compute_memory_shadow(struct compute_memory_pool* pool,
217 struct pipe_context * pipe, int device_to_host)
218 {
219 struct compute_memory_item chunk;
220
221 COMPUTE_DBG(pool->screen, "* compute_memory_shadow() device_to_host = %d\n",
222 device_to_host);
223
224 chunk.id = 0;
225 chunk.start_in_dw = 0;
226 chunk.size_in_dw = pool->size_in_dw;
227 compute_memory_transfer(pool, pipe, device_to_host, &chunk,
228 pool->shadow, 0, pool->size_in_dw*4);
229 }
230
231 /**
232 * Allocates pending allocations in the pool
233 * @returns -1 if it fails, 0 otherwise
234 */
235 int compute_memory_finalize_pending(struct compute_memory_pool* pool,
236 struct pipe_context * pipe)
237 {
238 struct compute_memory_item *item, *next;
239
240 int64_t allocated = 0;
241 int64_t unallocated = 0;
242
243 int err = 0;
244
245 COMPUTE_DBG(pool->screen, "* compute_memory_finalize_pending()\n");
246
247 LIST_FOR_EACH_ENTRY(item, pool->item_list, link) {
248 COMPUTE_DBG(pool->screen, " + list: offset = %i id = %i size = %i "
249 "(%i bytes)\n",item->start_in_dw, item->id,
250 item->size_in_dw, item->size_in_dw * 4);
251 }
252
253 /* Calculate the total allocated size */
254 LIST_FOR_EACH_ENTRY(item, pool->item_list, link) {
255 allocated += align(item->size_in_dw, ITEM_ALIGNMENT);
256 }
257
258 /* Calculate the total unallocated size of the items that
259 * will be promoted to the pool */
260 LIST_FOR_EACH_ENTRY(item, pool->unallocated_list, link) {
261 if (item->status & ITEM_FOR_PROMOTING)
262 unallocated += align(item->size_in_dw, ITEM_ALIGNMENT);
263 }
264
265 /* If we require more space than the size of the pool, then grow the
266 * pool.
267 *
268 * XXX: I'm pretty sure this won't work. Imagine this scenario:
269 *
270 * Offset Item Size
271 * 0 A 50
272 * 200 B 50
273 * 400 C 50
274 *
275 * Total size = 450
276 * Allocated size = 150
277 * Pending Item D Size = 200
278 *
279 * In this case, there are 300 units of free space in the pool, but
280 * they aren't contiguous, so it will be impossible to allocate Item D.
281 */
282 if (pool->size_in_dw < allocated + unallocated) {
283 err = compute_memory_grow_pool(pool, pipe, allocated + unallocated);
284 if (err == -1)
285 return -1;
286 }
287
288 /* Loop through all the unallocated items, check if they are marked
289 * for promoting, allocate space for them and add them to the item_list. */
290 LIST_FOR_EACH_ENTRY_SAFE(item, next, pool->unallocated_list, link) {
291 if (item->status & ITEM_FOR_PROMOTING) {
292 err = compute_memory_promote_item(pool, item, pipe, allocated);
293 item->status ^= ITEM_FOR_PROMOTING;
294
295 allocated += align(item->size_in_dw, ITEM_ALIGNMENT);
296
297 if (err == -1)
298 return -1;
299 }
300 }
301
302 return 0;
303 }
304
305 int compute_memory_promote_item(struct compute_memory_pool *pool,
306 struct compute_memory_item *item, struct pipe_context *pipe,
307 int64_t allocated)
308 {
309 struct pipe_screen *screen = (struct pipe_screen *)pool->screen;
310 struct r600_context *rctx = (struct r600_context *)pipe;
311 struct pipe_resource *src = (struct pipe_resource *)item->real_buffer;
312 struct pipe_resource *dst = NULL;
313 struct pipe_box box;
314
315 struct list_head *pos;
316 int64_t start_in_dw;
317 int err = 0;
318
319
320 /* Search for free space in the pool for this item. */
321 while ((start_in_dw=compute_memory_prealloc_chunk(pool,
322 item->size_in_dw)) == -1) {
323 int64_t need = item->size_in_dw + 2048 -
324 (pool->size_in_dw - allocated);
325
326 if (need <= 0) {
327 /* There's enough free space, but it's too
328 * fragmented. Assume half of the item can fit
329 * int the last chunk */
330 need = (item->size_in_dw / 2) + ITEM_ALIGNMENT;
331 }
332
333 need = align(need, ITEM_ALIGNMENT);
334
335 err = compute_memory_grow_pool(pool,
336 pipe,
337 pool->size_in_dw + need);
338
339 if (err == -1)
340 return -1;
341 }
342 dst = (struct pipe_resource *)pool->bo;
343 COMPUTE_DBG(pool->screen, " + Found space for Item %p id = %u "
344 "start_in_dw = %u (%u bytes) size_in_dw = %u (%u bytes)\n",
345 item, item->id, start_in_dw, start_in_dw * 4,
346 item->size_in_dw, item->size_in_dw * 4);
347
348 /* Remove the item from the unallocated list */
349 list_del(&item->link);
350
351 /* Add it back to the item_list */
352 pos = compute_memory_postalloc_chunk(pool, start_in_dw);
353 list_add(&item->link, pos);
354 item->start_in_dw = start_in_dw;
355
356 if (src != NULL) {
357 u_box_1d(0, item->size_in_dw * 4, &box);
358
359 rctx->b.b.resource_copy_region(pipe,
360 dst, 0, item->start_in_dw * 4, 0 ,0,
361 src, 0, &box);
362
363 /* We check if the item is mapped for reading.
364 * In this case, we need to keep the temporary buffer 'alive'
365 * because it is possible to keep a map active for reading
366 * while a kernel (that reads from it) executes */
367 if (!(item->status & ITEM_MAPPED_FOR_READING)) {
368 pool->screen->b.b.resource_destroy(screen, src);
369 item->real_buffer = NULL;
370 }
371 }
372
373 return 0;
374 }
375
376 void compute_memory_demote_item(struct compute_memory_pool *pool,
377 struct compute_memory_item *item, struct pipe_context *pipe)
378 {
379 struct r600_context *rctx = (struct r600_context *)pipe;
380 struct pipe_resource *src = (struct pipe_resource *)pool->bo;
381 struct pipe_resource *dst;
382 struct pipe_box box;
383
384 /* First, we remove the item from the item_list */
385 list_del(&item->link);
386
387 /* Now we add it to the unallocated list */
388 list_addtail(&item->link, pool->unallocated_list);
389
390 /* We check if the intermediate buffer exists, and if it
391 * doesn't, we create it again */
392 if (item->real_buffer == NULL) {
393 item->real_buffer = (struct r600_resource*)r600_compute_buffer_alloc_vram(
394 pool->screen, item->size_in_dw * 4);
395 }
396
397 dst = (struct pipe_resource *)item->real_buffer;
398
399 /* We transfer the memory from the item in the pool to the
400 * temporary buffer */
401 u_box_1d(item->start_in_dw * 4, item->size_in_dw * 4, &box);
402
403 rctx->b.b.resource_copy_region(pipe,
404 dst, 0, 0, 0, 0,
405 src, 0, &box);
406
407 /* Remember to mark the buffer as 'pending' by setting start_in_dw to -1 */
408 item->start_in_dw = -1;
409 }
410
411 /**
412 * Moves the item \a item forward in the pool to \a new_start_in_dw
413 *
414 * This function assumes two things:
415 * 1) The item is \b only moved forward
416 * 2) The item \b won't change it's position inside the \a item_list
417 *
418 * \param item The item that will be moved
419 * \param new_start_in_dw The new position of the item in \a item_list
420 */
421 void compute_memory_move_item(struct compute_memory_pool *pool,
422 struct compute_memory_item *item, uint64_t new_start_in_dw,
423 struct pipe_context *pipe)
424 {
425 struct pipe_screen *screen = (struct pipe_screen *)pool->screen;
426 struct r600_context *rctx = (struct r600_context *)pipe;
427 struct pipe_resource *src = (struct pipe_resource *)pool->bo;
428 struct pipe_resource *dst;
429 struct pipe_box box;
430
431 struct compute_memory_item *prev;
432
433 COMPUTE_DBG(pool->screen, "* compute_memory_move_item()\n"
434 " + Moving item %i from %u (%u bytes) to %u (%u bytes)\n",
435 item->id, item->start_in_dw, item->start_in_dw * 4,
436 new_start_in_dw, new_start_in_dw * 4);
437
438 if (pool->item_list != item->link.prev) {
439 prev = container_of(item->link.prev, item, link);
440 assert(prev->start_in_dw + prev->size_in_dw <= new_start_in_dw);
441 }
442
443 u_box_1d(item->start_in_dw * 4, item->size_in_dw * 4, &box);
444
445 /* If the ranges don't overlap, we can just copy the item directly */
446 if (new_start_in_dw + item->size_in_dw <= item->start_in_dw) {
447 dst = (struct pipe_resource *)pool->bo;
448
449 rctx->b.b.resource_copy_region(pipe,
450 dst, 0, new_start_in_dw * 4, 0, 0,
451 src, 0, &box);
452 } else {
453 /* The ranges overlap, we will try first to use an intermediate
454 * resource to move the item */
455 dst = (struct pipe_resource *)r600_compute_buffer_alloc_vram(
456 pool->screen, item->size_in_dw * 4);
457
458 if (dst != NULL) {
459 rctx->b.b.resource_copy_region(pipe,
460 dst, 0, 0, 0, 0,
461 src, 0, &box);
462
463 src = dst;
464 dst = (struct pipe_resource *)pool->bo;
465
466 box.x = 0;
467
468 rctx->b.b.resource_copy_region(pipe,
469 dst, 0, new_start_in_dw * 4, 0, 0,
470 src, 0, &box);
471
472 pool->screen->b.b.resource_destroy(screen, src);
473
474 } else {
475 /* The allocation of the temporary resource failed,
476 * falling back to use mappings */
477 uint32_t *map;
478 int64_t offset;
479 struct pipe_transfer *trans;
480
481 offset = item->start_in_dw - new_start_in_dw;
482
483 u_box_1d(new_start_in_dw * 4, (offset + item->size_in_dw) * 4, &box);
484
485 map = pipe->transfer_map(pipe, src, 0, PIPE_TRANSFER_READ_WRITE,
486 &box, &trans);
487
488 assert(map);
489 assert(trans);
490
491 memmove(map, map + offset, item->size_in_dw * 4);
492
493 pipe->transfer_unmap(pipe, trans);
494 }
495 }
496
497 item->start_in_dw = new_start_in_dw;
498 }
499
500 void compute_memory_free(struct compute_memory_pool* pool, int64_t id)
501 {
502 struct compute_memory_item *item, *next;
503 struct pipe_screen *screen = (struct pipe_screen *)pool->screen;
504 struct pipe_resource *res;
505
506 COMPUTE_DBG(pool->screen, "* compute_memory_free() id + %ld \n", id);
507
508 LIST_FOR_EACH_ENTRY_SAFE(item, next, pool->item_list, link) {
509
510 if (item->id == id) {
511 list_del(&item->link);
512
513 if (item->real_buffer) {
514 res = (struct pipe_resource *)item->real_buffer;
515 pool->screen->b.b.resource_destroy(
516 screen, res);
517 }
518
519 free(item);
520
521 return;
522 }
523 }
524
525 LIST_FOR_EACH_ENTRY_SAFE(item, next, pool->unallocated_list, link) {
526
527 if (item->id == id) {
528 list_del(&item->link);
529
530 if (item->real_buffer) {
531 res = (struct pipe_resource *)item->real_buffer;
532 pool->screen->b.b.resource_destroy(
533 screen, res);
534 }
535
536 free(item);
537
538 return;
539 }
540 }
541
542 fprintf(stderr, "Internal error, invalid id %"PRIi64" "
543 "for compute_memory_free\n", id);
544
545 assert(0 && "error");
546 }
547
548 /**
549 * Creates pending allocations
550 */
551 struct compute_memory_item* compute_memory_alloc(
552 struct compute_memory_pool* pool,
553 int64_t size_in_dw)
554 {
555 struct compute_memory_item *new_item = NULL;
556
557 COMPUTE_DBG(pool->screen, "* compute_memory_alloc() size_in_dw = %ld (%ld bytes)\n",
558 size_in_dw, 4 * size_in_dw);
559
560 new_item = (struct compute_memory_item *)
561 CALLOC(sizeof(struct compute_memory_item), 1);
562 if (new_item == NULL)
563 return NULL;
564
565 new_item->size_in_dw = size_in_dw;
566 new_item->start_in_dw = -1; /* mark pending */
567 new_item->id = pool->next_id++;
568 new_item->pool = pool;
569 new_item->real_buffer = NULL;
570
571 list_addtail(&new_item->link, pool->unallocated_list);
572
573 COMPUTE_DBG(pool->screen, " + Adding item %p id = %u size = %u (%u bytes)\n",
574 new_item, new_item->id, new_item->size_in_dw,
575 new_item->size_in_dw * 4);
576 return new_item;
577 }
578
579 /**
580 * Transfer data host<->device, offset and size is in bytes
581 */
582 void compute_memory_transfer(
583 struct compute_memory_pool* pool,
584 struct pipe_context * pipe,
585 int device_to_host,
586 struct compute_memory_item* chunk,
587 void* data,
588 int offset_in_chunk,
589 int size)
590 {
591 int64_t aligned_size = pool->size_in_dw;
592 struct pipe_resource* gart = (struct pipe_resource*)pool->bo;
593 int64_t internal_offset = chunk->start_in_dw*4 + offset_in_chunk;
594
595 struct pipe_transfer *xfer;
596 uint32_t *map;
597
598 assert(gart);
599
600 COMPUTE_DBG(pool->screen, "* compute_memory_transfer() device_to_host = %d, "
601 "offset_in_chunk = %d, size = %d\n", device_to_host,
602 offset_in_chunk, size);
603
604 if (device_to_host) {
605 map = pipe->transfer_map(pipe, gart, 0, PIPE_TRANSFER_READ,
606 &(struct pipe_box) { .width = aligned_size * 4,
607 .height = 1, .depth = 1 }, &xfer);
608 assert(xfer);
609 assert(map);
610 memcpy(data, map + internal_offset, size);
611 pipe->transfer_unmap(pipe, xfer);
612 } else {
613 map = pipe->transfer_map(pipe, gart, 0, PIPE_TRANSFER_WRITE,
614 &(struct pipe_box) { .width = aligned_size * 4,
615 .height = 1, .depth = 1 }, &xfer);
616 assert(xfer);
617 assert(map);
618 memcpy(map + internal_offset, data, size);
619 pipe->transfer_unmap(pipe, xfer);
620 }
621 }
622
623 /**
624 * Transfer data between chunk<->data, it is for VRAM<->GART transfers
625 */
626 void compute_memory_transfer_direct(
627 struct compute_memory_pool* pool,
628 int chunk_to_data,
629 struct compute_memory_item* chunk,
630 struct r600_resource* data,
631 int offset_in_chunk,
632 int offset_in_data,
633 int size)
634 {
635 ///TODO: DMA
636 }