r600g/compute: Use gallium util functions for double lists
[mesa.git] / src / gallium / drivers / r600 / compute_memory_pool.c
1 /*
2 * Permission is hereby granted, free of charge, to any person obtaining a
3 * copy of this software and associated documentation files (the "Software"),
4 * to deal in the Software without restriction, including without limitation
5 * on the rights to use, copy, modify, merge, publish, distribute, sub
6 * license, and/or sell copies of the Software, and to permit persons to whom
7 * the Software is furnished to do so, subject to the following conditions:
8 *
9 * The above copyright notice and this permission notice (including the next
10 * paragraph) shall be included in all copies or substantial portions of the
11 * Software.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
20 *
21 * Authors:
22 * Adam Rak <adam.rak@streamnovation.com>
23 */
24
25 #include "pipe/p_defines.h"
26 #include "pipe/p_state.h"
27 #include "pipe/p_context.h"
28 #include "util/u_blitter.h"
29 #include "util/u_double_list.h"
30 #include "util/u_transfer.h"
31 #include "util/u_surface.h"
32 #include "util/u_pack_color.h"
33 #include "util/u_math.h"
34 #include "util/u_memory.h"
35 #include "util/u_inlines.h"
36 #include "util/u_framebuffer.h"
37 #include "r600_shader.h"
38 #include "r600_pipe.h"
39 #include "r600_formats.h"
40 #include "compute_memory_pool.h"
41 #include "evergreen_compute.h"
42 #include "evergreen_compute_internal.h"
43 #include <inttypes.h>
44
45 #define ITEM_ALIGNMENT 1024
46 /**
47 * Creates a new pool
48 */
49 struct compute_memory_pool* compute_memory_pool_new(
50 struct r600_screen * rscreen)
51 {
52 struct compute_memory_pool* pool = (struct compute_memory_pool*)
53 CALLOC(sizeof(struct compute_memory_pool), 1);
54 if (pool == NULL)
55 return NULL;
56
57 COMPUTE_DBG(rscreen, "* compute_memory_pool_new()\n");
58
59 pool->screen = rscreen;
60 pool->item_list = (struct list_head *)
61 CALLOC(sizeof(struct list_head), 1);
62 pool->unallocated_list = (struct list_head *)
63 CALLOC(sizeof(struct list_head), 1);
64 list_inithead(pool->item_list);
65 list_inithead(pool->unallocated_list);
66 return pool;
67 }
68
69 static void compute_memory_pool_init(struct compute_memory_pool * pool,
70 unsigned initial_size_in_dw)
71 {
72
73 COMPUTE_DBG(pool->screen, "* compute_memory_pool_init() initial_size_in_dw = %ld\n",
74 initial_size_in_dw);
75
76 pool->shadow = (uint32_t*)CALLOC(initial_size_in_dw, 4);
77 if (pool->shadow == NULL)
78 return;
79
80 pool->size_in_dw = initial_size_in_dw;
81 pool->bo = (struct r600_resource*)r600_compute_buffer_alloc_vram(pool->screen,
82 pool->size_in_dw * 4);
83 }
84
85 /**
86 * Frees all stuff in the pool and the pool struct itself too
87 */
88 void compute_memory_pool_delete(struct compute_memory_pool* pool)
89 {
90 COMPUTE_DBG(pool->screen, "* compute_memory_pool_delete()\n");
91 free(pool->shadow);
92 if (pool->bo) {
93 pool->screen->b.b.resource_destroy((struct pipe_screen *)
94 pool->screen, (struct pipe_resource *)pool->bo);
95 }
96 free(pool);
97 }
98
99 /**
100 * Searches for an empty space in the pool, return with the pointer to the
101 * allocatable space in the pool, returns -1 on failure.
102 */
103 int64_t compute_memory_prealloc_chunk(
104 struct compute_memory_pool* pool,
105 int64_t size_in_dw)
106 {
107 struct compute_memory_item *item;
108
109 int last_end = 0;
110
111 assert(size_in_dw <= pool->size_in_dw);
112
113 COMPUTE_DBG(pool->screen, "* compute_memory_prealloc_chunk() size_in_dw = %ld\n",
114 size_in_dw);
115
116 LIST_FOR_EACH_ENTRY(item, pool->item_list, link) {
117 if (last_end + size_in_dw <= item->start_in_dw) {
118 return last_end;
119 }
120
121 last_end = item->start_in_dw + align(item->size_in_dw, ITEM_ALIGNMENT);
122 }
123
124 if (pool->size_in_dw - last_end < size_in_dw) {
125 return -1;
126 }
127
128 return last_end;
129 }
130
131 /**
132 * Search for the chunk where we can link our new chunk after it.
133 */
134 struct list_head *compute_memory_postalloc_chunk(
135 struct compute_memory_pool* pool,
136 int64_t start_in_dw)
137 {
138 struct compute_memory_item *item;
139 struct compute_memory_item *next;
140 struct list_head *next_link;
141
142 COMPUTE_DBG(pool->screen, "* compute_memory_postalloc_chunck() start_in_dw = %ld\n",
143 start_in_dw);
144
145 /* Check if we can insert it in the front of the list */
146 item = LIST_ENTRY(struct compute_memory_item, pool->item_list->next, link);
147 if (LIST_IS_EMPTY(pool->item_list) || item->start_in_dw > start_in_dw) {
148 return pool->item_list;
149 }
150
151 LIST_FOR_EACH_ENTRY(item, pool->item_list, link) {
152 next_link = item->link.next;
153
154 if (next_link != pool->item_list) {
155 next = container_of(next_link, item, link);
156 if (item->start_in_dw < start_in_dw
157 && next->start_in_dw > start_in_dw) {
158 return &item->link;
159 }
160 }
161 else {
162 /* end of chain */
163 assert(item->start_in_dw < start_in_dw);
164 return &item->link;
165 }
166 }
167
168 assert(0 && "unreachable");
169 return NULL;
170 }
171
172 /**
173 * Reallocates pool, conserves data.
174 * @returns -1 if it fails, 0 otherwise
175 */
176 int compute_memory_grow_pool(struct compute_memory_pool* pool,
177 struct pipe_context * pipe, int new_size_in_dw)
178 {
179 COMPUTE_DBG(pool->screen, "* compute_memory_grow_pool() "
180 "new_size_in_dw = %d (%d bytes)\n",
181 new_size_in_dw, new_size_in_dw * 4);
182
183 assert(new_size_in_dw >= pool->size_in_dw);
184
185 if (!pool->bo) {
186 compute_memory_pool_init(pool, MAX2(new_size_in_dw, 1024 * 16));
187 if (pool->shadow == NULL)
188 return -1;
189 } else {
190 new_size_in_dw = align(new_size_in_dw, ITEM_ALIGNMENT);
191
192 COMPUTE_DBG(pool->screen, " Aligned size = %d (%d bytes)\n",
193 new_size_in_dw, new_size_in_dw * 4);
194
195 compute_memory_shadow(pool, pipe, 1);
196 pool->shadow = realloc(pool->shadow, new_size_in_dw*4);
197 if (pool->shadow == NULL)
198 return -1;
199
200 pool->size_in_dw = new_size_in_dw;
201 pool->screen->b.b.resource_destroy(
202 (struct pipe_screen *)pool->screen,
203 (struct pipe_resource *)pool->bo);
204 pool->bo = (struct r600_resource*)r600_compute_buffer_alloc_vram(
205 pool->screen,
206 pool->size_in_dw * 4);
207 compute_memory_shadow(pool, pipe, 0);
208 }
209
210 return 0;
211 }
212
213 /**
214 * Copy pool from device to host, or host to device.
215 */
216 void compute_memory_shadow(struct compute_memory_pool* pool,
217 struct pipe_context * pipe, int device_to_host)
218 {
219 struct compute_memory_item chunk;
220
221 COMPUTE_DBG(pool->screen, "* compute_memory_shadow() device_to_host = %d\n",
222 device_to_host);
223
224 chunk.id = 0;
225 chunk.start_in_dw = 0;
226 chunk.size_in_dw = pool->size_in_dw;
227 compute_memory_transfer(pool, pipe, device_to_host, &chunk,
228 pool->shadow, 0, pool->size_in_dw*4);
229 }
230
231 /**
232 * Allocates pending allocations in the pool
233 * @returns -1 if it fails, 0 otherwise
234 */
235 int compute_memory_finalize_pending(struct compute_memory_pool* pool,
236 struct pipe_context * pipe)
237 {
238 struct compute_memory_item *item, *next;
239
240 int64_t allocated = 0;
241 int64_t unallocated = 0;
242
243 int err = 0;
244
245 COMPUTE_DBG(pool->screen, "* compute_memory_finalize_pending()\n");
246
247 LIST_FOR_EACH_ENTRY(item, pool->item_list, link) {
248 COMPUTE_DBG(pool->screen, " + list: offset = %i id = %i size = %i "
249 "(%i bytes)\n",item->start_in_dw, item->id,
250 item->size_in_dw, item->size_in_dw * 4);
251 }
252
253 /* Calculate the total allocated size */
254 LIST_FOR_EACH_ENTRY(item, pool->item_list, link) {
255 allocated += align(item->size_in_dw, ITEM_ALIGNMENT);
256 }
257
258 /* Calculate the total unallocated size of the items that
259 * will be promoted to the pool */
260 LIST_FOR_EACH_ENTRY(item, pool->unallocated_list, link) {
261 if (item->status & ITEM_FOR_PROMOTING)
262 unallocated += align(item->size_in_dw, ITEM_ALIGNMENT);
263 }
264
265 /* If we require more space than the size of the pool, then grow the
266 * pool.
267 *
268 * XXX: I'm pretty sure this won't work. Imagine this scenario:
269 *
270 * Offset Item Size
271 * 0 A 50
272 * 200 B 50
273 * 400 C 50
274 *
275 * Total size = 450
276 * Allocated size = 150
277 * Pending Item D Size = 200
278 *
279 * In this case, there are 300 units of free space in the pool, but
280 * they aren't contiguous, so it will be impossible to allocate Item D.
281 */
282 if (pool->size_in_dw < allocated + unallocated) {
283 err = compute_memory_grow_pool(pool, pipe, allocated + unallocated);
284 if (err == -1)
285 return -1;
286 }
287
288 /* Loop through all the unallocated items, check if they are marked
289 * for promoting, allocate space for them and add them to the item_list. */
290 LIST_FOR_EACH_ENTRY_SAFE(item, next, pool->unallocated_list, link) {
291 if (item->status & ITEM_FOR_PROMOTING) {
292 err = compute_memory_promote_item(pool, item, pipe, allocated);
293 item->status ^= ITEM_FOR_PROMOTING;
294
295 allocated += align(item->size_in_dw, ITEM_ALIGNMENT);
296
297 if (err == -1)
298 return -1;
299 }
300 }
301
302 return 0;
303 }
304
305 int compute_memory_promote_item(struct compute_memory_pool *pool,
306 struct compute_memory_item *item, struct pipe_context *pipe,
307 int64_t allocated)
308 {
309 struct pipe_screen *screen = (struct pipe_screen *)pool->screen;
310 struct r600_context *rctx = (struct r600_context *)pipe;
311 struct pipe_resource *dst = (struct pipe_resource *)pool->bo;
312 struct pipe_resource *src = (struct pipe_resource *)item->real_buffer;
313 struct pipe_box box;
314
315 struct list_head *pos;
316 int64_t start_in_dw;
317 int err = 0;
318
319
320 /* Search for free space in the pool for this item. */
321 while ((start_in_dw=compute_memory_prealloc_chunk(pool,
322 item->size_in_dw)) == -1) {
323 int64_t need = item->size_in_dw + 2048 -
324 (pool->size_in_dw - allocated);
325
326 if (need < 0) {
327 need = pool->size_in_dw / 10;
328 }
329
330 need = align(need, ITEM_ALIGNMENT);
331
332 err = compute_memory_grow_pool(pool,
333 pipe,
334 pool->size_in_dw + need);
335
336 if (err == -1)
337 return -1;
338 }
339 COMPUTE_DBG(pool->screen, " + Found space for Item %p id = %u "
340 "start_in_dw = %u (%u bytes) size_in_dw = %u (%u bytes)\n",
341 item, item->id, start_in_dw, start_in_dw * 4,
342 item->size_in_dw, item->size_in_dw * 4);
343
344 /* Remove the item from the unallocated list */
345 list_del(&item->link);
346
347 /* Add it back to the item_list */
348 pos = compute_memory_postalloc_chunk(pool, start_in_dw);
349 list_add(&item->link, pos);
350 item->start_in_dw = start_in_dw;
351
352 u_box_1d(0, item->size_in_dw * 4, &box);
353
354 rctx->b.b.resource_copy_region(pipe,
355 dst, 0, item->start_in_dw * 4, 0 ,0,
356 src, 0, &box);
357
358 /* We check if the item is mapped for reading.
359 * In this case, we need to keep the temporary buffer 'alive'
360 * because it is possible to keep a map active for reading
361 * while a kernel (that reads from it) executes */
362 if (!(item->status & ITEM_MAPPED_FOR_READING)) {
363 pool->screen->b.b.resource_destroy(screen, src);
364 item->real_buffer = NULL;
365 }
366
367 return 0;
368 }
369
370 void compute_memory_demote_item(struct compute_memory_pool *pool,
371 struct compute_memory_item *item, struct pipe_context *pipe)
372 {
373 struct r600_context *rctx = (struct r600_context *)pipe;
374 struct pipe_resource *src = (struct pipe_resource *)pool->bo;
375 struct pipe_resource *dst;
376 struct pipe_box box;
377
378 /* First, we remove the item from the item_list */
379 list_del(&item->link);
380
381 /* Now we add it to the unallocated list */
382 list_addtail(&item->link, pool->unallocated_list);
383
384 /* We check if the intermediate buffer exists, and if it
385 * doesn't, we create it again */
386 if (item->real_buffer == NULL) {
387 item->real_buffer = (struct r600_resource*)r600_compute_buffer_alloc_vram(
388 pool->screen, item->size_in_dw * 4);
389 }
390
391 dst = (struct pipe_resource *)item->real_buffer;
392
393 /* We transfer the memory from the item in the pool to the
394 * temporary buffer */
395 u_box_1d(item->start_in_dw * 4, item->size_in_dw * 4, &box);
396
397 rctx->b.b.resource_copy_region(pipe,
398 dst, 0, 0, 0, 0,
399 src, 0, &box);
400
401 /* Remember to mark the buffer as 'pending' by setting start_in_dw to -1 */
402 item->start_in_dw = -1;
403 }
404
405 void compute_memory_free(struct compute_memory_pool* pool, int64_t id)
406 {
407 struct compute_memory_item *item, *next;
408 struct pipe_screen *screen = (struct pipe_screen *)pool->screen;
409 struct pipe_resource *res;
410
411 COMPUTE_DBG(pool->screen, "* compute_memory_free() id + %ld \n", id);
412
413 LIST_FOR_EACH_ENTRY_SAFE(item, next, pool->item_list, link) {
414
415 if (item->id == id) {
416 list_del(&item->link);
417
418 if (item->real_buffer) {
419 res = (struct pipe_resource *)item->real_buffer;
420 pool->screen->b.b.resource_destroy(
421 screen, res);
422 }
423
424 free(item);
425
426 return;
427 }
428 }
429
430 LIST_FOR_EACH_ENTRY_SAFE(item, next, pool->unallocated_list, link) {
431
432 if (item->id == id) {
433 list_del(&item->link);
434
435 if (item->real_buffer) {
436 res = (struct pipe_resource *)item->real_buffer;
437 pool->screen->b.b.resource_destroy(
438 screen, res);
439 }
440
441 free(item);
442
443 return;
444 }
445 }
446
447 fprintf(stderr, "Internal error, invalid id %"PRIi64" "
448 "for compute_memory_free\n", id);
449
450 assert(0 && "error");
451 }
452
453 /**
454 * Creates pending allocations
455 */
456 struct compute_memory_item* compute_memory_alloc(
457 struct compute_memory_pool* pool,
458 int64_t size_in_dw)
459 {
460 struct compute_memory_item *new_item = NULL;
461
462 COMPUTE_DBG(pool->screen, "* compute_memory_alloc() size_in_dw = %ld (%ld bytes)\n",
463 size_in_dw, 4 * size_in_dw);
464
465 new_item = (struct compute_memory_item *)
466 CALLOC(sizeof(struct compute_memory_item), 1);
467 if (new_item == NULL)
468 return NULL;
469
470 new_item->size_in_dw = size_in_dw;
471 new_item->start_in_dw = -1; /* mark pending */
472 new_item->id = pool->next_id++;
473 new_item->pool = pool;
474 new_item->real_buffer = (struct r600_resource*)r600_compute_buffer_alloc_vram(
475 pool->screen, size_in_dw * 4);
476
477 list_addtail(&new_item->link, pool->unallocated_list);
478
479 COMPUTE_DBG(pool->screen, " + Adding item %p id = %u size = %u (%u bytes)\n",
480 new_item, new_item->id, new_item->size_in_dw,
481 new_item->size_in_dw * 4);
482 return new_item;
483 }
484
485 /**
486 * Transfer data host<->device, offset and size is in bytes
487 */
488 void compute_memory_transfer(
489 struct compute_memory_pool* pool,
490 struct pipe_context * pipe,
491 int device_to_host,
492 struct compute_memory_item* chunk,
493 void* data,
494 int offset_in_chunk,
495 int size)
496 {
497 int64_t aligned_size = pool->size_in_dw;
498 struct pipe_resource* gart = (struct pipe_resource*)pool->bo;
499 int64_t internal_offset = chunk->start_in_dw*4 + offset_in_chunk;
500
501 struct pipe_transfer *xfer;
502 uint32_t *map;
503
504 assert(gart);
505
506 COMPUTE_DBG(pool->screen, "* compute_memory_transfer() device_to_host = %d, "
507 "offset_in_chunk = %d, size = %d\n", device_to_host,
508 offset_in_chunk, size);
509
510 if (device_to_host) {
511 map = pipe->transfer_map(pipe, gart, 0, PIPE_TRANSFER_READ,
512 &(struct pipe_box) { .width = aligned_size * 4,
513 .height = 1, .depth = 1 }, &xfer);
514 assert(xfer);
515 assert(map);
516 memcpy(data, map + internal_offset, size);
517 pipe->transfer_unmap(pipe, xfer);
518 } else {
519 map = pipe->transfer_map(pipe, gart, 0, PIPE_TRANSFER_WRITE,
520 &(struct pipe_box) { .width = aligned_size * 4,
521 .height = 1, .depth = 1 }, &xfer);
522 assert(xfer);
523 assert(map);
524 memcpy(map + internal_offset, data, size);
525 pipe->transfer_unmap(pipe, xfer);
526 }
527 }
528
529 /**
530 * Transfer data between chunk<->data, it is for VRAM<->GART transfers
531 */
532 void compute_memory_transfer_direct(
533 struct compute_memory_pool* pool,
534 int chunk_to_data,
535 struct compute_memory_item* chunk,
536 struct r600_resource* data,
537 int offset_in_chunk,
538 int offset_in_data,
539 int size)
540 {
541 ///TODO: DMA
542 }