r600g: remove r600_resource.h
[mesa.git] / src / gallium / drivers / r600 / compute_memory_pool.c
1 /*
2 * Permission is hereby granted, free of charge, to any person obtaining a
3 * copy of this software and associated documentation files (the "Software"),
4 * to deal in the Software without restriction, including without limitation
5 * on the rights to use, copy, modify, merge, publish, distribute, sub
6 * license, and/or sell copies of the Software, and to permit persons to whom
7 * the Software is furnished to do so, subject to the following conditions:
8 *
9 * The above copyright notice and this permission notice (including the next
10 * paragraph) shall be included in all copies or substantial portions of the
11 * Software.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
20 *
21 * Authors:
22 * Adam Rak <adam.rak@streamnovation.com>
23 */
24
25 #include "pipe/p_defines.h"
26 #include "pipe/p_state.h"
27 #include "pipe/p_context.h"
28 #include "util/u_blitter.h"
29 #include "util/u_double_list.h"
30 #include "util/u_transfer.h"
31 #include "util/u_surface.h"
32 #include "util/u_pack_color.h"
33 #include "util/u_memory.h"
34 #include "util/u_inlines.h"
35 #include "util/u_framebuffer.h"
36 #include "r600_shader.h"
37 #include "r600_pipe.h"
38 #include "r600_formats.h"
39 #include "compute_memory_pool.h"
40 #include "evergreen_compute.h"
41 #include "evergreen_compute_internal.h"
42 #include <inttypes.h>
43
44 /**
45 * Creates a new pool
46 */
47 struct compute_memory_pool* compute_memory_pool_new(
48 struct r600_screen * rscreen)
49 {
50 struct compute_memory_pool* pool = (struct compute_memory_pool*)
51 CALLOC(sizeof(struct compute_memory_pool), 1);
52
53 COMPUTE_DBG(rscreen, "* compute_memory_pool_new()\n");
54
55 pool->screen = rscreen;
56 return pool;
57 }
58
59 static void compute_memory_pool_init(struct compute_memory_pool * pool,
60 unsigned initial_size_in_dw)
61 {
62
63 COMPUTE_DBG(pool->screen, "* compute_memory_pool_init() initial_size_in_dw = %ld\n",
64 initial_size_in_dw);
65
66 pool->shadow = (uint32_t*)CALLOC(initial_size_in_dw, 4);
67 pool->next_id = 1;
68 pool->size_in_dw = initial_size_in_dw;
69 pool->bo = (struct r600_resource*)r600_compute_buffer_alloc_vram(pool->screen,
70 pool->size_in_dw * 4);
71 }
72
73 /**
74 * Frees all stuff in the pool and the pool struct itself too
75 */
76 void compute_memory_pool_delete(struct compute_memory_pool* pool)
77 {
78 COMPUTE_DBG(pool->screen, "* compute_memory_pool_delete()\n");
79 free(pool->shadow);
80 if (pool->bo) {
81 pool->screen->b.b.resource_destroy((struct pipe_screen *)
82 pool->screen, (struct pipe_resource *)pool->bo);
83 }
84 free(pool);
85 }
86
87 /**
88 * Searches for an empty space in the pool, return with the pointer to the
89 * allocatable space in the pool, returns -1 on failure.
90 */
91 int64_t compute_memory_prealloc_chunk(
92 struct compute_memory_pool* pool,
93 int64_t size_in_dw)
94 {
95 struct compute_memory_item *item;
96
97 int last_end = 0;
98
99 assert(size_in_dw <= pool->size_in_dw);
100
101 COMPUTE_DBG(pool->screen, "* compute_memory_prealloc_chunk() size_in_dw = %ld\n",
102 size_in_dw);
103
104 for (item = pool->item_list; item; item = item->next) {
105 if (item->start_in_dw > -1) {
106 if (item->start_in_dw-last_end > size_in_dw) {
107 return last_end;
108 }
109
110 last_end = item->start_in_dw + item->size_in_dw;
111 last_end += (1024 - last_end % 1024);
112 }
113 }
114
115 if (pool->size_in_dw - last_end < size_in_dw) {
116 return -1;
117 }
118
119 return last_end;
120 }
121
122 /**
123 * Search for the chunk where we can link our new chunk after it.
124 */
125 struct compute_memory_item* compute_memory_postalloc_chunk(
126 struct compute_memory_pool* pool,
127 int64_t start_in_dw)
128 {
129 struct compute_memory_item* item;
130
131 COMPUTE_DBG(pool->screen, "* compute_memory_postalloc_chunck() start_in_dw = %ld\n",
132 start_in_dw);
133
134 /* Check if we can insert it in the front of the list */
135 if (pool->item_list && pool->item_list->start_in_dw > start_in_dw) {
136 return NULL;
137 }
138
139 for (item = pool->item_list; item; item = item->next) {
140 if (item->next) {
141 if (item->start_in_dw < start_in_dw
142 && item->next->start_in_dw > start_in_dw) {
143 return item;
144 }
145 }
146 else {
147 /* end of chain */
148 assert(item->start_in_dw < start_in_dw);
149 return item;
150 }
151 }
152
153 assert(0 && "unreachable");
154 return NULL;
155 }
156
157 /**
158 * Reallocates pool, conserves data
159 */
160 void compute_memory_grow_pool(struct compute_memory_pool* pool,
161 struct pipe_context * pipe, int new_size_in_dw)
162 {
163 COMPUTE_DBG(pool->screen, "* compute_memory_grow_pool() "
164 "new_size_in_dw = %d (%d bytes)\n",
165 new_size_in_dw, new_size_in_dw * 4);
166
167 assert(new_size_in_dw >= pool->size_in_dw);
168
169 if (!pool->bo) {
170 compute_memory_pool_init(pool, MAX2(new_size_in_dw, 1024 * 16));
171 } else {
172 new_size_in_dw += 1024 - (new_size_in_dw % 1024);
173
174 COMPUTE_DBG(pool->screen, " Aligned size = %d (%d bytes)\n",
175 new_size_in_dw, new_size_in_dw * 4);
176
177 compute_memory_shadow(pool, pipe, 1);
178 pool->shadow = realloc(pool->shadow, new_size_in_dw*4);
179 pool->size_in_dw = new_size_in_dw;
180 pool->screen->b.b.resource_destroy(
181 (struct pipe_screen *)pool->screen,
182 (struct pipe_resource *)pool->bo);
183 pool->bo = (struct r600_resource*)r600_compute_buffer_alloc_vram(
184 pool->screen,
185 pool->size_in_dw * 4);
186 compute_memory_shadow(pool, pipe, 0);
187 }
188 }
189
190 /**
191 * Copy pool from device to host, or host to device.
192 */
193 void compute_memory_shadow(struct compute_memory_pool* pool,
194 struct pipe_context * pipe, int device_to_host)
195 {
196 struct compute_memory_item chunk;
197
198 COMPUTE_DBG(pool->screen, "* compute_memory_shadow() device_to_host = %d\n",
199 device_to_host);
200
201 chunk.id = 0;
202 chunk.start_in_dw = 0;
203 chunk.size_in_dw = pool->size_in_dw;
204 chunk.prev = chunk.next = NULL;
205 compute_memory_transfer(pool, pipe, device_to_host, &chunk,
206 pool->shadow, 0, pool->size_in_dw*4);
207 }
208
209 /**
210 * Allocates pending allocations in the pool
211 */
212 void compute_memory_finalize_pending(struct compute_memory_pool* pool,
213 struct pipe_context * pipe)
214 {
215 struct compute_memory_item *pending_list = NULL, *end_p = NULL;
216 struct compute_memory_item *item, *next;
217
218 int64_t allocated = 0;
219 int64_t unallocated = 0;
220
221 int64_t start_in_dw = 0;
222
223 COMPUTE_DBG(pool->screen, "* compute_memory_finalize_pending()\n");
224
225 for (item = pool->item_list; item; item = item->next) {
226 COMPUTE_DBG(pool->screen, " + list: offset = %i id = %i size = %i "
227 "(%i bytes)\n",item->start_in_dw, item->id,
228 item->size_in_dw, item->size_in_dw * 4);
229 }
230
231 /* Search through the list of memory items in the pool */
232 for (item = pool->item_list; item; item = next) {
233 next = item->next;
234
235 /* Check if the item is pending. */
236 if (item->start_in_dw == -1) {
237 /* It is pending, so add it to the pending_list... */
238 if (end_p) {
239 end_p->next = item;
240 }
241 else {
242 pending_list = item;
243 }
244
245 /* ... and then remove it from the item list. */
246 if (item->prev) {
247 item->prev->next = next;
248 }
249 else {
250 pool->item_list = next;
251 }
252
253 if (next) {
254 next->prev = item->prev;
255 }
256
257 /* This sequence makes the item be at the end of the list */
258 item->prev = end_p;
259 item->next = NULL;
260 end_p = item;
261
262 /* Update the amount of space we will need to allocate. */
263 unallocated += item->size_in_dw+1024;
264 }
265 else {
266 /* The item is not pendng, so update the amount of space
267 * that has already been allocated. */
268 allocated += item->size_in_dw;
269 }
270 }
271
272 /* If we require more space than the size of the pool, then grow the
273 * pool.
274 *
275 * XXX: I'm pretty sure this won't work. Imagine this scenario:
276 *
277 * Offset Item Size
278 * 0 A 50
279 * 200 B 50
280 * 400 C 50
281 *
282 * Total size = 450
283 * Allocated size = 150
284 * Pending Item D Size = 200
285 *
286 * In this case, there are 300 units of free space in the pool, but
287 * they aren't contiguous, so it will be impossible to allocate Item D.
288 */
289 if (pool->size_in_dw < allocated+unallocated) {
290 compute_memory_grow_pool(pool, pipe, allocated+unallocated);
291 }
292
293 /* Loop through all the pending items, allocate space for them and
294 * add them back to the item_list. */
295 for (item = pending_list; item; item = next) {
296 next = item->next;
297
298 /* Search for free space in the pool for this item. */
299 while ((start_in_dw=compute_memory_prealloc_chunk(pool,
300 item->size_in_dw)) == -1) {
301 int64_t need = item->size_in_dw+2048 -
302 (pool->size_in_dw - allocated);
303
304 need += 1024 - (need % 1024);
305
306 if (need > 0) {
307 compute_memory_grow_pool(pool,
308 pipe,
309 pool->size_in_dw + need);
310 }
311 else {
312 need = pool->size_in_dw / 10;
313 need += 1024 - (need % 1024);
314 compute_memory_grow_pool(pool,
315 pipe,
316 pool->size_in_dw + need);
317 }
318 }
319 COMPUTE_DBG(pool->screen, " + Found space for Item %p id = %u "
320 "start_in_dw = %u (%u bytes) size_in_dw = %u (%u bytes)\n",
321 item, item->id, start_in_dw, start_in_dw * 4,
322 item->size_in_dw, item->size_in_dw * 4);
323
324 item->start_in_dw = start_in_dw;
325 item->next = NULL;
326 item->prev = NULL;
327
328 if (pool->item_list) {
329 struct compute_memory_item *pos;
330
331 pos = compute_memory_postalloc_chunk(pool, start_in_dw);
332 if (pos) {
333 item->prev = pos;
334 item->next = pos->next;
335 pos->next = item;
336 if (item->next) {
337 item->next->prev = item;
338 }
339 } else {
340 /* Add item to the front of the list */
341 item->next = pool->item_list;
342 item->prev = pool->item_list->prev;
343 pool->item_list->prev = item;
344 pool->item_list = item;
345 }
346 }
347 else {
348 pool->item_list = item;
349 }
350
351 allocated += item->size_in_dw;
352 }
353 }
354
355
356 void compute_memory_free(struct compute_memory_pool* pool, int64_t id)
357 {
358 struct compute_memory_item *item, *next;
359
360 COMPUTE_DBG(pool->screen, "* compute_memory_free() id + %ld \n", id);
361
362 for (item = pool->item_list; item; item = next) {
363 next = item->next;
364
365 if (item->id == id) {
366 if (item->prev) {
367 item->prev->next = item->next;
368 }
369 else {
370 pool->item_list = item->next;
371 }
372
373 if (item->next) {
374 item->next->prev = item->prev;
375 }
376
377 free(item);
378
379 return;
380 }
381 }
382
383 fprintf(stderr, "Internal error, invalid id %"PRIi64" "
384 "for compute_memory_free\n", id);
385
386 assert(0 && "error");
387 }
388
389 /**
390 * Creates pending allocations
391 */
392 struct compute_memory_item* compute_memory_alloc(
393 struct compute_memory_pool* pool,
394 int64_t size_in_dw)
395 {
396 struct compute_memory_item *new_item = NULL, *last_item = NULL;
397
398 COMPUTE_DBG(pool->screen, "* compute_memory_alloc() size_in_dw = %ld (%ld bytes)\n",
399 size_in_dw, 4 * size_in_dw);
400
401 new_item = (struct compute_memory_item *)
402 CALLOC(sizeof(struct compute_memory_item), 1);
403 new_item->size_in_dw = size_in_dw;
404 new_item->start_in_dw = -1; /* mark pending */
405 new_item->id = pool->next_id++;
406 new_item->pool = pool;
407
408 if (pool->item_list) {
409 for (last_item = pool->item_list; last_item->next;
410 last_item = last_item->next);
411
412 last_item->next = new_item;
413 new_item->prev = last_item;
414 }
415 else {
416 pool->item_list = new_item;
417 }
418
419 COMPUTE_DBG(pool->screen, " + Adding item %p id = %u size = %u (%u bytes)\n",
420 new_item, new_item->id, new_item->size_in_dw,
421 new_item->size_in_dw * 4);
422 return new_item;
423 }
424
425 /**
426 * Transfer data host<->device, offset and size is in bytes
427 */
428 void compute_memory_transfer(
429 struct compute_memory_pool* pool,
430 struct pipe_context * pipe,
431 int device_to_host,
432 struct compute_memory_item* chunk,
433 void* data,
434 int offset_in_chunk,
435 int size)
436 {
437 int64_t aligned_size = pool->size_in_dw;
438 struct pipe_resource* gart = (struct pipe_resource*)pool->bo;
439 int64_t internal_offset = chunk->start_in_dw*4 + offset_in_chunk;
440
441 struct pipe_transfer *xfer;
442 uint32_t *map;
443
444 assert(gart);
445
446 COMPUTE_DBG(pool->screen, "* compute_memory_transfer() device_to_host = %d, "
447 "offset_in_chunk = %d, size = %d\n", device_to_host,
448 offset_in_chunk, size);
449
450 if (device_to_host) {
451 map = pipe->transfer_map(pipe, gart, 0, PIPE_TRANSFER_READ,
452 &(struct pipe_box) { .width = aligned_size,
453 .height = 1, .depth = 1 }, &xfer);
454 assert(xfer);
455 assert(map);
456 memcpy(data, map + internal_offset, size);
457 pipe->transfer_unmap(pipe, xfer);
458 } else {
459 map = pipe->transfer_map(pipe, gart, 0, PIPE_TRANSFER_WRITE,
460 &(struct pipe_box) { .width = aligned_size,
461 .height = 1, .depth = 1 }, &xfer);
462 assert(xfer);
463 assert(map);
464 memcpy(map + internal_offset, data, size);
465 pipe->transfer_unmap(pipe, xfer);
466 }
467 }
468
469 /**
470 * Transfer data between chunk<->data, it is for VRAM<->GART transfers
471 */
472 void compute_memory_transfer_direct(
473 struct compute_memory_pool* pool,
474 int chunk_to_data,
475 struct compute_memory_item* chunk,
476 struct r600_resource* data,
477 int offset_in_chunk,
478 int offset_in_data,
479 int size)
480 {
481 ///TODO: DMA
482 }