r600g: use PRIi64 for some compute debug printfs
[mesa.git] / src / gallium / drivers / r600 / compute_memory_pool.c
1 /*
2 * Permission is hereby granted, free of charge, to any person obtaining a
3 * copy of this software and associated documentation files (the "Software"),
4 * to deal in the Software without restriction, including without limitation
5 * on the rights to use, copy, modify, merge, publish, distribute, sub
6 * license, and/or sell copies of the Software, and to permit persons to whom
7 * the Software is furnished to do so, subject to the following conditions:
8 *
9 * The above copyright notice and this permission notice (including the next
10 * paragraph) shall be included in all copies or substantial portions of the
11 * Software.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
20 *
21 * Authors:
22 * Adam Rak <adam.rak@streamnovation.com>
23 */
24
25 #include "pipe/p_defines.h"
26 #include "pipe/p_state.h"
27 #include "pipe/p_context.h"
28 #include "util/u_blitter.h"
29 #include "util/list.h"
30 #include "util/u_transfer.h"
31 #include "util/u_surface.h"
32 #include "util/u_pack_color.h"
33 #include "util/u_math.h"
34 #include "util/u_memory.h"
35 #include "util/u_inlines.h"
36 #include "util/u_framebuffer.h"
37 #include "r600_shader.h"
38 #include "r600_pipe.h"
39 #include "r600_formats.h"
40 #include "compute_memory_pool.h"
41 #include "evergreen_compute.h"
42 #include "evergreen_compute_internal.h"
43 #include <inttypes.h>
44
45 #define ITEM_ALIGNMENT 1024
46 /**
47 * Creates a new pool.
48 */
49 struct compute_memory_pool* compute_memory_pool_new(
50 struct r600_screen * rscreen)
51 {
52 struct compute_memory_pool* pool = (struct compute_memory_pool*)
53 CALLOC(sizeof(struct compute_memory_pool), 1);
54 if (pool == NULL)
55 return NULL;
56
57 COMPUTE_DBG(rscreen, "* compute_memory_pool_new()\n");
58
59 pool->screen = rscreen;
60 pool->item_list = (struct list_head *)
61 CALLOC(sizeof(struct list_head), 1);
62 pool->unallocated_list = (struct list_head *)
63 CALLOC(sizeof(struct list_head), 1);
64 list_inithead(pool->item_list);
65 list_inithead(pool->unallocated_list);
66 return pool;
67 }
68
69 /**
70 * Initializes the pool with a size of \a initial_size_in_dw.
71 * \param pool The pool to be initialized.
72 * \param initial_size_in_dw The initial size.
73 * \see compute_memory_grow_defrag_pool
74 */
75 static void compute_memory_pool_init(struct compute_memory_pool * pool,
76 unsigned initial_size_in_dw)
77 {
78
79 COMPUTE_DBG(pool->screen, "* compute_memory_pool_init() initial_size_in_dw = %u\n",
80 initial_size_in_dw);
81
82 pool->size_in_dw = initial_size_in_dw;
83 pool->bo = (struct r600_resource*)r600_compute_buffer_alloc_vram(pool->screen,
84 pool->size_in_dw * 4);
85 }
86
87 /**
88 * Frees all stuff in the pool and the pool struct itself too.
89 */
90 void compute_memory_pool_delete(struct compute_memory_pool* pool)
91 {
92 COMPUTE_DBG(pool->screen, "* compute_memory_pool_delete()\n");
93 free(pool->shadow);
94 if (pool->bo) {
95 pool->screen->b.b.resource_destroy((struct pipe_screen *)
96 pool->screen, (struct pipe_resource *)pool->bo);
97 }
98 /* In theory, all of the items were freed in compute_memory_free.
99 * Just delete the list heads
100 */
101 free(pool->item_list);
102 free(pool->unallocated_list);
103 /* And then the pool itself */
104 free(pool);
105 }
106
107 /**
108 * Searches for an empty space in the pool, return with the pointer to the
109 * allocatable space in the pool.
110 * \param size_in_dw The size of the space we are looking for.
111 * \return -1 on failure
112 */
113 int64_t compute_memory_prealloc_chunk(
114 struct compute_memory_pool* pool,
115 int64_t size_in_dw)
116 {
117 struct compute_memory_item *item;
118
119 int last_end = 0;
120
121 assert(size_in_dw <= pool->size_in_dw);
122
123 COMPUTE_DBG(pool->screen, "* compute_memory_prealloc_chunk() size_in_dw = %"PRIi64"\n",
124 size_in_dw);
125
126 LIST_FOR_EACH_ENTRY(item, pool->item_list, link) {
127 if (last_end + size_in_dw <= item->start_in_dw) {
128 return last_end;
129 }
130
131 last_end = item->start_in_dw + align(item->size_in_dw, ITEM_ALIGNMENT);
132 }
133
134 if (pool->size_in_dw - last_end < size_in_dw) {
135 return -1;
136 }
137
138 return last_end;
139 }
140
141 /**
142 * Search for the chunk where we can link our new chunk after it.
143 * \param start_in_dw The position of the item we want to add to the pool.
144 * \return The item that is just before the passed position
145 */
146 struct list_head *compute_memory_postalloc_chunk(
147 struct compute_memory_pool* pool,
148 int64_t start_in_dw)
149 {
150 struct compute_memory_item *item;
151 struct compute_memory_item *next;
152 struct list_head *next_link;
153
154 COMPUTE_DBG(pool->screen, "* compute_memory_postalloc_chunck() start_in_dw = %"PRIi64"\n",
155 start_in_dw);
156
157 /* Check if we can insert it in the front of the list */
158 item = LIST_ENTRY(struct compute_memory_item, pool->item_list->next, link);
159 if (LIST_IS_EMPTY(pool->item_list) || item->start_in_dw > start_in_dw) {
160 return pool->item_list;
161 }
162
163 LIST_FOR_EACH_ENTRY(item, pool->item_list, link) {
164 next_link = item->link.next;
165
166 if (next_link != pool->item_list) {
167 next = container_of(next_link, item, link);
168 if (item->start_in_dw < start_in_dw
169 && next->start_in_dw > start_in_dw) {
170 return &item->link;
171 }
172 }
173 else {
174 /* end of chain */
175 assert(item->start_in_dw < start_in_dw);
176 return &item->link;
177 }
178 }
179
180 assert(0 && "unreachable");
181 return NULL;
182 }
183
184 /**
185 * Reallocates and defragments the pool, conserves data.
186 * \returns -1 if it fails, 0 otherwise
187 * \see compute_memory_finalize_pending
188 */
189 int compute_memory_grow_defrag_pool(struct compute_memory_pool *pool,
190 struct pipe_context *pipe, int new_size_in_dw)
191 {
192 new_size_in_dw = align(new_size_in_dw, ITEM_ALIGNMENT);
193
194 COMPUTE_DBG(pool->screen, "* compute_memory_grow_defrag_pool() "
195 "new_size_in_dw = %d (%d bytes)\n",
196 new_size_in_dw, new_size_in_dw * 4);
197
198 assert(new_size_in_dw >= pool->size_in_dw);
199
200 if (!pool->bo) {
201 compute_memory_pool_init(pool, MAX2(new_size_in_dw, 1024 * 16));
202 } else {
203 struct r600_resource *temp = NULL;
204
205 temp = (struct r600_resource *)r600_compute_buffer_alloc_vram(
206 pool->screen, new_size_in_dw * 4);
207
208 if (temp != NULL) {
209 struct pipe_resource *src = (struct pipe_resource *)pool->bo;
210 struct pipe_resource *dst = (struct pipe_resource *)temp;
211
212 COMPUTE_DBG(pool->screen, " Growing and defragmenting the pool "
213 "using a temporary resource\n");
214
215 compute_memory_defrag(pool, src, dst, pipe);
216
217 pool->screen->b.b.resource_destroy(
218 (struct pipe_screen *)pool->screen,
219 src);
220
221 pool->bo = temp;
222 pool->size_in_dw = new_size_in_dw;
223 }
224 else {
225 COMPUTE_DBG(pool->screen, " The creation of the temporary resource failed\n"
226 " Falling back to using 'shadow'\n");
227
228 compute_memory_shadow(pool, pipe, 1);
229 pool->shadow = realloc(pool->shadow, new_size_in_dw * 4);
230 if (pool->shadow == NULL)
231 return -1;
232
233 pool->size_in_dw = new_size_in_dw;
234 pool->screen->b.b.resource_destroy(
235 (struct pipe_screen *)pool->screen,
236 (struct pipe_resource *)pool->bo);
237 pool->bo = (struct r600_resource*)r600_compute_buffer_alloc_vram(
238 pool->screen,
239 pool->size_in_dw * 4);
240 compute_memory_shadow(pool, pipe, 0);
241
242 if (pool->status & POOL_FRAGMENTED) {
243 struct pipe_resource *src = (struct pipe_resource *)pool->bo;
244 compute_memory_defrag(pool, src, src, pipe);
245 }
246 }
247 }
248
249 return 0;
250 }
251
252 /**
253 * Copy pool from device to host, or host to device.
254 * \param device_to_host 1 for device->host, 0 for host->device
255 * \see compute_memory_grow_defrag_pool
256 */
257 void compute_memory_shadow(struct compute_memory_pool* pool,
258 struct pipe_context * pipe, int device_to_host)
259 {
260 struct compute_memory_item chunk;
261
262 COMPUTE_DBG(pool->screen, "* compute_memory_shadow() device_to_host = %d\n",
263 device_to_host);
264
265 chunk.id = 0;
266 chunk.start_in_dw = 0;
267 chunk.size_in_dw = pool->size_in_dw;
268 compute_memory_transfer(pool, pipe, device_to_host, &chunk,
269 pool->shadow, 0, pool->size_in_dw*4);
270 }
271
272 /**
273 * Moves all the items marked for promotion from the \a unallocated_list
274 * to the \a item_list.
275 * \return -1 if it fails, 0 otherwise
276 * \see evergreen_set_global_binding
277 */
278 int compute_memory_finalize_pending(struct compute_memory_pool* pool,
279 struct pipe_context * pipe)
280 {
281 struct compute_memory_item *item, *next;
282
283 int64_t allocated = 0;
284 int64_t unallocated = 0;
285 int64_t last_pos;
286
287 int err = 0;
288
289 COMPUTE_DBG(pool->screen, "* compute_memory_finalize_pending()\n");
290
291 LIST_FOR_EACH_ENTRY(item, pool->item_list, link) {
292 COMPUTE_DBG(pool->screen, " + list: offset = %"PRIi64" id = %"PRIi64" size = %"PRIi64" "
293 "(%"PRIi64" bytes)\n", item->start_in_dw, item->id,
294 item->size_in_dw, item->size_in_dw * 4);
295 }
296
297 /* Calculate the total allocated size */
298 LIST_FOR_EACH_ENTRY(item, pool->item_list, link) {
299 allocated += align(item->size_in_dw, ITEM_ALIGNMENT);
300 }
301
302 /* Calculate the total unallocated size of the items that
303 * will be promoted to the pool */
304 LIST_FOR_EACH_ENTRY(item, pool->unallocated_list, link) {
305 if (item->status & ITEM_FOR_PROMOTING)
306 unallocated += align(item->size_in_dw, ITEM_ALIGNMENT);
307 }
308
309 if (unallocated == 0) {
310 return 0;
311 }
312
313 if (pool->size_in_dw < allocated + unallocated) {
314 err = compute_memory_grow_defrag_pool(pool, pipe, allocated + unallocated);
315 if (err == -1)
316 return -1;
317 }
318 else if (pool->status & POOL_FRAGMENTED) {
319 struct pipe_resource *src = (struct pipe_resource *)pool->bo;
320 compute_memory_defrag(pool, src, src, pipe);
321 }
322
323 /* After defragmenting the pool, allocated is equal to the first available
324 * position for new items in the pool */
325 last_pos = allocated;
326
327 /* Loop through all the unallocated items, check if they are marked
328 * for promoting, allocate space for them and add them to the item_list. */
329 LIST_FOR_EACH_ENTRY_SAFE(item, next, pool->unallocated_list, link) {
330 if (item->status & ITEM_FOR_PROMOTING) {
331 err = compute_memory_promote_item(pool, item, pipe, last_pos);
332 item->status &= ~ITEM_FOR_PROMOTING;
333
334 last_pos += align(item->size_in_dw, ITEM_ALIGNMENT);
335
336 if (err == -1)
337 return -1;
338 }
339 }
340
341 return 0;
342 }
343
344 /**
345 * Defragments the pool, so that there's no gap between items.
346 * \param pool The pool to be defragmented
347 * \param src The origin resource
348 * \param dst The destination resource
349 * \see compute_memory_grow_defrag_pool and compute_memory_finalize_pending
350 */
351 void compute_memory_defrag(struct compute_memory_pool *pool,
352 struct pipe_resource *src, struct pipe_resource *dst,
353 struct pipe_context *pipe)
354 {
355 struct compute_memory_item *item;
356 int64_t last_pos;
357
358 COMPUTE_DBG(pool->screen, "* compute_memory_defrag()\n");
359
360 last_pos = 0;
361 LIST_FOR_EACH_ENTRY(item, pool->item_list, link) {
362 if (src != dst || item->start_in_dw != last_pos) {
363 assert(last_pos <= item->start_in_dw);
364
365 compute_memory_move_item(pool, src, dst,
366 item, last_pos, pipe);
367 }
368
369 last_pos += align(item->size_in_dw, ITEM_ALIGNMENT);
370 }
371
372 pool->status &= ~POOL_FRAGMENTED;
373 }
374
375 /**
376 * Moves an item from the \a unallocated_list to the \a item_list.
377 * \param item The item that will be promoted.
378 * \return -1 if it fails, 0 otherwise
379 * \see compute_memory_finalize_pending
380 */
381 int compute_memory_promote_item(struct compute_memory_pool *pool,
382 struct compute_memory_item *item, struct pipe_context *pipe,
383 int64_t start_in_dw)
384 {
385 struct pipe_screen *screen = (struct pipe_screen *)pool->screen;
386 struct r600_context *rctx = (struct r600_context *)pipe;
387 struct pipe_resource *src = (struct pipe_resource *)item->real_buffer;
388 struct pipe_resource *dst = (struct pipe_resource *)pool->bo;
389 struct pipe_box box;
390
391 COMPUTE_DBG(pool->screen, "* compute_memory_promote_item()\n"
392 " + Promoting Item: %"PRIi64" , starting at: %"PRIi64" (%"PRIi64" bytes) "
393 "size: %"PRIi64" (%"PRIi64" bytes)\n\t\t\tnew start: %"PRIi64" (%"PRIi64" bytes)\n",
394 item->id, item->start_in_dw, item->start_in_dw * 4,
395 item->size_in_dw, item->size_in_dw * 4,
396 start_in_dw, start_in_dw * 4);
397
398 /* Remove the item from the unallocated list */
399 list_del(&item->link);
400
401 /* Add it back to the item_list */
402 list_addtail(&item->link, pool->item_list);
403 item->start_in_dw = start_in_dw;
404
405 if (src != NULL) {
406 u_box_1d(0, item->size_in_dw * 4, &box);
407
408 rctx->b.b.resource_copy_region(pipe,
409 dst, 0, item->start_in_dw * 4, 0 ,0,
410 src, 0, &box);
411
412 /* We check if the item is mapped for reading.
413 * In this case, we need to keep the temporary buffer 'alive'
414 * because it is possible to keep a map active for reading
415 * while a kernel (that reads from it) executes */
416 if (!(item->status & ITEM_MAPPED_FOR_READING)) {
417 pool->screen->b.b.resource_destroy(screen, src);
418 item->real_buffer = NULL;
419 }
420 }
421
422 return 0;
423 }
424
425 /**
426 * Moves an item from the \a item_list to the \a unallocated_list.
427 * \param item The item that will be demoted
428 * \see r600_compute_global_transfer_map
429 */
430 void compute_memory_demote_item(struct compute_memory_pool *pool,
431 struct compute_memory_item *item, struct pipe_context *pipe)
432 {
433 struct r600_context *rctx = (struct r600_context *)pipe;
434 struct pipe_resource *src = (struct pipe_resource *)pool->bo;
435 struct pipe_resource *dst;
436 struct pipe_box box;
437
438 COMPUTE_DBG(pool->screen, "* compute_memory_demote_item()\n"
439 " + Demoting Item: %"PRIi64", starting at: %"PRIi64" (%"PRIi64" bytes) "
440 "size: %"PRIi64" (%"PRIi64" bytes)\n", item->id, item->start_in_dw,
441 item->start_in_dw * 4, item->size_in_dw, item->size_in_dw * 4);
442
443 /* First, we remove the item from the item_list */
444 list_del(&item->link);
445
446 /* Now we add it to the unallocated list */
447 list_addtail(&item->link, pool->unallocated_list);
448
449 /* We check if the intermediate buffer exists, and if it
450 * doesn't, we create it again */
451 if (item->real_buffer == NULL) {
452 item->real_buffer = (struct r600_resource*)r600_compute_buffer_alloc_vram(
453 pool->screen, item->size_in_dw * 4);
454 }
455
456 dst = (struct pipe_resource *)item->real_buffer;
457
458 /* We transfer the memory from the item in the pool to the
459 * temporary buffer */
460 u_box_1d(item->start_in_dw * 4, item->size_in_dw * 4, &box);
461
462 rctx->b.b.resource_copy_region(pipe,
463 dst, 0, 0, 0, 0,
464 src, 0, &box);
465
466 /* Remember to mark the buffer as 'pending' by setting start_in_dw to -1 */
467 item->start_in_dw = -1;
468
469 if (item->link.next != pool->item_list) {
470 pool->status |= POOL_FRAGMENTED;
471 }
472 }
473
474 /**
475 * Moves the item \a item forward from the resource \a src to the
476 * resource \a dst at \a new_start_in_dw
477 *
478 * This function assumes two things:
479 * 1) The item is \b only moved forward, unless src is different from dst
480 * 2) The item \b won't change it's position inside the \a item_list
481 *
482 * \param item The item that will be moved
483 * \param new_start_in_dw The new position of the item in \a item_list
484 * \see compute_memory_defrag
485 */
486 void compute_memory_move_item(struct compute_memory_pool *pool,
487 struct pipe_resource *src, struct pipe_resource *dst,
488 struct compute_memory_item *item, uint64_t new_start_in_dw,
489 struct pipe_context *pipe)
490 {
491 struct pipe_screen *screen = (struct pipe_screen *)pool->screen;
492 struct r600_context *rctx = (struct r600_context *)pipe;
493 struct pipe_box box;
494
495 struct compute_memory_item *prev;
496
497 COMPUTE_DBG(pool->screen, "* compute_memory_move_item()\n"
498 " + Moving item %"PRIi64" from %"PRIi64" (%"PRIi64" bytes) to %"PRIu64" (%"PRIu64" bytes)\n",
499 item->id, item->start_in_dw, item->start_in_dw * 4,
500 new_start_in_dw, new_start_in_dw * 4);
501
502 if (pool->item_list != item->link.prev) {
503 prev = container_of(item->link.prev, item, link);
504 assert(prev->start_in_dw + prev->size_in_dw <= new_start_in_dw);
505 }
506
507 u_box_1d(item->start_in_dw * 4, item->size_in_dw * 4, &box);
508
509 /* If the ranges don't overlap, or we are copying from one resource
510 * to another, we can just copy the item directly */
511 if (src != dst || new_start_in_dw + item->size_in_dw <= item->start_in_dw) {
512
513 rctx->b.b.resource_copy_region(pipe,
514 dst, 0, new_start_in_dw * 4, 0, 0,
515 src, 0, &box);
516 } else {
517 /* The ranges overlap, we will try first to use an intermediate
518 * resource to move the item */
519 struct pipe_resource *tmp = (struct pipe_resource *)
520 r600_compute_buffer_alloc_vram(pool->screen, item->size_in_dw * 4);
521
522 if (tmp != NULL) {
523 rctx->b.b.resource_copy_region(pipe,
524 tmp, 0, 0, 0, 0,
525 src, 0, &box);
526
527 box.x = 0;
528
529 rctx->b.b.resource_copy_region(pipe,
530 dst, 0, new_start_in_dw * 4, 0, 0,
531 tmp, 0, &box);
532
533 pool->screen->b.b.resource_destroy(screen, tmp);
534
535 } else {
536 /* The allocation of the temporary resource failed,
537 * falling back to use mappings */
538 uint32_t *map;
539 int64_t offset;
540 struct pipe_transfer *trans;
541
542 offset = item->start_in_dw - new_start_in_dw;
543
544 u_box_1d(new_start_in_dw * 4, (offset + item->size_in_dw) * 4, &box);
545
546 map = pipe->transfer_map(pipe, src, 0, PIPE_TRANSFER_READ_WRITE,
547 &box, &trans);
548
549 assert(map);
550 assert(trans);
551
552 memmove(map, map + offset, item->size_in_dw * 4);
553
554 pipe->transfer_unmap(pipe, trans);
555 }
556 }
557
558 item->start_in_dw = new_start_in_dw;
559 }
560
561 /**
562 * Frees the memory asociated to the item with id \a id from the pool.
563 * \param id The id of the item to be freed.
564 */
565 void compute_memory_free(struct compute_memory_pool* pool, int64_t id)
566 {
567 struct compute_memory_item *item, *next;
568 struct pipe_screen *screen = (struct pipe_screen *)pool->screen;
569 struct pipe_resource *res;
570
571 COMPUTE_DBG(pool->screen, "* compute_memory_free() id + %"PRIi64" \n", id);
572
573 LIST_FOR_EACH_ENTRY_SAFE(item, next, pool->item_list, link) {
574
575 if (item->id == id) {
576
577 if (item->link.next != pool->item_list) {
578 pool->status |= POOL_FRAGMENTED;
579 }
580
581 list_del(&item->link);
582
583 if (item->real_buffer) {
584 res = (struct pipe_resource *)item->real_buffer;
585 pool->screen->b.b.resource_destroy(
586 screen, res);
587 }
588
589 free(item);
590
591 return;
592 }
593 }
594
595 LIST_FOR_EACH_ENTRY_SAFE(item, next, pool->unallocated_list, link) {
596
597 if (item->id == id) {
598 list_del(&item->link);
599
600 if (item->real_buffer) {
601 res = (struct pipe_resource *)item->real_buffer;
602 pool->screen->b.b.resource_destroy(
603 screen, res);
604 }
605
606 free(item);
607
608 return;
609 }
610 }
611
612 fprintf(stderr, "Internal error, invalid id %"PRIi64" "
613 "for compute_memory_free\n", id);
614
615 assert(0 && "error");
616 }
617
618 /**
619 * Creates pending allocations for new items, these items are
620 * placed in the unallocated_list.
621 * \param size_in_dw The size, in double words, of the new item.
622 * \return The new item
623 * \see r600_compute_global_buffer_create
624 */
625 struct compute_memory_item* compute_memory_alloc(
626 struct compute_memory_pool* pool,
627 int64_t size_in_dw)
628 {
629 struct compute_memory_item *new_item = NULL;
630
631 COMPUTE_DBG(pool->screen, "* compute_memory_alloc() size_in_dw = %"PRIi64" (%"PRIi64" bytes)\n",
632 size_in_dw, 4 * size_in_dw);
633
634 new_item = (struct compute_memory_item *)
635 CALLOC(sizeof(struct compute_memory_item), 1);
636 if (new_item == NULL)
637 return NULL;
638
639 new_item->size_in_dw = size_in_dw;
640 new_item->start_in_dw = -1; /* mark pending */
641 new_item->id = pool->next_id++;
642 new_item->pool = pool;
643 new_item->real_buffer = NULL;
644
645 list_addtail(&new_item->link, pool->unallocated_list);
646
647 COMPUTE_DBG(pool->screen, " + Adding item %p id = %"PRIi64" size = %"PRIi64" (%"PRIi64" bytes)\n",
648 new_item, new_item->id, new_item->size_in_dw,
649 new_item->size_in_dw * 4);
650 return new_item;
651 }
652
653 /**
654 * Transfer data host<->device, offset and size is in bytes.
655 * \param device_to_host 1 for device->host, 0 for host->device.
656 * \see compute_memory_shadow
657 */
658 void compute_memory_transfer(
659 struct compute_memory_pool* pool,
660 struct pipe_context * pipe,
661 int device_to_host,
662 struct compute_memory_item* chunk,
663 void* data,
664 int offset_in_chunk,
665 int size)
666 {
667 int64_t aligned_size = pool->size_in_dw;
668 struct pipe_resource* gart = (struct pipe_resource*)pool->bo;
669 int64_t internal_offset = chunk->start_in_dw*4 + offset_in_chunk;
670
671 struct pipe_transfer *xfer;
672 uint32_t *map;
673
674 assert(gart);
675
676 COMPUTE_DBG(pool->screen, "* compute_memory_transfer() device_to_host = %d, "
677 "offset_in_chunk = %d, size = %d\n", device_to_host,
678 offset_in_chunk, size);
679
680 if (device_to_host) {
681 map = pipe->transfer_map(pipe, gart, 0, PIPE_TRANSFER_READ,
682 &(struct pipe_box) { .width = aligned_size * 4,
683 .height = 1, .depth = 1 }, &xfer);
684 assert(xfer);
685 assert(map);
686 memcpy(data, map + internal_offset, size);
687 pipe->transfer_unmap(pipe, xfer);
688 } else {
689 map = pipe->transfer_map(pipe, gart, 0, PIPE_TRANSFER_WRITE,
690 &(struct pipe_box) { .width = aligned_size * 4,
691 .height = 1, .depth = 1 }, &xfer);
692 assert(xfer);
693 assert(map);
694 memcpy(map + internal_offset, data, size);
695 pipe->transfer_unmap(pipe, xfer);
696 }
697 }
698
699 /**
700 * Transfer data between chunk<->data, it is for VRAM<->GART transfers
701 */
702 void compute_memory_transfer_direct(
703 struct compute_memory_pool* pool,
704 int chunk_to_data,
705 struct compute_memory_item* chunk,
706 struct r600_resource* data,
707 int offset_in_chunk,
708 int offset_in_data,
709 int size)
710 {
711 ///TODO: DMA
712 }