r600g/compute: Quick exit if there's nothing to add to the pool
[mesa.git] / src / gallium / drivers / r600 / compute_memory_pool.c
1 /*
2 * Permission is hereby granted, free of charge, to any person obtaining a
3 * copy of this software and associated documentation files (the "Software"),
4 * to deal in the Software without restriction, including without limitation
5 * on the rights to use, copy, modify, merge, publish, distribute, sub
6 * license, and/or sell copies of the Software, and to permit persons to whom
7 * the Software is furnished to do so, subject to the following conditions:
8 *
9 * The above copyright notice and this permission notice (including the next
10 * paragraph) shall be included in all copies or substantial portions of the
11 * Software.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
20 *
21 * Authors:
22 * Adam Rak <adam.rak@streamnovation.com>
23 */
24
25 #include "pipe/p_defines.h"
26 #include "pipe/p_state.h"
27 #include "pipe/p_context.h"
28 #include "util/u_blitter.h"
29 #include "util/u_double_list.h"
30 #include "util/u_transfer.h"
31 #include "util/u_surface.h"
32 #include "util/u_pack_color.h"
33 #include "util/u_math.h"
34 #include "util/u_memory.h"
35 #include "util/u_inlines.h"
36 #include "util/u_framebuffer.h"
37 #include "r600_shader.h"
38 #include "r600_pipe.h"
39 #include "r600_formats.h"
40 #include "compute_memory_pool.h"
41 #include "evergreen_compute.h"
42 #include "evergreen_compute_internal.h"
43 #include <inttypes.h>
44
45 #define ITEM_ALIGNMENT 1024
46 /**
47 * Creates a new pool
48 */
49 struct compute_memory_pool* compute_memory_pool_new(
50 struct r600_screen * rscreen)
51 {
52 struct compute_memory_pool* pool = (struct compute_memory_pool*)
53 CALLOC(sizeof(struct compute_memory_pool), 1);
54 if (pool == NULL)
55 return NULL;
56
57 COMPUTE_DBG(rscreen, "* compute_memory_pool_new()\n");
58
59 pool->screen = rscreen;
60 pool->item_list = (struct list_head *)
61 CALLOC(sizeof(struct list_head), 1);
62 pool->unallocated_list = (struct list_head *)
63 CALLOC(sizeof(struct list_head), 1);
64 list_inithead(pool->item_list);
65 list_inithead(pool->unallocated_list);
66 return pool;
67 }
68
69 static void compute_memory_pool_init(struct compute_memory_pool * pool,
70 unsigned initial_size_in_dw)
71 {
72
73 COMPUTE_DBG(pool->screen, "* compute_memory_pool_init() initial_size_in_dw = %ld\n",
74 initial_size_in_dw);
75
76 pool->shadow = (uint32_t*)CALLOC(initial_size_in_dw, 4);
77 if (pool->shadow == NULL)
78 return;
79
80 pool->size_in_dw = initial_size_in_dw;
81 pool->bo = (struct r600_resource*)r600_compute_buffer_alloc_vram(pool->screen,
82 pool->size_in_dw * 4);
83 }
84
85 /**
86 * Frees all stuff in the pool and the pool struct itself too
87 */
88 void compute_memory_pool_delete(struct compute_memory_pool* pool)
89 {
90 COMPUTE_DBG(pool->screen, "* compute_memory_pool_delete()\n");
91 free(pool->shadow);
92 if (pool->bo) {
93 pool->screen->b.b.resource_destroy((struct pipe_screen *)
94 pool->screen, (struct pipe_resource *)pool->bo);
95 }
96 free(pool);
97 }
98
99 /**
100 * Searches for an empty space in the pool, return with the pointer to the
101 * allocatable space in the pool, returns -1 on failure.
102 */
103 int64_t compute_memory_prealloc_chunk(
104 struct compute_memory_pool* pool,
105 int64_t size_in_dw)
106 {
107 struct compute_memory_item *item;
108
109 int last_end = 0;
110
111 assert(size_in_dw <= pool->size_in_dw);
112
113 COMPUTE_DBG(pool->screen, "* compute_memory_prealloc_chunk() size_in_dw = %ld\n",
114 size_in_dw);
115
116 LIST_FOR_EACH_ENTRY(item, pool->item_list, link) {
117 if (last_end + size_in_dw <= item->start_in_dw) {
118 return last_end;
119 }
120
121 last_end = item->start_in_dw + align(item->size_in_dw, ITEM_ALIGNMENT);
122 }
123
124 if (pool->size_in_dw - last_end < size_in_dw) {
125 return -1;
126 }
127
128 return last_end;
129 }
130
131 /**
132 * Search for the chunk where we can link our new chunk after it.
133 */
134 struct list_head *compute_memory_postalloc_chunk(
135 struct compute_memory_pool* pool,
136 int64_t start_in_dw)
137 {
138 struct compute_memory_item *item;
139 struct compute_memory_item *next;
140 struct list_head *next_link;
141
142 COMPUTE_DBG(pool->screen, "* compute_memory_postalloc_chunck() start_in_dw = %ld\n",
143 start_in_dw);
144
145 /* Check if we can insert it in the front of the list */
146 item = LIST_ENTRY(struct compute_memory_item, pool->item_list->next, link);
147 if (LIST_IS_EMPTY(pool->item_list) || item->start_in_dw > start_in_dw) {
148 return pool->item_list;
149 }
150
151 LIST_FOR_EACH_ENTRY(item, pool->item_list, link) {
152 next_link = item->link.next;
153
154 if (next_link != pool->item_list) {
155 next = container_of(next_link, item, link);
156 if (item->start_in_dw < start_in_dw
157 && next->start_in_dw > start_in_dw) {
158 return &item->link;
159 }
160 }
161 else {
162 /* end of chain */
163 assert(item->start_in_dw < start_in_dw);
164 return &item->link;
165 }
166 }
167
168 assert(0 && "unreachable");
169 return NULL;
170 }
171
172 /**
173 * Reallocates pool, conserves data.
174 * @returns -1 if it fails, 0 otherwise
175 */
176 int compute_memory_grow_pool(struct compute_memory_pool* pool,
177 struct pipe_context * pipe, int new_size_in_dw)
178 {
179 COMPUTE_DBG(pool->screen, "* compute_memory_grow_pool() "
180 "new_size_in_dw = %d (%d bytes)\n",
181 new_size_in_dw, new_size_in_dw * 4);
182
183 assert(new_size_in_dw >= pool->size_in_dw);
184
185 if (!pool->bo) {
186 compute_memory_pool_init(pool, MAX2(new_size_in_dw, 1024 * 16));
187 if (pool->shadow == NULL)
188 return -1;
189 } else {
190 new_size_in_dw = align(new_size_in_dw, ITEM_ALIGNMENT);
191
192 COMPUTE_DBG(pool->screen, " Aligned size = %d (%d bytes)\n",
193 new_size_in_dw, new_size_in_dw * 4);
194
195 compute_memory_shadow(pool, pipe, 1);
196 pool->shadow = realloc(pool->shadow, new_size_in_dw*4);
197 if (pool->shadow == NULL)
198 return -1;
199
200 pool->size_in_dw = new_size_in_dw;
201 pool->screen->b.b.resource_destroy(
202 (struct pipe_screen *)pool->screen,
203 (struct pipe_resource *)pool->bo);
204 pool->bo = (struct r600_resource*)r600_compute_buffer_alloc_vram(
205 pool->screen,
206 pool->size_in_dw * 4);
207 compute_memory_shadow(pool, pipe, 0);
208 }
209
210 return 0;
211 }
212
213 /**
214 * Copy pool from device to host, or host to device.
215 */
216 void compute_memory_shadow(struct compute_memory_pool* pool,
217 struct pipe_context * pipe, int device_to_host)
218 {
219 struct compute_memory_item chunk;
220
221 COMPUTE_DBG(pool->screen, "* compute_memory_shadow() device_to_host = %d\n",
222 device_to_host);
223
224 chunk.id = 0;
225 chunk.start_in_dw = 0;
226 chunk.size_in_dw = pool->size_in_dw;
227 compute_memory_transfer(pool, pipe, device_to_host, &chunk,
228 pool->shadow, 0, pool->size_in_dw*4);
229 }
230
231 /**
232 * Allocates pending allocations in the pool
233 * @returns -1 if it fails, 0 otherwise
234 */
235 int compute_memory_finalize_pending(struct compute_memory_pool* pool,
236 struct pipe_context * pipe)
237 {
238 struct compute_memory_item *item, *next;
239
240 int64_t allocated = 0;
241 int64_t unallocated = 0;
242
243 int err = 0;
244
245 COMPUTE_DBG(pool->screen, "* compute_memory_finalize_pending()\n");
246
247 LIST_FOR_EACH_ENTRY(item, pool->item_list, link) {
248 COMPUTE_DBG(pool->screen, " + list: offset = %i id = %i size = %i "
249 "(%i bytes)\n",item->start_in_dw, item->id,
250 item->size_in_dw, item->size_in_dw * 4);
251 }
252
253 /* Calculate the total allocated size */
254 LIST_FOR_EACH_ENTRY(item, pool->item_list, link) {
255 allocated += align(item->size_in_dw, ITEM_ALIGNMENT);
256 }
257
258 /* Calculate the total unallocated size of the items that
259 * will be promoted to the pool */
260 LIST_FOR_EACH_ENTRY(item, pool->unallocated_list, link) {
261 if (item->status & ITEM_FOR_PROMOTING)
262 unallocated += align(item->size_in_dw, ITEM_ALIGNMENT);
263 }
264
265 if (unallocated == 0) {
266 return 0;
267 }
268
269 if (pool->status & POOL_FRAGMENTED) {
270 compute_memory_defrag(pool, pipe);
271 }
272
273 if (pool->size_in_dw < allocated + unallocated) {
274 err = compute_memory_grow_pool(pool, pipe, allocated + unallocated);
275 if (err == -1)
276 return -1;
277 }
278
279 /* Loop through all the unallocated items, check if they are marked
280 * for promoting, allocate space for them and add them to the item_list. */
281 LIST_FOR_EACH_ENTRY_SAFE(item, next, pool->unallocated_list, link) {
282 if (item->status & ITEM_FOR_PROMOTING) {
283 err = compute_memory_promote_item(pool, item, pipe, allocated);
284 item->status ^= ITEM_FOR_PROMOTING;
285
286 allocated += align(item->size_in_dw, ITEM_ALIGNMENT);
287
288 if (err == -1)
289 return -1;
290 }
291 }
292
293 return 0;
294 }
295
296 /**
297 * Defragments the pool, so that there's no gap between items.
298 * \param pool The pool to be defragmented
299 */
300 void compute_memory_defrag(struct compute_memory_pool *pool,
301 struct pipe_context *pipe)
302 {
303 struct compute_memory_item *item;
304 int64_t last_pos;
305
306 COMPUTE_DBG(pool->screen, "* compute_memory_defrag()\n");
307
308 last_pos = 0;
309 LIST_FOR_EACH_ENTRY(item, pool->item_list, link) {
310 if (item->start_in_dw != last_pos) {
311 assert(last_pos < item->start_in_dw);
312
313 compute_memory_move_item(pool, item, last_pos, pipe);
314 }
315
316 last_pos += align(item->size_in_dw, ITEM_ALIGNMENT);
317 }
318
319 pool->status &= ~POOL_FRAGMENTED;
320 }
321
322 int compute_memory_promote_item(struct compute_memory_pool *pool,
323 struct compute_memory_item *item, struct pipe_context *pipe,
324 int64_t allocated)
325 {
326 struct pipe_screen *screen = (struct pipe_screen *)pool->screen;
327 struct r600_context *rctx = (struct r600_context *)pipe;
328 struct pipe_resource *src = (struct pipe_resource *)item->real_buffer;
329 struct pipe_resource *dst = NULL;
330 struct pipe_box box;
331
332 struct list_head *pos;
333 int64_t start_in_dw;
334 int err = 0;
335
336
337 /* Search for free space in the pool for this item. */
338 while ((start_in_dw=compute_memory_prealloc_chunk(pool,
339 item->size_in_dw)) == -1) {
340 int64_t need = item->size_in_dw + 2048 -
341 (pool->size_in_dw - allocated);
342
343 if (need <= 0) {
344 /* There's enough free space, but it's too
345 * fragmented. Assume half of the item can fit
346 * int the last chunk */
347 need = (item->size_in_dw / 2) + ITEM_ALIGNMENT;
348 }
349
350 need = align(need, ITEM_ALIGNMENT);
351
352 err = compute_memory_grow_pool(pool,
353 pipe,
354 pool->size_in_dw + need);
355
356 if (err == -1)
357 return -1;
358 }
359 dst = (struct pipe_resource *)pool->bo;
360 COMPUTE_DBG(pool->screen, " + Found space for Item %p id = %u "
361 "start_in_dw = %u (%u bytes) size_in_dw = %u (%u bytes)\n",
362 item, item->id, start_in_dw, start_in_dw * 4,
363 item->size_in_dw, item->size_in_dw * 4);
364
365 /* Remove the item from the unallocated list */
366 list_del(&item->link);
367
368 /* Add it back to the item_list */
369 pos = compute_memory_postalloc_chunk(pool, start_in_dw);
370 list_add(&item->link, pos);
371 item->start_in_dw = start_in_dw;
372
373 if (src != NULL) {
374 u_box_1d(0, item->size_in_dw * 4, &box);
375
376 rctx->b.b.resource_copy_region(pipe,
377 dst, 0, item->start_in_dw * 4, 0 ,0,
378 src, 0, &box);
379
380 /* We check if the item is mapped for reading.
381 * In this case, we need to keep the temporary buffer 'alive'
382 * because it is possible to keep a map active for reading
383 * while a kernel (that reads from it) executes */
384 if (!(item->status & ITEM_MAPPED_FOR_READING)) {
385 pool->screen->b.b.resource_destroy(screen, src);
386 item->real_buffer = NULL;
387 }
388 }
389
390 return 0;
391 }
392
393 void compute_memory_demote_item(struct compute_memory_pool *pool,
394 struct compute_memory_item *item, struct pipe_context *pipe)
395 {
396 struct r600_context *rctx = (struct r600_context *)pipe;
397 struct pipe_resource *src = (struct pipe_resource *)pool->bo;
398 struct pipe_resource *dst;
399 struct pipe_box box;
400
401 /* First, we remove the item from the item_list */
402 list_del(&item->link);
403
404 /* Now we add it to the unallocated list */
405 list_addtail(&item->link, pool->unallocated_list);
406
407 /* We check if the intermediate buffer exists, and if it
408 * doesn't, we create it again */
409 if (item->real_buffer == NULL) {
410 item->real_buffer = (struct r600_resource*)r600_compute_buffer_alloc_vram(
411 pool->screen, item->size_in_dw * 4);
412 }
413
414 dst = (struct pipe_resource *)item->real_buffer;
415
416 /* We transfer the memory from the item in the pool to the
417 * temporary buffer */
418 u_box_1d(item->start_in_dw * 4, item->size_in_dw * 4, &box);
419
420 rctx->b.b.resource_copy_region(pipe,
421 dst, 0, 0, 0, 0,
422 src, 0, &box);
423
424 /* Remember to mark the buffer as 'pending' by setting start_in_dw to -1 */
425 item->start_in_dw = -1;
426
427 if (item->link.next != pool->item_list) {
428 pool->status |= POOL_FRAGMENTED;
429 }
430 }
431
432 /**
433 * Moves the item \a item forward in the pool to \a new_start_in_dw
434 *
435 * This function assumes two things:
436 * 1) The item is \b only moved forward
437 * 2) The item \b won't change it's position inside the \a item_list
438 *
439 * \param item The item that will be moved
440 * \param new_start_in_dw The new position of the item in \a item_list
441 * \see compute_memory_defrag
442 */
443 void compute_memory_move_item(struct compute_memory_pool *pool,
444 struct compute_memory_item *item, uint64_t new_start_in_dw,
445 struct pipe_context *pipe)
446 {
447 struct pipe_screen *screen = (struct pipe_screen *)pool->screen;
448 struct r600_context *rctx = (struct r600_context *)pipe;
449 struct pipe_resource *src = (struct pipe_resource *)pool->bo;
450 struct pipe_resource *dst;
451 struct pipe_box box;
452
453 struct compute_memory_item *prev;
454
455 COMPUTE_DBG(pool->screen, "* compute_memory_move_item()\n"
456 " + Moving item %i from %u (%u bytes) to %u (%u bytes)\n",
457 item->id, item->start_in_dw, item->start_in_dw * 4,
458 new_start_in_dw, new_start_in_dw * 4);
459
460 if (pool->item_list != item->link.prev) {
461 prev = container_of(item->link.prev, item, link);
462 assert(prev->start_in_dw + prev->size_in_dw <= new_start_in_dw);
463 }
464
465 u_box_1d(item->start_in_dw * 4, item->size_in_dw * 4, &box);
466
467 /* If the ranges don't overlap, we can just copy the item directly */
468 if (new_start_in_dw + item->size_in_dw <= item->start_in_dw) {
469 dst = (struct pipe_resource *)pool->bo;
470
471 rctx->b.b.resource_copy_region(pipe,
472 dst, 0, new_start_in_dw * 4, 0, 0,
473 src, 0, &box);
474 } else {
475 /* The ranges overlap, we will try first to use an intermediate
476 * resource to move the item */
477 dst = (struct pipe_resource *)r600_compute_buffer_alloc_vram(
478 pool->screen, item->size_in_dw * 4);
479
480 if (dst != NULL) {
481 rctx->b.b.resource_copy_region(pipe,
482 dst, 0, 0, 0, 0,
483 src, 0, &box);
484
485 src = dst;
486 dst = (struct pipe_resource *)pool->bo;
487
488 box.x = 0;
489
490 rctx->b.b.resource_copy_region(pipe,
491 dst, 0, new_start_in_dw * 4, 0, 0,
492 src, 0, &box);
493
494 pool->screen->b.b.resource_destroy(screen, src);
495
496 } else {
497 /* The allocation of the temporary resource failed,
498 * falling back to use mappings */
499 uint32_t *map;
500 int64_t offset;
501 struct pipe_transfer *trans;
502
503 offset = item->start_in_dw - new_start_in_dw;
504
505 u_box_1d(new_start_in_dw * 4, (offset + item->size_in_dw) * 4, &box);
506
507 map = pipe->transfer_map(pipe, src, 0, PIPE_TRANSFER_READ_WRITE,
508 &box, &trans);
509
510 assert(map);
511 assert(trans);
512
513 memmove(map, map + offset, item->size_in_dw * 4);
514
515 pipe->transfer_unmap(pipe, trans);
516 }
517 }
518
519 item->start_in_dw = new_start_in_dw;
520 }
521
522 void compute_memory_free(struct compute_memory_pool* pool, int64_t id)
523 {
524 struct compute_memory_item *item, *next;
525 struct pipe_screen *screen = (struct pipe_screen *)pool->screen;
526 struct pipe_resource *res;
527
528 COMPUTE_DBG(pool->screen, "* compute_memory_free() id + %ld \n", id);
529
530 LIST_FOR_EACH_ENTRY_SAFE(item, next, pool->item_list, link) {
531
532 if (item->id == id) {
533
534 if (item->link.next != pool->item_list) {
535 pool->status |= POOL_FRAGMENTED;
536 }
537
538 list_del(&item->link);
539
540 if (item->real_buffer) {
541 res = (struct pipe_resource *)item->real_buffer;
542 pool->screen->b.b.resource_destroy(
543 screen, res);
544 }
545
546 free(item);
547
548 return;
549 }
550 }
551
552 LIST_FOR_EACH_ENTRY_SAFE(item, next, pool->unallocated_list, link) {
553
554 if (item->id == id) {
555 list_del(&item->link);
556
557 if (item->real_buffer) {
558 res = (struct pipe_resource *)item->real_buffer;
559 pool->screen->b.b.resource_destroy(
560 screen, res);
561 }
562
563 free(item);
564
565 return;
566 }
567 }
568
569 fprintf(stderr, "Internal error, invalid id %"PRIi64" "
570 "for compute_memory_free\n", id);
571
572 assert(0 && "error");
573 }
574
575 /**
576 * Creates pending allocations
577 */
578 struct compute_memory_item* compute_memory_alloc(
579 struct compute_memory_pool* pool,
580 int64_t size_in_dw)
581 {
582 struct compute_memory_item *new_item = NULL;
583
584 COMPUTE_DBG(pool->screen, "* compute_memory_alloc() size_in_dw = %ld (%ld bytes)\n",
585 size_in_dw, 4 * size_in_dw);
586
587 new_item = (struct compute_memory_item *)
588 CALLOC(sizeof(struct compute_memory_item), 1);
589 if (new_item == NULL)
590 return NULL;
591
592 new_item->size_in_dw = size_in_dw;
593 new_item->start_in_dw = -1; /* mark pending */
594 new_item->id = pool->next_id++;
595 new_item->pool = pool;
596 new_item->real_buffer = NULL;
597
598 list_addtail(&new_item->link, pool->unallocated_list);
599
600 COMPUTE_DBG(pool->screen, " + Adding item %p id = %u size = %u (%u bytes)\n",
601 new_item, new_item->id, new_item->size_in_dw,
602 new_item->size_in_dw * 4);
603 return new_item;
604 }
605
606 /**
607 * Transfer data host<->device, offset and size is in bytes
608 */
609 void compute_memory_transfer(
610 struct compute_memory_pool* pool,
611 struct pipe_context * pipe,
612 int device_to_host,
613 struct compute_memory_item* chunk,
614 void* data,
615 int offset_in_chunk,
616 int size)
617 {
618 int64_t aligned_size = pool->size_in_dw;
619 struct pipe_resource* gart = (struct pipe_resource*)pool->bo;
620 int64_t internal_offset = chunk->start_in_dw*4 + offset_in_chunk;
621
622 struct pipe_transfer *xfer;
623 uint32_t *map;
624
625 assert(gart);
626
627 COMPUTE_DBG(pool->screen, "* compute_memory_transfer() device_to_host = %d, "
628 "offset_in_chunk = %d, size = %d\n", device_to_host,
629 offset_in_chunk, size);
630
631 if (device_to_host) {
632 map = pipe->transfer_map(pipe, gart, 0, PIPE_TRANSFER_READ,
633 &(struct pipe_box) { .width = aligned_size * 4,
634 .height = 1, .depth = 1 }, &xfer);
635 assert(xfer);
636 assert(map);
637 memcpy(data, map + internal_offset, size);
638 pipe->transfer_unmap(pipe, xfer);
639 } else {
640 map = pipe->transfer_map(pipe, gart, 0, PIPE_TRANSFER_WRITE,
641 &(struct pipe_box) { .width = aligned_size * 4,
642 .height = 1, .depth = 1 }, &xfer);
643 assert(xfer);
644 assert(map);
645 memcpy(map + internal_offset, data, size);
646 pipe->transfer_unmap(pipe, xfer);
647 }
648 }
649
650 /**
651 * Transfer data between chunk<->data, it is for VRAM<->GART transfers
652 */
653 void compute_memory_transfer_direct(
654 struct compute_memory_pool* pool,
655 int chunk_to_data,
656 struct compute_memory_item* chunk,
657 struct r600_resource* data,
658 int offset_in_chunk,
659 int offset_in_data,
660 int size)
661 {
662 ///TODO: DMA
663 }