0f97bbe3cb0d8859a91b45466da56fb2fc74de5e
[mesa.git] / src / gallium / drivers / r600 / evergreen_compute.c
1 /*
2 * Copyright 2011 Adam Rak <adam.rak@streamnovation.com>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * on the rights to use, copy, modify, merge, publish, distribute, sub
8 * license, and/or sell copies of the Software, and to permit persons to whom
9 * the Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Adam Rak <adam.rak@streamnovation.com>
25 */
26
27 #ifdef HAVE_OPENCL
28 #include <gelf.h>
29 #include <libelf.h>
30 #endif
31 #include <stdio.h>
32 #include <errno.h>
33 #include "pipe/p_defines.h"
34 #include "pipe/p_state.h"
35 #include "pipe/p_context.h"
36 #include "util/u_blitter.h"
37 #include "util/list.h"
38 #include "util/u_transfer.h"
39 #include "util/u_surface.h"
40 #include "util/u_pack_color.h"
41 #include "util/u_memory.h"
42 #include "util/u_inlines.h"
43 #include "util/u_framebuffer.h"
44 #include "tgsi/tgsi_parse.h"
45 #include "pipebuffer/pb_buffer.h"
46 #include "evergreend.h"
47 #include "r600_shader.h"
48 #include "r600_pipe.h"
49 #include "r600_formats.h"
50 #include "evergreen_compute.h"
51 #include "evergreen_compute_internal.h"
52 #include "compute_memory_pool.h"
53 #include "sb/sb_public.h"
54 #include <inttypes.h>
55
56 /**
57 RAT0 is for global binding write
58 VTX1 is for global binding read
59
60 for wrting images RAT1...
61 for reading images TEX2...
62 TEX2-RAT1 is paired
63
64 TEX2... consumes the same fetch resources, that VTX2... would consume
65
66 CONST0 and VTX0 is for parameters
67 CONST0 is binding smaller input parameter buffer, and for constant indexing,
68 also constant cached
69 VTX0 is for indirect/non-constant indexing, or if the input is bigger than
70 the constant cache can handle
71
72 RAT-s are limited to 12, so we can only bind at most 11 texture for writing
73 because we reserve RAT0 for global bindings. With byteaddressing enabled,
74 we should reserve another one too.=> 10 image binding for writing max.
75
76 from Nvidia OpenCL:
77 CL_DEVICE_MAX_READ_IMAGE_ARGS: 128
78 CL_DEVICE_MAX_WRITE_IMAGE_ARGS: 8
79
80 so 10 for writing is enough. 176 is the max for reading according to the docs
81
82 writable images should be listed first < 10, so their id corresponds to RAT(id+1)
83 writable images will consume TEX slots, VTX slots too because of linear indexing
84
85 */
86
87 struct r600_resource *r600_compute_buffer_alloc_vram(struct r600_screen *screen,
88 unsigned size)
89 {
90 struct pipe_resource *buffer = NULL;
91 assert(size);
92
93 buffer = pipe_buffer_create((struct pipe_screen*) screen,
94 0, PIPE_USAGE_IMMUTABLE, size);
95
96 return (struct r600_resource *)buffer;
97 }
98
99
100 static void evergreen_set_rat(struct r600_pipe_compute *pipe,
101 unsigned id,
102 struct r600_resource *bo,
103 int start,
104 int size)
105 {
106 struct pipe_surface rat_templ;
107 struct r600_surface *surf = NULL;
108 struct r600_context *rctx = NULL;
109
110 assert(id < 12);
111 assert((size & 3) == 0);
112 assert((start & 0xFF) == 0);
113
114 rctx = pipe->ctx;
115
116 COMPUTE_DBG(rctx->screen, "bind rat: %i \n", id);
117
118 /* Create the RAT surface */
119 memset(&rat_templ, 0, sizeof(rat_templ));
120 rat_templ.format = PIPE_FORMAT_R32_UINT;
121 rat_templ.u.tex.level = 0;
122 rat_templ.u.tex.first_layer = 0;
123 rat_templ.u.tex.last_layer = 0;
124
125 /* Add the RAT the list of color buffers */
126 pipe->ctx->framebuffer.state.cbufs[id] = pipe->ctx->b.b.create_surface(
127 (struct pipe_context *)pipe->ctx,
128 (struct pipe_resource *)bo, &rat_templ);
129
130 /* Update the number of color buffers */
131 pipe->ctx->framebuffer.state.nr_cbufs =
132 MAX2(id + 1, pipe->ctx->framebuffer.state.nr_cbufs);
133
134 /* Update the cb_target_mask
135 * XXX: I think this is a potential spot for bugs once we start doing
136 * GL interop. cb_target_mask may be modified in the 3D sections
137 * of this driver. */
138 pipe->ctx->compute_cb_target_mask |= (0xf << (id * 4));
139
140 surf = (struct r600_surface*)pipe->ctx->framebuffer.state.cbufs[id];
141 evergreen_init_color_surface_rat(rctx, surf);
142 }
143
144 static void evergreen_cs_set_vertex_buffer(struct r600_context *rctx,
145 unsigned vb_index,
146 unsigned offset,
147 struct pipe_resource *buffer)
148 {
149 struct r600_vertexbuf_state *state = &rctx->cs_vertex_buffer_state;
150 struct pipe_vertex_buffer *vb = &state->vb[vb_index];
151 vb->stride = 1;
152 vb->buffer_offset = offset;
153 vb->buffer.resource = buffer;
154 vb->is_user_buffer = false;
155
156 /* The vertex instructions in the compute shaders use the texture cache,
157 * so we need to invalidate it. */
158 rctx->b.flags |= R600_CONTEXT_INV_VERTEX_CACHE;
159 state->enabled_mask |= 1 << vb_index;
160 state->dirty_mask |= 1 << vb_index;
161 r600_mark_atom_dirty(rctx, &state->atom);
162 }
163
164 static void evergreen_cs_set_constant_buffer(struct r600_context *rctx,
165 unsigned cb_index,
166 unsigned offset,
167 unsigned size,
168 struct pipe_resource *buffer)
169 {
170 struct pipe_constant_buffer cb;
171 cb.buffer_size = size;
172 cb.buffer_offset = offset;
173 cb.buffer = buffer;
174 cb.user_buffer = NULL;
175
176 rctx->b.b.set_constant_buffer(&rctx->b.b, PIPE_SHADER_COMPUTE, cb_index, &cb);
177 }
178
179 /* We need to define these R600 registers here, because we can't include
180 * evergreend.h and r600d.h.
181 */
182 #define R_028868_SQ_PGM_RESOURCES_VS 0x028868
183 #define R_028850_SQ_PGM_RESOURCES_PS 0x028850
184
185 #ifdef HAVE_OPENCL
186 static void parse_symbol_table(Elf_Data *symbol_table_data,
187 const GElf_Shdr *symbol_table_header,
188 struct ac_shader_binary *binary)
189 {
190 GElf_Sym symbol;
191 unsigned i = 0;
192 unsigned symbol_count =
193 symbol_table_header->sh_size / symbol_table_header->sh_entsize;
194
195 /* We are over allocating this list, because symbol_count gives the
196 * total number of symbols, and we will only be filling the list
197 * with offsets of global symbols. The memory savings from
198 * allocating the correct size of this list will be small, and
199 * I don't think it is worth the cost of pre-computing the number
200 * of global symbols.
201 */
202 binary->global_symbol_offsets = CALLOC(symbol_count, sizeof(uint64_t));
203
204 while (gelf_getsym(symbol_table_data, i++, &symbol)) {
205 unsigned i;
206 if (GELF_ST_BIND(symbol.st_info) != STB_GLOBAL ||
207 symbol.st_shndx == 0 /* Undefined symbol */) {
208 continue;
209 }
210
211 binary->global_symbol_offsets[binary->global_symbol_count] =
212 symbol.st_value;
213
214 /* Sort the list using bubble sort. This list will usually
215 * be small. */
216 for (i = binary->global_symbol_count; i > 0; --i) {
217 uint64_t lhs = binary->global_symbol_offsets[i - 1];
218 uint64_t rhs = binary->global_symbol_offsets[i];
219 if (lhs < rhs) {
220 break;
221 }
222 binary->global_symbol_offsets[i] = lhs;
223 binary->global_symbol_offsets[i - 1] = rhs;
224 }
225 ++binary->global_symbol_count;
226 }
227 }
228
229
230 static void parse_relocs(Elf *elf, Elf_Data *relocs, Elf_Data *symbols,
231 unsigned symbol_sh_link,
232 struct ac_shader_binary *binary)
233 {
234 unsigned i;
235
236 if (!relocs || !symbols || !binary->reloc_count) {
237 return;
238 }
239 binary->relocs = CALLOC(binary->reloc_count,
240 sizeof(struct ac_shader_reloc));
241 for (i = 0; i < binary->reloc_count; i++) {
242 GElf_Sym symbol;
243 GElf_Rel rel;
244 char *symbol_name;
245 struct ac_shader_reloc *reloc = &binary->relocs[i];
246
247 gelf_getrel(relocs, i, &rel);
248 gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &symbol);
249 symbol_name = elf_strptr(elf, symbol_sh_link, symbol.st_name);
250
251 reloc->offset = rel.r_offset;
252 strncpy(reloc->name, symbol_name, sizeof(reloc->name)-1);
253 reloc->name[sizeof(reloc->name)-1] = 0;
254 }
255 }
256
257 static void r600_elf_read(const char *elf_data, unsigned elf_size,
258 struct ac_shader_binary *binary)
259 {
260 char *elf_buffer;
261 Elf *elf;
262 Elf_Scn *section = NULL;
263 Elf_Data *symbols = NULL, *relocs = NULL;
264 size_t section_str_index;
265 unsigned symbol_sh_link = 0;
266
267 /* One of the libelf implementations
268 * (http://www.mr511.de/software/english.htm) requires calling
269 * elf_version() before elf_memory().
270 */
271 elf_version(EV_CURRENT);
272 elf_buffer = MALLOC(elf_size);
273 memcpy(elf_buffer, elf_data, elf_size);
274
275 elf = elf_memory(elf_buffer, elf_size);
276
277 elf_getshdrstrndx(elf, &section_str_index);
278
279 while ((section = elf_nextscn(elf, section))) {
280 const char *name;
281 Elf_Data *section_data = NULL;
282 GElf_Shdr section_header;
283 if (gelf_getshdr(section, &section_header) != &section_header) {
284 fprintf(stderr, "Failed to read ELF section header\n");
285 return;
286 }
287 name = elf_strptr(elf, section_str_index, section_header.sh_name);
288 if (!strcmp(name, ".text")) {
289 section_data = elf_getdata(section, section_data);
290 binary->code_size = section_data->d_size;
291 binary->code = MALLOC(binary->code_size * sizeof(unsigned char));
292 memcpy(binary->code, section_data->d_buf, binary->code_size);
293 } else if (!strcmp(name, ".AMDGPU.config")) {
294 section_data = elf_getdata(section, section_data);
295 binary->config_size = section_data->d_size;
296 binary->config = MALLOC(binary->config_size * sizeof(unsigned char));
297 memcpy(binary->config, section_data->d_buf, binary->config_size);
298 } else if (!strcmp(name, ".AMDGPU.disasm")) {
299 /* Always read disassembly if it's available. */
300 section_data = elf_getdata(section, section_data);
301 binary->disasm_string = strndup(section_data->d_buf,
302 section_data->d_size);
303 } else if (!strncmp(name, ".rodata", 7)) {
304 section_data = elf_getdata(section, section_data);
305 binary->rodata_size = section_data->d_size;
306 binary->rodata = MALLOC(binary->rodata_size * sizeof(unsigned char));
307 memcpy(binary->rodata, section_data->d_buf, binary->rodata_size);
308 } else if (!strncmp(name, ".symtab", 7)) {
309 symbols = elf_getdata(section, section_data);
310 symbol_sh_link = section_header.sh_link;
311 parse_symbol_table(symbols, &section_header, binary);
312 } else if (!strcmp(name, ".rel.text")) {
313 relocs = elf_getdata(section, section_data);
314 binary->reloc_count = section_header.sh_size /
315 section_header.sh_entsize;
316 }
317 }
318
319 parse_relocs(elf, relocs, symbols, symbol_sh_link, binary);
320
321 if (elf){
322 elf_end(elf);
323 }
324 FREE(elf_buffer);
325
326 /* Cache the config size per symbol */
327 if (binary->global_symbol_count) {
328 binary->config_size_per_symbol =
329 binary->config_size / binary->global_symbol_count;
330 } else {
331 binary->global_symbol_count = 1;
332 binary->config_size_per_symbol = binary->config_size;
333 }
334 }
335
336 static const unsigned char *r600_shader_binary_config_start(
337 const struct ac_shader_binary *binary,
338 uint64_t symbol_offset)
339 {
340 unsigned i;
341 for (i = 0; i < binary->global_symbol_count; ++i) {
342 if (binary->global_symbol_offsets[i] == symbol_offset) {
343 unsigned offset = i * binary->config_size_per_symbol;
344 return binary->config + offset;
345 }
346 }
347 return binary->config;
348 }
349
350 static void r600_shader_binary_read_config(const struct ac_shader_binary *binary,
351 struct r600_bytecode *bc,
352 uint64_t symbol_offset,
353 boolean *use_kill)
354 {
355 unsigned i;
356 const unsigned char *config =
357 r600_shader_binary_config_start(binary, symbol_offset);
358
359 for (i = 0; i < binary->config_size_per_symbol; i+= 8) {
360 unsigned reg =
361 util_le32_to_cpu(*(uint32_t*)(config + i));
362 unsigned value =
363 util_le32_to_cpu(*(uint32_t*)(config + i + 4));
364 switch (reg) {
365 /* R600 / R700 */
366 case R_028850_SQ_PGM_RESOURCES_PS:
367 case R_028868_SQ_PGM_RESOURCES_VS:
368 /* Evergreen / Northern Islands */
369 case R_028844_SQ_PGM_RESOURCES_PS:
370 case R_028860_SQ_PGM_RESOURCES_VS:
371 case R_0288D4_SQ_PGM_RESOURCES_LS:
372 bc->ngpr = MAX2(bc->ngpr, G_028844_NUM_GPRS(value));
373 bc->nstack = MAX2(bc->nstack, G_028844_STACK_SIZE(value));
374 break;
375 case R_02880C_DB_SHADER_CONTROL:
376 *use_kill = G_02880C_KILL_ENABLE(value);
377 break;
378 case R_0288E8_SQ_LDS_ALLOC:
379 bc->nlds_dw = value;
380 break;
381 }
382 }
383 }
384
385 static unsigned r600_create_shader(struct r600_bytecode *bc,
386 const struct ac_shader_binary *binary,
387 boolean *use_kill)
388
389 {
390 assert(binary->code_size % 4 == 0);
391 bc->bytecode = CALLOC(1, binary->code_size);
392 memcpy(bc->bytecode, binary->code, binary->code_size);
393 bc->ndw = binary->code_size / 4;
394
395 r600_shader_binary_read_config(binary, bc, 0, use_kill);
396 return 0;
397 }
398
399 #endif
400
401 static void r600_destroy_shader(struct r600_bytecode *bc)
402 {
403 FREE(bc->bytecode);
404 }
405
406 static void *evergreen_create_compute_state(struct pipe_context *ctx,
407 const struct pipe_compute_state *cso)
408 {
409 struct r600_context *rctx = (struct r600_context *)ctx;
410 struct r600_pipe_compute *shader = CALLOC_STRUCT(r600_pipe_compute);
411 #ifdef HAVE_OPENCL
412 const struct pipe_llvm_program_header *header;
413 const char *code;
414 void *p;
415 boolean use_kill;
416 #endif
417
418 shader->ctx = rctx;
419 shader->local_size = cso->req_local_mem;
420 shader->private_size = cso->req_private_mem;
421 shader->input_size = cso->req_input_mem;
422
423 shader->ir_type = cso->ir_type;
424
425 if (shader->ir_type == PIPE_SHADER_IR_TGSI) {
426 shader->sel = r600_create_shader_state_tokens(ctx, cso->prog, PIPE_SHADER_COMPUTE);
427 return shader;
428 }
429 #ifdef HAVE_OPENCL
430 COMPUTE_DBG(rctx->screen, "*** evergreen_create_compute_state\n");
431 header = cso->prog;
432 code = cso->prog + sizeof(struct pipe_llvm_program_header);
433 radeon_shader_binary_init(&shader->binary);
434 r600_elf_read(code, header->num_bytes, &shader->binary);
435 r600_create_shader(&shader->bc, &shader->binary, &use_kill);
436
437 /* Upload code + ROdata */
438 shader->code_bo = r600_compute_buffer_alloc_vram(rctx->screen,
439 shader->bc.ndw * 4);
440 p = r600_buffer_map_sync_with_rings(&rctx->b, shader->code_bo, PIPE_TRANSFER_WRITE);
441 //TODO: use util_memcpy_cpu_to_le32 ?
442 memcpy(p, shader->bc.bytecode, shader->bc.ndw * 4);
443 rctx->b.ws->buffer_unmap(shader->code_bo->buf);
444 #endif
445
446 return shader;
447 }
448
449 static void evergreen_delete_compute_state(struct pipe_context *ctx, void *state)
450 {
451 struct r600_context *rctx = (struct r600_context *)ctx;
452 struct r600_pipe_compute *shader = state;
453
454 COMPUTE_DBG(rctx->screen, "*** evergreen_delete_compute_state\n");
455
456 if (!shader)
457 return;
458
459 if (shader->ir_type == PIPE_SHADER_IR_TGSI) {
460 r600_delete_shader_selector(ctx, shader->sel);
461 } else {
462 #ifdef HAVE_OPENCL
463 radeon_shader_binary_clean(&shader->binary);
464 #endif
465 r600_destroy_shader(&shader->bc);
466
467 /* TODO destroy shader->code_bo, shader->const_bo
468 * we'll need something like r600_buffer_free */
469 }
470 FREE(shader);
471 }
472
473 static void evergreen_bind_compute_state(struct pipe_context *ctx, void *state)
474 {
475 struct r600_context *rctx = (struct r600_context *)ctx;
476 struct r600_pipe_compute *cstate = (struct r600_pipe_compute *)state;
477 COMPUTE_DBG(rctx->screen, "*** evergreen_bind_compute_state\n");
478
479 if (!state) {
480 rctx->cs_shader_state.shader = (struct r600_pipe_compute *)state;
481 return;
482 }
483
484 if (cstate->ir_type == PIPE_SHADER_IR_TGSI) {
485 bool compute_dirty;
486
487 r600_shader_select(ctx, cstate->sel, &compute_dirty);
488 }
489
490 rctx->cs_shader_state.shader = (struct r600_pipe_compute *)state;
491 }
492
493 /* The kernel parameters are stored a vtx buffer (ID=0), besides the explicit
494 * kernel parameters there are implicit parameters that need to be stored
495 * in the vertex buffer as well. Here is how these parameters are organized in
496 * the buffer:
497 *
498 * DWORDS 0-2: Number of work groups in each dimension (x,y,z)
499 * DWORDS 3-5: Number of global work items in each dimension (x,y,z)
500 * DWORDS 6-8: Number of work items within each work group in each dimension
501 * (x,y,z)
502 * DWORDS 9+ : Kernel parameters
503 */
504 static void evergreen_compute_upload_input(struct pipe_context *ctx,
505 const struct pipe_grid_info *info)
506 {
507 struct r600_context *rctx = (struct r600_context *)ctx;
508 struct r600_pipe_compute *shader = rctx->cs_shader_state.shader;
509 unsigned i;
510 /* We need to reserve 9 dwords (36 bytes) for implicit kernel
511 * parameters.
512 */
513 unsigned input_size;
514 uint32_t *num_work_groups_start;
515 uint32_t *global_size_start;
516 uint32_t *local_size_start;
517 uint32_t *kernel_parameters_start;
518 struct pipe_box box;
519 struct pipe_transfer *transfer = NULL;
520
521 if (!shader)
522 return;
523 if (shader->input_size == 0) {
524 return;
525 }
526 input_size = shader->input_size + 36;
527 if (!shader->kernel_param) {
528 /* Add space for the grid dimensions */
529 shader->kernel_param = (struct r600_resource *)
530 pipe_buffer_create(ctx->screen, 0,
531 PIPE_USAGE_IMMUTABLE, input_size);
532 }
533
534 u_box_1d(0, input_size, &box);
535 num_work_groups_start = ctx->transfer_map(ctx,
536 (struct pipe_resource*)shader->kernel_param,
537 0, PIPE_TRANSFER_WRITE | PIPE_TRANSFER_DISCARD_RANGE,
538 &box, &transfer);
539 global_size_start = num_work_groups_start + (3 * (sizeof(uint) /4));
540 local_size_start = global_size_start + (3 * (sizeof(uint)) / 4);
541 kernel_parameters_start = local_size_start + (3 * (sizeof(uint)) / 4);
542
543 /* Copy the work group size */
544 memcpy(num_work_groups_start, info->grid, 3 * sizeof(uint));
545
546 /* Copy the global size */
547 for (i = 0; i < 3; i++) {
548 global_size_start[i] = info->grid[i] * info->block[i];
549 }
550
551 /* Copy the local dimensions */
552 memcpy(local_size_start, info->block, 3 * sizeof(uint));
553
554 /* Copy the kernel inputs */
555 memcpy(kernel_parameters_start, info->input, shader->input_size);
556
557 for (i = 0; i < (input_size / 4); i++) {
558 COMPUTE_DBG(rctx->screen, "input %i : %u\n", i,
559 ((unsigned*)num_work_groups_start)[i]);
560 }
561
562 ctx->transfer_unmap(ctx, transfer);
563
564 /* ID=0 and ID=3 are reserved for the parameters.
565 * LLVM will preferably use ID=0, but it does not work for dynamic
566 * indices. */
567 evergreen_cs_set_vertex_buffer(rctx, 3, 0,
568 (struct pipe_resource*)shader->kernel_param);
569 evergreen_cs_set_constant_buffer(rctx, 0, 0, input_size,
570 (struct pipe_resource*)shader->kernel_param);
571 }
572
573 static void evergreen_emit_dispatch(struct r600_context *rctx,
574 const struct pipe_grid_info *info)
575 {
576 int i;
577 struct radeon_winsys_cs *cs = rctx->b.gfx.cs;
578 struct r600_pipe_compute *shader = rctx->cs_shader_state.shader;
579 unsigned num_waves;
580 unsigned num_pipes = rctx->screen->b.info.r600_max_quad_pipes;
581 unsigned wave_divisor = (16 * num_pipes);
582 int group_size = 1;
583 int grid_size = 1;
584 unsigned lds_size = shader->local_size / 4;
585
586 if (shader->ir_type != PIPE_SHADER_IR_TGSI)
587 lds_size += shader->bc.nlds_dw;
588
589 /* Calculate group_size/grid_size */
590 for (i = 0; i < 3; i++) {
591 group_size *= info->block[i];
592 }
593
594 for (i = 0; i < 3; i++) {
595 grid_size *= info->grid[i];
596 }
597
598 /* num_waves = ceil((tg_size.x * tg_size.y, tg_size.z) / (16 * num_pipes)) */
599 num_waves = (info->block[0] * info->block[1] * info->block[2] +
600 wave_divisor - 1) / wave_divisor;
601
602 COMPUTE_DBG(rctx->screen, "Using %u pipes, "
603 "%u wavefronts per thread block, "
604 "allocating %u dwords lds.\n",
605 num_pipes, num_waves, lds_size);
606
607 radeon_set_config_reg(cs, R_008970_VGT_NUM_INDICES, group_size);
608
609 radeon_set_config_reg_seq(cs, R_00899C_VGT_COMPUTE_START_X, 3);
610 radeon_emit(cs, 0); /* R_00899C_VGT_COMPUTE_START_X */
611 radeon_emit(cs, 0); /* R_0089A0_VGT_COMPUTE_START_Y */
612 radeon_emit(cs, 0); /* R_0089A4_VGT_COMPUTE_START_Z */
613
614 radeon_set_config_reg(cs, R_0089AC_VGT_COMPUTE_THREAD_GROUP_SIZE,
615 group_size);
616
617 radeon_compute_set_context_reg_seq(cs, R_0286EC_SPI_COMPUTE_NUM_THREAD_X, 3);
618 radeon_emit(cs, info->block[0]); /* R_0286EC_SPI_COMPUTE_NUM_THREAD_X */
619 radeon_emit(cs, info->block[1]); /* R_0286F0_SPI_COMPUTE_NUM_THREAD_Y */
620 radeon_emit(cs, info->block[2]); /* R_0286F4_SPI_COMPUTE_NUM_THREAD_Z */
621
622 if (rctx->b.chip_class < CAYMAN) {
623 assert(lds_size <= 8192);
624 } else {
625 /* Cayman appears to have a slightly smaller limit, see the
626 * value of CM_R_0286FC_SPI_LDS_MGMT.NUM_LS_LDS */
627 assert(lds_size <= 8160);
628 }
629
630 radeon_compute_set_context_reg(cs, R_0288E8_SQ_LDS_ALLOC,
631 lds_size | (num_waves << 14));
632
633 /* Dispatch packet */
634 radeon_emit(cs, PKT3C(PKT3_DISPATCH_DIRECT, 3, 0));
635 radeon_emit(cs, info->grid[0]);
636 radeon_emit(cs, info->grid[1]);
637 radeon_emit(cs, info->grid[2]);
638 /* VGT_DISPATCH_INITIATOR = COMPUTE_SHADER_EN */
639 radeon_emit(cs, 1);
640
641 if (rctx->is_debug)
642 eg_trace_emit(rctx);
643 }
644
645 static void compute_setup_cbs(struct r600_context *rctx)
646 {
647 struct radeon_winsys_cs *cs = rctx->b.gfx.cs;
648 unsigned i;
649
650 /* Emit colorbuffers. */
651 /* XXX support more than 8 colorbuffers (the offsets are not a multiple of 0x3C for CB8-11) */
652 for (i = 0; i < 8 && i < rctx->framebuffer.state.nr_cbufs; i++) {
653 struct r600_surface *cb = (struct r600_surface*)rctx->framebuffer.state.cbufs[i];
654 unsigned reloc = radeon_add_to_buffer_list(&rctx->b, &rctx->b.gfx,
655 (struct r600_resource*)cb->base.texture,
656 RADEON_USAGE_READWRITE,
657 RADEON_PRIO_SHADER_RW_BUFFER);
658
659 radeon_compute_set_context_reg_seq(cs, R_028C60_CB_COLOR0_BASE + i * 0x3C, 7);
660 radeon_emit(cs, cb->cb_color_base); /* R_028C60_CB_COLOR0_BASE */
661 radeon_emit(cs, cb->cb_color_pitch); /* R_028C64_CB_COLOR0_PITCH */
662 radeon_emit(cs, cb->cb_color_slice); /* R_028C68_CB_COLOR0_SLICE */
663 radeon_emit(cs, cb->cb_color_view); /* R_028C6C_CB_COLOR0_VIEW */
664 radeon_emit(cs, cb->cb_color_info); /* R_028C70_CB_COLOR0_INFO */
665 radeon_emit(cs, cb->cb_color_attrib); /* R_028C74_CB_COLOR0_ATTRIB */
666 radeon_emit(cs, cb->cb_color_dim); /* R_028C78_CB_COLOR0_DIM */
667
668 radeon_emit(cs, PKT3(PKT3_NOP, 0, 0)); /* R_028C60_CB_COLOR0_BASE */
669 radeon_emit(cs, reloc);
670
671 radeon_emit(cs, PKT3(PKT3_NOP, 0, 0)); /* R_028C74_CB_COLOR0_ATTRIB */
672 radeon_emit(cs, reloc);
673 }
674 for (; i < 8 ; i++)
675 radeon_compute_set_context_reg(cs, R_028C70_CB_COLOR0_INFO + i * 0x3C,
676 S_028C70_FORMAT(V_028C70_COLOR_INVALID));
677 for (; i < 12; i++)
678 radeon_compute_set_context_reg(cs, R_028E50_CB_COLOR8_INFO + (i - 8) * 0x1C,
679 S_028C70_FORMAT(V_028C70_COLOR_INVALID));
680
681 /* Set CB_TARGET_MASK XXX: Use cb_misc_state */
682 radeon_compute_set_context_reg(cs, R_028238_CB_TARGET_MASK,
683 rctx->compute_cb_target_mask);
684 }
685
686 static void compute_emit_cs(struct r600_context *rctx,
687 const struct pipe_grid_info *info)
688 {
689 struct radeon_winsys_cs *cs = rctx->b.gfx.cs;
690 bool compute_dirty = false;
691 struct r600_pipe_shader *current;
692 struct r600_shader_atomic combined_atomics[8];
693 uint8_t atomic_used_mask;
694
695 /* make sure that the gfx ring is only one active */
696 if (radeon_emitted(rctx->b.dma.cs, 0)) {
697 rctx->b.dma.flush(rctx, PIPE_FLUSH_ASYNC, NULL);
698 }
699
700 r600_update_compressed_resource_state(rctx, true);
701
702 r600_need_cs_space(rctx, 0, true);
703 if (rctx->cs_shader_state.shader->ir_type == PIPE_SHADER_IR_TGSI) {
704 r600_shader_select(&rctx->b.b, rctx->cs_shader_state.shader->sel, &compute_dirty);
705 current = rctx->cs_shader_state.shader->sel->current;
706 if (compute_dirty) {
707 rctx->cs_shader_state.atom.num_dw = current->command_buffer.num_dw;
708 r600_context_add_resource_size(&rctx->b.b, (struct pipe_resource *)current->bo);
709 r600_set_atom_dirty(rctx, &rctx->cs_shader_state.atom, true);
710 }
711
712 if (evergreen_emit_atomic_buffer_setup(rctx, current, combined_atomics, &atomic_used_mask)) {
713 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
714 radeon_emit(cs, EVENT_TYPE(EVENT_TYPE_CS_PARTIAL_FLUSH) | EVENT_INDEX(4));
715 }
716 }
717
718 /* Initialize all the compute-related registers.
719 *
720 * See evergreen_init_atom_start_compute_cs() in this file for the list
721 * of registers initialized by the start_compute_cs_cmd atom.
722 */
723 r600_emit_command_buffer(cs, &rctx->start_compute_cs_cmd);
724
725 /* emit config state */
726 if (rctx->b.chip_class == EVERGREEN) {
727 if (rctx->cs_shader_state.shader->ir_type == PIPE_SHADER_IR_TGSI) {
728 radeon_set_config_reg_seq(cs, R_008C04_SQ_GPR_RESOURCE_MGMT_1, 3);
729 radeon_emit(cs, S_008C04_NUM_CLAUSE_TEMP_GPRS(rctx->r6xx_num_clause_temp_gprs));
730 radeon_emit(cs, 0);
731 radeon_emit(cs, 0);
732 radeon_set_config_reg(cs, R_008D8C_SQ_DYN_GPR_CNTL_PS_FLUSH_REQ, (1 << 8));
733 } else
734 r600_emit_atom(rctx, &rctx->config_state.atom);
735 }
736
737 rctx->b.flags |= R600_CONTEXT_WAIT_3D_IDLE | R600_CONTEXT_FLUSH_AND_INV;
738 r600_flush_emit(rctx);
739
740 if (rctx->cs_shader_state.shader->ir_type != PIPE_SHADER_IR_TGSI) {
741
742 compute_setup_cbs(rctx);
743
744 /* Emit vertex buffer state */
745 rctx->cs_vertex_buffer_state.atom.num_dw = 12 * util_bitcount(rctx->cs_vertex_buffer_state.dirty_mask);
746 r600_emit_atom(rctx, &rctx->cs_vertex_buffer_state.atom);
747 } else {
748 uint32_t rat_mask;
749
750 rat_mask = ((1ULL << (((unsigned)rctx->cb_misc_state.nr_image_rats + rctx->cb_misc_state.nr_buffer_rats) * 4)) - 1);
751 radeon_compute_set_context_reg(cs, R_028238_CB_TARGET_MASK,
752 rat_mask);
753 }
754
755 /* Emit constant buffer state */
756 r600_emit_atom(rctx, &rctx->constbuf_state[PIPE_SHADER_COMPUTE].atom);
757
758 /* Emit sampler state */
759 r600_emit_atom(rctx, &rctx->samplers[PIPE_SHADER_COMPUTE].states.atom);
760
761 /* Emit sampler view (texture resource) state */
762 r600_emit_atom(rctx, &rctx->samplers[PIPE_SHADER_COMPUTE].views.atom);
763
764 /* Emit images state */
765 r600_emit_atom(rctx, &rctx->compute_images.atom);
766
767 /* Emit buffers state */
768 r600_emit_atom(rctx, &rctx->compute_buffers.atom);
769
770 /* Emit shader state */
771 r600_emit_atom(rctx, &rctx->cs_shader_state.atom);
772
773 /* Emit dispatch state and dispatch packet */
774 evergreen_emit_dispatch(rctx, info);
775
776 /* XXX evergreen_flush_emit() hardcodes the CP_COHER_SIZE to 0xffffffff
777 */
778 rctx->b.flags |= R600_CONTEXT_INV_CONST_CACHE |
779 R600_CONTEXT_INV_VERTEX_CACHE |
780 R600_CONTEXT_INV_TEX_CACHE;
781 r600_flush_emit(rctx);
782 rctx->b.flags = 0;
783
784 if (rctx->b.chip_class >= CAYMAN) {
785 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
786 radeon_emit(cs, EVENT_TYPE(EVENT_TYPE_CS_PARTIAL_FLUSH) | EVENT_INDEX(4));
787 /* DEALLOC_STATE prevents the GPU from hanging when a
788 * SURFACE_SYNC packet is emitted some time after a DISPATCH_DIRECT
789 * with any of the CB*_DEST_BASE_ENA or DB_DEST_BASE_ENA bits set.
790 */
791 radeon_emit(cs, PKT3C(PKT3_DEALLOC_STATE, 0, 0));
792 radeon_emit(cs, 0);
793 }
794 if (rctx->cs_shader_state.shader->ir_type == PIPE_SHADER_IR_TGSI)
795 evergreen_emit_atomic_buffer_save(rctx, true, combined_atomics, &atomic_used_mask);
796
797 #if 0
798 COMPUTE_DBG(rctx->screen, "cdw: %i\n", cs->cdw);
799 for (i = 0; i < cs->cdw; i++) {
800 COMPUTE_DBG(rctx->screen, "%4i : 0x%08X\n", i, cs->buf[i]);
801 }
802 #endif
803
804 }
805
806
807 /**
808 * Emit function for r600_cs_shader_state atom
809 */
810 void evergreen_emit_cs_shader(struct r600_context *rctx,
811 struct r600_atom *atom)
812 {
813 struct r600_cs_shader_state *state =
814 (struct r600_cs_shader_state*)atom;
815 struct r600_pipe_compute *shader = state->shader;
816 struct radeon_winsys_cs *cs = rctx->b.gfx.cs;
817 uint64_t va;
818 struct r600_resource *code_bo;
819 unsigned ngpr, nstack;
820
821 if (shader->ir_type == PIPE_SHADER_IR_TGSI) {
822 code_bo = shader->sel->current->bo;
823 va = shader->sel->current->bo->gpu_address;
824 ngpr = shader->sel->current->shader.bc.ngpr;
825 nstack = shader->sel->current->shader.bc.nstack;
826 } else {
827 code_bo = shader->code_bo;
828 va = shader->code_bo->gpu_address + state->pc;
829 ngpr = shader->bc.ngpr;
830 nstack = shader->bc.nstack;
831 }
832
833 radeon_compute_set_context_reg_seq(cs, R_0288D0_SQ_PGM_START_LS, 3);
834 radeon_emit(cs, va >> 8); /* R_0288D0_SQ_PGM_START_LS */
835 radeon_emit(cs, /* R_0288D4_SQ_PGM_RESOURCES_LS */
836 S_0288D4_NUM_GPRS(ngpr) |
837 S_0288D4_DX10_CLAMP(1) |
838 S_0288D4_STACK_SIZE(nstack));
839 radeon_emit(cs, 0); /* R_0288D8_SQ_PGM_RESOURCES_LS_2 */
840
841 radeon_emit(cs, PKT3C(PKT3_NOP, 0, 0));
842 radeon_emit(cs, radeon_add_to_buffer_list(&rctx->b, &rctx->b.gfx,
843 code_bo, RADEON_USAGE_READ,
844 RADEON_PRIO_SHADER_BINARY));
845 }
846
847 static void evergreen_launch_grid(struct pipe_context *ctx,
848 const struct pipe_grid_info *info)
849 {
850 struct r600_context *rctx = (struct r600_context *)ctx;
851 #ifdef HAVE_OPENCL
852 struct r600_pipe_compute *shader = rctx->cs_shader_state.shader;
853 boolean use_kill;
854
855 if (shader->ir_type != PIPE_SHADER_IR_TGSI) {
856 rctx->cs_shader_state.pc = info->pc;
857 /* Get the config information for this kernel. */
858 r600_shader_binary_read_config(&shader->binary, &shader->bc,
859 info->pc, &use_kill);
860 } else {
861 use_kill = false;
862 rctx->cs_shader_state.pc = 0;
863 }
864 #endif
865
866 COMPUTE_DBG(rctx->screen, "*** evergreen_launch_grid: pc = %u\n", info->pc);
867
868
869 evergreen_compute_upload_input(ctx, info);
870 compute_emit_cs(rctx, info);
871 }
872
873 static void evergreen_set_compute_resources(struct pipe_context *ctx,
874 unsigned start, unsigned count,
875 struct pipe_surface **surfaces)
876 {
877 struct r600_context *rctx = (struct r600_context *)ctx;
878 struct r600_surface **resources = (struct r600_surface **)surfaces;
879
880 COMPUTE_DBG(rctx->screen, "*** evergreen_set_compute_resources: start = %u count = %u\n",
881 start, count);
882
883 for (unsigned i = 0; i < count; i++) {
884 /* The First four vertex buffers are reserved for parameters and
885 * global buffers. */
886 unsigned vtx_id = 4 + i;
887 if (resources[i]) {
888 struct r600_resource_global *buffer =
889 (struct r600_resource_global*)
890 resources[i]->base.texture;
891 if (resources[i]->base.writable) {
892 assert(i+1 < 12);
893
894 evergreen_set_rat(rctx->cs_shader_state.shader, i+1,
895 (struct r600_resource *)resources[i]->base.texture,
896 buffer->chunk->start_in_dw*4,
897 resources[i]->base.texture->width0);
898 }
899
900 evergreen_cs_set_vertex_buffer(rctx, vtx_id,
901 buffer->chunk->start_in_dw * 4,
902 resources[i]->base.texture);
903 }
904 }
905 }
906
907 static void evergreen_set_global_binding(struct pipe_context *ctx,
908 unsigned first, unsigned n,
909 struct pipe_resource **resources,
910 uint32_t **handles)
911 {
912 struct r600_context *rctx = (struct r600_context *)ctx;
913 struct compute_memory_pool *pool = rctx->screen->global_pool;
914 struct r600_resource_global **buffers =
915 (struct r600_resource_global **)resources;
916 unsigned i;
917
918 COMPUTE_DBG(rctx->screen, "*** evergreen_set_global_binding first = %u n = %u\n",
919 first, n);
920
921 if (!resources) {
922 /* XXX: Unset */
923 return;
924 }
925
926 /* We mark these items for promotion to the pool if they
927 * aren't already there */
928 for (i = first; i < first + n; i++) {
929 struct compute_memory_item *item = buffers[i]->chunk;
930
931 if (!is_item_in_pool(item))
932 buffers[i]->chunk->status |= ITEM_FOR_PROMOTING;
933 }
934
935 if (compute_memory_finalize_pending(pool, ctx) == -1) {
936 /* XXX: Unset */
937 return;
938 }
939
940 for (i = first; i < first + n; i++)
941 {
942 uint32_t buffer_offset;
943 uint32_t handle;
944 assert(resources[i]->target == PIPE_BUFFER);
945 assert(resources[i]->bind & PIPE_BIND_GLOBAL);
946
947 buffer_offset = util_le32_to_cpu(*(handles[i]));
948 handle = buffer_offset + buffers[i]->chunk->start_in_dw * 4;
949
950 *(handles[i]) = util_cpu_to_le32(handle);
951 }
952
953 /* globals for writing */
954 evergreen_set_rat(rctx->cs_shader_state.shader, 0, pool->bo, 0, pool->size_in_dw * 4);
955 /* globals for reading */
956 evergreen_cs_set_vertex_buffer(rctx, 1, 0,
957 (struct pipe_resource*)pool->bo);
958
959 /* constants for reading, LLVM puts them in text segment */
960 evergreen_cs_set_vertex_buffer(rctx, 2, 0,
961 (struct pipe_resource*)rctx->cs_shader_state.shader->code_bo);
962 }
963
964 /**
965 * This function initializes all the compute specific registers that need to
966 * be initialized for each compute command stream. Registers that are common
967 * to both compute and 3D will be initialized at the beginning of each compute
968 * command stream by the start_cs_cmd atom. However, since the SET_CONTEXT_REG
969 * packet requires that the shader type bit be set, we must initialize all
970 * context registers needed for compute in this function. The registers
971 * initialized by the start_cs_cmd atom can be found in evergreen_state.c in the
972 * functions evergreen_init_atom_start_cs or cayman_init_atom_start_cs depending
973 * on the GPU family.
974 */
975 void evergreen_init_atom_start_compute_cs(struct r600_context *rctx)
976 {
977 struct r600_command_buffer *cb = &rctx->start_compute_cs_cmd;
978 int num_threads;
979 int num_stack_entries;
980
981 /* since all required registers are initialized in the
982 * start_compute_cs_cmd atom, we can EMIT_EARLY here.
983 */
984 r600_init_command_buffer(cb, 256);
985 cb->pkt_flags = RADEON_CP_PACKET3_COMPUTE_MODE;
986
987 /* We're setting config registers here. */
988 r600_store_value(cb, PKT3(PKT3_EVENT_WRITE, 0, 0));
989 r600_store_value(cb, EVENT_TYPE(EVENT_TYPE_CS_PARTIAL_FLUSH) | EVENT_INDEX(4));
990
991 switch (rctx->b.family) {
992 case CHIP_CEDAR:
993 default:
994 num_threads = 128;
995 num_stack_entries = 256;
996 break;
997 case CHIP_REDWOOD:
998 num_threads = 128;
999 num_stack_entries = 256;
1000 break;
1001 case CHIP_JUNIPER:
1002 num_threads = 128;
1003 num_stack_entries = 512;
1004 break;
1005 case CHIP_CYPRESS:
1006 case CHIP_HEMLOCK:
1007 num_threads = 128;
1008 num_stack_entries = 512;
1009 break;
1010 case CHIP_PALM:
1011 num_threads = 128;
1012 num_stack_entries = 256;
1013 break;
1014 case CHIP_SUMO:
1015 num_threads = 128;
1016 num_stack_entries = 256;
1017 break;
1018 case CHIP_SUMO2:
1019 num_threads = 128;
1020 num_stack_entries = 512;
1021 break;
1022 case CHIP_BARTS:
1023 num_threads = 128;
1024 num_stack_entries = 512;
1025 break;
1026 case CHIP_TURKS:
1027 num_threads = 128;
1028 num_stack_entries = 256;
1029 break;
1030 case CHIP_CAICOS:
1031 num_threads = 128;
1032 num_stack_entries = 256;
1033 break;
1034 }
1035
1036 /* The primitive type always needs to be POINTLIST for compute. */
1037 r600_store_config_reg(cb, R_008958_VGT_PRIMITIVE_TYPE,
1038 V_008958_DI_PT_POINTLIST);
1039
1040 if (rctx->b.chip_class < CAYMAN) {
1041
1042 /* These registers control which simds can be used by each stage.
1043 * The default for these registers is 0xffffffff, which means
1044 * all simds are available for each stage. It's possible we may
1045 * want to play around with these in the future, but for now
1046 * the default value is fine.
1047 *
1048 * R_008E20_SQ_STATIC_THREAD_MGMT1
1049 * R_008E24_SQ_STATIC_THREAD_MGMT2
1050 * R_008E28_SQ_STATIC_THREAD_MGMT3
1051 */
1052
1053 /* XXX: We may need to adjust the thread and stack resource
1054 * values for 3D/compute interop */
1055
1056 r600_store_config_reg_seq(cb, R_008C18_SQ_THREAD_RESOURCE_MGMT_1, 5);
1057
1058 /* R_008C18_SQ_THREAD_RESOURCE_MGMT_1
1059 * Set the number of threads used by the PS/VS/GS/ES stage to
1060 * 0.
1061 */
1062 r600_store_value(cb, 0);
1063
1064 /* R_008C1C_SQ_THREAD_RESOURCE_MGMT_2
1065 * Set the number of threads used by the CS (aka LS) stage to
1066 * the maximum number of threads and set the number of threads
1067 * for the HS stage to 0. */
1068 r600_store_value(cb, S_008C1C_NUM_LS_THREADS(num_threads));
1069
1070 /* R_008C20_SQ_STACK_RESOURCE_MGMT_1
1071 * Set the Control Flow stack entries to 0 for PS/VS stages */
1072 r600_store_value(cb, 0);
1073
1074 /* R_008C24_SQ_STACK_RESOURCE_MGMT_2
1075 * Set the Control Flow stack entries to 0 for GS/ES stages */
1076 r600_store_value(cb, 0);
1077
1078 /* R_008C28_SQ_STACK_RESOURCE_MGMT_3
1079 * Set the Contol Flow stack entries to 0 for the HS stage, and
1080 * set it to the maximum value for the CS (aka LS) stage. */
1081 r600_store_value(cb,
1082 S_008C28_NUM_LS_STACK_ENTRIES(num_stack_entries));
1083 }
1084 /* Give the compute shader all the available LDS space.
1085 * NOTE: This only sets the maximum number of dwords that a compute
1086 * shader can allocate. When a shader is executed, we still need to
1087 * allocate the appropriate amount of LDS dwords using the
1088 * CM_R_0288E8_SQ_LDS_ALLOC register.
1089 */
1090 if (rctx->b.chip_class < CAYMAN) {
1091 r600_store_config_reg(cb, R_008E2C_SQ_LDS_RESOURCE_MGMT,
1092 S_008E2C_NUM_PS_LDS(0x0000) | S_008E2C_NUM_LS_LDS(8192));
1093 } else {
1094 r600_store_context_reg(cb, CM_R_0286FC_SPI_LDS_MGMT,
1095 S_0286FC_NUM_PS_LDS(0) |
1096 S_0286FC_NUM_LS_LDS(255)); /* 255 * 32 = 8160 dwords */
1097 }
1098
1099 /* Context Registers */
1100
1101 if (rctx->b.chip_class < CAYMAN) {
1102 /* workaround for hw issues with dyn gpr - must set all limits
1103 * to 240 instead of 0, 0x1e == 240 / 8
1104 */
1105 r600_store_context_reg(cb, R_028838_SQ_DYN_GPR_RESOURCE_LIMIT_1,
1106 S_028838_PS_GPRS(0x1e) |
1107 S_028838_VS_GPRS(0x1e) |
1108 S_028838_GS_GPRS(0x1e) |
1109 S_028838_ES_GPRS(0x1e) |
1110 S_028838_HS_GPRS(0x1e) |
1111 S_028838_LS_GPRS(0x1e));
1112 }
1113
1114 /* XXX: Investigate setting bit 15, which is FAST_COMPUTE_MODE */
1115 r600_store_context_reg(cb, R_028A40_VGT_GS_MODE,
1116 S_028A40_COMPUTE_MODE(1) | S_028A40_PARTIAL_THD_AT_EOI(1));
1117
1118 r600_store_context_reg(cb, R_028B54_VGT_SHADER_STAGES_EN, 2/*CS_ON*/);
1119
1120 r600_store_context_reg(cb, R_0286E8_SPI_COMPUTE_INPUT_CNTL,
1121 S_0286E8_TID_IN_GROUP_ENA(1) |
1122 S_0286E8_TGID_ENA(1) |
1123 S_0286E8_DISABLE_INDEX_PACK(1));
1124
1125 /* The LOOP_CONST registers are an optimizations for loops that allows
1126 * you to store the initial counter, increment value, and maximum
1127 * counter value in a register so that hardware can calculate the
1128 * correct number of iterations for the loop, so that you don't need
1129 * to have the loop counter in your shader code. We don't currently use
1130 * this optimization, so we must keep track of the counter in the
1131 * shader and use a break instruction to exit loops. However, the
1132 * hardware will still uses this register to determine when to exit a
1133 * loop, so we need to initialize the counter to 0, set the increment
1134 * value to 1 and the maximum counter value to the 4095 (0xfff) which
1135 * is the maximum value allowed. This gives us a maximum of 4096
1136 * iterations for our loops, but hopefully our break instruction will
1137 * execute before some time before the 4096th iteration.
1138 */
1139 eg_store_loop_const(cb, R_03A200_SQ_LOOP_CONST_0 + (160 * 4), 0x1000FFF);
1140 }
1141
1142 void evergreen_init_compute_state_functions(struct r600_context *rctx)
1143 {
1144 rctx->b.b.create_compute_state = evergreen_create_compute_state;
1145 rctx->b.b.delete_compute_state = evergreen_delete_compute_state;
1146 rctx->b.b.bind_compute_state = evergreen_bind_compute_state;
1147 // rctx->context.create_sampler_view = evergreen_compute_create_sampler_view;
1148 rctx->b.b.set_compute_resources = evergreen_set_compute_resources;
1149 rctx->b.b.set_global_binding = evergreen_set_global_binding;
1150 rctx->b.b.launch_grid = evergreen_launch_grid;
1151
1152 }
1153
1154 static void *r600_compute_global_transfer_map(struct pipe_context *ctx,
1155 struct pipe_resource *resource,
1156 unsigned level,
1157 unsigned usage,
1158 const struct pipe_box *box,
1159 struct pipe_transfer **ptransfer)
1160 {
1161 struct r600_context *rctx = (struct r600_context*)ctx;
1162 struct compute_memory_pool *pool = rctx->screen->global_pool;
1163 struct r600_resource_global* buffer =
1164 (struct r600_resource_global*)resource;
1165
1166 struct compute_memory_item *item = buffer->chunk;
1167 struct pipe_resource *dst = NULL;
1168 unsigned offset = box->x;
1169
1170 if (is_item_in_pool(item)) {
1171 compute_memory_demote_item(pool, item, ctx);
1172 }
1173 else {
1174 if (item->real_buffer == NULL) {
1175 item->real_buffer =
1176 r600_compute_buffer_alloc_vram(pool->screen, item->size_in_dw * 4);
1177 }
1178 }
1179
1180 dst = (struct pipe_resource*)item->real_buffer;
1181
1182 if (usage & PIPE_TRANSFER_READ)
1183 buffer->chunk->status |= ITEM_MAPPED_FOR_READING;
1184
1185 COMPUTE_DBG(rctx->screen, "* r600_compute_global_transfer_map()\n"
1186 "level = %u, usage = %u, box(x = %u, y = %u, z = %u "
1187 "width = %u, height = %u, depth = %u)\n", level, usage,
1188 box->x, box->y, box->z, box->width, box->height,
1189 box->depth);
1190 COMPUTE_DBG(rctx->screen, "Buffer id = %"PRIi64" offset = "
1191 "%u (box.x)\n", item->id, box->x);
1192
1193
1194 assert(resource->target == PIPE_BUFFER);
1195 assert(resource->bind & PIPE_BIND_GLOBAL);
1196 assert(box->x >= 0);
1197 assert(box->y == 0);
1198 assert(box->z == 0);
1199
1200 ///TODO: do it better, mapping is not possible if the pool is too big
1201 return pipe_buffer_map_range(ctx, dst,
1202 offset, box->width, usage, ptransfer);
1203 }
1204
1205 static void r600_compute_global_transfer_unmap(struct pipe_context *ctx,
1206 struct pipe_transfer *transfer)
1207 {
1208 /* struct r600_resource_global are not real resources, they just map
1209 * to an offset within the compute memory pool. The function
1210 * r600_compute_global_transfer_map() maps the memory pool
1211 * resource rather than the struct r600_resource_global passed to
1212 * it as an argument and then initalizes ptransfer->resource with
1213 * the memory pool resource (via pipe_buffer_map_range).
1214 * When transfer_unmap is called it uses the memory pool's
1215 * vtable which calls r600_buffer_transfer_map() rather than
1216 * this function.
1217 */
1218 assert (!"This function should not be called");
1219 }
1220
1221 static void r600_compute_global_transfer_flush_region(struct pipe_context *ctx,
1222 struct pipe_transfer *transfer,
1223 const struct pipe_box *box)
1224 {
1225 assert(0 && "TODO");
1226 }
1227
1228 static void r600_compute_global_buffer_destroy(struct pipe_screen *screen,
1229 struct pipe_resource *res)
1230 {
1231 struct r600_resource_global* buffer = NULL;
1232 struct r600_screen* rscreen = NULL;
1233
1234 assert(res->target == PIPE_BUFFER);
1235 assert(res->bind & PIPE_BIND_GLOBAL);
1236
1237 buffer = (struct r600_resource_global*)res;
1238 rscreen = (struct r600_screen*)screen;
1239
1240 compute_memory_free(rscreen->global_pool, buffer->chunk->id);
1241
1242 buffer->chunk = NULL;
1243 free(res);
1244 }
1245
1246 static const struct u_resource_vtbl r600_global_buffer_vtbl =
1247 {
1248 u_default_resource_get_handle, /* get_handle */
1249 r600_compute_global_buffer_destroy, /* resource_destroy */
1250 r600_compute_global_transfer_map, /* transfer_map */
1251 r600_compute_global_transfer_flush_region,/* transfer_flush_region */
1252 r600_compute_global_transfer_unmap, /* transfer_unmap */
1253 };
1254
1255 struct pipe_resource *r600_compute_global_buffer_create(struct pipe_screen *screen,
1256 const struct pipe_resource *templ)
1257 {
1258 struct r600_resource_global* result = NULL;
1259 struct r600_screen* rscreen = NULL;
1260 int size_in_dw = 0;
1261
1262 assert(templ->target == PIPE_BUFFER);
1263 assert(templ->bind & PIPE_BIND_GLOBAL);
1264 assert(templ->array_size == 1 || templ->array_size == 0);
1265 assert(templ->depth0 == 1 || templ->depth0 == 0);
1266 assert(templ->height0 == 1 || templ->height0 == 0);
1267
1268 result = (struct r600_resource_global*)
1269 CALLOC(sizeof(struct r600_resource_global), 1);
1270 rscreen = (struct r600_screen*)screen;
1271
1272 COMPUTE_DBG(rscreen, "*** r600_compute_global_buffer_create\n");
1273 COMPUTE_DBG(rscreen, "width = %u array_size = %u\n", templ->width0,
1274 templ->array_size);
1275
1276 result->base.b.vtbl = &r600_global_buffer_vtbl;
1277 result->base.b.b = *templ;
1278 result->base.b.b.screen = screen;
1279 pipe_reference_init(&result->base.b.b.reference, 1);
1280
1281 size_in_dw = (templ->width0+3) / 4;
1282
1283 result->chunk = compute_memory_alloc(rscreen->global_pool, size_in_dw);
1284
1285 if (result->chunk == NULL)
1286 {
1287 free(result);
1288 return NULL;
1289 }
1290
1291 return &result->base.b.b;
1292 }