r600g: use uint64_t instead of unsigned long for proper 32bits cpu support
[mesa.git] / src / gallium / drivers / r600 / evergreen_compute.c
1 /*
2 * Copyright 2011 Adam Rak <adam.rak@streamnovation.com>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * on the rights to use, copy, modify, merge, publish, distribute, sub
8 * license, and/or sell copies of the Software, and to permit persons to whom
9 * the Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Adam Rak <adam.rak@streamnovation.com>
25 */
26
27 #include <stdio.h>
28 #include <errno.h>
29 #include "pipe/p_defines.h"
30 #include "pipe/p_state.h"
31 #include "pipe/p_context.h"
32 #include "util/u_blitter.h"
33 #include "util/u_double_list.h"
34 #include "util/u_transfer.h"
35 #include "util/u_surface.h"
36 #include "util/u_pack_color.h"
37 #include "util/u_memory.h"
38 #include "util/u_inlines.h"
39 #include "util/u_framebuffer.h"
40 #include "pipebuffer/pb_buffer.h"
41 #include "r600.h"
42 #include "evergreend.h"
43 #include "r600_resource.h"
44 #include "r600_shader.h"
45 #include "r600_pipe.h"
46 #include "r600_formats.h"
47 #include "evergreen_compute.h"
48 #include "r600_hw_context_priv.h"
49 #include "evergreen_compute_internal.h"
50 #include "compute_memory_pool.h"
51 #ifdef HAVE_OPENCL
52 #include "llvm_wrapper.h"
53 #endif
54
55 /**
56 RAT0 is for global binding write
57 VTX1 is for global binding read
58
59 for wrting images RAT1...
60 for reading images TEX2...
61 TEX2-RAT1 is paired
62
63 TEX2... consumes the same fetch resources, that VTX2... would consume
64
65 CONST0 and VTX0 is for parameters
66 CONST0 is binding smaller input parameter buffer, and for constant indexing,
67 also constant cached
68 VTX0 is for indirect/non-constant indexing, or if the input is bigger than
69 the constant cache can handle
70
71 RAT-s are limited to 12, so we can only bind at most 11 texture for writing
72 because we reserve RAT0 for global bindings. With byteaddressing enabled,
73 we should reserve another one too.=> 10 image binding for writing max.
74
75 from Nvidia OpenCL:
76 CL_DEVICE_MAX_READ_IMAGE_ARGS: 128
77 CL_DEVICE_MAX_WRITE_IMAGE_ARGS: 8
78
79 so 10 for writing is enough. 176 is the max for reading according to the docs
80
81 writable images should be listed first < 10, so their id corresponds to RAT(id+1)
82 writable images will consume TEX slots, VTX slots too because of linear indexing
83
84 */
85
86 static void evergreen_cs_set_vertex_buffer(
87 struct r600_context * rctx,
88 unsigned vb_index,
89 unsigned offset,
90 struct pipe_resource * buffer)
91 {
92 struct r600_vertexbuf_state *state = &rctx->cs_vertex_buffer_state;
93 struct pipe_vertex_buffer *vb = &state->vb[vb_index];
94 vb->stride = 1;
95 vb->buffer_offset = offset;
96 vb->buffer = buffer;
97 vb->user_buffer = NULL;
98
99 /* The vertex instructions in the compute shaders use the texture cache,
100 * so we need to invalidate it. */
101 rctx->flags |= R600_CONTEXT_INVAL_READ_CACHES;
102 state->enabled_mask |= 1 << vb_index;
103 state->dirty_mask |= 1 << vb_index;
104 state->atom.dirty = true;
105 }
106
107 static const struct u_resource_vtbl r600_global_buffer_vtbl =
108 {
109 u_default_resource_get_handle, /* get_handle */
110 r600_compute_global_buffer_destroy, /* resource_destroy */
111 r600_compute_global_transfer_map, /* transfer_map */
112 r600_compute_global_transfer_flush_region,/* transfer_flush_region */
113 r600_compute_global_transfer_unmap, /* transfer_unmap */
114 r600_compute_global_transfer_inline_write /* transfer_inline_write */
115 };
116
117
118 void *evergreen_create_compute_state(
119 struct pipe_context *ctx_,
120 const const struct pipe_compute_state *cso)
121 {
122 struct r600_context *ctx = (struct r600_context *)ctx_;
123 struct r600_pipe_compute *shader = CALLOC_STRUCT(r600_pipe_compute);
124
125 #ifdef HAVE_OPENCL
126 const struct pipe_llvm_program_header * header;
127 const unsigned char * code;
128 unsigned i;
129
130 COMPUTE_DBG("*** evergreen_create_compute_state\n");
131
132 header = cso->prog;
133 code = cso->prog + sizeof(struct pipe_llvm_program_header);
134 #endif
135
136 shader->ctx = (struct r600_context*)ctx;
137 shader->resources = (struct evergreen_compute_resource*)
138 CALLOC(sizeof(struct evergreen_compute_resource),
139 get_compute_resource_num());
140 shader->local_size = cso->req_local_mem; ///TODO: assert it
141 shader->private_size = cso->req_private_mem;
142 shader->input_size = cso->req_input_mem;
143
144 #ifdef HAVE_OPENCL
145 shader->num_kernels = llvm_get_num_kernels(code, header->num_bytes);
146 shader->kernels = CALLOC(sizeof(struct r600_kernel), shader->num_kernels);
147
148 for (i = 0; i < shader->num_kernels; i++) {
149 struct r600_kernel *kernel = &shader->kernels[i];
150 kernel->llvm_module = llvm_get_kernel_module(i, code,
151 header->num_bytes);
152 }
153 #endif
154 return shader;
155 }
156
157 void evergreen_delete_compute_state(struct pipe_context *ctx, void* state)
158 {
159 struct r600_pipe_compute *shader = (struct r600_pipe_compute *)state;
160
161 free(shader->resources);
162 free(shader);
163 }
164
165 static void evergreen_bind_compute_state(struct pipe_context *ctx_, void *state)
166 {
167 struct r600_context *ctx = (struct r600_context *)ctx_;
168
169 COMPUTE_DBG("*** evergreen_bind_compute_state\n");
170
171 ctx->cs_shader_state.shader = (struct r600_pipe_compute *)state;
172 }
173
174 /* The kernel parameters are stored a vtx buffer (ID=0), besides the explicit
175 * kernel parameters there are inplicit parameters that need to be stored
176 * in the vertex buffer as well. Here is how these parameters are organized in
177 * the buffer:
178 *
179 * DWORDS 0-2: Number of work groups in each dimension (x,y,z)
180 * DWORDS 3-5: Number of global work items in each dimension (x,y,z)
181 * DWORDS 6-8: Number of work items within each work group in each dimension
182 * (x,y,z)
183 * DWORDS 9+ : Kernel parameters
184 */
185 void evergreen_compute_upload_input(
186 struct pipe_context *ctx_,
187 const uint *block_layout,
188 const uint *grid_layout,
189 const void *input)
190 {
191 struct r600_context *ctx = (struct r600_context *)ctx_;
192 struct r600_pipe_compute *shader = ctx->cs_shader_state.shader;
193 int i;
194 unsigned kernel_parameters_offset_bytes = 36;
195 uint32_t * num_work_groups_start;
196 uint32_t * global_size_start;
197 uint32_t * local_size_start;
198 uint32_t * kernel_parameters_start;
199
200 if (shader->input_size == 0) {
201 return;
202 }
203
204 if (!shader->kernel_param) {
205 unsigned buffer_size = shader->input_size;
206
207 /* Add space for the grid dimensions */
208 buffer_size += kernel_parameters_offset_bytes * sizeof(uint);
209 shader->kernel_param = r600_compute_buffer_alloc_vram(
210 ctx->screen, buffer_size);
211 }
212
213 num_work_groups_start = r600_buffer_mmap_sync_with_rings(ctx, shader->kernel_param, PIPE_TRANSFER_WRITE);
214 global_size_start = num_work_groups_start + (3 * (sizeof(uint) /4));
215 local_size_start = global_size_start + (3 * (sizeof(uint)) / 4);
216 kernel_parameters_start = local_size_start + (3 * (sizeof(uint)) / 4);
217
218 /* Copy the work group size */
219 memcpy(num_work_groups_start, grid_layout, 3 * sizeof(uint));
220
221 /* Copy the global size */
222 for (i = 0; i < 3; i++) {
223 global_size_start[i] = grid_layout[i] * block_layout[i];
224 }
225
226 /* Copy the local dimensions */
227 memcpy(local_size_start, block_layout, 3 * sizeof(uint));
228
229 /* Copy the kernel inputs */
230 memcpy(kernel_parameters_start, input, shader->input_size);
231
232 for (i = 0; i < (kernel_parameters_offset_bytes / 4) +
233 (shader->input_size / 4); i++) {
234 COMPUTE_DBG("input %i : %i\n", i,
235 ((unsigned*)num_work_groups_start)[i]);
236 }
237
238 ctx->ws->buffer_unmap(shader->kernel_param->cs_buf);
239
240 ///ID=0 is reserved for the parameters
241 evergreen_cs_set_vertex_buffer(ctx, 0, 0,
242 (struct pipe_resource*)shader->kernel_param);
243 ///ID=0 is reserved for parameters
244 evergreen_set_const_cache(shader, 0, shader->kernel_param,
245 shader->input_size, 0);
246 }
247
248 static void evergreen_emit_direct_dispatch(
249 struct r600_context *rctx,
250 const uint *block_layout, const uint *grid_layout)
251 {
252 int i;
253 struct radeon_winsys_cs *cs = rctx->rings.gfx.cs;
254 unsigned num_waves;
255 unsigned num_pipes = rctx->screen->info.r600_max_pipes;
256 unsigned wave_divisor = (16 * num_pipes);
257 int group_size = 1;
258 int grid_size = 1;
259 /* XXX: Enable lds and get size from cs_shader_state */
260 unsigned lds_size = 0;
261
262 /* Calculate group_size/grid_size */
263 for (i = 0; i < 3; i++) {
264 group_size *= block_layout[i];
265 }
266
267 for (i = 0; i < 3; i++) {
268 grid_size *= grid_layout[i];
269 }
270
271 /* num_waves = ceil((tg_size.x * tg_size.y, tg_size.z) / (16 * num_pipes)) */
272 num_waves = (block_layout[0] * block_layout[1] * block_layout[2] +
273 wave_divisor - 1) / wave_divisor;
274
275 COMPUTE_DBG("Using %u pipes, there are %u wavefronts per thread block\n",
276 num_pipes, num_waves);
277
278 /* XXX: Partition the LDS between PS/CS. By default half (4096 dwords
279 * on Evergreen) oes to Pixel Shaders and half goes to Compute Shaders.
280 * We may need to allocat the entire LDS space for Compute Shaders.
281 *
282 * EG: R_008E2C_SQ_LDS_RESOURCE_MGMT := S_008E2C_NUM_LS_LDS(lds_dwords)
283 * CM: CM_R_0286FC_SPI_LDS_MGMT := S_0286FC_NUM_LS_LDS(lds_dwords)
284 */
285
286 r600_write_config_reg(cs, R_008970_VGT_NUM_INDICES, group_size);
287
288 r600_write_config_reg_seq(cs, R_00899C_VGT_COMPUTE_START_X, 3);
289 r600_write_value(cs, 0); /* R_00899C_VGT_COMPUTE_START_X */
290 r600_write_value(cs, 0); /* R_0089A0_VGT_COMPUTE_START_Y */
291 r600_write_value(cs, 0); /* R_0089A4_VGT_COMPUTE_START_Z */
292
293 r600_write_config_reg(cs, R_0089AC_VGT_COMPUTE_THREAD_GROUP_SIZE,
294 group_size);
295
296 r600_write_compute_context_reg_seq(cs, R_0286EC_SPI_COMPUTE_NUM_THREAD_X, 3);
297 r600_write_value(cs, block_layout[0]); /* R_0286EC_SPI_COMPUTE_NUM_THREAD_X */
298 r600_write_value(cs, block_layout[1]); /* R_0286F0_SPI_COMPUTE_NUM_THREAD_Y */
299 r600_write_value(cs, block_layout[2]); /* R_0286F4_SPI_COMPUTE_NUM_THREAD_Z */
300
301 r600_write_compute_context_reg(cs, CM_R_0288E8_SQ_LDS_ALLOC,
302 lds_size | (num_waves << 14));
303
304 /* Dispatch packet */
305 r600_write_value(cs, PKT3C(PKT3_DISPATCH_DIRECT, 3, 0));
306 r600_write_value(cs, grid_layout[0]);
307 r600_write_value(cs, grid_layout[1]);
308 r600_write_value(cs, grid_layout[2]);
309 /* VGT_DISPATCH_INITIATOR = COMPUTE_SHADER_EN */
310 r600_write_value(cs, 1);
311 }
312
313 static void compute_emit_cs(struct r600_context *ctx, const uint *block_layout,
314 const uint *grid_layout)
315 {
316 struct radeon_winsys_cs *cs = ctx->rings.gfx.cs;
317 unsigned flush_flags = 0;
318 int i;
319 struct r600_resource *onebo = NULL;
320 struct evergreen_compute_resource *resources =
321 ctx->cs_shader_state.shader->resources;
322
323 /* make sure that the gfx ring is only one active */
324 if (ctx->rings.dma.cs) {
325 ctx->rings.dma.flush(ctx, RADEON_FLUSH_ASYNC);
326 }
327
328 /* Initialize all the compute-related registers.
329 *
330 * See evergreen_init_atom_start_compute_cs() in this file for the list
331 * of registers initialized by the start_compute_cs_cmd atom.
332 */
333 r600_emit_command_buffer(cs, &ctx->start_compute_cs_cmd);
334
335 ctx->flags |= R600_CONTEXT_WAIT_3D_IDLE | R600_CONTEXT_FLUSH_AND_INV;
336 r600_flush_emit(ctx);
337
338 /* Emit colorbuffers. */
339 for (i = 0; i < ctx->framebuffer.state.nr_cbufs; i++) {
340 struct r600_surface *cb = (struct r600_surface*)ctx->framebuffer.state.cbufs[i];
341 unsigned reloc = r600_context_bo_reloc(ctx, &ctx->rings.gfx,
342 (struct r600_resource*)cb->base.texture,
343 RADEON_USAGE_READWRITE);
344
345 r600_write_compute_context_reg_seq(cs, R_028C60_CB_COLOR0_BASE + i * 0x3C, 7);
346 r600_write_value(cs, cb->cb_color_base); /* R_028C60_CB_COLOR0_BASE */
347 r600_write_value(cs, cb->cb_color_pitch); /* R_028C64_CB_COLOR0_PITCH */
348 r600_write_value(cs, cb->cb_color_slice); /* R_028C68_CB_COLOR0_SLICE */
349 r600_write_value(cs, cb->cb_color_view); /* R_028C6C_CB_COLOR0_VIEW */
350 r600_write_value(cs, cb->cb_color_info); /* R_028C70_CB_COLOR0_INFO */
351 r600_write_value(cs, cb->cb_color_attrib); /* R_028C74_CB_COLOR0_ATTRIB */
352 r600_write_value(cs, cb->cb_color_dim); /* R_028C78_CB_COLOR0_DIM */
353
354 r600_write_value(cs, PKT3(PKT3_NOP, 0, 0)); /* R_028C60_CB_COLOR0_BASE */
355 r600_write_value(cs, reloc);
356
357 if (!ctx->keep_tiling_flags) {
358 r600_write_value(cs, PKT3(PKT3_NOP, 0, 0)); /* R_028C70_CB_COLOR0_INFO */
359 r600_write_value(cs, reloc);
360 }
361
362 r600_write_value(cs, PKT3(PKT3_NOP, 0, 0)); /* R_028C74_CB_COLOR0_ATTRIB */
363 r600_write_value(cs, reloc);
364 }
365
366 /* Set CB_TARGET_MASK XXX: Use cb_misc_state */
367 r600_write_compute_context_reg(cs, R_028238_CB_TARGET_MASK,
368 ctx->compute_cb_target_mask);
369
370
371 /* Emit vertex buffer state */
372 ctx->cs_vertex_buffer_state.atom.num_dw = 12 * util_bitcount(ctx->cs_vertex_buffer_state.dirty_mask);
373 r600_emit_atom(ctx, &ctx->cs_vertex_buffer_state.atom);
374
375 /* Emit compute shader state */
376 r600_emit_atom(ctx, &ctx->cs_shader_state.atom);
377
378 for (i = 0; i < get_compute_resource_num(); i++) {
379 if (resources[i].enabled) {
380 int j;
381 COMPUTE_DBG("resnum: %i, cdw: %i\n", i, cs->cdw);
382
383 for (j = 0; j < resources[i].cs_end; j++) {
384 if (resources[i].do_reloc[j]) {
385 assert(resources[i].bo);
386 evergreen_emit_ctx_reloc(ctx,
387 resources[i].bo,
388 resources[i].usage);
389 }
390
391 cs->buf[cs->cdw++] = resources[i].cs[j];
392 }
393
394 if (resources[i].bo) {
395 onebo = resources[i].bo;
396 evergreen_emit_ctx_reloc(ctx,
397 resources[i].bo,
398 resources[i].usage);
399
400 ///special case for textures
401 if (resources[i].do_reloc
402 [resources[i].cs_end] == 2) {
403 evergreen_emit_ctx_reloc(ctx,
404 resources[i].bo,
405 resources[i].usage);
406 }
407 }
408 }
409 }
410
411 /* Emit dispatch state and dispatch packet */
412 evergreen_emit_direct_dispatch(ctx, block_layout, grid_layout);
413
414 /* XXX evergreen_flush_emit() hardcodes the CP_COHER_SIZE to 0xffffffff
415 */
416 ctx->flags |= R600_CONTEXT_INVAL_READ_CACHES;
417 r600_flush_emit(ctx);
418
419 #if 0
420 COMPUTE_DBG("cdw: %i\n", cs->cdw);
421 for (i = 0; i < cs->cdw; i++) {
422 COMPUTE_DBG("%4i : 0x%08X\n", i, ctx->cs->buf[i]);
423 }
424 #endif
425
426 flush_flags = RADEON_FLUSH_ASYNC | RADEON_FLUSH_COMPUTE;
427 if (ctx->keep_tiling_flags) {
428 flush_flags |= RADEON_FLUSH_KEEP_TILING_FLAGS;
429 }
430
431 ctx->ws->cs_flush(ctx->rings.gfx.cs, flush_flags);
432
433 ctx->pm4_dirty_cdwords = 0;
434 ctx->flags = 0;
435
436 COMPUTE_DBG("shader started\n");
437
438 ctx->ws->buffer_wait(onebo->buf, 0);
439
440 COMPUTE_DBG("...\n");
441
442 ctx->streamout_start = TRUE;
443 ctx->streamout_append_bitmask = ~0;
444
445 }
446
447
448 /**
449 * Emit function for r600_cs_shader_state atom
450 */
451 void evergreen_emit_cs_shader(
452 struct r600_context *rctx,
453 struct r600_atom *atom)
454 {
455 struct r600_cs_shader_state *state =
456 (struct r600_cs_shader_state*)atom;
457 struct r600_pipe_compute *shader = state->shader;
458 struct r600_kernel *kernel = &shader->kernels[state->kernel_index];
459 struct radeon_winsys_cs *cs = rctx->rings.gfx.cs;
460 uint64_t va;
461
462 va = r600_resource_va(&rctx->screen->screen, &kernel->code_bo->b.b);
463
464 r600_write_compute_context_reg_seq(cs, R_0288D0_SQ_PGM_START_LS, 3);
465 r600_write_value(cs, va >> 8); /* R_0288D0_SQ_PGM_START_LS */
466 r600_write_value(cs, /* R_0288D4_SQ_PGM_RESOURCES_LS */
467 S_0288D4_NUM_GPRS(kernel->bc.ngpr)
468 | S_0288D4_STACK_SIZE(kernel->bc.nstack));
469 r600_write_value(cs, 0); /* R_0288D8_SQ_PGM_RESOURCES_LS_2 */
470
471 r600_write_value(cs, PKT3C(PKT3_NOP, 0, 0));
472 r600_write_value(cs, r600_context_bo_reloc(rctx, &rctx->rings.gfx,
473 kernel->code_bo, RADEON_USAGE_READ));
474
475 rctx->flags |= R600_CONTEXT_INVAL_READ_CACHES;
476 }
477
478 static void evergreen_launch_grid(
479 struct pipe_context *ctx_,
480 const uint *block_layout, const uint *grid_layout,
481 uint32_t pc, const void *input)
482 {
483 struct r600_context *ctx = (struct r600_context *)ctx_;
484
485 #ifdef HAVE_OPENCL
486 COMPUTE_DBG("*** evergreen_launch_grid: pc = %u\n", pc);
487
488 struct r600_pipe_compute *shader = ctx->cs_shader_state.shader;
489 if (!shader->kernels[pc].code_bo) {
490 void *p;
491 struct r600_kernel *kernel = &shader->kernels[pc];
492 r600_compute_shader_create(ctx_, kernel->llvm_module, &kernel->bc);
493 kernel->code_bo = r600_compute_buffer_alloc_vram(ctx->screen,
494 kernel->bc.ndw * 4);
495 p = r600_buffer_mmap_sync_with_rings(ctx, kernel->code_bo, PIPE_TRANSFER_WRITE);
496 memcpy(p, kernel->bc.bytecode, kernel->bc.ndw * 4);
497 ctx->ws->buffer_unmap(kernel->code_bo->cs_buf);
498 }
499 #endif
500
501 ctx->cs_shader_state.kernel_index = pc;
502 evergreen_compute_upload_input(ctx_, block_layout, grid_layout, input);
503 compute_emit_cs(ctx, block_layout, grid_layout);
504 }
505
506 static void evergreen_set_compute_resources(struct pipe_context * ctx_,
507 unsigned start, unsigned count,
508 struct pipe_surface ** surfaces)
509 {
510 struct r600_context *ctx = (struct r600_context *)ctx_;
511 struct r600_surface **resources = (struct r600_surface **)surfaces;
512
513 COMPUTE_DBG("*** evergreen_set_compute_resources: start = %u count = %u\n",
514 start, count);
515
516 for (int i = 0; i < count; i++) {
517 /* The First two vertex buffers are reserved for parameters and
518 * global buffers. */
519 unsigned vtx_id = 2 + i;
520 if (resources[i]) {
521 struct r600_resource_global *buffer =
522 (struct r600_resource_global*)
523 resources[i]->base.texture;
524 if (resources[i]->base.writable) {
525 assert(i+1 < 12);
526
527 evergreen_set_rat(ctx->cs_shader_state.shader, i+1,
528 (struct r600_resource *)resources[i]->base.texture,
529 buffer->chunk->start_in_dw*4,
530 resources[i]->base.texture->width0);
531 }
532
533 evergreen_cs_set_vertex_buffer(ctx, vtx_id,
534 buffer->chunk->start_in_dw * 4,
535 resources[i]->base.texture);
536 }
537 }
538 }
539
540 static void evergreen_set_cs_sampler_view(struct pipe_context *ctx_,
541 unsigned start_slot, unsigned count,
542 struct pipe_sampler_view **views)
543 {
544 struct r600_context *ctx = (struct r600_context *)ctx_;
545 struct r600_pipe_sampler_view **resource =
546 (struct r600_pipe_sampler_view **)views;
547
548 for (int i = 0; i < count; i++) {
549 if (resource[i]) {
550 assert(i+1 < 12);
551 ///FETCH0 = VTX0 (param buffer),
552 //FETCH1 = VTX1 (global buffer pool), FETCH2... = TEX
553 evergreen_set_tex_resource(ctx->cs_shader_state.shader, resource[i], i+2);
554 }
555 }
556 }
557
558 static void evergreen_bind_compute_sampler_states(
559 struct pipe_context *ctx_,
560 unsigned start_slot,
561 unsigned num_samplers,
562 void **samplers_)
563 {
564 struct r600_context *ctx = (struct r600_context *)ctx_;
565 struct compute_sampler_state ** samplers =
566 (struct compute_sampler_state **)samplers_;
567
568 for (int i = 0; i < num_samplers; i++) {
569 if (samplers[i]) {
570 evergreen_set_sampler_resource(
571 ctx->cs_shader_state.shader, samplers[i], i);
572 }
573 }
574 }
575
576 static void evergreen_set_global_binding(
577 struct pipe_context *ctx_, unsigned first, unsigned n,
578 struct pipe_resource **resources,
579 uint32_t **handles)
580 {
581 struct r600_context *ctx = (struct r600_context *)ctx_;
582 struct compute_memory_pool *pool = ctx->screen->global_pool;
583 struct r600_resource_global **buffers =
584 (struct r600_resource_global **)resources;
585
586 COMPUTE_DBG("*** evergreen_set_global_binding first = %u n = %u\n",
587 first, n);
588
589 if (!resources) {
590 /* XXX: Unset */
591 return;
592 }
593
594 compute_memory_finalize_pending(pool, ctx_);
595
596 for (int i = 0; i < n; i++)
597 {
598 assert(resources[i]->target == PIPE_BUFFER);
599 assert(resources[i]->bind & PIPE_BIND_GLOBAL);
600
601 *(handles[i]) = buffers[i]->chunk->start_in_dw * 4;
602 }
603
604 evergreen_set_rat(ctx->cs_shader_state.shader, 0, pool->bo, 0, pool->size_in_dw * 4);
605 evergreen_cs_set_vertex_buffer(ctx, 1, 0,
606 (struct pipe_resource*)pool->bo);
607 }
608
609 /**
610 * This function initializes all the compute specific registers that need to
611 * be initialized for each compute command stream. Registers that are common
612 * to both compute and 3D will be initialized at the beginning of each compute
613 * command stream by the start_cs_cmd atom. However, since the SET_CONTEXT_REG
614 * packet requires that the shader type bit be set, we must initialize all
615 * context registers needed for compute in this function. The registers
616 * intialized by the start_cs_cmd atom can be found in evereen_state.c in the
617 * functions evergreen_init_atom_start_cs or cayman_init_atom_start_cs depending
618 * on the GPU family.
619 */
620 void evergreen_init_atom_start_compute_cs(struct r600_context *ctx)
621 {
622 struct r600_command_buffer *cb = &ctx->start_compute_cs_cmd;
623 int num_threads;
624 int num_stack_entries;
625
626 /* since all required registers are initialised in the
627 * start_compute_cs_cmd atom, we can EMIT_EARLY here.
628 */
629 r600_init_command_buffer(cb, 256);
630 cb->pkt_flags = RADEON_CP_PACKET3_COMPUTE_MODE;
631
632 /* This must be first. */
633 r600_store_value(cb, PKT3(PKT3_CONTEXT_CONTROL, 1, 0));
634 r600_store_value(cb, 0x80000000);
635 r600_store_value(cb, 0x80000000);
636
637 /* We're setting config registers here. */
638 r600_store_value(cb, PKT3(PKT3_EVENT_WRITE, 0, 0));
639 r600_store_value(cb, EVENT_TYPE(EVENT_TYPE_CS_PARTIAL_FLUSH) | EVENT_INDEX(4));
640
641 switch (ctx->family) {
642 case CHIP_CEDAR:
643 default:
644 num_threads = 128;
645 num_stack_entries = 256;
646 break;
647 case CHIP_REDWOOD:
648 num_threads = 128;
649 num_stack_entries = 256;
650 break;
651 case CHIP_JUNIPER:
652 num_threads = 128;
653 num_stack_entries = 512;
654 break;
655 case CHIP_CYPRESS:
656 case CHIP_HEMLOCK:
657 num_threads = 128;
658 num_stack_entries = 512;
659 break;
660 case CHIP_PALM:
661 num_threads = 128;
662 num_stack_entries = 256;
663 break;
664 case CHIP_SUMO:
665 num_threads = 128;
666 num_stack_entries = 256;
667 break;
668 case CHIP_SUMO2:
669 num_threads = 128;
670 num_stack_entries = 512;
671 break;
672 case CHIP_BARTS:
673 num_threads = 128;
674 num_stack_entries = 512;
675 break;
676 case CHIP_TURKS:
677 num_threads = 128;
678 num_stack_entries = 256;
679 break;
680 case CHIP_CAICOS:
681 num_threads = 128;
682 num_stack_entries = 256;
683 break;
684 }
685
686 /* Config Registers */
687 if (ctx->chip_class < CAYMAN)
688 evergreen_init_common_regs(cb, ctx->chip_class, ctx->family,
689 ctx->screen->info.drm_minor);
690 else
691 cayman_init_common_regs(cb, ctx->chip_class, ctx->family,
692 ctx->screen->info.drm_minor);
693
694 /* The primitive type always needs to be POINTLIST for compute. */
695 r600_store_config_reg(cb, R_008958_VGT_PRIMITIVE_TYPE,
696 V_008958_DI_PT_POINTLIST);
697
698 if (ctx->chip_class < CAYMAN) {
699
700 /* These registers control which simds can be used by each stage.
701 * The default for these registers is 0xffffffff, which means
702 * all simds are available for each stage. It's possible we may
703 * want to play around with these in the future, but for now
704 * the default value is fine.
705 *
706 * R_008E20_SQ_STATIC_THREAD_MGMT1
707 * R_008E24_SQ_STATIC_THREAD_MGMT2
708 * R_008E28_SQ_STATIC_THREAD_MGMT3
709 */
710
711 /* XXX: We may need to adjust the thread and stack resouce
712 * values for 3D/compute interop */
713
714 r600_store_config_reg_seq(cb, R_008C18_SQ_THREAD_RESOURCE_MGMT_1, 5);
715
716 /* R_008C18_SQ_THREAD_RESOURCE_MGMT_1
717 * Set the number of threads used by the PS/VS/GS/ES stage to
718 * 0.
719 */
720 r600_store_value(cb, 0);
721
722 /* R_008C1C_SQ_THREAD_RESOURCE_MGMT_2
723 * Set the number of threads used by the CS (aka LS) stage to
724 * the maximum number of threads and set the number of threads
725 * for the HS stage to 0. */
726 r600_store_value(cb, S_008C1C_NUM_LS_THREADS(num_threads));
727
728 /* R_008C20_SQ_STACK_RESOURCE_MGMT_1
729 * Set the Control Flow stack entries to 0 for PS/VS stages */
730 r600_store_value(cb, 0);
731
732 /* R_008C24_SQ_STACK_RESOURCE_MGMT_2
733 * Set the Control Flow stack entries to 0 for GS/ES stages */
734 r600_store_value(cb, 0);
735
736 /* R_008C28_SQ_STACK_RESOURCE_MGMT_3
737 * Set the Contol Flow stack entries to 0 for the HS stage, and
738 * set it to the maximum value for the CS (aka LS) stage. */
739 r600_store_value(cb,
740 S_008C28_NUM_LS_STACK_ENTRIES(num_stack_entries));
741 }
742
743 /* Context Registers */
744
745 if (ctx->chip_class < CAYMAN) {
746 /* workaround for hw issues with dyn gpr - must set all limits
747 * to 240 instead of 0, 0x1e == 240 / 8
748 */
749 r600_store_context_reg(cb, R_028838_SQ_DYN_GPR_RESOURCE_LIMIT_1,
750 S_028838_PS_GPRS(0x1e) |
751 S_028838_VS_GPRS(0x1e) |
752 S_028838_GS_GPRS(0x1e) |
753 S_028838_ES_GPRS(0x1e) |
754 S_028838_HS_GPRS(0x1e) |
755 S_028838_LS_GPRS(0x1e));
756 }
757
758 /* XXX: Investigate setting bit 15, which is FAST_COMPUTE_MODE */
759 r600_store_context_reg(cb, R_028A40_VGT_GS_MODE,
760 S_028A40_COMPUTE_MODE(1) | S_028A40_PARTIAL_THD_AT_EOI(1));
761
762 r600_store_context_reg(cb, R_028B54_VGT_SHADER_STAGES_EN, 2/*CS_ON*/);
763
764 r600_store_context_reg(cb, R_0286E8_SPI_COMPUTE_INPUT_CNTL,
765 S_0286E8_TID_IN_GROUP_ENA
766 | S_0286E8_TGID_ENA
767 | S_0286E8_DISABLE_INDEX_PACK)
768 ;
769
770 /* The LOOP_CONST registers are an optimizations for loops that allows
771 * you to store the initial counter, increment value, and maximum
772 * counter value in a register so that hardware can calculate the
773 * correct number of iterations for the loop, so that you don't need
774 * to have the loop counter in your shader code. We don't currently use
775 * this optimization, so we must keep track of the counter in the
776 * shader and use a break instruction to exit loops. However, the
777 * hardware will still uses this register to determine when to exit a
778 * loop, so we need to initialize the counter to 0, set the increment
779 * value to 1 and the maximum counter value to the 4095 (0xfff) which
780 * is the maximum value allowed. This gives us a maximum of 4096
781 * iterations for our loops, but hopefully our break instruction will
782 * execute before some time before the 4096th iteration.
783 */
784 eg_store_loop_const(cb, R_03A200_SQ_LOOP_CONST_0 + (160 * 4), 0x1000FFF);
785 }
786
787 void evergreen_init_compute_state_functions(struct r600_context *ctx)
788 {
789 ctx->context.create_compute_state = evergreen_create_compute_state;
790 ctx->context.delete_compute_state = evergreen_delete_compute_state;
791 ctx->context.bind_compute_state = evergreen_bind_compute_state;
792 // ctx->context.create_sampler_view = evergreen_compute_create_sampler_view;
793 ctx->context.set_compute_resources = evergreen_set_compute_resources;
794 ctx->context.set_compute_sampler_views = evergreen_set_cs_sampler_view;
795 ctx->context.bind_compute_sampler_states = evergreen_bind_compute_sampler_states;
796 ctx->context.set_global_binding = evergreen_set_global_binding;
797 ctx->context.launch_grid = evergreen_launch_grid;
798
799 /* We always use at least two vertex buffers for compute, one for
800 * parameters and one for global memory */
801 ctx->cs_vertex_buffer_state.enabled_mask =
802 ctx->cs_vertex_buffer_state.dirty_mask = 1 | 2;
803 }
804
805
806 struct pipe_resource *r600_compute_global_buffer_create(
807 struct pipe_screen *screen,
808 const struct pipe_resource *templ)
809 {
810 struct r600_resource_global* result = NULL;
811 struct r600_screen* rscreen = NULL;
812 int size_in_dw = 0;
813
814 assert(templ->target == PIPE_BUFFER);
815 assert(templ->bind & PIPE_BIND_GLOBAL);
816 assert(templ->array_size == 1 || templ->array_size == 0);
817 assert(templ->depth0 == 1 || templ->depth0 == 0);
818 assert(templ->height0 == 1 || templ->height0 == 0);
819
820 result = (struct r600_resource_global*)
821 CALLOC(sizeof(struct r600_resource_global), 1);
822 rscreen = (struct r600_screen*)screen;
823
824 COMPUTE_DBG("*** r600_compute_global_buffer_create\n");
825 COMPUTE_DBG("width = %u array_size = %u\n", templ->width0,
826 templ->array_size);
827
828 result->base.b.vtbl = &r600_global_buffer_vtbl;
829 result->base.b.b.screen = screen;
830 result->base.b.b = *templ;
831 pipe_reference_init(&result->base.b.b.reference, 1);
832
833 size_in_dw = (templ->width0+3) / 4;
834
835 result->chunk = compute_memory_alloc(rscreen->global_pool, size_in_dw);
836
837 if (result->chunk == NULL)
838 {
839 free(result);
840 return NULL;
841 }
842
843 return &result->base.b.b;
844 }
845
846 void r600_compute_global_buffer_destroy(
847 struct pipe_screen *screen,
848 struct pipe_resource *res)
849 {
850 struct r600_resource_global* buffer = NULL;
851 struct r600_screen* rscreen = NULL;
852
853 assert(res->target == PIPE_BUFFER);
854 assert(res->bind & PIPE_BIND_GLOBAL);
855
856 buffer = (struct r600_resource_global*)res;
857 rscreen = (struct r600_screen*)screen;
858
859 compute_memory_free(rscreen->global_pool, buffer->chunk->id);
860
861 buffer->chunk = NULL;
862 free(res);
863 }
864
865 void *r600_compute_global_transfer_map(
866 struct pipe_context *ctx_,
867 struct pipe_resource *resource,
868 unsigned level,
869 unsigned usage,
870 const struct pipe_box *box,
871 struct pipe_transfer **ptransfer)
872 {
873 struct r600_context *rctx = (struct r600_context*)ctx_;
874 struct compute_memory_pool *pool = rctx->screen->global_pool;
875 struct pipe_transfer *transfer = util_slab_alloc(&rctx->pool_transfers);
876 struct r600_resource_global* buffer =
877 (struct r600_resource_global*)resource;
878 uint32_t* map;
879
880 compute_memory_finalize_pending(pool, ctx_);
881
882 assert(resource->target == PIPE_BUFFER);
883
884 COMPUTE_DBG("* r600_compute_global_get_transfer()\n"
885 "level = %u, usage = %u, box(x = %u, y = %u, z = %u "
886 "width = %u, height = %u, depth = %u)\n", level, usage,
887 box->x, box->y, box->z, box->width, box->height,
888 box->depth);
889
890 transfer->resource = resource;
891 transfer->level = level;
892 transfer->usage = usage;
893 transfer->box = *box;
894 transfer->stride = 0;
895 transfer->layer_stride = 0;
896
897 assert(transfer->resource->target == PIPE_BUFFER);
898 assert(transfer->resource->bind & PIPE_BIND_GLOBAL);
899 assert(transfer->box.x >= 0);
900 assert(transfer->box.y == 0);
901 assert(transfer->box.z == 0);
902
903 ///TODO: do it better, mapping is not possible if the pool is too big
904
905 COMPUTE_DBG("* r600_compute_global_transfer_map()\n");
906
907 if (!(map = r600_buffer_mmap_sync_with_rings(rctx, buffer->chunk->pool->bo, transfer->usage))) {
908 util_slab_free(&rctx->pool_transfers, transfer);
909 return NULL;
910 }
911
912 *ptransfer = transfer;
913
914 COMPUTE_DBG("Buffer: %p + %u (buffer offset in global memory) "
915 "+ %u (box.x)\n", map, buffer->chunk->start_in_dw, transfer->box.x);
916 return ((char*)(map + buffer->chunk->start_in_dw)) + transfer->box.x;
917 }
918
919 void r600_compute_global_transfer_unmap(
920 struct pipe_context *ctx_,
921 struct pipe_transfer* transfer)
922 {
923 struct r600_context *ctx = NULL;
924 struct r600_resource_global* buffer = NULL;
925
926 assert(transfer->resource->target == PIPE_BUFFER);
927 assert(transfer->resource->bind & PIPE_BIND_GLOBAL);
928
929 ctx = (struct r600_context *)ctx_;
930 buffer = (struct r600_resource_global*)transfer->resource;
931
932 COMPUTE_DBG("* r600_compute_global_transfer_unmap()\n");
933
934 ctx->ws->buffer_unmap(buffer->chunk->pool->bo->cs_buf);
935 util_slab_free(&ctx->pool_transfers, transfer);
936 }
937
938 void r600_compute_global_transfer_flush_region(
939 struct pipe_context *ctx_,
940 struct pipe_transfer *transfer,
941 const struct pipe_box *box)
942 {
943 assert(0 && "TODO");
944 }
945
946 void r600_compute_global_transfer_inline_write(
947 struct pipe_context *pipe,
948 struct pipe_resource *resource,
949 unsigned level,
950 unsigned usage,
951 const struct pipe_box *box,
952 const void *data,
953 unsigned stride,
954 unsigned layer_stride)
955 {
956 assert(0 && "TODO");
957 }