891c940fdaafa19cd0f8575997001c85d0975fd3
[mesa.git] / src / gallium / drivers / r600 / evergreen_compute.c
1 /*
2 * Copyright 2011 Adam Rak <adam.rak@streamnovation.com>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * on the rights to use, copy, modify, merge, publish, distribute, sub
8 * license, and/or sell copies of the Software, and to permit persons to whom
9 * the Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Adam Rak <adam.rak@streamnovation.com>
25 */
26
27 #ifdef HAVE_OPENCL
28 #include <gelf.h>
29 #include <libelf.h>
30 #endif
31 #include <stdio.h>
32 #include <errno.h>
33 #include "pipe/p_defines.h"
34 #include "pipe/p_state.h"
35 #include "pipe/p_context.h"
36 #include "util/u_blitter.h"
37 #include "util/list.h"
38 #include "util/u_transfer.h"
39 #include "util/u_surface.h"
40 #include "util/u_pack_color.h"
41 #include "util/u_memory.h"
42 #include "util/u_inlines.h"
43 #include "util/u_framebuffer.h"
44 #include "tgsi/tgsi_parse.h"
45 #include "pipebuffer/pb_buffer.h"
46 #include "evergreend.h"
47 #include "r600_shader.h"
48 #include "r600_pipe.h"
49 #include "r600_formats.h"
50 #include "evergreen_compute.h"
51 #include "evergreen_compute_internal.h"
52 #include "compute_memory_pool.h"
53 #include "sb/sb_public.h"
54 #include <inttypes.h>
55
56 /**
57 RAT0 is for global binding write
58 VTX1 is for global binding read
59
60 for wrting images RAT1...
61 for reading images TEX2...
62 TEX2-RAT1 is paired
63
64 TEX2... consumes the same fetch resources, that VTX2... would consume
65
66 CONST0 and VTX0 is for parameters
67 CONST0 is binding smaller input parameter buffer, and for constant indexing,
68 also constant cached
69 VTX0 is for indirect/non-constant indexing, or if the input is bigger than
70 the constant cache can handle
71
72 RAT-s are limited to 12, so we can only bind at most 11 texture for writing
73 because we reserve RAT0 for global bindings. With byteaddressing enabled,
74 we should reserve another one too.=> 10 image binding for writing max.
75
76 from Nvidia OpenCL:
77 CL_DEVICE_MAX_READ_IMAGE_ARGS: 128
78 CL_DEVICE_MAX_WRITE_IMAGE_ARGS: 8
79
80 so 10 for writing is enough. 176 is the max for reading according to the docs
81
82 writable images should be listed first < 10, so their id corresponds to RAT(id+1)
83 writable images will consume TEX slots, VTX slots too because of linear indexing
84
85 */
86
87 struct r600_resource *r600_compute_buffer_alloc_vram(struct r600_screen *screen,
88 unsigned size)
89 {
90 struct pipe_resource *buffer = NULL;
91 assert(size);
92
93 buffer = pipe_buffer_create((struct pipe_screen*) screen,
94 0, PIPE_USAGE_IMMUTABLE, size);
95
96 return (struct r600_resource *)buffer;
97 }
98
99
100 static void evergreen_set_rat(struct r600_pipe_compute *pipe,
101 unsigned id,
102 struct r600_resource *bo,
103 int start,
104 int size)
105 {
106 struct pipe_surface rat_templ;
107 struct r600_surface *surf = NULL;
108 struct r600_context *rctx = NULL;
109
110 assert(id < 12);
111 assert((size & 3) == 0);
112 assert((start & 0xFF) == 0);
113
114 rctx = pipe->ctx;
115
116 COMPUTE_DBG(rctx->screen, "bind rat: %i \n", id);
117
118 /* Create the RAT surface */
119 memset(&rat_templ, 0, sizeof(rat_templ));
120 rat_templ.format = PIPE_FORMAT_R32_UINT;
121 rat_templ.u.tex.level = 0;
122 rat_templ.u.tex.first_layer = 0;
123 rat_templ.u.tex.last_layer = 0;
124
125 /* Add the RAT the list of color buffers */
126 pipe->ctx->framebuffer.state.cbufs[id] = pipe->ctx->b.b.create_surface(
127 (struct pipe_context *)pipe->ctx,
128 (struct pipe_resource *)bo, &rat_templ);
129
130 /* Update the number of color buffers */
131 pipe->ctx->framebuffer.state.nr_cbufs =
132 MAX2(id + 1, pipe->ctx->framebuffer.state.nr_cbufs);
133
134 /* Update the cb_target_mask
135 * XXX: I think this is a potential spot for bugs once we start doing
136 * GL interop. cb_target_mask may be modified in the 3D sections
137 * of this driver. */
138 pipe->ctx->compute_cb_target_mask |= (0xf << (id * 4));
139
140 surf = (struct r600_surface*)pipe->ctx->framebuffer.state.cbufs[id];
141 evergreen_init_color_surface_rat(rctx, surf);
142 }
143
144 static void evergreen_cs_set_vertex_buffer(struct r600_context *rctx,
145 unsigned vb_index,
146 unsigned offset,
147 struct pipe_resource *buffer)
148 {
149 struct r600_vertexbuf_state *state = &rctx->cs_vertex_buffer_state;
150 struct pipe_vertex_buffer *vb = &state->vb[vb_index];
151 vb->stride = 1;
152 vb->buffer_offset = offset;
153 vb->buffer.resource = buffer;
154 vb->is_user_buffer = false;
155
156 /* The vertex instructions in the compute shaders use the texture cache,
157 * so we need to invalidate it. */
158 rctx->b.flags |= R600_CONTEXT_INV_VERTEX_CACHE;
159 state->enabled_mask |= 1 << vb_index;
160 state->dirty_mask |= 1 << vb_index;
161 r600_mark_atom_dirty(rctx, &state->atom);
162 }
163
164 static void evergreen_cs_set_constant_buffer(struct r600_context *rctx,
165 unsigned cb_index,
166 unsigned offset,
167 unsigned size,
168 struct pipe_resource *buffer)
169 {
170 struct pipe_constant_buffer cb;
171 cb.buffer_size = size;
172 cb.buffer_offset = offset;
173 cb.buffer = buffer;
174 cb.user_buffer = NULL;
175
176 rctx->b.b.set_constant_buffer(&rctx->b.b, PIPE_SHADER_COMPUTE, cb_index, &cb);
177 }
178
179 /* We need to define these R600 registers here, because we can't include
180 * evergreend.h and r600d.h.
181 */
182 #define R_028868_SQ_PGM_RESOURCES_VS 0x028868
183 #define R_028850_SQ_PGM_RESOURCES_PS 0x028850
184
185 #ifdef HAVE_OPENCL
186 static void parse_symbol_table(Elf_Data *symbol_table_data,
187 const GElf_Shdr *symbol_table_header,
188 struct ac_shader_binary *binary)
189 {
190 GElf_Sym symbol;
191 unsigned i = 0;
192 unsigned symbol_count =
193 symbol_table_header->sh_size / symbol_table_header->sh_entsize;
194
195 /* We are over allocating this list, because symbol_count gives the
196 * total number of symbols, and we will only be filling the list
197 * with offsets of global symbols. The memory savings from
198 * allocating the correct size of this list will be small, and
199 * I don't think it is worth the cost of pre-computing the number
200 * of global symbols.
201 */
202 binary->global_symbol_offsets = CALLOC(symbol_count, sizeof(uint64_t));
203
204 while (gelf_getsym(symbol_table_data, i++, &symbol)) {
205 unsigned i;
206 if (GELF_ST_BIND(symbol.st_info) != STB_GLOBAL ||
207 symbol.st_shndx == 0 /* Undefined symbol */) {
208 continue;
209 }
210
211 binary->global_symbol_offsets[binary->global_symbol_count] =
212 symbol.st_value;
213
214 /* Sort the list using bubble sort. This list will usually
215 * be small. */
216 for (i = binary->global_symbol_count; i > 0; --i) {
217 uint64_t lhs = binary->global_symbol_offsets[i - 1];
218 uint64_t rhs = binary->global_symbol_offsets[i];
219 if (lhs < rhs) {
220 break;
221 }
222 binary->global_symbol_offsets[i] = lhs;
223 binary->global_symbol_offsets[i - 1] = rhs;
224 }
225 ++binary->global_symbol_count;
226 }
227 }
228
229
230 static void parse_relocs(Elf *elf, Elf_Data *relocs, Elf_Data *symbols,
231 unsigned symbol_sh_link,
232 struct ac_shader_binary *binary)
233 {
234 unsigned i;
235
236 if (!relocs || !symbols || !binary->reloc_count) {
237 return;
238 }
239 binary->relocs = CALLOC(binary->reloc_count,
240 sizeof(struct ac_shader_reloc));
241 for (i = 0; i < binary->reloc_count; i++) {
242 GElf_Sym symbol;
243 GElf_Rel rel;
244 char *symbol_name;
245 struct ac_shader_reloc *reloc = &binary->relocs[i];
246
247 gelf_getrel(relocs, i, &rel);
248 gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &symbol);
249 symbol_name = elf_strptr(elf, symbol_sh_link, symbol.st_name);
250
251 reloc->offset = rel.r_offset;
252 strncpy(reloc->name, symbol_name, sizeof(reloc->name)-1);
253 reloc->name[sizeof(reloc->name)-1] = 0;
254 }
255 }
256
257 static void r600_elf_read(const char *elf_data, unsigned elf_size,
258 struct ac_shader_binary *binary)
259 {
260 char *elf_buffer;
261 Elf *elf;
262 Elf_Scn *section = NULL;
263 Elf_Data *symbols = NULL, *relocs = NULL;
264 size_t section_str_index;
265 unsigned symbol_sh_link = 0;
266
267 /* One of the libelf implementations
268 * (http://www.mr511.de/software/english.htm) requires calling
269 * elf_version() before elf_memory().
270 */
271 elf_version(EV_CURRENT);
272 elf_buffer = MALLOC(elf_size);
273 memcpy(elf_buffer, elf_data, elf_size);
274
275 elf = elf_memory(elf_buffer, elf_size);
276
277 elf_getshdrstrndx(elf, &section_str_index);
278
279 while ((section = elf_nextscn(elf, section))) {
280 const char *name;
281 Elf_Data *section_data = NULL;
282 GElf_Shdr section_header;
283 if (gelf_getshdr(section, &section_header) != &section_header) {
284 fprintf(stderr, "Failed to read ELF section header\n");
285 return;
286 }
287 name = elf_strptr(elf, section_str_index, section_header.sh_name);
288 if (!strcmp(name, ".text")) {
289 section_data = elf_getdata(section, section_data);
290 binary->code_size = section_data->d_size;
291 binary->code = MALLOC(binary->code_size * sizeof(unsigned char));
292 memcpy(binary->code, section_data->d_buf, binary->code_size);
293 } else if (!strcmp(name, ".AMDGPU.config")) {
294 section_data = elf_getdata(section, section_data);
295 binary->config_size = section_data->d_size;
296 binary->config = MALLOC(binary->config_size * sizeof(unsigned char));
297 memcpy(binary->config, section_data->d_buf, binary->config_size);
298 } else if (!strcmp(name, ".AMDGPU.disasm")) {
299 /* Always read disassembly if it's available. */
300 section_data = elf_getdata(section, section_data);
301 binary->disasm_string = strndup(section_data->d_buf,
302 section_data->d_size);
303 } else if (!strncmp(name, ".rodata", 7)) {
304 section_data = elf_getdata(section, section_data);
305 binary->rodata_size = section_data->d_size;
306 binary->rodata = MALLOC(binary->rodata_size * sizeof(unsigned char));
307 memcpy(binary->rodata, section_data->d_buf, binary->rodata_size);
308 } else if (!strncmp(name, ".symtab", 7)) {
309 symbols = elf_getdata(section, section_data);
310 symbol_sh_link = section_header.sh_link;
311 parse_symbol_table(symbols, &section_header, binary);
312 } else if (!strcmp(name, ".rel.text")) {
313 relocs = elf_getdata(section, section_data);
314 binary->reloc_count = section_header.sh_size /
315 section_header.sh_entsize;
316 }
317 }
318
319 parse_relocs(elf, relocs, symbols, symbol_sh_link, binary);
320
321 if (elf){
322 elf_end(elf);
323 }
324 FREE(elf_buffer);
325
326 /* Cache the config size per symbol */
327 if (binary->global_symbol_count) {
328 binary->config_size_per_symbol =
329 binary->config_size / binary->global_symbol_count;
330 } else {
331 binary->global_symbol_count = 1;
332 binary->config_size_per_symbol = binary->config_size;
333 }
334 }
335
336 static const unsigned char *r600_shader_binary_config_start(
337 const struct ac_shader_binary *binary,
338 uint64_t symbol_offset)
339 {
340 unsigned i;
341 for (i = 0; i < binary->global_symbol_count; ++i) {
342 if (binary->global_symbol_offsets[i] == symbol_offset) {
343 unsigned offset = i * binary->config_size_per_symbol;
344 return binary->config + offset;
345 }
346 }
347 return binary->config;
348 }
349
350 static void r600_shader_binary_read_config(const struct ac_shader_binary *binary,
351 struct r600_bytecode *bc,
352 uint64_t symbol_offset,
353 boolean *use_kill)
354 {
355 unsigned i;
356 const unsigned char *config =
357 r600_shader_binary_config_start(binary, symbol_offset);
358
359 for (i = 0; i < binary->config_size_per_symbol; i+= 8) {
360 unsigned reg =
361 util_le32_to_cpu(*(uint32_t*)(config + i));
362 unsigned value =
363 util_le32_to_cpu(*(uint32_t*)(config + i + 4));
364 switch (reg) {
365 /* R600 / R700 */
366 case R_028850_SQ_PGM_RESOURCES_PS:
367 case R_028868_SQ_PGM_RESOURCES_VS:
368 /* Evergreen / Northern Islands */
369 case R_028844_SQ_PGM_RESOURCES_PS:
370 case R_028860_SQ_PGM_RESOURCES_VS:
371 case R_0288D4_SQ_PGM_RESOURCES_LS:
372 bc->ngpr = MAX2(bc->ngpr, G_028844_NUM_GPRS(value));
373 bc->nstack = MAX2(bc->nstack, G_028844_STACK_SIZE(value));
374 break;
375 case R_02880C_DB_SHADER_CONTROL:
376 *use_kill = G_02880C_KILL_ENABLE(value);
377 break;
378 case R_0288E8_SQ_LDS_ALLOC:
379 bc->nlds_dw = value;
380 break;
381 }
382 }
383 }
384
385 static unsigned r600_create_shader(struct r600_bytecode *bc,
386 const struct ac_shader_binary *binary,
387 boolean *use_kill)
388
389 {
390 assert(binary->code_size % 4 == 0);
391 bc->bytecode = CALLOC(1, binary->code_size);
392 memcpy(bc->bytecode, binary->code, binary->code_size);
393 bc->ndw = binary->code_size / 4;
394
395 r600_shader_binary_read_config(binary, bc, 0, use_kill);
396 return 0;
397 }
398
399 #endif
400
401 static void r600_destroy_shader(struct r600_bytecode *bc)
402 {
403 FREE(bc->bytecode);
404 }
405
406 static void *evergreen_create_compute_state(struct pipe_context *ctx,
407 const struct pipe_compute_state *cso)
408 {
409 struct r600_context *rctx = (struct r600_context *)ctx;
410 struct r600_pipe_compute *shader = CALLOC_STRUCT(r600_pipe_compute);
411 #ifdef HAVE_OPENCL
412 const struct pipe_llvm_program_header *header;
413 const char *code;
414 void *p;
415 boolean use_kill;
416 #endif
417
418 shader->ctx = rctx;
419 shader->local_size = cso->req_local_mem;
420 shader->private_size = cso->req_private_mem;
421 shader->input_size = cso->req_input_mem;
422
423 shader->ir_type = cso->ir_type;
424
425 if (shader->ir_type == PIPE_SHADER_IR_TGSI) {
426 shader->sel = r600_create_shader_state_tokens(ctx, cso->prog, PIPE_SHADER_COMPUTE);
427 return shader;
428 }
429 #ifdef HAVE_OPENCL
430 COMPUTE_DBG(rctx->screen, "*** evergreen_create_compute_state\n");
431 header = cso->prog;
432 code = cso->prog + sizeof(struct pipe_llvm_program_header);
433 radeon_shader_binary_init(&shader->binary);
434 r600_elf_read(code, header->num_bytes, &shader->binary);
435 r600_create_shader(&shader->bc, &shader->binary, &use_kill);
436
437 /* Upload code + ROdata */
438 shader->code_bo = r600_compute_buffer_alloc_vram(rctx->screen,
439 shader->bc.ndw * 4);
440 p = r600_buffer_map_sync_with_rings(&rctx->b, shader->code_bo, PIPE_TRANSFER_WRITE);
441 //TODO: use util_memcpy_cpu_to_le32 ?
442 memcpy(p, shader->bc.bytecode, shader->bc.ndw * 4);
443 rctx->b.ws->buffer_unmap(shader->code_bo->buf);
444 #endif
445
446 return shader;
447 }
448
449 static void evergreen_delete_compute_state(struct pipe_context *ctx, void *state)
450 {
451 struct r600_context *rctx = (struct r600_context *)ctx;
452 struct r600_pipe_compute *shader = state;
453
454 COMPUTE_DBG(rctx->screen, "*** evergreen_delete_compute_state\n");
455
456 if (!shader)
457 return;
458
459 if (shader->ir_type == PIPE_SHADER_IR_TGSI) {
460 r600_delete_shader_selector(ctx, shader->sel);
461 } else {
462 #ifdef HAVE_OPENCL
463 radeon_shader_binary_clean(&shader->binary);
464 #endif
465 r600_destroy_shader(&shader->bc);
466
467 /* TODO destroy shader->code_bo, shader->const_bo
468 * we'll need something like r600_buffer_free */
469 }
470 FREE(shader);
471 }
472
473 static void evergreen_bind_compute_state(struct pipe_context *ctx, void *state)
474 {
475 struct r600_context *rctx = (struct r600_context *)ctx;
476 struct r600_pipe_compute *cstate = (struct r600_pipe_compute *)state;
477 COMPUTE_DBG(rctx->screen, "*** evergreen_bind_compute_state\n");
478
479 if (!state) {
480 rctx->cs_shader_state.shader = (struct r600_pipe_compute *)state;
481 return;
482 }
483
484 if (cstate->ir_type == PIPE_SHADER_IR_TGSI) {
485 bool compute_dirty;
486
487 r600_shader_select(ctx, cstate->sel, &compute_dirty);
488 }
489
490 rctx->cs_shader_state.shader = (struct r600_pipe_compute *)state;
491 }
492
493 /* The kernel parameters are stored a vtx buffer (ID=0), besides the explicit
494 * kernel parameters there are implicit parameters that need to be stored
495 * in the vertex buffer as well. Here is how these parameters are organized in
496 * the buffer:
497 *
498 * DWORDS 0-2: Number of work groups in each dimension (x,y,z)
499 * DWORDS 3-5: Number of global work items in each dimension (x,y,z)
500 * DWORDS 6-8: Number of work items within each work group in each dimension
501 * (x,y,z)
502 * DWORDS 9+ : Kernel parameters
503 */
504 static void evergreen_compute_upload_input(struct pipe_context *ctx,
505 const struct pipe_grid_info *info)
506 {
507 struct r600_context *rctx = (struct r600_context *)ctx;
508 struct r600_pipe_compute *shader = rctx->cs_shader_state.shader;
509 unsigned i;
510 /* We need to reserve 9 dwords (36 bytes) for implicit kernel
511 * parameters.
512 */
513 unsigned input_size;
514 uint32_t *num_work_groups_start;
515 uint32_t *global_size_start;
516 uint32_t *local_size_start;
517 uint32_t *kernel_parameters_start;
518 struct pipe_box box;
519 struct pipe_transfer *transfer = NULL;
520
521 if (!shader)
522 return;
523 if (shader->input_size == 0) {
524 return;
525 }
526 input_size = shader->input_size + 36;
527 if (!shader->kernel_param) {
528 /* Add space for the grid dimensions */
529 shader->kernel_param = (struct r600_resource *)
530 pipe_buffer_create(ctx->screen, 0,
531 PIPE_USAGE_IMMUTABLE, input_size);
532 }
533
534 u_box_1d(0, input_size, &box);
535 num_work_groups_start = ctx->transfer_map(ctx,
536 (struct pipe_resource*)shader->kernel_param,
537 0, PIPE_TRANSFER_WRITE | PIPE_TRANSFER_DISCARD_RANGE,
538 &box, &transfer);
539 global_size_start = num_work_groups_start + (3 * (sizeof(uint) /4));
540 local_size_start = global_size_start + (3 * (sizeof(uint)) / 4);
541 kernel_parameters_start = local_size_start + (3 * (sizeof(uint)) / 4);
542
543 /* Copy the work group size */
544 memcpy(num_work_groups_start, info->grid, 3 * sizeof(uint));
545
546 /* Copy the global size */
547 for (i = 0; i < 3; i++) {
548 global_size_start[i] = info->grid[i] * info->block[i];
549 }
550
551 /* Copy the local dimensions */
552 memcpy(local_size_start, info->block, 3 * sizeof(uint));
553
554 /* Copy the kernel inputs */
555 memcpy(kernel_parameters_start, info->input, shader->input_size);
556
557 for (i = 0; i < (input_size / 4); i++) {
558 COMPUTE_DBG(rctx->screen, "input %i : %u\n", i,
559 ((unsigned*)num_work_groups_start)[i]);
560 }
561
562 ctx->transfer_unmap(ctx, transfer);
563
564 /* ID=0 and ID=3 are reserved for the parameters.
565 * LLVM will preferably use ID=0, but it does not work for dynamic
566 * indices. */
567 evergreen_cs_set_vertex_buffer(rctx, 3, 0,
568 (struct pipe_resource*)shader->kernel_param);
569 evergreen_cs_set_constant_buffer(rctx, 0, 0, input_size,
570 (struct pipe_resource*)shader->kernel_param);
571 }
572
573 static void evergreen_emit_dispatch(struct r600_context *rctx,
574 const struct pipe_grid_info *info)
575 {
576 int i;
577 struct radeon_winsys_cs *cs = rctx->b.gfx.cs;
578 struct r600_pipe_compute *shader = rctx->cs_shader_state.shader;
579 unsigned num_waves;
580 unsigned num_pipes = rctx->screen->b.info.r600_max_quad_pipes;
581 unsigned wave_divisor = (16 * num_pipes);
582 int group_size = 1;
583 int grid_size = 1;
584 unsigned lds_size = shader->local_size / 4;
585
586 if (shader->ir_type != PIPE_SHADER_IR_TGSI)
587 lds_size += shader->bc.nlds_dw;
588
589 /* Calculate group_size/grid_size */
590 for (i = 0; i < 3; i++) {
591 group_size *= info->block[i];
592 }
593
594 for (i = 0; i < 3; i++) {
595 grid_size *= info->grid[i];
596 }
597
598 /* num_waves = ceil((tg_size.x * tg_size.y, tg_size.z) / (16 * num_pipes)) */
599 num_waves = (info->block[0] * info->block[1] * info->block[2] +
600 wave_divisor - 1) / wave_divisor;
601
602 COMPUTE_DBG(rctx->screen, "Using %u pipes, "
603 "%u wavefronts per thread block, "
604 "allocating %u dwords lds.\n",
605 num_pipes, num_waves, lds_size);
606
607 radeon_set_config_reg(cs, R_008970_VGT_NUM_INDICES, group_size);
608
609 radeon_set_config_reg_seq(cs, R_00899C_VGT_COMPUTE_START_X, 3);
610 radeon_emit(cs, 0); /* R_00899C_VGT_COMPUTE_START_X */
611 radeon_emit(cs, 0); /* R_0089A0_VGT_COMPUTE_START_Y */
612 radeon_emit(cs, 0); /* R_0089A4_VGT_COMPUTE_START_Z */
613
614 radeon_set_config_reg(cs, R_0089AC_VGT_COMPUTE_THREAD_GROUP_SIZE,
615 group_size);
616
617 radeon_compute_set_context_reg_seq(cs, R_0286EC_SPI_COMPUTE_NUM_THREAD_X, 3);
618 radeon_emit(cs, info->block[0]); /* R_0286EC_SPI_COMPUTE_NUM_THREAD_X */
619 radeon_emit(cs, info->block[1]); /* R_0286F0_SPI_COMPUTE_NUM_THREAD_Y */
620 radeon_emit(cs, info->block[2]); /* R_0286F4_SPI_COMPUTE_NUM_THREAD_Z */
621
622 if (rctx->b.chip_class < CAYMAN) {
623 assert(lds_size <= 8192);
624 } else {
625 /* Cayman appears to have a slightly smaller limit, see the
626 * value of CM_R_0286FC_SPI_LDS_MGMT.NUM_LS_LDS */
627 assert(lds_size <= 8160);
628 }
629
630 radeon_compute_set_context_reg(cs, R_0288E8_SQ_LDS_ALLOC,
631 lds_size | (num_waves << 14));
632
633 /* Dispatch packet */
634 radeon_emit(cs, PKT3C(PKT3_DISPATCH_DIRECT, 3, 0));
635 radeon_emit(cs, info->grid[0]);
636 radeon_emit(cs, info->grid[1]);
637 radeon_emit(cs, info->grid[2]);
638 /* VGT_DISPATCH_INITIATOR = COMPUTE_SHADER_EN */
639 radeon_emit(cs, 1);
640
641 if (rctx->is_debug)
642 eg_trace_emit(rctx);
643 }
644
645 static void compute_setup_cbs(struct r600_context *rctx)
646 {
647 struct radeon_winsys_cs *cs = rctx->b.gfx.cs;
648 unsigned i;
649
650 /* Emit colorbuffers. */
651 /* XXX support more than 8 colorbuffers (the offsets are not a multiple of 0x3C for CB8-11) */
652 for (i = 0; i < 8 && i < rctx->framebuffer.state.nr_cbufs; i++) {
653 struct r600_surface *cb = (struct r600_surface*)rctx->framebuffer.state.cbufs[i];
654 unsigned reloc = radeon_add_to_buffer_list(&rctx->b, &rctx->b.gfx,
655 (struct r600_resource*)cb->base.texture,
656 RADEON_USAGE_READWRITE,
657 RADEON_PRIO_SHADER_RW_BUFFER);
658
659 radeon_compute_set_context_reg_seq(cs, R_028C60_CB_COLOR0_BASE + i * 0x3C, 7);
660 radeon_emit(cs, cb->cb_color_base); /* R_028C60_CB_COLOR0_BASE */
661 radeon_emit(cs, cb->cb_color_pitch); /* R_028C64_CB_COLOR0_PITCH */
662 radeon_emit(cs, cb->cb_color_slice); /* R_028C68_CB_COLOR0_SLICE */
663 radeon_emit(cs, cb->cb_color_view); /* R_028C6C_CB_COLOR0_VIEW */
664 radeon_emit(cs, cb->cb_color_info); /* R_028C70_CB_COLOR0_INFO */
665 radeon_emit(cs, cb->cb_color_attrib); /* R_028C74_CB_COLOR0_ATTRIB */
666 radeon_emit(cs, cb->cb_color_dim); /* R_028C78_CB_COLOR0_DIM */
667
668 radeon_emit(cs, PKT3(PKT3_NOP, 0, 0)); /* R_028C60_CB_COLOR0_BASE */
669 radeon_emit(cs, reloc);
670
671 radeon_emit(cs, PKT3(PKT3_NOP, 0, 0)); /* R_028C74_CB_COLOR0_ATTRIB */
672 radeon_emit(cs, reloc);
673 }
674 for (; i < 8 ; i++)
675 radeon_compute_set_context_reg(cs, R_028C70_CB_COLOR0_INFO + i * 0x3C,
676 S_028C70_FORMAT(V_028C70_COLOR_INVALID));
677 for (; i < 12; i++)
678 radeon_compute_set_context_reg(cs, R_028E50_CB_COLOR8_INFO + (i - 8) * 0x1C,
679 S_028C70_FORMAT(V_028C70_COLOR_INVALID));
680
681 /* Set CB_TARGET_MASK XXX: Use cb_misc_state */
682 radeon_compute_set_context_reg(cs, R_028238_CB_TARGET_MASK,
683 rctx->compute_cb_target_mask);
684 }
685
686 static void compute_emit_cs(struct r600_context *rctx,
687 const struct pipe_grid_info *info)
688 {
689 struct radeon_winsys_cs *cs = rctx->b.gfx.cs;
690 bool compute_dirty = false;
691 struct r600_pipe_shader *current;
692
693 /* make sure that the gfx ring is only one active */
694 if (radeon_emitted(rctx->b.dma.cs, 0)) {
695 rctx->b.dma.flush(rctx, PIPE_FLUSH_ASYNC, NULL);
696 }
697
698 r600_need_cs_space(rctx, 0, true);
699 if (rctx->cs_shader_state.shader->ir_type == PIPE_SHADER_IR_TGSI) {
700 r600_shader_select(&rctx->b.b, rctx->cs_shader_state.shader->sel, &compute_dirty);
701 current = rctx->cs_shader_state.shader->sel->current;
702 if (compute_dirty) {
703 rctx->cs_shader_state.atom.num_dw = current->command_buffer.num_dw;
704 r600_context_add_resource_size(&rctx->b.b, (struct pipe_resource *)current->bo);
705 r600_set_atom_dirty(rctx, &rctx->cs_shader_state.atom, true);
706 }
707 }
708
709 /* Initialize all the compute-related registers.
710 *
711 * See evergreen_init_atom_start_compute_cs() in this file for the list
712 * of registers initialized by the start_compute_cs_cmd atom.
713 */
714 r600_emit_command_buffer(cs, &rctx->start_compute_cs_cmd);
715
716 /* emit config state */
717 if (rctx->b.chip_class == EVERGREEN) {
718 if (rctx->cs_shader_state.shader->ir_type == PIPE_SHADER_IR_TGSI) {
719 radeon_set_config_reg_seq(cs, R_008C04_SQ_GPR_RESOURCE_MGMT_1, 3);
720 radeon_emit(cs, S_008C04_NUM_CLAUSE_TEMP_GPRS(rctx->r6xx_num_clause_temp_gprs));
721 radeon_emit(cs, 0);
722 radeon_emit(cs, 0);
723 radeon_set_config_reg(cs, R_008D8C_SQ_DYN_GPR_CNTL_PS_FLUSH_REQ, (1 << 8));
724 } else
725 r600_emit_atom(rctx, &rctx->config_state.atom);
726 }
727
728 rctx->b.flags |= R600_CONTEXT_WAIT_3D_IDLE | R600_CONTEXT_FLUSH_AND_INV;
729 r600_flush_emit(rctx);
730
731 if (rctx->cs_shader_state.shader->ir_type != PIPE_SHADER_IR_TGSI) {
732
733 compute_setup_cbs(rctx);
734
735 /* Emit vertex buffer state */
736 rctx->cs_vertex_buffer_state.atom.num_dw = 12 * util_bitcount(rctx->cs_vertex_buffer_state.dirty_mask);
737 r600_emit_atom(rctx, &rctx->cs_vertex_buffer_state.atom);
738 } else {
739 uint32_t rat_mask;
740
741 rat_mask = ((1ULL << (((unsigned)rctx->cb_misc_state.nr_image_rats + rctx->cb_misc_state.nr_buffer_rats) * 4)) - 1);
742 radeon_compute_set_context_reg(cs, R_028238_CB_TARGET_MASK,
743 rat_mask);
744 }
745
746 /* Emit constant buffer state */
747 r600_emit_atom(rctx, &rctx->constbuf_state[PIPE_SHADER_COMPUTE].atom);
748
749 /* Emit sampler state */
750 r600_emit_atom(rctx, &rctx->samplers[PIPE_SHADER_COMPUTE].states.atom);
751
752 /* Emit sampler view (texture resource) state */
753 r600_emit_atom(rctx, &rctx->samplers[PIPE_SHADER_COMPUTE].views.atom);
754
755 /* Emit compute shader state */
756 r600_emit_atom(rctx, &rctx->cs_shader_state.atom);
757
758 /* Emit dispatch state and dispatch packet */
759 evergreen_emit_dispatch(rctx, info);
760
761 /* XXX evergreen_flush_emit() hardcodes the CP_COHER_SIZE to 0xffffffff
762 */
763 rctx->b.flags |= R600_CONTEXT_INV_CONST_CACHE |
764 R600_CONTEXT_INV_VERTEX_CACHE |
765 R600_CONTEXT_INV_TEX_CACHE;
766 r600_flush_emit(rctx);
767 rctx->b.flags = 0;
768
769 if (rctx->b.chip_class >= CAYMAN) {
770 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
771 radeon_emit(cs, EVENT_TYPE(EVENT_TYPE_CS_PARTIAL_FLUSH) | EVENT_INDEX(4));
772 /* DEALLOC_STATE prevents the GPU from hanging when a
773 * SURFACE_SYNC packet is emitted some time after a DISPATCH_DIRECT
774 * with any of the CB*_DEST_BASE_ENA or DB_DEST_BASE_ENA bits set.
775 */
776 radeon_emit(cs, PKT3C(PKT3_DEALLOC_STATE, 0, 0));
777 radeon_emit(cs, 0);
778 }
779
780 #if 0
781 COMPUTE_DBG(rctx->screen, "cdw: %i\n", cs->cdw);
782 for (i = 0; i < cs->cdw; i++) {
783 COMPUTE_DBG(rctx->screen, "%4i : 0x%08X\n", i, cs->buf[i]);
784 }
785 #endif
786
787 }
788
789
790 /**
791 * Emit function for r600_cs_shader_state atom
792 */
793 void evergreen_emit_cs_shader(struct r600_context *rctx,
794 struct r600_atom *atom)
795 {
796 struct r600_cs_shader_state *state =
797 (struct r600_cs_shader_state*)atom;
798 struct r600_pipe_compute *shader = state->shader;
799 struct radeon_winsys_cs *cs = rctx->b.gfx.cs;
800 uint64_t va;
801 struct r600_resource *code_bo;
802 unsigned ngpr, nstack;
803
804 if (shader->ir_type == PIPE_SHADER_IR_TGSI) {
805 code_bo = shader->sel->current->bo;
806 va = shader->sel->current->bo->gpu_address;
807 ngpr = shader->sel->current->shader.bc.ngpr;
808 nstack = shader->sel->current->shader.bc.nstack;
809 } else {
810 code_bo = shader->code_bo;
811 va = shader->code_bo->gpu_address + state->pc;
812 ngpr = shader->bc.ngpr;
813 nstack = shader->bc.nstack;
814 }
815
816 radeon_compute_set_context_reg_seq(cs, R_0288D0_SQ_PGM_START_LS, 3);
817 radeon_emit(cs, va >> 8); /* R_0288D0_SQ_PGM_START_LS */
818 radeon_emit(cs, /* R_0288D4_SQ_PGM_RESOURCES_LS */
819 S_0288D4_NUM_GPRS(ngpr) |
820 S_0288D4_DX10_CLAMP(1) |
821 S_0288D4_STACK_SIZE(nstack));
822 radeon_emit(cs, 0); /* R_0288D8_SQ_PGM_RESOURCES_LS_2 */
823
824 radeon_emit(cs, PKT3C(PKT3_NOP, 0, 0));
825 radeon_emit(cs, radeon_add_to_buffer_list(&rctx->b, &rctx->b.gfx,
826 code_bo, RADEON_USAGE_READ,
827 RADEON_PRIO_SHADER_BINARY));
828 }
829
830 static void evergreen_launch_grid(struct pipe_context *ctx,
831 const struct pipe_grid_info *info)
832 {
833 struct r600_context *rctx = (struct r600_context *)ctx;
834 #ifdef HAVE_OPENCL
835 struct r600_pipe_compute *shader = rctx->cs_shader_state.shader;
836 boolean use_kill;
837
838 if (shader->ir_type != PIPE_SHADER_IR_TGSI) {
839 rctx->cs_shader_state.pc = info->pc;
840 /* Get the config information for this kernel. */
841 r600_shader_binary_read_config(&shader->binary, &shader->bc,
842 info->pc, &use_kill);
843 } else {
844 use_kill = false;
845 rctx->cs_shader_state.pc = 0;
846 }
847 #endif
848
849 COMPUTE_DBG(rctx->screen, "*** evergreen_launch_grid: pc = %u\n", info->pc);
850
851
852 evergreen_compute_upload_input(ctx, info);
853 compute_emit_cs(rctx, info);
854 }
855
856 static void evergreen_set_compute_resources(struct pipe_context *ctx,
857 unsigned start, unsigned count,
858 struct pipe_surface **surfaces)
859 {
860 struct r600_context *rctx = (struct r600_context *)ctx;
861 struct r600_surface **resources = (struct r600_surface **)surfaces;
862
863 COMPUTE_DBG(rctx->screen, "*** evergreen_set_compute_resources: start = %u count = %u\n",
864 start, count);
865
866 for (unsigned i = 0; i < count; i++) {
867 /* The First four vertex buffers are reserved for parameters and
868 * global buffers. */
869 unsigned vtx_id = 4 + i;
870 if (resources[i]) {
871 struct r600_resource_global *buffer =
872 (struct r600_resource_global*)
873 resources[i]->base.texture;
874 if (resources[i]->base.writable) {
875 assert(i+1 < 12);
876
877 evergreen_set_rat(rctx->cs_shader_state.shader, i+1,
878 (struct r600_resource *)resources[i]->base.texture,
879 buffer->chunk->start_in_dw*4,
880 resources[i]->base.texture->width0);
881 }
882
883 evergreen_cs_set_vertex_buffer(rctx, vtx_id,
884 buffer->chunk->start_in_dw * 4,
885 resources[i]->base.texture);
886 }
887 }
888 }
889
890 static void evergreen_set_global_binding(struct pipe_context *ctx,
891 unsigned first, unsigned n,
892 struct pipe_resource **resources,
893 uint32_t **handles)
894 {
895 struct r600_context *rctx = (struct r600_context *)ctx;
896 struct compute_memory_pool *pool = rctx->screen->global_pool;
897 struct r600_resource_global **buffers =
898 (struct r600_resource_global **)resources;
899 unsigned i;
900
901 COMPUTE_DBG(rctx->screen, "*** evergreen_set_global_binding first = %u n = %u\n",
902 first, n);
903
904 if (!resources) {
905 /* XXX: Unset */
906 return;
907 }
908
909 /* We mark these items for promotion to the pool if they
910 * aren't already there */
911 for (i = first; i < first + n; i++) {
912 struct compute_memory_item *item = buffers[i]->chunk;
913
914 if (!is_item_in_pool(item))
915 buffers[i]->chunk->status |= ITEM_FOR_PROMOTING;
916 }
917
918 if (compute_memory_finalize_pending(pool, ctx) == -1) {
919 /* XXX: Unset */
920 return;
921 }
922
923 for (i = first; i < first + n; i++)
924 {
925 uint32_t buffer_offset;
926 uint32_t handle;
927 assert(resources[i]->target == PIPE_BUFFER);
928 assert(resources[i]->bind & PIPE_BIND_GLOBAL);
929
930 buffer_offset = util_le32_to_cpu(*(handles[i]));
931 handle = buffer_offset + buffers[i]->chunk->start_in_dw * 4;
932
933 *(handles[i]) = util_cpu_to_le32(handle);
934 }
935
936 /* globals for writing */
937 evergreen_set_rat(rctx->cs_shader_state.shader, 0, pool->bo, 0, pool->size_in_dw * 4);
938 /* globals for reading */
939 evergreen_cs_set_vertex_buffer(rctx, 1, 0,
940 (struct pipe_resource*)pool->bo);
941
942 /* constants for reading, LLVM puts them in text segment */
943 evergreen_cs_set_vertex_buffer(rctx, 2, 0,
944 (struct pipe_resource*)rctx->cs_shader_state.shader->code_bo);
945 }
946
947 /**
948 * This function initializes all the compute specific registers that need to
949 * be initialized for each compute command stream. Registers that are common
950 * to both compute and 3D will be initialized at the beginning of each compute
951 * command stream by the start_cs_cmd atom. However, since the SET_CONTEXT_REG
952 * packet requires that the shader type bit be set, we must initialize all
953 * context registers needed for compute in this function. The registers
954 * initialized by the start_cs_cmd atom can be found in evergreen_state.c in the
955 * functions evergreen_init_atom_start_cs or cayman_init_atom_start_cs depending
956 * on the GPU family.
957 */
958 void evergreen_init_atom_start_compute_cs(struct r600_context *rctx)
959 {
960 struct r600_command_buffer *cb = &rctx->start_compute_cs_cmd;
961 int num_threads;
962 int num_stack_entries;
963
964 /* since all required registers are initialized in the
965 * start_compute_cs_cmd atom, we can EMIT_EARLY here.
966 */
967 r600_init_command_buffer(cb, 256);
968 cb->pkt_flags = RADEON_CP_PACKET3_COMPUTE_MODE;
969
970 /* We're setting config registers here. */
971 r600_store_value(cb, PKT3(PKT3_EVENT_WRITE, 0, 0));
972 r600_store_value(cb, EVENT_TYPE(EVENT_TYPE_CS_PARTIAL_FLUSH) | EVENT_INDEX(4));
973
974 switch (rctx->b.family) {
975 case CHIP_CEDAR:
976 default:
977 num_threads = 128;
978 num_stack_entries = 256;
979 break;
980 case CHIP_REDWOOD:
981 num_threads = 128;
982 num_stack_entries = 256;
983 break;
984 case CHIP_JUNIPER:
985 num_threads = 128;
986 num_stack_entries = 512;
987 break;
988 case CHIP_CYPRESS:
989 case CHIP_HEMLOCK:
990 num_threads = 128;
991 num_stack_entries = 512;
992 break;
993 case CHIP_PALM:
994 num_threads = 128;
995 num_stack_entries = 256;
996 break;
997 case CHIP_SUMO:
998 num_threads = 128;
999 num_stack_entries = 256;
1000 break;
1001 case CHIP_SUMO2:
1002 num_threads = 128;
1003 num_stack_entries = 512;
1004 break;
1005 case CHIP_BARTS:
1006 num_threads = 128;
1007 num_stack_entries = 512;
1008 break;
1009 case CHIP_TURKS:
1010 num_threads = 128;
1011 num_stack_entries = 256;
1012 break;
1013 case CHIP_CAICOS:
1014 num_threads = 128;
1015 num_stack_entries = 256;
1016 break;
1017 }
1018
1019 /* The primitive type always needs to be POINTLIST for compute. */
1020 r600_store_config_reg(cb, R_008958_VGT_PRIMITIVE_TYPE,
1021 V_008958_DI_PT_POINTLIST);
1022
1023 if (rctx->b.chip_class < CAYMAN) {
1024
1025 /* These registers control which simds can be used by each stage.
1026 * The default for these registers is 0xffffffff, which means
1027 * all simds are available for each stage. It's possible we may
1028 * want to play around with these in the future, but for now
1029 * the default value is fine.
1030 *
1031 * R_008E20_SQ_STATIC_THREAD_MGMT1
1032 * R_008E24_SQ_STATIC_THREAD_MGMT2
1033 * R_008E28_SQ_STATIC_THREAD_MGMT3
1034 */
1035
1036 /* XXX: We may need to adjust the thread and stack resource
1037 * values for 3D/compute interop */
1038
1039 r600_store_config_reg_seq(cb, R_008C18_SQ_THREAD_RESOURCE_MGMT_1, 5);
1040
1041 /* R_008C18_SQ_THREAD_RESOURCE_MGMT_1
1042 * Set the number of threads used by the PS/VS/GS/ES stage to
1043 * 0.
1044 */
1045 r600_store_value(cb, 0);
1046
1047 /* R_008C1C_SQ_THREAD_RESOURCE_MGMT_2
1048 * Set the number of threads used by the CS (aka LS) stage to
1049 * the maximum number of threads and set the number of threads
1050 * for the HS stage to 0. */
1051 r600_store_value(cb, S_008C1C_NUM_LS_THREADS(num_threads));
1052
1053 /* R_008C20_SQ_STACK_RESOURCE_MGMT_1
1054 * Set the Control Flow stack entries to 0 for PS/VS stages */
1055 r600_store_value(cb, 0);
1056
1057 /* R_008C24_SQ_STACK_RESOURCE_MGMT_2
1058 * Set the Control Flow stack entries to 0 for GS/ES stages */
1059 r600_store_value(cb, 0);
1060
1061 /* R_008C28_SQ_STACK_RESOURCE_MGMT_3
1062 * Set the Contol Flow stack entries to 0 for the HS stage, and
1063 * set it to the maximum value for the CS (aka LS) stage. */
1064 r600_store_value(cb,
1065 S_008C28_NUM_LS_STACK_ENTRIES(num_stack_entries));
1066 }
1067 /* Give the compute shader all the available LDS space.
1068 * NOTE: This only sets the maximum number of dwords that a compute
1069 * shader can allocate. When a shader is executed, we still need to
1070 * allocate the appropriate amount of LDS dwords using the
1071 * CM_R_0288E8_SQ_LDS_ALLOC register.
1072 */
1073 if (rctx->b.chip_class < CAYMAN) {
1074 r600_store_config_reg(cb, R_008E2C_SQ_LDS_RESOURCE_MGMT,
1075 S_008E2C_NUM_PS_LDS(0x0000) | S_008E2C_NUM_LS_LDS(8192));
1076 } else {
1077 r600_store_context_reg(cb, CM_R_0286FC_SPI_LDS_MGMT,
1078 S_0286FC_NUM_PS_LDS(0) |
1079 S_0286FC_NUM_LS_LDS(255)); /* 255 * 32 = 8160 dwords */
1080 }
1081
1082 /* Context Registers */
1083
1084 if (rctx->b.chip_class < CAYMAN) {
1085 /* workaround for hw issues with dyn gpr - must set all limits
1086 * to 240 instead of 0, 0x1e == 240 / 8
1087 */
1088 r600_store_context_reg(cb, R_028838_SQ_DYN_GPR_RESOURCE_LIMIT_1,
1089 S_028838_PS_GPRS(0x1e) |
1090 S_028838_VS_GPRS(0x1e) |
1091 S_028838_GS_GPRS(0x1e) |
1092 S_028838_ES_GPRS(0x1e) |
1093 S_028838_HS_GPRS(0x1e) |
1094 S_028838_LS_GPRS(0x1e));
1095 }
1096
1097 /* XXX: Investigate setting bit 15, which is FAST_COMPUTE_MODE */
1098 r600_store_context_reg(cb, R_028A40_VGT_GS_MODE,
1099 S_028A40_COMPUTE_MODE(1) | S_028A40_PARTIAL_THD_AT_EOI(1));
1100
1101 r600_store_context_reg(cb, R_028B54_VGT_SHADER_STAGES_EN, 2/*CS_ON*/);
1102
1103 r600_store_context_reg(cb, R_0286E8_SPI_COMPUTE_INPUT_CNTL,
1104 S_0286E8_TID_IN_GROUP_ENA(1) |
1105 S_0286E8_TGID_ENA(1) |
1106 S_0286E8_DISABLE_INDEX_PACK(1));
1107
1108 /* The LOOP_CONST registers are an optimizations for loops that allows
1109 * you to store the initial counter, increment value, and maximum
1110 * counter value in a register so that hardware can calculate the
1111 * correct number of iterations for the loop, so that you don't need
1112 * to have the loop counter in your shader code. We don't currently use
1113 * this optimization, so we must keep track of the counter in the
1114 * shader and use a break instruction to exit loops. However, the
1115 * hardware will still uses this register to determine when to exit a
1116 * loop, so we need to initialize the counter to 0, set the increment
1117 * value to 1 and the maximum counter value to the 4095 (0xfff) which
1118 * is the maximum value allowed. This gives us a maximum of 4096
1119 * iterations for our loops, but hopefully our break instruction will
1120 * execute before some time before the 4096th iteration.
1121 */
1122 eg_store_loop_const(cb, R_03A200_SQ_LOOP_CONST_0 + (160 * 4), 0x1000FFF);
1123 }
1124
1125 void evergreen_init_compute_state_functions(struct r600_context *rctx)
1126 {
1127 rctx->b.b.create_compute_state = evergreen_create_compute_state;
1128 rctx->b.b.delete_compute_state = evergreen_delete_compute_state;
1129 rctx->b.b.bind_compute_state = evergreen_bind_compute_state;
1130 // rctx->context.create_sampler_view = evergreen_compute_create_sampler_view;
1131 rctx->b.b.set_compute_resources = evergreen_set_compute_resources;
1132 rctx->b.b.set_global_binding = evergreen_set_global_binding;
1133 rctx->b.b.launch_grid = evergreen_launch_grid;
1134
1135 }
1136
1137 static void *r600_compute_global_transfer_map(struct pipe_context *ctx,
1138 struct pipe_resource *resource,
1139 unsigned level,
1140 unsigned usage,
1141 const struct pipe_box *box,
1142 struct pipe_transfer **ptransfer)
1143 {
1144 struct r600_context *rctx = (struct r600_context*)ctx;
1145 struct compute_memory_pool *pool = rctx->screen->global_pool;
1146 struct r600_resource_global* buffer =
1147 (struct r600_resource_global*)resource;
1148
1149 struct compute_memory_item *item = buffer->chunk;
1150 struct pipe_resource *dst = NULL;
1151 unsigned offset = box->x;
1152
1153 if (is_item_in_pool(item)) {
1154 compute_memory_demote_item(pool, item, ctx);
1155 }
1156 else {
1157 if (item->real_buffer == NULL) {
1158 item->real_buffer =
1159 r600_compute_buffer_alloc_vram(pool->screen, item->size_in_dw * 4);
1160 }
1161 }
1162
1163 dst = (struct pipe_resource*)item->real_buffer;
1164
1165 if (usage & PIPE_TRANSFER_READ)
1166 buffer->chunk->status |= ITEM_MAPPED_FOR_READING;
1167
1168 COMPUTE_DBG(rctx->screen, "* r600_compute_global_transfer_map()\n"
1169 "level = %u, usage = %u, box(x = %u, y = %u, z = %u "
1170 "width = %u, height = %u, depth = %u)\n", level, usage,
1171 box->x, box->y, box->z, box->width, box->height,
1172 box->depth);
1173 COMPUTE_DBG(rctx->screen, "Buffer id = %"PRIi64" offset = "
1174 "%u (box.x)\n", item->id, box->x);
1175
1176
1177 assert(resource->target == PIPE_BUFFER);
1178 assert(resource->bind & PIPE_BIND_GLOBAL);
1179 assert(box->x >= 0);
1180 assert(box->y == 0);
1181 assert(box->z == 0);
1182
1183 ///TODO: do it better, mapping is not possible if the pool is too big
1184 return pipe_buffer_map_range(ctx, dst,
1185 offset, box->width, usage, ptransfer);
1186 }
1187
1188 static void r600_compute_global_transfer_unmap(struct pipe_context *ctx,
1189 struct pipe_transfer *transfer)
1190 {
1191 /* struct r600_resource_global are not real resources, they just map
1192 * to an offset within the compute memory pool. The function
1193 * r600_compute_global_transfer_map() maps the memory pool
1194 * resource rather than the struct r600_resource_global passed to
1195 * it as an argument and then initalizes ptransfer->resource with
1196 * the memory pool resource (via pipe_buffer_map_range).
1197 * When transfer_unmap is called it uses the memory pool's
1198 * vtable which calls r600_buffer_transfer_map() rather than
1199 * this function.
1200 */
1201 assert (!"This function should not be called");
1202 }
1203
1204 static void r600_compute_global_transfer_flush_region(struct pipe_context *ctx,
1205 struct pipe_transfer *transfer,
1206 const struct pipe_box *box)
1207 {
1208 assert(0 && "TODO");
1209 }
1210
1211 static void r600_compute_global_buffer_destroy(struct pipe_screen *screen,
1212 struct pipe_resource *res)
1213 {
1214 struct r600_resource_global* buffer = NULL;
1215 struct r600_screen* rscreen = NULL;
1216
1217 assert(res->target == PIPE_BUFFER);
1218 assert(res->bind & PIPE_BIND_GLOBAL);
1219
1220 buffer = (struct r600_resource_global*)res;
1221 rscreen = (struct r600_screen*)screen;
1222
1223 compute_memory_free(rscreen->global_pool, buffer->chunk->id);
1224
1225 buffer->chunk = NULL;
1226 free(res);
1227 }
1228
1229 static const struct u_resource_vtbl r600_global_buffer_vtbl =
1230 {
1231 u_default_resource_get_handle, /* get_handle */
1232 r600_compute_global_buffer_destroy, /* resource_destroy */
1233 r600_compute_global_transfer_map, /* transfer_map */
1234 r600_compute_global_transfer_flush_region,/* transfer_flush_region */
1235 r600_compute_global_transfer_unmap, /* transfer_unmap */
1236 };
1237
1238 struct pipe_resource *r600_compute_global_buffer_create(struct pipe_screen *screen,
1239 const struct pipe_resource *templ)
1240 {
1241 struct r600_resource_global* result = NULL;
1242 struct r600_screen* rscreen = NULL;
1243 int size_in_dw = 0;
1244
1245 assert(templ->target == PIPE_BUFFER);
1246 assert(templ->bind & PIPE_BIND_GLOBAL);
1247 assert(templ->array_size == 1 || templ->array_size == 0);
1248 assert(templ->depth0 == 1 || templ->depth0 == 0);
1249 assert(templ->height0 == 1 || templ->height0 == 0);
1250
1251 result = (struct r600_resource_global*)
1252 CALLOC(sizeof(struct r600_resource_global), 1);
1253 rscreen = (struct r600_screen*)screen;
1254
1255 COMPUTE_DBG(rscreen, "*** r600_compute_global_buffer_create\n");
1256 COMPUTE_DBG(rscreen, "width = %u array_size = %u\n", templ->width0,
1257 templ->array_size);
1258
1259 result->base.b.vtbl = &r600_global_buffer_vtbl;
1260 result->base.b.b = *templ;
1261 result->base.b.b.screen = screen;
1262 pipe_reference_init(&result->base.b.b.reference, 1);
1263
1264 size_in_dw = (templ->width0+3) / 4;
1265
1266 result->chunk = compute_memory_alloc(rscreen->global_pool, size_in_dw);
1267
1268 if (result->chunk == NULL)
1269 {
1270 free(result);
1271 return NULL;
1272 }
1273
1274 return &result->base.b.b;
1275 }