r600: handle image/buffer sizes correctly.
[mesa.git] / src / gallium / drivers / r600 / evergreen_compute.c
1 /*
2 * Copyright 2011 Adam Rak <adam.rak@streamnovation.com>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * on the rights to use, copy, modify, merge, publish, distribute, sub
8 * license, and/or sell copies of the Software, and to permit persons to whom
9 * the Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Adam Rak <adam.rak@streamnovation.com>
25 */
26
27 #ifdef HAVE_OPENCL
28 #include <gelf.h>
29 #include <libelf.h>
30 #endif
31 #include <stdio.h>
32 #include <errno.h>
33 #include "pipe/p_defines.h"
34 #include "pipe/p_state.h"
35 #include "pipe/p_context.h"
36 #include "util/u_blitter.h"
37 #include "util/list.h"
38 #include "util/u_transfer.h"
39 #include "util/u_surface.h"
40 #include "util/u_pack_color.h"
41 #include "util/u_memory.h"
42 #include "util/u_inlines.h"
43 #include "util/u_framebuffer.h"
44 #include "tgsi/tgsi_parse.h"
45 #include "pipebuffer/pb_buffer.h"
46 #include "evergreend.h"
47 #include "r600_shader.h"
48 #include "r600_pipe.h"
49 #include "r600_formats.h"
50 #include "evergreen_compute.h"
51 #include "evergreen_compute_internal.h"
52 #include "compute_memory_pool.h"
53 #include "sb/sb_public.h"
54 #include <inttypes.h>
55
56 /**
57 RAT0 is for global binding write
58 VTX1 is for global binding read
59
60 for wrting images RAT1...
61 for reading images TEX2...
62 TEX2-RAT1 is paired
63
64 TEX2... consumes the same fetch resources, that VTX2... would consume
65
66 CONST0 and VTX0 is for parameters
67 CONST0 is binding smaller input parameter buffer, and for constant indexing,
68 also constant cached
69 VTX0 is for indirect/non-constant indexing, or if the input is bigger than
70 the constant cache can handle
71
72 RAT-s are limited to 12, so we can only bind at most 11 texture for writing
73 because we reserve RAT0 for global bindings. With byteaddressing enabled,
74 we should reserve another one too.=> 10 image binding for writing max.
75
76 from Nvidia OpenCL:
77 CL_DEVICE_MAX_READ_IMAGE_ARGS: 128
78 CL_DEVICE_MAX_WRITE_IMAGE_ARGS: 8
79
80 so 10 for writing is enough. 176 is the max for reading according to the docs
81
82 writable images should be listed first < 10, so their id corresponds to RAT(id+1)
83 writable images will consume TEX slots, VTX slots too because of linear indexing
84
85 */
86
87 struct r600_resource *r600_compute_buffer_alloc_vram(struct r600_screen *screen,
88 unsigned size)
89 {
90 struct pipe_resource *buffer = NULL;
91 assert(size);
92
93 buffer = pipe_buffer_create((struct pipe_screen*) screen,
94 0, PIPE_USAGE_IMMUTABLE, size);
95
96 return (struct r600_resource *)buffer;
97 }
98
99
100 static void evergreen_set_rat(struct r600_pipe_compute *pipe,
101 unsigned id,
102 struct r600_resource *bo,
103 int start,
104 int size)
105 {
106 struct pipe_surface rat_templ;
107 struct r600_surface *surf = NULL;
108 struct r600_context *rctx = NULL;
109
110 assert(id < 12);
111 assert((size & 3) == 0);
112 assert((start & 0xFF) == 0);
113
114 rctx = pipe->ctx;
115
116 COMPUTE_DBG(rctx->screen, "bind rat: %i \n", id);
117
118 /* Create the RAT surface */
119 memset(&rat_templ, 0, sizeof(rat_templ));
120 rat_templ.format = PIPE_FORMAT_R32_UINT;
121 rat_templ.u.tex.level = 0;
122 rat_templ.u.tex.first_layer = 0;
123 rat_templ.u.tex.last_layer = 0;
124
125 /* Add the RAT the list of color buffers */
126 pipe->ctx->framebuffer.state.cbufs[id] = pipe->ctx->b.b.create_surface(
127 (struct pipe_context *)pipe->ctx,
128 (struct pipe_resource *)bo, &rat_templ);
129
130 /* Update the number of color buffers */
131 pipe->ctx->framebuffer.state.nr_cbufs =
132 MAX2(id + 1, pipe->ctx->framebuffer.state.nr_cbufs);
133
134 /* Update the cb_target_mask
135 * XXX: I think this is a potential spot for bugs once we start doing
136 * GL interop. cb_target_mask may be modified in the 3D sections
137 * of this driver. */
138 pipe->ctx->compute_cb_target_mask |= (0xf << (id * 4));
139
140 surf = (struct r600_surface*)pipe->ctx->framebuffer.state.cbufs[id];
141 evergreen_init_color_surface_rat(rctx, surf);
142 }
143
144 static void evergreen_cs_set_vertex_buffer(struct r600_context *rctx,
145 unsigned vb_index,
146 unsigned offset,
147 struct pipe_resource *buffer)
148 {
149 struct r600_vertexbuf_state *state = &rctx->cs_vertex_buffer_state;
150 struct pipe_vertex_buffer *vb = &state->vb[vb_index];
151 vb->stride = 1;
152 vb->buffer_offset = offset;
153 vb->buffer.resource = buffer;
154 vb->is_user_buffer = false;
155
156 /* The vertex instructions in the compute shaders use the texture cache,
157 * so we need to invalidate it. */
158 rctx->b.flags |= R600_CONTEXT_INV_VERTEX_CACHE;
159 state->enabled_mask |= 1 << vb_index;
160 state->dirty_mask |= 1 << vb_index;
161 r600_mark_atom_dirty(rctx, &state->atom);
162 }
163
164 static void evergreen_cs_set_constant_buffer(struct r600_context *rctx,
165 unsigned cb_index,
166 unsigned offset,
167 unsigned size,
168 struct pipe_resource *buffer)
169 {
170 struct pipe_constant_buffer cb;
171 cb.buffer_size = size;
172 cb.buffer_offset = offset;
173 cb.buffer = buffer;
174 cb.user_buffer = NULL;
175
176 rctx->b.b.set_constant_buffer(&rctx->b.b, PIPE_SHADER_COMPUTE, cb_index, &cb);
177 }
178
179 /* We need to define these R600 registers here, because we can't include
180 * evergreend.h and r600d.h.
181 */
182 #define R_028868_SQ_PGM_RESOURCES_VS 0x028868
183 #define R_028850_SQ_PGM_RESOURCES_PS 0x028850
184
185 #ifdef HAVE_OPENCL
186 static void parse_symbol_table(Elf_Data *symbol_table_data,
187 const GElf_Shdr *symbol_table_header,
188 struct ac_shader_binary *binary)
189 {
190 GElf_Sym symbol;
191 unsigned i = 0;
192 unsigned symbol_count =
193 symbol_table_header->sh_size / symbol_table_header->sh_entsize;
194
195 /* We are over allocating this list, because symbol_count gives the
196 * total number of symbols, and we will only be filling the list
197 * with offsets of global symbols. The memory savings from
198 * allocating the correct size of this list will be small, and
199 * I don't think it is worth the cost of pre-computing the number
200 * of global symbols.
201 */
202 binary->global_symbol_offsets = CALLOC(symbol_count, sizeof(uint64_t));
203
204 while (gelf_getsym(symbol_table_data, i++, &symbol)) {
205 unsigned i;
206 if (GELF_ST_BIND(symbol.st_info) != STB_GLOBAL ||
207 symbol.st_shndx == 0 /* Undefined symbol */) {
208 continue;
209 }
210
211 binary->global_symbol_offsets[binary->global_symbol_count] =
212 symbol.st_value;
213
214 /* Sort the list using bubble sort. This list will usually
215 * be small. */
216 for (i = binary->global_symbol_count; i > 0; --i) {
217 uint64_t lhs = binary->global_symbol_offsets[i - 1];
218 uint64_t rhs = binary->global_symbol_offsets[i];
219 if (lhs < rhs) {
220 break;
221 }
222 binary->global_symbol_offsets[i] = lhs;
223 binary->global_symbol_offsets[i - 1] = rhs;
224 }
225 ++binary->global_symbol_count;
226 }
227 }
228
229
230 static void parse_relocs(Elf *elf, Elf_Data *relocs, Elf_Data *symbols,
231 unsigned symbol_sh_link,
232 struct ac_shader_binary *binary)
233 {
234 unsigned i;
235
236 if (!relocs || !symbols || !binary->reloc_count) {
237 return;
238 }
239 binary->relocs = CALLOC(binary->reloc_count,
240 sizeof(struct ac_shader_reloc));
241 for (i = 0; i < binary->reloc_count; i++) {
242 GElf_Sym symbol;
243 GElf_Rel rel;
244 char *symbol_name;
245 struct ac_shader_reloc *reloc = &binary->relocs[i];
246
247 gelf_getrel(relocs, i, &rel);
248 gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &symbol);
249 symbol_name = elf_strptr(elf, symbol_sh_link, symbol.st_name);
250
251 reloc->offset = rel.r_offset;
252 strncpy(reloc->name, symbol_name, sizeof(reloc->name)-1);
253 reloc->name[sizeof(reloc->name)-1] = 0;
254 }
255 }
256
257 static void r600_elf_read(const char *elf_data, unsigned elf_size,
258 struct ac_shader_binary *binary)
259 {
260 char *elf_buffer;
261 Elf *elf;
262 Elf_Scn *section = NULL;
263 Elf_Data *symbols = NULL, *relocs = NULL;
264 size_t section_str_index;
265 unsigned symbol_sh_link = 0;
266
267 /* One of the libelf implementations
268 * (http://www.mr511.de/software/english.htm) requires calling
269 * elf_version() before elf_memory().
270 */
271 elf_version(EV_CURRENT);
272 elf_buffer = MALLOC(elf_size);
273 memcpy(elf_buffer, elf_data, elf_size);
274
275 elf = elf_memory(elf_buffer, elf_size);
276
277 elf_getshdrstrndx(elf, &section_str_index);
278
279 while ((section = elf_nextscn(elf, section))) {
280 const char *name;
281 Elf_Data *section_data = NULL;
282 GElf_Shdr section_header;
283 if (gelf_getshdr(section, &section_header) != &section_header) {
284 fprintf(stderr, "Failed to read ELF section header\n");
285 return;
286 }
287 name = elf_strptr(elf, section_str_index, section_header.sh_name);
288 if (!strcmp(name, ".text")) {
289 section_data = elf_getdata(section, section_data);
290 binary->code_size = section_data->d_size;
291 binary->code = MALLOC(binary->code_size * sizeof(unsigned char));
292 memcpy(binary->code, section_data->d_buf, binary->code_size);
293 } else if (!strcmp(name, ".AMDGPU.config")) {
294 section_data = elf_getdata(section, section_data);
295 binary->config_size = section_data->d_size;
296 binary->config = MALLOC(binary->config_size * sizeof(unsigned char));
297 memcpy(binary->config, section_data->d_buf, binary->config_size);
298 } else if (!strcmp(name, ".AMDGPU.disasm")) {
299 /* Always read disassembly if it's available. */
300 section_data = elf_getdata(section, section_data);
301 binary->disasm_string = strndup(section_data->d_buf,
302 section_data->d_size);
303 } else if (!strncmp(name, ".rodata", 7)) {
304 section_data = elf_getdata(section, section_data);
305 binary->rodata_size = section_data->d_size;
306 binary->rodata = MALLOC(binary->rodata_size * sizeof(unsigned char));
307 memcpy(binary->rodata, section_data->d_buf, binary->rodata_size);
308 } else if (!strncmp(name, ".symtab", 7)) {
309 symbols = elf_getdata(section, section_data);
310 symbol_sh_link = section_header.sh_link;
311 parse_symbol_table(symbols, &section_header, binary);
312 } else if (!strcmp(name, ".rel.text")) {
313 relocs = elf_getdata(section, section_data);
314 binary->reloc_count = section_header.sh_size /
315 section_header.sh_entsize;
316 }
317 }
318
319 parse_relocs(elf, relocs, symbols, symbol_sh_link, binary);
320
321 if (elf){
322 elf_end(elf);
323 }
324 FREE(elf_buffer);
325
326 /* Cache the config size per symbol */
327 if (binary->global_symbol_count) {
328 binary->config_size_per_symbol =
329 binary->config_size / binary->global_symbol_count;
330 } else {
331 binary->global_symbol_count = 1;
332 binary->config_size_per_symbol = binary->config_size;
333 }
334 }
335
336 static const unsigned char *r600_shader_binary_config_start(
337 const struct ac_shader_binary *binary,
338 uint64_t symbol_offset)
339 {
340 unsigned i;
341 for (i = 0; i < binary->global_symbol_count; ++i) {
342 if (binary->global_symbol_offsets[i] == symbol_offset) {
343 unsigned offset = i * binary->config_size_per_symbol;
344 return binary->config + offset;
345 }
346 }
347 return binary->config;
348 }
349
350 static void r600_shader_binary_read_config(const struct ac_shader_binary *binary,
351 struct r600_bytecode *bc,
352 uint64_t symbol_offset,
353 boolean *use_kill)
354 {
355 unsigned i;
356 const unsigned char *config =
357 r600_shader_binary_config_start(binary, symbol_offset);
358
359 for (i = 0; i < binary->config_size_per_symbol; i+= 8) {
360 unsigned reg =
361 util_le32_to_cpu(*(uint32_t*)(config + i));
362 unsigned value =
363 util_le32_to_cpu(*(uint32_t*)(config + i + 4));
364 switch (reg) {
365 /* R600 / R700 */
366 case R_028850_SQ_PGM_RESOURCES_PS:
367 case R_028868_SQ_PGM_RESOURCES_VS:
368 /* Evergreen / Northern Islands */
369 case R_028844_SQ_PGM_RESOURCES_PS:
370 case R_028860_SQ_PGM_RESOURCES_VS:
371 case R_0288D4_SQ_PGM_RESOURCES_LS:
372 bc->ngpr = MAX2(bc->ngpr, G_028844_NUM_GPRS(value));
373 bc->nstack = MAX2(bc->nstack, G_028844_STACK_SIZE(value));
374 break;
375 case R_02880C_DB_SHADER_CONTROL:
376 *use_kill = G_02880C_KILL_ENABLE(value);
377 break;
378 case R_0288E8_SQ_LDS_ALLOC:
379 bc->nlds_dw = value;
380 break;
381 }
382 }
383 }
384
385 static unsigned r600_create_shader(struct r600_bytecode *bc,
386 const struct ac_shader_binary *binary,
387 boolean *use_kill)
388
389 {
390 assert(binary->code_size % 4 == 0);
391 bc->bytecode = CALLOC(1, binary->code_size);
392 memcpy(bc->bytecode, binary->code, binary->code_size);
393 bc->ndw = binary->code_size / 4;
394
395 r600_shader_binary_read_config(binary, bc, 0, use_kill);
396 return 0;
397 }
398
399 #endif
400
401 static void r600_destroy_shader(struct r600_bytecode *bc)
402 {
403 FREE(bc->bytecode);
404 }
405
406 static void *evergreen_create_compute_state(struct pipe_context *ctx,
407 const struct pipe_compute_state *cso)
408 {
409 struct r600_context *rctx = (struct r600_context *)ctx;
410 struct r600_pipe_compute *shader = CALLOC_STRUCT(r600_pipe_compute);
411 #ifdef HAVE_OPENCL
412 const struct pipe_llvm_program_header *header;
413 const char *code;
414 void *p;
415 boolean use_kill;
416 #endif
417
418 shader->ctx = rctx;
419 shader->local_size = cso->req_local_mem;
420 shader->private_size = cso->req_private_mem;
421 shader->input_size = cso->req_input_mem;
422
423 shader->ir_type = cso->ir_type;
424
425 if (shader->ir_type == PIPE_SHADER_IR_TGSI) {
426 shader->sel = r600_create_shader_state_tokens(ctx, cso->prog, PIPE_SHADER_COMPUTE);
427 return shader;
428 }
429 #ifdef HAVE_OPENCL
430 COMPUTE_DBG(rctx->screen, "*** evergreen_create_compute_state\n");
431 header = cso->prog;
432 code = cso->prog + sizeof(struct pipe_llvm_program_header);
433 radeon_shader_binary_init(&shader->binary);
434 r600_elf_read(code, header->num_bytes, &shader->binary);
435 r600_create_shader(&shader->bc, &shader->binary, &use_kill);
436
437 /* Upload code + ROdata */
438 shader->code_bo = r600_compute_buffer_alloc_vram(rctx->screen,
439 shader->bc.ndw * 4);
440 p = r600_buffer_map_sync_with_rings(&rctx->b, shader->code_bo, PIPE_TRANSFER_WRITE);
441 //TODO: use util_memcpy_cpu_to_le32 ?
442 memcpy(p, shader->bc.bytecode, shader->bc.ndw * 4);
443 rctx->b.ws->buffer_unmap(shader->code_bo->buf);
444 #endif
445
446 return shader;
447 }
448
449 static void evergreen_delete_compute_state(struct pipe_context *ctx, void *state)
450 {
451 struct r600_context *rctx = (struct r600_context *)ctx;
452 struct r600_pipe_compute *shader = state;
453
454 COMPUTE_DBG(rctx->screen, "*** evergreen_delete_compute_state\n");
455
456 if (!shader)
457 return;
458
459 if (shader->ir_type == PIPE_SHADER_IR_TGSI) {
460 r600_delete_shader_selector(ctx, shader->sel);
461 } else {
462 #ifdef HAVE_OPENCL
463 radeon_shader_binary_clean(&shader->binary);
464 #endif
465 r600_destroy_shader(&shader->bc);
466
467 /* TODO destroy shader->code_bo, shader->const_bo
468 * we'll need something like r600_buffer_free */
469 }
470 FREE(shader);
471 }
472
473 static void evergreen_bind_compute_state(struct pipe_context *ctx, void *state)
474 {
475 struct r600_context *rctx = (struct r600_context *)ctx;
476 struct r600_pipe_compute *cstate = (struct r600_pipe_compute *)state;
477 COMPUTE_DBG(rctx->screen, "*** evergreen_bind_compute_state\n");
478
479 if (!state) {
480 rctx->cs_shader_state.shader = (struct r600_pipe_compute *)state;
481 return;
482 }
483
484 if (cstate->ir_type == PIPE_SHADER_IR_TGSI) {
485 bool compute_dirty;
486
487 r600_shader_select(ctx, cstate->sel, &compute_dirty);
488 }
489
490 rctx->cs_shader_state.shader = (struct r600_pipe_compute *)state;
491 }
492
493 /* The kernel parameters are stored a vtx buffer (ID=0), besides the explicit
494 * kernel parameters there are implicit parameters that need to be stored
495 * in the vertex buffer as well. Here is how these parameters are organized in
496 * the buffer:
497 *
498 * DWORDS 0-2: Number of work groups in each dimension (x,y,z)
499 * DWORDS 3-5: Number of global work items in each dimension (x,y,z)
500 * DWORDS 6-8: Number of work items within each work group in each dimension
501 * (x,y,z)
502 * DWORDS 9+ : Kernel parameters
503 */
504 static void evergreen_compute_upload_input(struct pipe_context *ctx,
505 const struct pipe_grid_info *info)
506 {
507 struct r600_context *rctx = (struct r600_context *)ctx;
508 struct r600_pipe_compute *shader = rctx->cs_shader_state.shader;
509 unsigned i;
510 /* We need to reserve 9 dwords (36 bytes) for implicit kernel
511 * parameters.
512 */
513 unsigned input_size;
514 uint32_t *num_work_groups_start;
515 uint32_t *global_size_start;
516 uint32_t *local_size_start;
517 uint32_t *kernel_parameters_start;
518 struct pipe_box box;
519 struct pipe_transfer *transfer = NULL;
520
521 if (!shader)
522 return;
523 if (shader->input_size == 0) {
524 return;
525 }
526 input_size = shader->input_size + 36;
527 if (!shader->kernel_param) {
528 /* Add space for the grid dimensions */
529 shader->kernel_param = (struct r600_resource *)
530 pipe_buffer_create(ctx->screen, 0,
531 PIPE_USAGE_IMMUTABLE, input_size);
532 }
533
534 u_box_1d(0, input_size, &box);
535 num_work_groups_start = ctx->transfer_map(ctx,
536 (struct pipe_resource*)shader->kernel_param,
537 0, PIPE_TRANSFER_WRITE | PIPE_TRANSFER_DISCARD_RANGE,
538 &box, &transfer);
539 global_size_start = num_work_groups_start + (3 * (sizeof(uint) /4));
540 local_size_start = global_size_start + (3 * (sizeof(uint)) / 4);
541 kernel_parameters_start = local_size_start + (3 * (sizeof(uint)) / 4);
542
543 /* Copy the work group size */
544 memcpy(num_work_groups_start, info->grid, 3 * sizeof(uint));
545
546 /* Copy the global size */
547 for (i = 0; i < 3; i++) {
548 global_size_start[i] = info->grid[i] * info->block[i];
549 }
550
551 /* Copy the local dimensions */
552 memcpy(local_size_start, info->block, 3 * sizeof(uint));
553
554 /* Copy the kernel inputs */
555 memcpy(kernel_parameters_start, info->input, shader->input_size);
556
557 for (i = 0; i < (input_size / 4); i++) {
558 COMPUTE_DBG(rctx->screen, "input %i : %u\n", i,
559 ((unsigned*)num_work_groups_start)[i]);
560 }
561
562 ctx->transfer_unmap(ctx, transfer);
563
564 /* ID=0 and ID=3 are reserved for the parameters.
565 * LLVM will preferably use ID=0, but it does not work for dynamic
566 * indices. */
567 evergreen_cs_set_vertex_buffer(rctx, 3, 0,
568 (struct pipe_resource*)shader->kernel_param);
569 evergreen_cs_set_constant_buffer(rctx, 0, 0, input_size,
570 (struct pipe_resource*)shader->kernel_param);
571 }
572
573 static void evergreen_emit_dispatch(struct r600_context *rctx,
574 const struct pipe_grid_info *info)
575 {
576 int i;
577 struct radeon_winsys_cs *cs = rctx->b.gfx.cs;
578 struct r600_pipe_compute *shader = rctx->cs_shader_state.shader;
579 unsigned num_waves;
580 unsigned num_pipes = rctx->screen->b.info.r600_max_quad_pipes;
581 unsigned wave_divisor = (16 * num_pipes);
582 int group_size = 1;
583 int grid_size = 1;
584 unsigned lds_size = shader->local_size / 4;
585
586 if (shader->ir_type != PIPE_SHADER_IR_TGSI)
587 lds_size += shader->bc.nlds_dw;
588
589 /* Calculate group_size/grid_size */
590 for (i = 0; i < 3; i++) {
591 group_size *= info->block[i];
592 }
593
594 for (i = 0; i < 3; i++) {
595 grid_size *= info->grid[i];
596 }
597
598 /* num_waves = ceil((tg_size.x * tg_size.y, tg_size.z) / (16 * num_pipes)) */
599 num_waves = (info->block[0] * info->block[1] * info->block[2] +
600 wave_divisor - 1) / wave_divisor;
601
602 COMPUTE_DBG(rctx->screen, "Using %u pipes, "
603 "%u wavefronts per thread block, "
604 "allocating %u dwords lds.\n",
605 num_pipes, num_waves, lds_size);
606
607 radeon_set_config_reg(cs, R_008970_VGT_NUM_INDICES, group_size);
608
609 radeon_set_config_reg_seq(cs, R_00899C_VGT_COMPUTE_START_X, 3);
610 radeon_emit(cs, 0); /* R_00899C_VGT_COMPUTE_START_X */
611 radeon_emit(cs, 0); /* R_0089A0_VGT_COMPUTE_START_Y */
612 radeon_emit(cs, 0); /* R_0089A4_VGT_COMPUTE_START_Z */
613
614 radeon_set_config_reg(cs, R_0089AC_VGT_COMPUTE_THREAD_GROUP_SIZE,
615 group_size);
616
617 radeon_compute_set_context_reg_seq(cs, R_0286EC_SPI_COMPUTE_NUM_THREAD_X, 3);
618 radeon_emit(cs, info->block[0]); /* R_0286EC_SPI_COMPUTE_NUM_THREAD_X */
619 radeon_emit(cs, info->block[1]); /* R_0286F0_SPI_COMPUTE_NUM_THREAD_Y */
620 radeon_emit(cs, info->block[2]); /* R_0286F4_SPI_COMPUTE_NUM_THREAD_Z */
621
622 if (rctx->b.chip_class < CAYMAN) {
623 assert(lds_size <= 8192);
624 } else {
625 /* Cayman appears to have a slightly smaller limit, see the
626 * value of CM_R_0286FC_SPI_LDS_MGMT.NUM_LS_LDS */
627 assert(lds_size <= 8160);
628 }
629
630 radeon_compute_set_context_reg(cs, R_0288E8_SQ_LDS_ALLOC,
631 lds_size | (num_waves << 14));
632
633 /* Dispatch packet */
634 radeon_emit(cs, PKT3C(PKT3_DISPATCH_DIRECT, 3, 0));
635 radeon_emit(cs, info->grid[0]);
636 radeon_emit(cs, info->grid[1]);
637 radeon_emit(cs, info->grid[2]);
638 /* VGT_DISPATCH_INITIATOR = COMPUTE_SHADER_EN */
639 radeon_emit(cs, 1);
640
641 if (rctx->is_debug)
642 eg_trace_emit(rctx);
643 }
644
645 static void compute_setup_cbs(struct r600_context *rctx)
646 {
647 struct radeon_winsys_cs *cs = rctx->b.gfx.cs;
648 unsigned i;
649
650 /* Emit colorbuffers. */
651 /* XXX support more than 8 colorbuffers (the offsets are not a multiple of 0x3C for CB8-11) */
652 for (i = 0; i < 8 && i < rctx->framebuffer.state.nr_cbufs; i++) {
653 struct r600_surface *cb = (struct r600_surface*)rctx->framebuffer.state.cbufs[i];
654 unsigned reloc = radeon_add_to_buffer_list(&rctx->b, &rctx->b.gfx,
655 (struct r600_resource*)cb->base.texture,
656 RADEON_USAGE_READWRITE,
657 RADEON_PRIO_SHADER_RW_BUFFER);
658
659 radeon_compute_set_context_reg_seq(cs, R_028C60_CB_COLOR0_BASE + i * 0x3C, 7);
660 radeon_emit(cs, cb->cb_color_base); /* R_028C60_CB_COLOR0_BASE */
661 radeon_emit(cs, cb->cb_color_pitch); /* R_028C64_CB_COLOR0_PITCH */
662 radeon_emit(cs, cb->cb_color_slice); /* R_028C68_CB_COLOR0_SLICE */
663 radeon_emit(cs, cb->cb_color_view); /* R_028C6C_CB_COLOR0_VIEW */
664 radeon_emit(cs, cb->cb_color_info); /* R_028C70_CB_COLOR0_INFO */
665 radeon_emit(cs, cb->cb_color_attrib); /* R_028C74_CB_COLOR0_ATTRIB */
666 radeon_emit(cs, cb->cb_color_dim); /* R_028C78_CB_COLOR0_DIM */
667
668 radeon_emit(cs, PKT3(PKT3_NOP, 0, 0)); /* R_028C60_CB_COLOR0_BASE */
669 radeon_emit(cs, reloc);
670
671 radeon_emit(cs, PKT3(PKT3_NOP, 0, 0)); /* R_028C74_CB_COLOR0_ATTRIB */
672 radeon_emit(cs, reloc);
673 }
674 for (; i < 8 ; i++)
675 radeon_compute_set_context_reg(cs, R_028C70_CB_COLOR0_INFO + i * 0x3C,
676 S_028C70_FORMAT(V_028C70_COLOR_INVALID));
677 for (; i < 12; i++)
678 radeon_compute_set_context_reg(cs, R_028E50_CB_COLOR8_INFO + (i - 8) * 0x1C,
679 S_028C70_FORMAT(V_028C70_COLOR_INVALID));
680
681 /* Set CB_TARGET_MASK XXX: Use cb_misc_state */
682 radeon_compute_set_context_reg(cs, R_028238_CB_TARGET_MASK,
683 rctx->compute_cb_target_mask);
684 }
685
686 static void compute_emit_cs(struct r600_context *rctx,
687 const struct pipe_grid_info *info)
688 {
689 struct radeon_winsys_cs *cs = rctx->b.gfx.cs;
690 bool compute_dirty = false;
691 struct r600_pipe_shader *current;
692 struct r600_shader_atomic combined_atomics[8];
693 uint8_t atomic_used_mask;
694
695 /* make sure that the gfx ring is only one active */
696 if (radeon_emitted(rctx->b.dma.cs, 0)) {
697 rctx->b.dma.flush(rctx, PIPE_FLUSH_ASYNC, NULL);
698 }
699
700 r600_update_compressed_resource_state(rctx, true);
701
702 r600_need_cs_space(rctx, 0, true);
703 if (rctx->cs_shader_state.shader->ir_type == PIPE_SHADER_IR_TGSI) {
704 r600_shader_select(&rctx->b.b, rctx->cs_shader_state.shader->sel, &compute_dirty);
705 current = rctx->cs_shader_state.shader->sel->current;
706 if (compute_dirty) {
707 rctx->cs_shader_state.atom.num_dw = current->command_buffer.num_dw;
708 r600_context_add_resource_size(&rctx->b.b, (struct pipe_resource *)current->bo);
709 r600_set_atom_dirty(rctx, &rctx->cs_shader_state.atom, true);
710 }
711
712 bool need_buf_const = current->shader.uses_tex_buffers ||
713 current->shader.has_txq_cube_array_z_comp;
714
715 if (need_buf_const) {
716 eg_setup_buffer_constants(rctx, PIPE_SHADER_COMPUTE);
717 r600_update_driver_const_buffers(rctx, true);
718 }
719 if (evergreen_emit_atomic_buffer_setup(rctx, current, combined_atomics, &atomic_used_mask)) {
720 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
721 radeon_emit(cs, EVENT_TYPE(EVENT_TYPE_CS_PARTIAL_FLUSH) | EVENT_INDEX(4));
722 }
723 }
724
725 /* Initialize all the compute-related registers.
726 *
727 * See evergreen_init_atom_start_compute_cs() in this file for the list
728 * of registers initialized by the start_compute_cs_cmd atom.
729 */
730 r600_emit_command_buffer(cs, &rctx->start_compute_cs_cmd);
731
732 /* emit config state */
733 if (rctx->b.chip_class == EVERGREEN) {
734 if (rctx->cs_shader_state.shader->ir_type == PIPE_SHADER_IR_TGSI) {
735 radeon_set_config_reg_seq(cs, R_008C04_SQ_GPR_RESOURCE_MGMT_1, 3);
736 radeon_emit(cs, S_008C04_NUM_CLAUSE_TEMP_GPRS(rctx->r6xx_num_clause_temp_gprs));
737 radeon_emit(cs, 0);
738 radeon_emit(cs, 0);
739 radeon_set_config_reg(cs, R_008D8C_SQ_DYN_GPR_CNTL_PS_FLUSH_REQ, (1 << 8));
740 } else
741 r600_emit_atom(rctx, &rctx->config_state.atom);
742 }
743
744 rctx->b.flags |= R600_CONTEXT_WAIT_3D_IDLE | R600_CONTEXT_FLUSH_AND_INV;
745 r600_flush_emit(rctx);
746
747 if (rctx->cs_shader_state.shader->ir_type != PIPE_SHADER_IR_TGSI) {
748
749 compute_setup_cbs(rctx);
750
751 /* Emit vertex buffer state */
752 rctx->cs_vertex_buffer_state.atom.num_dw = 12 * util_bitcount(rctx->cs_vertex_buffer_state.dirty_mask);
753 r600_emit_atom(rctx, &rctx->cs_vertex_buffer_state.atom);
754 } else {
755 uint32_t rat_mask;
756
757 rat_mask = ((1ULL << (((unsigned)rctx->cb_misc_state.nr_image_rats + rctx->cb_misc_state.nr_buffer_rats) * 4)) - 1);
758 radeon_compute_set_context_reg(cs, R_028238_CB_TARGET_MASK,
759 rat_mask);
760 }
761
762 /* Emit constant buffer state */
763 r600_emit_atom(rctx, &rctx->constbuf_state[PIPE_SHADER_COMPUTE].atom);
764
765 /* Emit sampler state */
766 r600_emit_atom(rctx, &rctx->samplers[PIPE_SHADER_COMPUTE].states.atom);
767
768 /* Emit sampler view (texture resource) state */
769 r600_emit_atom(rctx, &rctx->samplers[PIPE_SHADER_COMPUTE].views.atom);
770
771 /* Emit images state */
772 r600_emit_atom(rctx, &rctx->compute_images.atom);
773
774 /* Emit buffers state */
775 r600_emit_atom(rctx, &rctx->compute_buffers.atom);
776
777 /* Emit shader state */
778 r600_emit_atom(rctx, &rctx->cs_shader_state.atom);
779
780 /* Emit dispatch state and dispatch packet */
781 evergreen_emit_dispatch(rctx, info);
782
783 /* XXX evergreen_flush_emit() hardcodes the CP_COHER_SIZE to 0xffffffff
784 */
785 rctx->b.flags |= R600_CONTEXT_INV_CONST_CACHE |
786 R600_CONTEXT_INV_VERTEX_CACHE |
787 R600_CONTEXT_INV_TEX_CACHE;
788 r600_flush_emit(rctx);
789 rctx->b.flags = 0;
790
791 if (rctx->b.chip_class >= CAYMAN) {
792 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
793 radeon_emit(cs, EVENT_TYPE(EVENT_TYPE_CS_PARTIAL_FLUSH) | EVENT_INDEX(4));
794 /* DEALLOC_STATE prevents the GPU from hanging when a
795 * SURFACE_SYNC packet is emitted some time after a DISPATCH_DIRECT
796 * with any of the CB*_DEST_BASE_ENA or DB_DEST_BASE_ENA bits set.
797 */
798 radeon_emit(cs, PKT3C(PKT3_DEALLOC_STATE, 0, 0));
799 radeon_emit(cs, 0);
800 }
801 if (rctx->cs_shader_state.shader->ir_type == PIPE_SHADER_IR_TGSI)
802 evergreen_emit_atomic_buffer_save(rctx, true, combined_atomics, &atomic_used_mask);
803
804 #if 0
805 COMPUTE_DBG(rctx->screen, "cdw: %i\n", cs->cdw);
806 for (i = 0; i < cs->cdw; i++) {
807 COMPUTE_DBG(rctx->screen, "%4i : 0x%08X\n", i, cs->buf[i]);
808 }
809 #endif
810
811 }
812
813
814 /**
815 * Emit function for r600_cs_shader_state atom
816 */
817 void evergreen_emit_cs_shader(struct r600_context *rctx,
818 struct r600_atom *atom)
819 {
820 struct r600_cs_shader_state *state =
821 (struct r600_cs_shader_state*)atom;
822 struct r600_pipe_compute *shader = state->shader;
823 struct radeon_winsys_cs *cs = rctx->b.gfx.cs;
824 uint64_t va;
825 struct r600_resource *code_bo;
826 unsigned ngpr, nstack;
827
828 if (shader->ir_type == PIPE_SHADER_IR_TGSI) {
829 code_bo = shader->sel->current->bo;
830 va = shader->sel->current->bo->gpu_address;
831 ngpr = shader->sel->current->shader.bc.ngpr;
832 nstack = shader->sel->current->shader.bc.nstack;
833 } else {
834 code_bo = shader->code_bo;
835 va = shader->code_bo->gpu_address + state->pc;
836 ngpr = shader->bc.ngpr;
837 nstack = shader->bc.nstack;
838 }
839
840 radeon_compute_set_context_reg_seq(cs, R_0288D0_SQ_PGM_START_LS, 3);
841 radeon_emit(cs, va >> 8); /* R_0288D0_SQ_PGM_START_LS */
842 radeon_emit(cs, /* R_0288D4_SQ_PGM_RESOURCES_LS */
843 S_0288D4_NUM_GPRS(ngpr) |
844 S_0288D4_DX10_CLAMP(1) |
845 S_0288D4_STACK_SIZE(nstack));
846 radeon_emit(cs, 0); /* R_0288D8_SQ_PGM_RESOURCES_LS_2 */
847
848 radeon_emit(cs, PKT3C(PKT3_NOP, 0, 0));
849 radeon_emit(cs, radeon_add_to_buffer_list(&rctx->b, &rctx->b.gfx,
850 code_bo, RADEON_USAGE_READ,
851 RADEON_PRIO_SHADER_BINARY));
852 }
853
854 static void evergreen_launch_grid(struct pipe_context *ctx,
855 const struct pipe_grid_info *info)
856 {
857 struct r600_context *rctx = (struct r600_context *)ctx;
858 #ifdef HAVE_OPENCL
859 struct r600_pipe_compute *shader = rctx->cs_shader_state.shader;
860 boolean use_kill;
861
862 if (shader->ir_type != PIPE_SHADER_IR_TGSI) {
863 rctx->cs_shader_state.pc = info->pc;
864 /* Get the config information for this kernel. */
865 r600_shader_binary_read_config(&shader->binary, &shader->bc,
866 info->pc, &use_kill);
867 } else {
868 use_kill = false;
869 rctx->cs_shader_state.pc = 0;
870 }
871 #endif
872
873 COMPUTE_DBG(rctx->screen, "*** evergreen_launch_grid: pc = %u\n", info->pc);
874
875
876 evergreen_compute_upload_input(ctx, info);
877 compute_emit_cs(rctx, info);
878 }
879
880 static void evergreen_set_compute_resources(struct pipe_context *ctx,
881 unsigned start, unsigned count,
882 struct pipe_surface **surfaces)
883 {
884 struct r600_context *rctx = (struct r600_context *)ctx;
885 struct r600_surface **resources = (struct r600_surface **)surfaces;
886
887 COMPUTE_DBG(rctx->screen, "*** evergreen_set_compute_resources: start = %u count = %u\n",
888 start, count);
889
890 for (unsigned i = 0; i < count; i++) {
891 /* The First four vertex buffers are reserved for parameters and
892 * global buffers. */
893 unsigned vtx_id = 4 + i;
894 if (resources[i]) {
895 struct r600_resource_global *buffer =
896 (struct r600_resource_global*)
897 resources[i]->base.texture;
898 if (resources[i]->base.writable) {
899 assert(i+1 < 12);
900
901 evergreen_set_rat(rctx->cs_shader_state.shader, i+1,
902 (struct r600_resource *)resources[i]->base.texture,
903 buffer->chunk->start_in_dw*4,
904 resources[i]->base.texture->width0);
905 }
906
907 evergreen_cs_set_vertex_buffer(rctx, vtx_id,
908 buffer->chunk->start_in_dw * 4,
909 resources[i]->base.texture);
910 }
911 }
912 }
913
914 static void evergreen_set_global_binding(struct pipe_context *ctx,
915 unsigned first, unsigned n,
916 struct pipe_resource **resources,
917 uint32_t **handles)
918 {
919 struct r600_context *rctx = (struct r600_context *)ctx;
920 struct compute_memory_pool *pool = rctx->screen->global_pool;
921 struct r600_resource_global **buffers =
922 (struct r600_resource_global **)resources;
923 unsigned i;
924
925 COMPUTE_DBG(rctx->screen, "*** evergreen_set_global_binding first = %u n = %u\n",
926 first, n);
927
928 if (!resources) {
929 /* XXX: Unset */
930 return;
931 }
932
933 /* We mark these items for promotion to the pool if they
934 * aren't already there */
935 for (i = first; i < first + n; i++) {
936 struct compute_memory_item *item = buffers[i]->chunk;
937
938 if (!is_item_in_pool(item))
939 buffers[i]->chunk->status |= ITEM_FOR_PROMOTING;
940 }
941
942 if (compute_memory_finalize_pending(pool, ctx) == -1) {
943 /* XXX: Unset */
944 return;
945 }
946
947 for (i = first; i < first + n; i++)
948 {
949 uint32_t buffer_offset;
950 uint32_t handle;
951 assert(resources[i]->target == PIPE_BUFFER);
952 assert(resources[i]->bind & PIPE_BIND_GLOBAL);
953
954 buffer_offset = util_le32_to_cpu(*(handles[i]));
955 handle = buffer_offset + buffers[i]->chunk->start_in_dw * 4;
956
957 *(handles[i]) = util_cpu_to_le32(handle);
958 }
959
960 /* globals for writing */
961 evergreen_set_rat(rctx->cs_shader_state.shader, 0, pool->bo, 0, pool->size_in_dw * 4);
962 /* globals for reading */
963 evergreen_cs_set_vertex_buffer(rctx, 1, 0,
964 (struct pipe_resource*)pool->bo);
965
966 /* constants for reading, LLVM puts them in text segment */
967 evergreen_cs_set_vertex_buffer(rctx, 2, 0,
968 (struct pipe_resource*)rctx->cs_shader_state.shader->code_bo);
969 }
970
971 /**
972 * This function initializes all the compute specific registers that need to
973 * be initialized for each compute command stream. Registers that are common
974 * to both compute and 3D will be initialized at the beginning of each compute
975 * command stream by the start_cs_cmd atom. However, since the SET_CONTEXT_REG
976 * packet requires that the shader type bit be set, we must initialize all
977 * context registers needed for compute in this function. The registers
978 * initialized by the start_cs_cmd atom can be found in evergreen_state.c in the
979 * functions evergreen_init_atom_start_cs or cayman_init_atom_start_cs depending
980 * on the GPU family.
981 */
982 void evergreen_init_atom_start_compute_cs(struct r600_context *rctx)
983 {
984 struct r600_command_buffer *cb = &rctx->start_compute_cs_cmd;
985 int num_threads;
986 int num_stack_entries;
987
988 /* since all required registers are initialized in the
989 * start_compute_cs_cmd atom, we can EMIT_EARLY here.
990 */
991 r600_init_command_buffer(cb, 256);
992 cb->pkt_flags = RADEON_CP_PACKET3_COMPUTE_MODE;
993
994 /* We're setting config registers here. */
995 r600_store_value(cb, PKT3(PKT3_EVENT_WRITE, 0, 0));
996 r600_store_value(cb, EVENT_TYPE(EVENT_TYPE_CS_PARTIAL_FLUSH) | EVENT_INDEX(4));
997
998 switch (rctx->b.family) {
999 case CHIP_CEDAR:
1000 default:
1001 num_threads = 128;
1002 num_stack_entries = 256;
1003 break;
1004 case CHIP_REDWOOD:
1005 num_threads = 128;
1006 num_stack_entries = 256;
1007 break;
1008 case CHIP_JUNIPER:
1009 num_threads = 128;
1010 num_stack_entries = 512;
1011 break;
1012 case CHIP_CYPRESS:
1013 case CHIP_HEMLOCK:
1014 num_threads = 128;
1015 num_stack_entries = 512;
1016 break;
1017 case CHIP_PALM:
1018 num_threads = 128;
1019 num_stack_entries = 256;
1020 break;
1021 case CHIP_SUMO:
1022 num_threads = 128;
1023 num_stack_entries = 256;
1024 break;
1025 case CHIP_SUMO2:
1026 num_threads = 128;
1027 num_stack_entries = 512;
1028 break;
1029 case CHIP_BARTS:
1030 num_threads = 128;
1031 num_stack_entries = 512;
1032 break;
1033 case CHIP_TURKS:
1034 num_threads = 128;
1035 num_stack_entries = 256;
1036 break;
1037 case CHIP_CAICOS:
1038 num_threads = 128;
1039 num_stack_entries = 256;
1040 break;
1041 }
1042
1043 /* The primitive type always needs to be POINTLIST for compute. */
1044 r600_store_config_reg(cb, R_008958_VGT_PRIMITIVE_TYPE,
1045 V_008958_DI_PT_POINTLIST);
1046
1047 if (rctx->b.chip_class < CAYMAN) {
1048
1049 /* These registers control which simds can be used by each stage.
1050 * The default for these registers is 0xffffffff, which means
1051 * all simds are available for each stage. It's possible we may
1052 * want to play around with these in the future, but for now
1053 * the default value is fine.
1054 *
1055 * R_008E20_SQ_STATIC_THREAD_MGMT1
1056 * R_008E24_SQ_STATIC_THREAD_MGMT2
1057 * R_008E28_SQ_STATIC_THREAD_MGMT3
1058 */
1059
1060 /* XXX: We may need to adjust the thread and stack resource
1061 * values for 3D/compute interop */
1062
1063 r600_store_config_reg_seq(cb, R_008C18_SQ_THREAD_RESOURCE_MGMT_1, 5);
1064
1065 /* R_008C18_SQ_THREAD_RESOURCE_MGMT_1
1066 * Set the number of threads used by the PS/VS/GS/ES stage to
1067 * 0.
1068 */
1069 r600_store_value(cb, 0);
1070
1071 /* R_008C1C_SQ_THREAD_RESOURCE_MGMT_2
1072 * Set the number of threads used by the CS (aka LS) stage to
1073 * the maximum number of threads and set the number of threads
1074 * for the HS stage to 0. */
1075 r600_store_value(cb, S_008C1C_NUM_LS_THREADS(num_threads));
1076
1077 /* R_008C20_SQ_STACK_RESOURCE_MGMT_1
1078 * Set the Control Flow stack entries to 0 for PS/VS stages */
1079 r600_store_value(cb, 0);
1080
1081 /* R_008C24_SQ_STACK_RESOURCE_MGMT_2
1082 * Set the Control Flow stack entries to 0 for GS/ES stages */
1083 r600_store_value(cb, 0);
1084
1085 /* R_008C28_SQ_STACK_RESOURCE_MGMT_3
1086 * Set the Contol Flow stack entries to 0 for the HS stage, and
1087 * set it to the maximum value for the CS (aka LS) stage. */
1088 r600_store_value(cb,
1089 S_008C28_NUM_LS_STACK_ENTRIES(num_stack_entries));
1090 }
1091 /* Give the compute shader all the available LDS space.
1092 * NOTE: This only sets the maximum number of dwords that a compute
1093 * shader can allocate. When a shader is executed, we still need to
1094 * allocate the appropriate amount of LDS dwords using the
1095 * CM_R_0288E8_SQ_LDS_ALLOC register.
1096 */
1097 if (rctx->b.chip_class < CAYMAN) {
1098 r600_store_config_reg(cb, R_008E2C_SQ_LDS_RESOURCE_MGMT,
1099 S_008E2C_NUM_PS_LDS(0x0000) | S_008E2C_NUM_LS_LDS(8192));
1100 } else {
1101 r600_store_context_reg(cb, CM_R_0286FC_SPI_LDS_MGMT,
1102 S_0286FC_NUM_PS_LDS(0) |
1103 S_0286FC_NUM_LS_LDS(255)); /* 255 * 32 = 8160 dwords */
1104 }
1105
1106 /* Context Registers */
1107
1108 if (rctx->b.chip_class < CAYMAN) {
1109 /* workaround for hw issues with dyn gpr - must set all limits
1110 * to 240 instead of 0, 0x1e == 240 / 8
1111 */
1112 r600_store_context_reg(cb, R_028838_SQ_DYN_GPR_RESOURCE_LIMIT_1,
1113 S_028838_PS_GPRS(0x1e) |
1114 S_028838_VS_GPRS(0x1e) |
1115 S_028838_GS_GPRS(0x1e) |
1116 S_028838_ES_GPRS(0x1e) |
1117 S_028838_HS_GPRS(0x1e) |
1118 S_028838_LS_GPRS(0x1e));
1119 }
1120
1121 /* XXX: Investigate setting bit 15, which is FAST_COMPUTE_MODE */
1122 r600_store_context_reg(cb, R_028A40_VGT_GS_MODE,
1123 S_028A40_COMPUTE_MODE(1) | S_028A40_PARTIAL_THD_AT_EOI(1));
1124
1125 r600_store_context_reg(cb, R_028B54_VGT_SHADER_STAGES_EN, 2/*CS_ON*/);
1126
1127 r600_store_context_reg(cb, R_0286E8_SPI_COMPUTE_INPUT_CNTL,
1128 S_0286E8_TID_IN_GROUP_ENA(1) |
1129 S_0286E8_TGID_ENA(1) |
1130 S_0286E8_DISABLE_INDEX_PACK(1));
1131
1132 /* The LOOP_CONST registers are an optimizations for loops that allows
1133 * you to store the initial counter, increment value, and maximum
1134 * counter value in a register so that hardware can calculate the
1135 * correct number of iterations for the loop, so that you don't need
1136 * to have the loop counter in your shader code. We don't currently use
1137 * this optimization, so we must keep track of the counter in the
1138 * shader and use a break instruction to exit loops. However, the
1139 * hardware will still uses this register to determine when to exit a
1140 * loop, so we need to initialize the counter to 0, set the increment
1141 * value to 1 and the maximum counter value to the 4095 (0xfff) which
1142 * is the maximum value allowed. This gives us a maximum of 4096
1143 * iterations for our loops, but hopefully our break instruction will
1144 * execute before some time before the 4096th iteration.
1145 */
1146 eg_store_loop_const(cb, R_03A200_SQ_LOOP_CONST_0 + (160 * 4), 0x1000FFF);
1147 }
1148
1149 void evergreen_init_compute_state_functions(struct r600_context *rctx)
1150 {
1151 rctx->b.b.create_compute_state = evergreen_create_compute_state;
1152 rctx->b.b.delete_compute_state = evergreen_delete_compute_state;
1153 rctx->b.b.bind_compute_state = evergreen_bind_compute_state;
1154 // rctx->context.create_sampler_view = evergreen_compute_create_sampler_view;
1155 rctx->b.b.set_compute_resources = evergreen_set_compute_resources;
1156 rctx->b.b.set_global_binding = evergreen_set_global_binding;
1157 rctx->b.b.launch_grid = evergreen_launch_grid;
1158
1159 }
1160
1161 static void *r600_compute_global_transfer_map(struct pipe_context *ctx,
1162 struct pipe_resource *resource,
1163 unsigned level,
1164 unsigned usage,
1165 const struct pipe_box *box,
1166 struct pipe_transfer **ptransfer)
1167 {
1168 struct r600_context *rctx = (struct r600_context*)ctx;
1169 struct compute_memory_pool *pool = rctx->screen->global_pool;
1170 struct r600_resource_global* buffer =
1171 (struct r600_resource_global*)resource;
1172
1173 struct compute_memory_item *item = buffer->chunk;
1174 struct pipe_resource *dst = NULL;
1175 unsigned offset = box->x;
1176
1177 if (is_item_in_pool(item)) {
1178 compute_memory_demote_item(pool, item, ctx);
1179 }
1180 else {
1181 if (item->real_buffer == NULL) {
1182 item->real_buffer =
1183 r600_compute_buffer_alloc_vram(pool->screen, item->size_in_dw * 4);
1184 }
1185 }
1186
1187 dst = (struct pipe_resource*)item->real_buffer;
1188
1189 if (usage & PIPE_TRANSFER_READ)
1190 buffer->chunk->status |= ITEM_MAPPED_FOR_READING;
1191
1192 COMPUTE_DBG(rctx->screen, "* r600_compute_global_transfer_map()\n"
1193 "level = %u, usage = %u, box(x = %u, y = %u, z = %u "
1194 "width = %u, height = %u, depth = %u)\n", level, usage,
1195 box->x, box->y, box->z, box->width, box->height,
1196 box->depth);
1197 COMPUTE_DBG(rctx->screen, "Buffer id = %"PRIi64" offset = "
1198 "%u (box.x)\n", item->id, box->x);
1199
1200
1201 assert(resource->target == PIPE_BUFFER);
1202 assert(resource->bind & PIPE_BIND_GLOBAL);
1203 assert(box->x >= 0);
1204 assert(box->y == 0);
1205 assert(box->z == 0);
1206
1207 ///TODO: do it better, mapping is not possible if the pool is too big
1208 return pipe_buffer_map_range(ctx, dst,
1209 offset, box->width, usage, ptransfer);
1210 }
1211
1212 static void r600_compute_global_transfer_unmap(struct pipe_context *ctx,
1213 struct pipe_transfer *transfer)
1214 {
1215 /* struct r600_resource_global are not real resources, they just map
1216 * to an offset within the compute memory pool. The function
1217 * r600_compute_global_transfer_map() maps the memory pool
1218 * resource rather than the struct r600_resource_global passed to
1219 * it as an argument and then initalizes ptransfer->resource with
1220 * the memory pool resource (via pipe_buffer_map_range).
1221 * When transfer_unmap is called it uses the memory pool's
1222 * vtable which calls r600_buffer_transfer_map() rather than
1223 * this function.
1224 */
1225 assert (!"This function should not be called");
1226 }
1227
1228 static void r600_compute_global_transfer_flush_region(struct pipe_context *ctx,
1229 struct pipe_transfer *transfer,
1230 const struct pipe_box *box)
1231 {
1232 assert(0 && "TODO");
1233 }
1234
1235 static void r600_compute_global_buffer_destroy(struct pipe_screen *screen,
1236 struct pipe_resource *res)
1237 {
1238 struct r600_resource_global* buffer = NULL;
1239 struct r600_screen* rscreen = NULL;
1240
1241 assert(res->target == PIPE_BUFFER);
1242 assert(res->bind & PIPE_BIND_GLOBAL);
1243
1244 buffer = (struct r600_resource_global*)res;
1245 rscreen = (struct r600_screen*)screen;
1246
1247 compute_memory_free(rscreen->global_pool, buffer->chunk->id);
1248
1249 buffer->chunk = NULL;
1250 free(res);
1251 }
1252
1253 static const struct u_resource_vtbl r600_global_buffer_vtbl =
1254 {
1255 u_default_resource_get_handle, /* get_handle */
1256 r600_compute_global_buffer_destroy, /* resource_destroy */
1257 r600_compute_global_transfer_map, /* transfer_map */
1258 r600_compute_global_transfer_flush_region,/* transfer_flush_region */
1259 r600_compute_global_transfer_unmap, /* transfer_unmap */
1260 };
1261
1262 struct pipe_resource *r600_compute_global_buffer_create(struct pipe_screen *screen,
1263 const struct pipe_resource *templ)
1264 {
1265 struct r600_resource_global* result = NULL;
1266 struct r600_screen* rscreen = NULL;
1267 int size_in_dw = 0;
1268
1269 assert(templ->target == PIPE_BUFFER);
1270 assert(templ->bind & PIPE_BIND_GLOBAL);
1271 assert(templ->array_size == 1 || templ->array_size == 0);
1272 assert(templ->depth0 == 1 || templ->depth0 == 0);
1273 assert(templ->height0 == 1 || templ->height0 == 0);
1274
1275 result = (struct r600_resource_global*)
1276 CALLOC(sizeof(struct r600_resource_global), 1);
1277 rscreen = (struct r600_screen*)screen;
1278
1279 COMPUTE_DBG(rscreen, "*** r600_compute_global_buffer_create\n");
1280 COMPUTE_DBG(rscreen, "width = %u array_size = %u\n", templ->width0,
1281 templ->array_size);
1282
1283 result->base.b.vtbl = &r600_global_buffer_vtbl;
1284 result->base.b.b = *templ;
1285 result->base.b.b.screen = screen;
1286 pipe_reference_init(&result->base.b.b.reference, 1);
1287
1288 size_in_dw = (templ->width0+3) / 4;
1289
1290 result->chunk = compute_memory_alloc(rscreen->global_pool, size_in_dw);
1291
1292 if (result->chunk == NULL)
1293 {
1294 free(result);
1295 return NULL;
1296 }
1297
1298 return &result->base.b.b;
1299 }