r600/eg: add support for tracing IBs after a hang.
[mesa.git] / src / gallium / drivers / r600 / evergreen_compute.c
1 /*
2 * Copyright 2011 Adam Rak <adam.rak@streamnovation.com>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * on the rights to use, copy, modify, merge, publish, distribute, sub
8 * license, and/or sell copies of the Software, and to permit persons to whom
9 * the Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Adam Rak <adam.rak@streamnovation.com>
25 */
26
27 #include <stdio.h>
28 #include <errno.h>
29 #include "ac_binary.h"
30 #include "pipe/p_defines.h"
31 #include "pipe/p_state.h"
32 #include "pipe/p_context.h"
33 #include "util/u_blitter.h"
34 #include "util/list.h"
35 #include "util/u_transfer.h"
36 #include "util/u_surface.h"
37 #include "util/u_pack_color.h"
38 #include "util/u_memory.h"
39 #include "util/u_inlines.h"
40 #include "util/u_framebuffer.h"
41 #include "pipebuffer/pb_buffer.h"
42 #include "evergreend.h"
43 #include "r600_shader.h"
44 #include "r600_pipe.h"
45 #include "r600_formats.h"
46 #include "evergreen_compute.h"
47 #include "evergreen_compute_internal.h"
48 #include "compute_memory_pool.h"
49 #include "sb/sb_public.h"
50 #include <inttypes.h>
51
52 /**
53 RAT0 is for global binding write
54 VTX1 is for global binding read
55
56 for wrting images RAT1...
57 for reading images TEX2...
58 TEX2-RAT1 is paired
59
60 TEX2... consumes the same fetch resources, that VTX2... would consume
61
62 CONST0 and VTX0 is for parameters
63 CONST0 is binding smaller input parameter buffer, and for constant indexing,
64 also constant cached
65 VTX0 is for indirect/non-constant indexing, or if the input is bigger than
66 the constant cache can handle
67
68 RAT-s are limited to 12, so we can only bind at most 11 texture for writing
69 because we reserve RAT0 for global bindings. With byteaddressing enabled,
70 we should reserve another one too.=> 10 image binding for writing max.
71
72 from Nvidia OpenCL:
73 CL_DEVICE_MAX_READ_IMAGE_ARGS: 128
74 CL_DEVICE_MAX_WRITE_IMAGE_ARGS: 8
75
76 so 10 for writing is enough. 176 is the max for reading according to the docs
77
78 writable images should be listed first < 10, so their id corresponds to RAT(id+1)
79 writable images will consume TEX slots, VTX slots too because of linear indexing
80
81 */
82
83 struct r600_resource *r600_compute_buffer_alloc_vram(struct r600_screen *screen,
84 unsigned size)
85 {
86 struct pipe_resource *buffer = NULL;
87 assert(size);
88
89 buffer = pipe_buffer_create((struct pipe_screen*) screen,
90 0, PIPE_USAGE_IMMUTABLE, size);
91
92 return (struct r600_resource *)buffer;
93 }
94
95
96 static void evergreen_set_rat(struct r600_pipe_compute *pipe,
97 unsigned id,
98 struct r600_resource *bo,
99 int start,
100 int size)
101 {
102 struct pipe_surface rat_templ;
103 struct r600_surface *surf = NULL;
104 struct r600_context *rctx = NULL;
105
106 assert(id < 12);
107 assert((size & 3) == 0);
108 assert((start & 0xFF) == 0);
109
110 rctx = pipe->ctx;
111
112 COMPUTE_DBG(rctx->screen, "bind rat: %i \n", id);
113
114 /* Create the RAT surface */
115 memset(&rat_templ, 0, sizeof(rat_templ));
116 rat_templ.format = PIPE_FORMAT_R32_UINT;
117 rat_templ.u.tex.level = 0;
118 rat_templ.u.tex.first_layer = 0;
119 rat_templ.u.tex.last_layer = 0;
120
121 /* Add the RAT the list of color buffers */
122 pipe->ctx->framebuffer.state.cbufs[id] = pipe->ctx->b.b.create_surface(
123 (struct pipe_context *)pipe->ctx,
124 (struct pipe_resource *)bo, &rat_templ);
125
126 /* Update the number of color buffers */
127 pipe->ctx->framebuffer.state.nr_cbufs =
128 MAX2(id + 1, pipe->ctx->framebuffer.state.nr_cbufs);
129
130 /* Update the cb_target_mask
131 * XXX: I think this is a potential spot for bugs once we start doing
132 * GL interop. cb_target_mask may be modified in the 3D sections
133 * of this driver. */
134 pipe->ctx->compute_cb_target_mask |= (0xf << (id * 4));
135
136 surf = (struct r600_surface*)pipe->ctx->framebuffer.state.cbufs[id];
137 evergreen_init_color_surface_rat(rctx, surf);
138 }
139
140 static void evergreen_cs_set_vertex_buffer(struct r600_context *rctx,
141 unsigned vb_index,
142 unsigned offset,
143 struct pipe_resource *buffer)
144 {
145 struct r600_vertexbuf_state *state = &rctx->cs_vertex_buffer_state;
146 struct pipe_vertex_buffer *vb = &state->vb[vb_index];
147 vb->stride = 1;
148 vb->buffer_offset = offset;
149 vb->buffer.resource = buffer;
150 vb->is_user_buffer = false;
151
152 /* The vertex instructions in the compute shaders use the texture cache,
153 * so we need to invalidate it. */
154 rctx->b.flags |= R600_CONTEXT_INV_VERTEX_CACHE;
155 state->enabled_mask |= 1 << vb_index;
156 state->dirty_mask |= 1 << vb_index;
157 r600_mark_atom_dirty(rctx, &state->atom);
158 }
159
160 static void evergreen_cs_set_constant_buffer(struct r600_context *rctx,
161 unsigned cb_index,
162 unsigned offset,
163 unsigned size,
164 struct pipe_resource *buffer)
165 {
166 struct pipe_constant_buffer cb;
167 cb.buffer_size = size;
168 cb.buffer_offset = offset;
169 cb.buffer = buffer;
170 cb.user_buffer = NULL;
171
172 rctx->b.b.set_constant_buffer(&rctx->b.b, PIPE_SHADER_COMPUTE, cb_index, &cb);
173 }
174
175 /* We need to define these R600 registers here, because we can't include
176 * evergreend.h and r600d.h.
177 */
178 #define R_028868_SQ_PGM_RESOURCES_VS 0x028868
179 #define R_028850_SQ_PGM_RESOURCES_PS 0x028850
180
181 #ifdef HAVE_OPENCL
182
183 static void r600_shader_binary_read_config(const struct ac_shader_binary *binary,
184 struct r600_bytecode *bc,
185 uint64_t symbol_offset,
186 boolean *use_kill)
187 {
188 unsigned i;
189 const unsigned char *config =
190 ac_shader_binary_config_start(binary, symbol_offset);
191
192 for (i = 0; i < binary->config_size_per_symbol; i+= 8) {
193 unsigned reg =
194 util_le32_to_cpu(*(uint32_t*)(config + i));
195 unsigned value =
196 util_le32_to_cpu(*(uint32_t*)(config + i + 4));
197 switch (reg) {
198 /* R600 / R700 */
199 case R_028850_SQ_PGM_RESOURCES_PS:
200 case R_028868_SQ_PGM_RESOURCES_VS:
201 /* Evergreen / Northern Islands */
202 case R_028844_SQ_PGM_RESOURCES_PS:
203 case R_028860_SQ_PGM_RESOURCES_VS:
204 case R_0288D4_SQ_PGM_RESOURCES_LS:
205 bc->ngpr = MAX2(bc->ngpr, G_028844_NUM_GPRS(value));
206 bc->nstack = MAX2(bc->nstack, G_028844_STACK_SIZE(value));
207 break;
208 case R_02880C_DB_SHADER_CONTROL:
209 *use_kill = G_02880C_KILL_ENABLE(value);
210 break;
211 case R_0288E8_SQ_LDS_ALLOC:
212 bc->nlds_dw = value;
213 break;
214 }
215 }
216 }
217
218 static unsigned r600_create_shader(struct r600_bytecode *bc,
219 const struct ac_shader_binary *binary,
220 boolean *use_kill)
221
222 {
223 assert(binary->code_size % 4 == 0);
224 bc->bytecode = CALLOC(1, binary->code_size);
225 memcpy(bc->bytecode, binary->code, binary->code_size);
226 bc->ndw = binary->code_size / 4;
227
228 r600_shader_binary_read_config(binary, bc, 0, use_kill);
229 return 0;
230 }
231
232 #endif
233
234 static void r600_destroy_shader(struct r600_bytecode *bc)
235 {
236 FREE(bc->bytecode);
237 }
238
239 static void *evergreen_create_compute_state(struct pipe_context *ctx,
240 const struct pipe_compute_state *cso)
241 {
242 struct r600_context *rctx = (struct r600_context *)ctx;
243 struct r600_pipe_compute *shader = CALLOC_STRUCT(r600_pipe_compute);
244 #ifdef HAVE_OPENCL
245 const struct pipe_llvm_program_header *header;
246 const char *code;
247 void *p;
248 boolean use_kill;
249
250 COMPUTE_DBG(rctx->screen, "*** evergreen_create_compute_state\n");
251 header = cso->prog;
252 code = cso->prog + sizeof(struct pipe_llvm_program_header);
253 radeon_shader_binary_init(&shader->binary);
254 ac_elf_read(code, header->num_bytes, &shader->binary);
255 r600_create_shader(&shader->bc, &shader->binary, &use_kill);
256
257 /* Upload code + ROdata */
258 shader->code_bo = r600_compute_buffer_alloc_vram(rctx->screen,
259 shader->bc.ndw * 4);
260 p = r600_buffer_map_sync_with_rings(&rctx->b, shader->code_bo, PIPE_TRANSFER_WRITE);
261 //TODO: use util_memcpy_cpu_to_le32 ?
262 memcpy(p, shader->bc.bytecode, shader->bc.ndw * 4);
263 rctx->b.ws->buffer_unmap(shader->code_bo->buf);
264 #endif
265
266 shader->ctx = rctx;
267 shader->local_size = cso->req_local_mem;
268 shader->private_size = cso->req_private_mem;
269 shader->input_size = cso->req_input_mem;
270
271 return shader;
272 }
273
274 static void evergreen_delete_compute_state(struct pipe_context *ctx, void *state)
275 {
276 struct r600_context *rctx = (struct r600_context *)ctx;
277 struct r600_pipe_compute *shader = state;
278
279 COMPUTE_DBG(rctx->screen, "*** evergreen_delete_compute_state\n");
280
281 if (!shader)
282 return;
283
284 radeon_shader_binary_clean(&shader->binary);
285 r600_destroy_shader(&shader->bc);
286
287 /* TODO destroy shader->code_bo, shader->const_bo
288 * we'll need something like r600_buffer_free */
289 FREE(shader);
290 }
291
292 static void evergreen_bind_compute_state(struct pipe_context *ctx, void *state)
293 {
294 struct r600_context *rctx = (struct r600_context *)ctx;
295
296 COMPUTE_DBG(rctx->screen, "*** evergreen_bind_compute_state\n");
297
298 rctx->cs_shader_state.shader = (struct r600_pipe_compute *)state;
299 }
300
301 /* The kernel parameters are stored a vtx buffer (ID=0), besides the explicit
302 * kernel parameters there are implicit parameters that need to be stored
303 * in the vertex buffer as well. Here is how these parameters are organized in
304 * the buffer:
305 *
306 * DWORDS 0-2: Number of work groups in each dimension (x,y,z)
307 * DWORDS 3-5: Number of global work items in each dimension (x,y,z)
308 * DWORDS 6-8: Number of work items within each work group in each dimension
309 * (x,y,z)
310 * DWORDS 9+ : Kernel parameters
311 */
312 static void evergreen_compute_upload_input(struct pipe_context *ctx,
313 const struct pipe_grid_info *info)
314 {
315 struct r600_context *rctx = (struct r600_context *)ctx;
316 struct r600_pipe_compute *shader = rctx->cs_shader_state.shader;
317 unsigned i;
318 /* We need to reserve 9 dwords (36 bytes) for implicit kernel
319 * parameters.
320 */
321 unsigned input_size = shader->input_size + 36;
322 uint32_t *num_work_groups_start;
323 uint32_t *global_size_start;
324 uint32_t *local_size_start;
325 uint32_t *kernel_parameters_start;
326 struct pipe_box box;
327 struct pipe_transfer *transfer = NULL;
328
329 if (shader->input_size == 0) {
330 return;
331 }
332
333 if (!shader->kernel_param) {
334 /* Add space for the grid dimensions */
335 shader->kernel_param = (struct r600_resource *)
336 pipe_buffer_create(ctx->screen, 0,
337 PIPE_USAGE_IMMUTABLE, input_size);
338 }
339
340 u_box_1d(0, input_size, &box);
341 num_work_groups_start = ctx->transfer_map(ctx,
342 (struct pipe_resource*)shader->kernel_param,
343 0, PIPE_TRANSFER_WRITE | PIPE_TRANSFER_DISCARD_RANGE,
344 &box, &transfer);
345 global_size_start = num_work_groups_start + (3 * (sizeof(uint) /4));
346 local_size_start = global_size_start + (3 * (sizeof(uint)) / 4);
347 kernel_parameters_start = local_size_start + (3 * (sizeof(uint)) / 4);
348
349 /* Copy the work group size */
350 memcpy(num_work_groups_start, info->grid, 3 * sizeof(uint));
351
352 /* Copy the global size */
353 for (i = 0; i < 3; i++) {
354 global_size_start[i] = info->grid[i] * info->block[i];
355 }
356
357 /* Copy the local dimensions */
358 memcpy(local_size_start, info->block, 3 * sizeof(uint));
359
360 /* Copy the kernel inputs */
361 memcpy(kernel_parameters_start, info->input, shader->input_size);
362
363 for (i = 0; i < (input_size / 4); i++) {
364 COMPUTE_DBG(rctx->screen, "input %i : %u\n", i,
365 ((unsigned*)num_work_groups_start)[i]);
366 }
367
368 ctx->transfer_unmap(ctx, transfer);
369
370 /* ID=0 and ID=3 are reserved for the parameters.
371 * LLVM will preferably use ID=0, but it does not work for dynamic
372 * indices. */
373 evergreen_cs_set_vertex_buffer(rctx, 3, 0,
374 (struct pipe_resource*)shader->kernel_param);
375 evergreen_cs_set_constant_buffer(rctx, 0, 0, input_size,
376 (struct pipe_resource*)shader->kernel_param);
377 }
378
379 static void evergreen_emit_dispatch(struct r600_context *rctx,
380 const struct pipe_grid_info *info)
381 {
382 int i;
383 struct radeon_winsys_cs *cs = rctx->b.gfx.cs;
384 struct r600_pipe_compute *shader = rctx->cs_shader_state.shader;
385 unsigned num_waves;
386 unsigned num_pipes = rctx->screen->b.info.r600_max_quad_pipes;
387 unsigned wave_divisor = (16 * num_pipes);
388 int group_size = 1;
389 int grid_size = 1;
390 unsigned lds_size = shader->local_size / 4 +
391 shader->bc.nlds_dw;
392
393
394 /* Calculate group_size/grid_size */
395 for (i = 0; i < 3; i++) {
396 group_size *= info->block[i];
397 }
398
399 for (i = 0; i < 3; i++) {
400 grid_size *= info->grid[i];
401 }
402
403 /* num_waves = ceil((tg_size.x * tg_size.y, tg_size.z) / (16 * num_pipes)) */
404 num_waves = (info->block[0] * info->block[1] * info->block[2] +
405 wave_divisor - 1) / wave_divisor;
406
407 COMPUTE_DBG(rctx->screen, "Using %u pipes, "
408 "%u wavefronts per thread block, "
409 "allocating %u dwords lds.\n",
410 num_pipes, num_waves, lds_size);
411
412 radeon_set_config_reg(cs, R_008970_VGT_NUM_INDICES, group_size);
413
414 radeon_set_config_reg_seq(cs, R_00899C_VGT_COMPUTE_START_X, 3);
415 radeon_emit(cs, 0); /* R_00899C_VGT_COMPUTE_START_X */
416 radeon_emit(cs, 0); /* R_0089A0_VGT_COMPUTE_START_Y */
417 radeon_emit(cs, 0); /* R_0089A4_VGT_COMPUTE_START_Z */
418
419 radeon_set_config_reg(cs, R_0089AC_VGT_COMPUTE_THREAD_GROUP_SIZE,
420 group_size);
421
422 radeon_compute_set_context_reg_seq(cs, R_0286EC_SPI_COMPUTE_NUM_THREAD_X, 3);
423 radeon_emit(cs, info->block[0]); /* R_0286EC_SPI_COMPUTE_NUM_THREAD_X */
424 radeon_emit(cs, info->block[1]); /* R_0286F0_SPI_COMPUTE_NUM_THREAD_Y */
425 radeon_emit(cs, info->block[2]); /* R_0286F4_SPI_COMPUTE_NUM_THREAD_Z */
426
427 if (rctx->b.chip_class < CAYMAN) {
428 assert(lds_size <= 8192);
429 } else {
430 /* Cayman appears to have a slightly smaller limit, see the
431 * value of CM_R_0286FC_SPI_LDS_MGMT.NUM_LS_LDS */
432 assert(lds_size <= 8160);
433 }
434
435 radeon_compute_set_context_reg(cs, R_0288E8_SQ_LDS_ALLOC,
436 lds_size | (num_waves << 14));
437
438 /* Dispatch packet */
439 radeon_emit(cs, PKT3C(PKT3_DISPATCH_DIRECT, 3, 0));
440 radeon_emit(cs, info->grid[0]);
441 radeon_emit(cs, info->grid[1]);
442 radeon_emit(cs, info->grid[2]);
443 /* VGT_DISPATCH_INITIATOR = COMPUTE_SHADER_EN */
444 radeon_emit(cs, 1);
445
446 if (rctx->is_debug)
447 eg_trace_emit(rctx);
448 }
449
450 static void compute_emit_cs(struct r600_context *rctx,
451 const struct pipe_grid_info *info)
452 {
453 struct radeon_winsys_cs *cs = rctx->b.gfx.cs;
454 unsigned i;
455
456 /* make sure that the gfx ring is only one active */
457 if (radeon_emitted(rctx->b.dma.cs, 0)) {
458 rctx->b.dma.flush(rctx, RADEON_FLUSH_ASYNC, NULL);
459 }
460
461 /* Initialize all the compute-related registers.
462 *
463 * See evergreen_init_atom_start_compute_cs() in this file for the list
464 * of registers initialized by the start_compute_cs_cmd atom.
465 */
466 r600_emit_command_buffer(cs, &rctx->start_compute_cs_cmd);
467
468 /* emit config state */
469 if (rctx->b.chip_class == EVERGREEN)
470 r600_emit_atom(rctx, &rctx->config_state.atom);
471
472 rctx->b.flags |= R600_CONTEXT_WAIT_3D_IDLE | R600_CONTEXT_FLUSH_AND_INV;
473 r600_flush_emit(rctx);
474
475 /* Emit colorbuffers. */
476 /* XXX support more than 8 colorbuffers (the offsets are not a multiple of 0x3C for CB8-11) */
477 for (i = 0; i < 8 && i < rctx->framebuffer.state.nr_cbufs; i++) {
478 struct r600_surface *cb = (struct r600_surface*)rctx->framebuffer.state.cbufs[i];
479 unsigned reloc = radeon_add_to_buffer_list(&rctx->b, &rctx->b.gfx,
480 (struct r600_resource*)cb->base.texture,
481 RADEON_USAGE_READWRITE,
482 RADEON_PRIO_SHADER_RW_BUFFER);
483
484 radeon_compute_set_context_reg_seq(cs, R_028C60_CB_COLOR0_BASE + i * 0x3C, 7);
485 radeon_emit(cs, cb->cb_color_base); /* R_028C60_CB_COLOR0_BASE */
486 radeon_emit(cs, cb->cb_color_pitch); /* R_028C64_CB_COLOR0_PITCH */
487 radeon_emit(cs, cb->cb_color_slice); /* R_028C68_CB_COLOR0_SLICE */
488 radeon_emit(cs, cb->cb_color_view); /* R_028C6C_CB_COLOR0_VIEW */
489 radeon_emit(cs, cb->cb_color_info); /* R_028C70_CB_COLOR0_INFO */
490 radeon_emit(cs, cb->cb_color_attrib); /* R_028C74_CB_COLOR0_ATTRIB */
491 radeon_emit(cs, cb->cb_color_dim); /* R_028C78_CB_COLOR0_DIM */
492
493 radeon_emit(cs, PKT3(PKT3_NOP, 0, 0)); /* R_028C60_CB_COLOR0_BASE */
494 radeon_emit(cs, reloc);
495
496 radeon_emit(cs, PKT3(PKT3_NOP, 0, 0)); /* R_028C74_CB_COLOR0_ATTRIB */
497 radeon_emit(cs, reloc);
498 }
499 for (; i < 8 ; i++)
500 radeon_compute_set_context_reg(cs, R_028C70_CB_COLOR0_INFO + i * 0x3C,
501 S_028C70_FORMAT(V_028C70_COLOR_INVALID));
502 for (; i < 12; i++)
503 radeon_compute_set_context_reg(cs, R_028E50_CB_COLOR8_INFO + (i - 8) * 0x1C,
504 S_028C70_FORMAT(V_028C70_COLOR_INVALID));
505
506 /* Set CB_TARGET_MASK XXX: Use cb_misc_state */
507 radeon_compute_set_context_reg(cs, R_028238_CB_TARGET_MASK,
508 rctx->compute_cb_target_mask);
509
510
511 /* Emit vertex buffer state */
512 rctx->cs_vertex_buffer_state.atom.num_dw = 12 * util_bitcount(rctx->cs_vertex_buffer_state.dirty_mask);
513 r600_emit_atom(rctx, &rctx->cs_vertex_buffer_state.atom);
514
515 /* Emit constant buffer state */
516 r600_emit_atom(rctx, &rctx->constbuf_state[PIPE_SHADER_COMPUTE].atom);
517
518 /* Emit sampler state */
519 r600_emit_atom(rctx, &rctx->samplers[PIPE_SHADER_COMPUTE].states.atom);
520
521 /* Emit sampler view (texture resource) state */
522 r600_emit_atom(rctx, &rctx->samplers[PIPE_SHADER_COMPUTE].views.atom);
523
524 /* Emit compute shader state */
525 r600_emit_atom(rctx, &rctx->cs_shader_state.atom);
526
527 /* Emit dispatch state and dispatch packet */
528 evergreen_emit_dispatch(rctx, info);
529
530 /* XXX evergreen_flush_emit() hardcodes the CP_COHER_SIZE to 0xffffffff
531 */
532 rctx->b.flags |= R600_CONTEXT_INV_CONST_CACHE |
533 R600_CONTEXT_INV_VERTEX_CACHE |
534 R600_CONTEXT_INV_TEX_CACHE;
535 r600_flush_emit(rctx);
536 rctx->b.flags = 0;
537
538 if (rctx->b.chip_class >= CAYMAN) {
539 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
540 radeon_emit(cs, EVENT_TYPE(EVENT_TYPE_CS_PARTIAL_FLUSH) | EVENT_INDEX(4));
541 /* DEALLOC_STATE prevents the GPU from hanging when a
542 * SURFACE_SYNC packet is emitted some time after a DISPATCH_DIRECT
543 * with any of the CB*_DEST_BASE_ENA or DB_DEST_BASE_ENA bits set.
544 */
545 radeon_emit(cs, PKT3C(PKT3_DEALLOC_STATE, 0, 0));
546 radeon_emit(cs, 0);
547 }
548
549 #if 0
550 COMPUTE_DBG(rctx->screen, "cdw: %i\n", cs->cdw);
551 for (i = 0; i < cs->cdw; i++) {
552 COMPUTE_DBG(rctx->screen, "%4i : 0x%08X\n", i, cs->buf[i]);
553 }
554 #endif
555
556 }
557
558
559 /**
560 * Emit function for r600_cs_shader_state atom
561 */
562 void evergreen_emit_cs_shader(struct r600_context *rctx,
563 struct r600_atom *atom)
564 {
565 struct r600_cs_shader_state *state =
566 (struct r600_cs_shader_state*)atom;
567 struct r600_pipe_compute *shader = state->shader;
568 struct radeon_winsys_cs *cs = rctx->b.gfx.cs;
569 uint64_t va;
570 struct r600_resource *code_bo;
571 unsigned ngpr, nstack;
572
573 code_bo = shader->code_bo;
574 va = shader->code_bo->gpu_address + state->pc;
575 ngpr = shader->bc.ngpr;
576 nstack = shader->bc.nstack;
577
578 radeon_compute_set_context_reg_seq(cs, R_0288D0_SQ_PGM_START_LS, 3);
579 radeon_emit(cs, va >> 8); /* R_0288D0_SQ_PGM_START_LS */
580 radeon_emit(cs, /* R_0288D4_SQ_PGM_RESOURCES_LS */
581 S_0288D4_NUM_GPRS(ngpr)
582 | S_0288D4_STACK_SIZE(nstack));
583 radeon_emit(cs, 0); /* R_0288D8_SQ_PGM_RESOURCES_LS_2 */
584
585 radeon_emit(cs, PKT3C(PKT3_NOP, 0, 0));
586 radeon_emit(cs, radeon_add_to_buffer_list(&rctx->b, &rctx->b.gfx,
587 code_bo, RADEON_USAGE_READ,
588 RADEON_PRIO_SHADER_BINARY));
589 }
590
591 static void evergreen_launch_grid(struct pipe_context *ctx,
592 const struct pipe_grid_info *info)
593 {
594 struct r600_context *rctx = (struct r600_context *)ctx;
595 #ifdef HAVE_OPENCL
596 struct r600_pipe_compute *shader = rctx->cs_shader_state.shader;
597 boolean use_kill;
598
599 rctx->cs_shader_state.pc = info->pc;
600 /* Get the config information for this kernel. */
601 r600_shader_binary_read_config(&shader->binary, &shader->bc,
602 info->pc, &use_kill);
603 #endif
604
605 COMPUTE_DBG(rctx->screen, "*** evergreen_launch_grid: pc = %u\n", info->pc);
606
607
608 evergreen_compute_upload_input(ctx, info);
609 compute_emit_cs(rctx, info);
610 }
611
612 static void evergreen_set_compute_resources(struct pipe_context *ctx,
613 unsigned start, unsigned count,
614 struct pipe_surface **surfaces)
615 {
616 struct r600_context *rctx = (struct r600_context *)ctx;
617 struct r600_surface **resources = (struct r600_surface **)surfaces;
618
619 COMPUTE_DBG(rctx->screen, "*** evergreen_set_compute_resources: start = %u count = %u\n",
620 start, count);
621
622 for (unsigned i = 0; i < count; i++) {
623 /* The First four vertex buffers are reserved for parameters and
624 * global buffers. */
625 unsigned vtx_id = 4 + i;
626 if (resources[i]) {
627 struct r600_resource_global *buffer =
628 (struct r600_resource_global*)
629 resources[i]->base.texture;
630 if (resources[i]->base.writable) {
631 assert(i+1 < 12);
632
633 evergreen_set_rat(rctx->cs_shader_state.shader, i+1,
634 (struct r600_resource *)resources[i]->base.texture,
635 buffer->chunk->start_in_dw*4,
636 resources[i]->base.texture->width0);
637 }
638
639 evergreen_cs_set_vertex_buffer(rctx, vtx_id,
640 buffer->chunk->start_in_dw * 4,
641 resources[i]->base.texture);
642 }
643 }
644 }
645
646 static void evergreen_set_global_binding(struct pipe_context *ctx,
647 unsigned first, unsigned n,
648 struct pipe_resource **resources,
649 uint32_t **handles)
650 {
651 struct r600_context *rctx = (struct r600_context *)ctx;
652 struct compute_memory_pool *pool = rctx->screen->global_pool;
653 struct r600_resource_global **buffers =
654 (struct r600_resource_global **)resources;
655 unsigned i;
656
657 COMPUTE_DBG(rctx->screen, "*** evergreen_set_global_binding first = %u n = %u\n",
658 first, n);
659
660 if (!resources) {
661 /* XXX: Unset */
662 return;
663 }
664
665 /* We mark these items for promotion to the pool if they
666 * aren't already there */
667 for (i = first; i < first + n; i++) {
668 struct compute_memory_item *item = buffers[i]->chunk;
669
670 if (!is_item_in_pool(item))
671 buffers[i]->chunk->status |= ITEM_FOR_PROMOTING;
672 }
673
674 if (compute_memory_finalize_pending(pool, ctx) == -1) {
675 /* XXX: Unset */
676 return;
677 }
678
679 for (i = first; i < first + n; i++)
680 {
681 uint32_t buffer_offset;
682 uint32_t handle;
683 assert(resources[i]->target == PIPE_BUFFER);
684 assert(resources[i]->bind & PIPE_BIND_GLOBAL);
685
686 buffer_offset = util_le32_to_cpu(*(handles[i]));
687 handle = buffer_offset + buffers[i]->chunk->start_in_dw * 4;
688
689 *(handles[i]) = util_cpu_to_le32(handle);
690 }
691
692 /* globals for writing */
693 evergreen_set_rat(rctx->cs_shader_state.shader, 0, pool->bo, 0, pool->size_in_dw * 4);
694 /* globals for reading */
695 evergreen_cs_set_vertex_buffer(rctx, 1, 0,
696 (struct pipe_resource*)pool->bo);
697
698 /* constants for reading, LLVM puts them in text segment */
699 evergreen_cs_set_vertex_buffer(rctx, 2, 0,
700 (struct pipe_resource*)rctx->cs_shader_state.shader->code_bo);
701 }
702
703 /**
704 * This function initializes all the compute specific registers that need to
705 * be initialized for each compute command stream. Registers that are common
706 * to both compute and 3D will be initialized at the beginning of each compute
707 * command stream by the start_cs_cmd atom. However, since the SET_CONTEXT_REG
708 * packet requires that the shader type bit be set, we must initialize all
709 * context registers needed for compute in this function. The registers
710 * initialized by the start_cs_cmd atom can be found in evergreen_state.c in the
711 * functions evergreen_init_atom_start_cs or cayman_init_atom_start_cs depending
712 * on the GPU family.
713 */
714 void evergreen_init_atom_start_compute_cs(struct r600_context *rctx)
715 {
716 struct r600_command_buffer *cb = &rctx->start_compute_cs_cmd;
717 int num_threads;
718 int num_stack_entries;
719
720 /* since all required registers are initialized in the
721 * start_compute_cs_cmd atom, we can EMIT_EARLY here.
722 */
723 r600_init_command_buffer(cb, 256);
724 cb->pkt_flags = RADEON_CP_PACKET3_COMPUTE_MODE;
725
726 /* This must be first. */
727 r600_store_value(cb, PKT3(PKT3_CONTEXT_CONTROL, 1, 0));
728 r600_store_value(cb, 0x80000000);
729 r600_store_value(cb, 0x80000000);
730
731 /* We're setting config registers here. */
732 r600_store_value(cb, PKT3(PKT3_EVENT_WRITE, 0, 0));
733 r600_store_value(cb, EVENT_TYPE(EVENT_TYPE_CS_PARTIAL_FLUSH) | EVENT_INDEX(4));
734
735 switch (rctx->b.family) {
736 case CHIP_CEDAR:
737 default:
738 num_threads = 128;
739 num_stack_entries = 256;
740 break;
741 case CHIP_REDWOOD:
742 num_threads = 128;
743 num_stack_entries = 256;
744 break;
745 case CHIP_JUNIPER:
746 num_threads = 128;
747 num_stack_entries = 512;
748 break;
749 case CHIP_CYPRESS:
750 case CHIP_HEMLOCK:
751 num_threads = 128;
752 num_stack_entries = 512;
753 break;
754 case CHIP_PALM:
755 num_threads = 128;
756 num_stack_entries = 256;
757 break;
758 case CHIP_SUMO:
759 num_threads = 128;
760 num_stack_entries = 256;
761 break;
762 case CHIP_SUMO2:
763 num_threads = 128;
764 num_stack_entries = 512;
765 break;
766 case CHIP_BARTS:
767 num_threads = 128;
768 num_stack_entries = 512;
769 break;
770 case CHIP_TURKS:
771 num_threads = 128;
772 num_stack_entries = 256;
773 break;
774 case CHIP_CAICOS:
775 num_threads = 128;
776 num_stack_entries = 256;
777 break;
778 }
779
780 /* Config Registers */
781 if (rctx->b.chip_class < CAYMAN)
782 evergreen_init_common_regs(rctx, cb, rctx->b.chip_class, rctx->b.family,
783 rctx->screen->b.info.drm_minor);
784 else
785 cayman_init_common_regs(cb, rctx->b.chip_class, rctx->b.family,
786 rctx->screen->b.info.drm_minor);
787
788 /* The primitive type always needs to be POINTLIST for compute. */
789 r600_store_config_reg(cb, R_008958_VGT_PRIMITIVE_TYPE,
790 V_008958_DI_PT_POINTLIST);
791
792 if (rctx->b.chip_class < CAYMAN) {
793
794 /* These registers control which simds can be used by each stage.
795 * The default for these registers is 0xffffffff, which means
796 * all simds are available for each stage. It's possible we may
797 * want to play around with these in the future, but for now
798 * the default value is fine.
799 *
800 * R_008E20_SQ_STATIC_THREAD_MGMT1
801 * R_008E24_SQ_STATIC_THREAD_MGMT2
802 * R_008E28_SQ_STATIC_THREAD_MGMT3
803 */
804
805 /* XXX: We may need to adjust the thread and stack resource
806 * values for 3D/compute interop */
807
808 r600_store_config_reg_seq(cb, R_008C18_SQ_THREAD_RESOURCE_MGMT_1, 5);
809
810 /* R_008C18_SQ_THREAD_RESOURCE_MGMT_1
811 * Set the number of threads used by the PS/VS/GS/ES stage to
812 * 0.
813 */
814 r600_store_value(cb, 0);
815
816 /* R_008C1C_SQ_THREAD_RESOURCE_MGMT_2
817 * Set the number of threads used by the CS (aka LS) stage to
818 * the maximum number of threads and set the number of threads
819 * for the HS stage to 0. */
820 r600_store_value(cb, S_008C1C_NUM_LS_THREADS(num_threads));
821
822 /* R_008C20_SQ_STACK_RESOURCE_MGMT_1
823 * Set the Control Flow stack entries to 0 for PS/VS stages */
824 r600_store_value(cb, 0);
825
826 /* R_008C24_SQ_STACK_RESOURCE_MGMT_2
827 * Set the Control Flow stack entries to 0 for GS/ES stages */
828 r600_store_value(cb, 0);
829
830 /* R_008C28_SQ_STACK_RESOURCE_MGMT_3
831 * Set the Contol Flow stack entries to 0 for the HS stage, and
832 * set it to the maximum value for the CS (aka LS) stage. */
833 r600_store_value(cb,
834 S_008C28_NUM_LS_STACK_ENTRIES(num_stack_entries));
835 }
836 /* Give the compute shader all the available LDS space.
837 * NOTE: This only sets the maximum number of dwords that a compute
838 * shader can allocate. When a shader is executed, we still need to
839 * allocate the appropriate amount of LDS dwords using the
840 * CM_R_0288E8_SQ_LDS_ALLOC register.
841 */
842 if (rctx->b.chip_class < CAYMAN) {
843 r600_store_config_reg(cb, R_008E2C_SQ_LDS_RESOURCE_MGMT,
844 S_008E2C_NUM_PS_LDS(0x0000) | S_008E2C_NUM_LS_LDS(8192));
845 } else {
846 r600_store_context_reg(cb, CM_R_0286FC_SPI_LDS_MGMT,
847 S_0286FC_NUM_PS_LDS(0) |
848 S_0286FC_NUM_LS_LDS(255)); /* 255 * 32 = 8160 dwords */
849 }
850
851 /* Context Registers */
852
853 if (rctx->b.chip_class < CAYMAN) {
854 /* workaround for hw issues with dyn gpr - must set all limits
855 * to 240 instead of 0, 0x1e == 240 / 8
856 */
857 r600_store_context_reg(cb, R_028838_SQ_DYN_GPR_RESOURCE_LIMIT_1,
858 S_028838_PS_GPRS(0x1e) |
859 S_028838_VS_GPRS(0x1e) |
860 S_028838_GS_GPRS(0x1e) |
861 S_028838_ES_GPRS(0x1e) |
862 S_028838_HS_GPRS(0x1e) |
863 S_028838_LS_GPRS(0x1e));
864 }
865
866 /* XXX: Investigate setting bit 15, which is FAST_COMPUTE_MODE */
867 r600_store_context_reg(cb, R_028A40_VGT_GS_MODE,
868 S_028A40_COMPUTE_MODE(1) | S_028A40_PARTIAL_THD_AT_EOI(1));
869
870 r600_store_context_reg(cb, R_028B54_VGT_SHADER_STAGES_EN, 2/*CS_ON*/);
871
872 r600_store_context_reg(cb, R_0286E8_SPI_COMPUTE_INPUT_CNTL,
873 S_0286E8_TID_IN_GROUP_ENA(1) |
874 S_0286E8_TGID_ENA(1) |
875 S_0286E8_DISABLE_INDEX_PACK(1));
876
877 /* The LOOP_CONST registers are an optimizations for loops that allows
878 * you to store the initial counter, increment value, and maximum
879 * counter value in a register so that hardware can calculate the
880 * correct number of iterations for the loop, so that you don't need
881 * to have the loop counter in your shader code. We don't currently use
882 * this optimization, so we must keep track of the counter in the
883 * shader and use a break instruction to exit loops. However, the
884 * hardware will still uses this register to determine when to exit a
885 * loop, so we need to initialize the counter to 0, set the increment
886 * value to 1 and the maximum counter value to the 4095 (0xfff) which
887 * is the maximum value allowed. This gives us a maximum of 4096
888 * iterations for our loops, but hopefully our break instruction will
889 * execute before some time before the 4096th iteration.
890 */
891 eg_store_loop_const(cb, R_03A200_SQ_LOOP_CONST_0 + (160 * 4), 0x1000FFF);
892 }
893
894 void evergreen_init_compute_state_functions(struct r600_context *rctx)
895 {
896 rctx->b.b.create_compute_state = evergreen_create_compute_state;
897 rctx->b.b.delete_compute_state = evergreen_delete_compute_state;
898 rctx->b.b.bind_compute_state = evergreen_bind_compute_state;
899 // rctx->context.create_sampler_view = evergreen_compute_create_sampler_view;
900 rctx->b.b.set_compute_resources = evergreen_set_compute_resources;
901 rctx->b.b.set_global_binding = evergreen_set_global_binding;
902 rctx->b.b.launch_grid = evergreen_launch_grid;
903
904 }
905
906 static void *r600_compute_global_transfer_map(struct pipe_context *ctx,
907 struct pipe_resource *resource,
908 unsigned level,
909 unsigned usage,
910 const struct pipe_box *box,
911 struct pipe_transfer **ptransfer)
912 {
913 struct r600_context *rctx = (struct r600_context*)ctx;
914 struct compute_memory_pool *pool = rctx->screen->global_pool;
915 struct r600_resource_global* buffer =
916 (struct r600_resource_global*)resource;
917
918 struct compute_memory_item *item = buffer->chunk;
919 struct pipe_resource *dst = NULL;
920 unsigned offset = box->x;
921
922 if (is_item_in_pool(item)) {
923 compute_memory_demote_item(pool, item, ctx);
924 }
925 else {
926 if (item->real_buffer == NULL) {
927 item->real_buffer =
928 r600_compute_buffer_alloc_vram(pool->screen, item->size_in_dw * 4);
929 }
930 }
931
932 dst = (struct pipe_resource*)item->real_buffer;
933
934 if (usage & PIPE_TRANSFER_READ)
935 buffer->chunk->status |= ITEM_MAPPED_FOR_READING;
936
937 COMPUTE_DBG(rctx->screen, "* r600_compute_global_transfer_map()\n"
938 "level = %u, usage = %u, box(x = %u, y = %u, z = %u "
939 "width = %u, height = %u, depth = %u)\n", level, usage,
940 box->x, box->y, box->z, box->width, box->height,
941 box->depth);
942 COMPUTE_DBG(rctx->screen, "Buffer id = %"PRIi64" offset = "
943 "%u (box.x)\n", item->id, box->x);
944
945
946 assert(resource->target == PIPE_BUFFER);
947 assert(resource->bind & PIPE_BIND_GLOBAL);
948 assert(box->x >= 0);
949 assert(box->y == 0);
950 assert(box->z == 0);
951
952 ///TODO: do it better, mapping is not possible if the pool is too big
953 return pipe_buffer_map_range(ctx, dst,
954 offset, box->width, usage, ptransfer);
955 }
956
957 static void r600_compute_global_transfer_unmap(struct pipe_context *ctx,
958 struct pipe_transfer *transfer)
959 {
960 /* struct r600_resource_global are not real resources, they just map
961 * to an offset within the compute memory pool. The function
962 * r600_compute_global_transfer_map() maps the memory pool
963 * resource rather than the struct r600_resource_global passed to
964 * it as an argument and then initalizes ptransfer->resource with
965 * the memory pool resource (via pipe_buffer_map_range).
966 * When transfer_unmap is called it uses the memory pool's
967 * vtable which calls r600_buffer_transfer_map() rather than
968 * this function.
969 */
970 assert (!"This function should not be called");
971 }
972
973 static void r600_compute_global_transfer_flush_region(struct pipe_context *ctx,
974 struct pipe_transfer *transfer,
975 const struct pipe_box *box)
976 {
977 assert(0 && "TODO");
978 }
979
980 static void r600_compute_global_buffer_destroy(struct pipe_screen *screen,
981 struct pipe_resource *res)
982 {
983 struct r600_resource_global* buffer = NULL;
984 struct r600_screen* rscreen = NULL;
985
986 assert(res->target == PIPE_BUFFER);
987 assert(res->bind & PIPE_BIND_GLOBAL);
988
989 buffer = (struct r600_resource_global*)res;
990 rscreen = (struct r600_screen*)screen;
991
992 compute_memory_free(rscreen->global_pool, buffer->chunk->id);
993
994 buffer->chunk = NULL;
995 free(res);
996 }
997
998 static const struct u_resource_vtbl r600_global_buffer_vtbl =
999 {
1000 u_default_resource_get_handle, /* get_handle */
1001 r600_compute_global_buffer_destroy, /* resource_destroy */
1002 r600_compute_global_transfer_map, /* transfer_map */
1003 r600_compute_global_transfer_flush_region,/* transfer_flush_region */
1004 r600_compute_global_transfer_unmap, /* transfer_unmap */
1005 };
1006
1007 struct pipe_resource *r600_compute_global_buffer_create(struct pipe_screen *screen,
1008 const struct pipe_resource *templ)
1009 {
1010 struct r600_resource_global* result = NULL;
1011 struct r600_screen* rscreen = NULL;
1012 int size_in_dw = 0;
1013
1014 assert(templ->target == PIPE_BUFFER);
1015 assert(templ->bind & PIPE_BIND_GLOBAL);
1016 assert(templ->array_size == 1 || templ->array_size == 0);
1017 assert(templ->depth0 == 1 || templ->depth0 == 0);
1018 assert(templ->height0 == 1 || templ->height0 == 0);
1019
1020 result = (struct r600_resource_global*)
1021 CALLOC(sizeof(struct r600_resource_global), 1);
1022 rscreen = (struct r600_screen*)screen;
1023
1024 COMPUTE_DBG(rscreen, "*** r600_compute_global_buffer_create\n");
1025 COMPUTE_DBG(rscreen, "width = %u array_size = %u\n", templ->width0,
1026 templ->array_size);
1027
1028 result->base.b.vtbl = &r600_global_buffer_vtbl;
1029 result->base.b.b = *templ;
1030 result->base.b.b.screen = screen;
1031 pipe_reference_init(&result->base.b.b.reference, 1);
1032
1033 size_in_dw = (templ->width0+3) / 4;
1034
1035 result->chunk = compute_memory_alloc(rscreen->global_pool, size_in_dw);
1036
1037 if (result->chunk == NULL)
1038 {
1039 free(result);
1040 return NULL;
1041 }
1042
1043 return &result->base.b.b;
1044 }