fe9e2f98ce0495cfce7b559351badf909eb4ef29
[mesa.git] / src / gallium / drivers / r600 / evergreen_compute.c
1 /*
2 * Copyright 2011 Adam Rak <adam.rak@streamnovation.com>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * on the rights to use, copy, modify, merge, publish, distribute, sub
8 * license, and/or sell copies of the Software, and to permit persons to whom
9 * the Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Adam Rak <adam.rak@streamnovation.com>
25 */
26
27 #include <stdio.h>
28 #include <errno.h>
29 #include "pipe/p_defines.h"
30 #include "pipe/p_state.h"
31 #include "pipe/p_context.h"
32 #include "util/u_blitter.h"
33 #include "util/u_double_list.h"
34 #include "util/u_transfer.h"
35 #include "util/u_surface.h"
36 #include "util/u_pack_color.h"
37 #include "util/u_memory.h"
38 #include "util/u_inlines.h"
39 #include "util/u_framebuffer.h"
40 #include "pipebuffer/pb_buffer.h"
41 #include "r600.h"
42 #include "evergreend.h"
43 #include "r600_resource.h"
44 #include "r600_shader.h"
45 #include "r600_pipe.h"
46 #include "r600_formats.h"
47 #include "evergreen_compute.h"
48 #include "r600_hw_context_priv.h"
49 #include "evergreen_compute_internal.h"
50 #include "compute_memory_pool.h"
51 #ifdef HAVE_OPENCL
52 #include "llvm_wrapper.h"
53 #endif
54
55 /**
56 RAT0 is for global binding write
57 VTX1 is for global binding read
58
59 for wrting images RAT1...
60 for reading images TEX2...
61 TEX2-RAT1 is paired
62
63 TEX2... consumes the same fetch resources, that VTX2... would consume
64
65 CONST0 and VTX0 is for parameters
66 CONST0 is binding smaller input parameter buffer, and for constant indexing,
67 also constant cached
68 VTX0 is for indirect/non-constant indexing, or if the input is bigger than
69 the constant cache can handle
70
71 RAT-s are limited to 12, so we can only bind at most 11 texture for writing
72 because we reserve RAT0 for global bindings. With byteaddressing enabled,
73 we should reserve another one too.=> 10 image binding for writing max.
74
75 from Nvidia OpenCL:
76 CL_DEVICE_MAX_READ_IMAGE_ARGS: 128
77 CL_DEVICE_MAX_WRITE_IMAGE_ARGS: 8
78
79 so 10 for writing is enough. 176 is the max for reading according to the docs
80
81 writable images should be listed first < 10, so their id corresponds to RAT(id+1)
82 writable images will consume TEX slots, VTX slots too because of linear indexing
83
84 */
85
86 static void evergreen_cs_set_vertex_buffer(
87 struct r600_context * rctx,
88 unsigned vb_index,
89 unsigned offset,
90 struct pipe_resource * buffer)
91 {
92 struct r600_vertexbuf_state *state = &rctx->cs_vertex_buffer_state;
93 struct pipe_vertex_buffer *vb = &state->vb[vb_index];
94 vb->stride = 1;
95 vb->buffer_offset = offset;
96 vb->buffer = buffer;
97 vb->user_buffer = NULL;
98
99 /* The vertex instructions in the compute shaders use the texture cache,
100 * so we need to invalidate it. */
101 rctx->flags |= R600_CONTEXT_TEX_FLUSH;
102 state->enabled_mask |= 1 << vb_index;
103 state->dirty_mask |= 1 << vb_index;
104 r600_atom_dirty(rctx, &state->atom);
105 }
106
107 const struct u_resource_vtbl r600_global_buffer_vtbl =
108 {
109 u_default_resource_get_handle, /* get_handle */
110 r600_compute_global_buffer_destroy, /* resource_destroy */
111 r600_compute_global_get_transfer, /* get_transfer */
112 r600_compute_global_transfer_destroy, /* transfer_destroy */
113 r600_compute_global_transfer_map, /* transfer_map */
114 r600_compute_global_transfer_flush_region,/* transfer_flush_region */
115 r600_compute_global_transfer_unmap, /* transfer_unmap */
116 r600_compute_global_transfer_inline_write /* transfer_inline_write */
117 };
118
119
120 void *evergreen_create_compute_state(
121 struct pipe_context *ctx_,
122 const const struct pipe_compute_state *cso)
123 {
124 struct r600_context *ctx = (struct r600_context *)ctx_;
125 struct r600_pipe_compute *shader = CALLOC_STRUCT(r600_pipe_compute);
126
127 #ifdef HAVE_OPENCL
128 const struct pipe_llvm_program_header * header;
129 const unsigned char * code;
130 unsigned i;
131
132 COMPUTE_DBG("*** evergreen_create_compute_state\n");
133
134 header = cso->prog;
135 code = cso->prog + sizeof(struct pipe_llvm_program_header);
136 #endif
137
138 shader->ctx = (struct r600_context*)ctx;
139 shader->resources = (struct evergreen_compute_resource*)
140 CALLOC(sizeof(struct evergreen_compute_resource),
141 get_compute_resource_num());
142 shader->local_size = cso->req_local_mem; ///TODO: assert it
143 shader->private_size = cso->req_private_mem;
144 shader->input_size = cso->req_input_mem;
145
146 #ifdef HAVE_OPENCL
147 shader->num_kernels = llvm_get_num_kernels(code, header->num_bytes);
148 shader->kernels = CALLOC(sizeof(struct r600_kernel), shader->num_kernels);
149
150 for (i = 0; i < shader->num_kernels; i++) {
151 struct r600_kernel *kernel = &shader->kernels[i];
152 kernel->llvm_module = llvm_get_kernel_module(i, code,
153 header->num_bytes);
154 }
155 #endif
156 return shader;
157 }
158
159 void evergreen_delete_compute_state(struct pipe_context *ctx, void* state)
160 {
161 struct r600_pipe_compute *shader = (struct r600_pipe_compute *)state;
162
163 free(shader->resources);
164 free(shader);
165 }
166
167 static void evergreen_bind_compute_state(struct pipe_context *ctx_, void *state)
168 {
169 struct r600_context *ctx = (struct r600_context *)ctx_;
170
171 COMPUTE_DBG("*** evergreen_bind_compute_state\n");
172
173 ctx->cs_shader_state.shader = (struct r600_pipe_compute *)state;
174 }
175
176 /* The kernel parameters are stored a vtx buffer (ID=0), besides the explicit
177 * kernel parameters there are inplicit parameters that need to be stored
178 * in the vertex buffer as well. Here is how these parameters are organized in
179 * the buffer:
180 *
181 * DWORDS 0-2: Number of work groups in each dimension (x,y,z)
182 * DWORDS 3-5: Number of global work items in each dimension (x,y,z)
183 * DWORDS 6-8: Number of work items within each work group in each dimension
184 * (x,y,z)
185 * DWORDS 9+ : Kernel parameters
186 */
187 void evergreen_compute_upload_input(
188 struct pipe_context *ctx_,
189 const uint *block_layout,
190 const uint *grid_layout,
191 const void *input)
192 {
193 struct r600_context *ctx = (struct r600_context *)ctx_;
194 struct r600_pipe_compute *shader = ctx->cs_shader_state.shader;
195 int i;
196 unsigned kernel_parameters_offset_bytes = 36;
197 uint32_t * num_work_groups_start;
198 uint32_t * global_size_start;
199 uint32_t * local_size_start;
200 uint32_t * kernel_parameters_start;
201
202 if (shader->input_size == 0) {
203 return;
204 }
205
206 if (!shader->kernel_param) {
207 unsigned buffer_size = shader->input_size;
208
209 /* Add space for the grid dimensions */
210 buffer_size += kernel_parameters_offset_bytes * sizeof(uint);
211 shader->kernel_param = r600_compute_buffer_alloc_vram(
212 ctx->screen, buffer_size);
213 }
214
215 num_work_groups_start = ctx->ws->buffer_map(
216 shader->kernel_param->cs_buf, ctx->cs, PIPE_TRANSFER_WRITE);
217 global_size_start = num_work_groups_start + (3 * (sizeof(uint) /4));
218 local_size_start = global_size_start + (3 * (sizeof(uint)) / 4);
219 kernel_parameters_start = local_size_start + (3 * (sizeof(uint)) / 4);
220
221 /* Copy the work group size */
222 memcpy(num_work_groups_start, grid_layout, 3 * sizeof(uint));
223
224 /* Copy the global size */
225 for (i = 0; i < 3; i++) {
226 global_size_start[i] = grid_layout[i] * block_layout[i];
227 }
228
229 /* Copy the local dimensions */
230 memcpy(local_size_start, block_layout, 3 * sizeof(uint));
231
232 /* Copy the kernel inputs */
233 memcpy(kernel_parameters_start, input, shader->input_size);
234
235 for (i = 0; i < (kernel_parameters_offset_bytes / 4) +
236 (shader->input_size / 4); i++) {
237 COMPUTE_DBG("input %i : %i\n", i,
238 ((unsigned*)num_work_groups_start)[i]);
239 }
240
241 ctx->ws->buffer_unmap(shader->kernel_param->cs_buf);
242
243 ///ID=0 is reserved for the parameters
244 evergreen_cs_set_vertex_buffer(ctx, 0, 0,
245 (struct pipe_resource*)shader->kernel_param);
246 ///ID=0 is reserved for parameters
247 evergreen_set_const_cache(shader, 0, shader->kernel_param,
248 shader->input_size, 0);
249 }
250
251 static void evergreen_emit_direct_dispatch(
252 struct r600_context *rctx,
253 const uint *block_layout, const uint *grid_layout)
254 {
255 int i;
256 struct radeon_winsys_cs *cs = rctx->cs;
257 unsigned num_waves;
258 unsigned num_pipes = rctx->screen->info.r600_max_pipes;
259 unsigned wave_divisor = (16 * num_pipes);
260 int group_size = 1;
261 int grid_size = 1;
262 /* XXX: Enable lds and get size from cs_shader_state */
263 unsigned lds_size = 0;
264
265 /* Calculate group_size/grid_size */
266 for (i = 0; i < 3; i++) {
267 group_size *= block_layout[i];
268 }
269
270 for (i = 0; i < 3; i++) {
271 grid_size *= grid_layout[i];
272 }
273
274 /* num_waves = ceil((tg_size.x * tg_size.y, tg_size.z) / (16 * num_pipes)) */
275 num_waves = (block_layout[0] * block_layout[1] * block_layout[2] +
276 wave_divisor - 1) / wave_divisor;
277
278 COMPUTE_DBG("Using %u pipes, there are %u wavefronts per thread block\n",
279 num_pipes, num_waves);
280
281 /* XXX: Partition the LDS between PS/CS. By default half (4096 dwords
282 * on Evergreen) oes to Pixel Shaders and half goes to Compute Shaders.
283 * We may need to allocat the entire LDS space for Compute Shaders.
284 *
285 * EG: R_008E2C_SQ_LDS_RESOURCE_MGMT := S_008E2C_NUM_LS_LDS(lds_dwords)
286 * CM: CM_R_0286FC_SPI_LDS_MGMT := S_0286FC_NUM_LS_LDS(lds_dwords)
287 */
288
289 r600_write_config_reg(cs, R_008970_VGT_NUM_INDICES, group_size);
290
291 r600_write_config_reg_seq(cs, R_00899C_VGT_COMPUTE_START_X, 3);
292 r600_write_value(cs, 0); /* R_00899C_VGT_COMPUTE_START_X */
293 r600_write_value(cs, 0); /* R_0089A0_VGT_COMPUTE_START_Y */
294 r600_write_value(cs, 0); /* R_0089A4_VGT_COMPUTE_START_Z */
295
296 r600_write_config_reg(cs, R_0089AC_VGT_COMPUTE_THREAD_GROUP_SIZE,
297 group_size);
298
299 r600_write_compute_context_reg_seq(cs, R_0286EC_SPI_COMPUTE_NUM_THREAD_X, 3);
300 r600_write_value(cs, block_layout[0]); /* R_0286EC_SPI_COMPUTE_NUM_THREAD_X */
301 r600_write_value(cs, block_layout[1]); /* R_0286F0_SPI_COMPUTE_NUM_THREAD_Y */
302 r600_write_value(cs, block_layout[2]); /* R_0286F4_SPI_COMPUTE_NUM_THREAD_Z */
303
304 r600_write_compute_context_reg(cs, CM_R_0288E8_SQ_LDS_ALLOC,
305 lds_size | (num_waves << 14));
306
307 /* Dispatch packet */
308 r600_write_value(cs, PKT3C(PKT3_DISPATCH_DIRECT, 3, 0));
309 r600_write_value(cs, grid_layout[0]);
310 r600_write_value(cs, grid_layout[1]);
311 r600_write_value(cs, grid_layout[2]);
312 /* VGT_DISPATCH_INITIATOR = COMPUTE_SHADER_EN */
313 r600_write_value(cs, 1);
314 }
315
316 static void compute_emit_cs(struct r600_context *ctx, const uint *block_layout,
317 const uint *grid_layout)
318 {
319 struct radeon_winsys_cs *cs = ctx->cs;
320 unsigned flush_flags = 0;
321 int i;
322
323 struct r600_resource *onebo = NULL;
324 struct evergreen_compute_resource *resources =
325 ctx->cs_shader_state.shader->resources;
326
327 /* Initialize all the compute-related registers.
328 *
329 * See evergreen_init_atom_start_compute_cs() in this file for the list
330 * of registers initialized by the start_compute_cs_cmd atom.
331 */
332 r600_emit_atom(ctx, &ctx->start_compute_cs_cmd.atom);
333
334 ctx->flags |= R600_CONTEXT_CB_FLUSH;
335 r600_flush_emit(ctx);
336
337 /* Emit colorbuffers. */
338 for (i = 0; i < ctx->framebuffer.state.nr_cbufs; i++) {
339 struct r600_surface *cb = (struct r600_surface*)ctx->framebuffer.state.cbufs[i];
340 unsigned reloc = r600_context_bo_reloc(ctx, (struct r600_resource*)cb->base.texture,
341 RADEON_USAGE_READWRITE);
342
343 r600_write_compute_context_reg_seq(cs, R_028C60_CB_COLOR0_BASE + i * 0x3C, 7);
344 r600_write_value(cs, cb->cb_color_base); /* R_028C60_CB_COLOR0_BASE */
345 r600_write_value(cs, cb->cb_color_pitch); /* R_028C64_CB_COLOR0_PITCH */
346 r600_write_value(cs, cb->cb_color_slice); /* R_028C68_CB_COLOR0_SLICE */
347 r600_write_value(cs, cb->cb_color_view); /* R_028C6C_CB_COLOR0_VIEW */
348 r600_write_value(cs, cb->cb_color_info); /* R_028C70_CB_COLOR0_INFO */
349 r600_write_value(cs, cb->cb_color_attrib); /* R_028C74_CB_COLOR0_ATTRIB */
350 r600_write_value(cs, cb->cb_color_dim); /* R_028C78_CB_COLOR0_DIM */
351
352 r600_write_value(cs, PKT3(PKT3_NOP, 0, 0)); /* R_028C60_CB_COLOR0_BASE */
353 r600_write_value(cs, reloc);
354
355 if (!ctx->keep_tiling_flags) {
356 r600_write_value(cs, PKT3(PKT3_NOP, 0, 0)); /* R_028C70_CB_COLOR0_INFO */
357 r600_write_value(cs, reloc);
358 }
359
360 r600_write_value(cs, PKT3(PKT3_NOP, 0, 0)); /* R_028C74_CB_COLOR0_ATTRIB */
361 r600_write_value(cs, reloc);
362 }
363
364 /* Set CB_TARGET_MASK XXX: Use cb_misc_state */
365 r600_write_compute_context_reg(cs, R_028238_CB_TARGET_MASK,
366 ctx->compute_cb_target_mask);
367
368
369 /* Emit vertex buffer state */
370 ctx->cs_vertex_buffer_state.atom.num_dw = 12 * util_bitcount(ctx->cs_vertex_buffer_state.dirty_mask);
371 r600_emit_atom(ctx, &ctx->cs_vertex_buffer_state.atom);
372
373 /* Emit compute shader state */
374 r600_emit_atom(ctx, &ctx->cs_shader_state.atom);
375
376 for (i = 0; i < get_compute_resource_num(); i++) {
377 if (resources[i].enabled) {
378 int j;
379 COMPUTE_DBG("resnum: %i, cdw: %i\n", i, cs->cdw);
380
381 for (j = 0; j < resources[i].cs_end; j++) {
382 if (resources[i].do_reloc[j]) {
383 assert(resources[i].bo);
384 evergreen_emit_ctx_reloc(ctx,
385 resources[i].bo,
386 resources[i].usage);
387 }
388
389 cs->buf[cs->cdw++] = resources[i].cs[j];
390 }
391
392 if (resources[i].bo) {
393 onebo = resources[i].bo;
394 evergreen_emit_ctx_reloc(ctx,
395 resources[i].bo,
396 resources[i].usage);
397
398 ///special case for textures
399 if (resources[i].do_reloc
400 [resources[i].cs_end] == 2) {
401 evergreen_emit_ctx_reloc(ctx,
402 resources[i].bo,
403 resources[i].usage);
404 }
405 }
406 }
407 }
408
409 /* Emit dispatch state and dispatch packet */
410 evergreen_emit_direct_dispatch(ctx, block_layout, grid_layout);
411
412 /* XXX evergreen_flush_emit() hardcodes the CP_COHER_SIZE to 0xffffffff
413 */
414 ctx->flags |= R600_CONTEXT_CB_FLUSH;
415 r600_flush_emit(ctx);
416
417 #if 0
418 COMPUTE_DBG("cdw: %i\n", cs->cdw);
419 for (i = 0; i < cs->cdw; i++) {
420 COMPUTE_DBG("%4i : 0x%08X\n", i, ctx->cs->buf[i]);
421 }
422 #endif
423
424 flush_flags = RADEON_FLUSH_ASYNC | RADEON_FLUSH_COMPUTE;
425 if (ctx->keep_tiling_flags) {
426 flush_flags |= RADEON_FLUSH_KEEP_TILING_FLAGS;
427 }
428
429 ctx->ws->cs_flush(ctx->cs, flush_flags);
430
431 ctx->pm4_dirty_cdwords = 0;
432 ctx->flags = 0;
433
434 COMPUTE_DBG("shader started\n");
435
436 ctx->ws->buffer_wait(onebo->buf, 0);
437
438 COMPUTE_DBG("...\n");
439
440 ctx->streamout_start = TRUE;
441 ctx->streamout_append_bitmask = ~0;
442
443 }
444
445
446 /**
447 * Emit function for r600_cs_shader_state atom
448 */
449 void evergreen_emit_cs_shader(
450 struct r600_context *rctx,
451 struct r600_atom *atom)
452 {
453 struct r600_cs_shader_state *state =
454 (struct r600_cs_shader_state*)atom;
455 struct r600_pipe_compute *shader = state->shader;
456 struct r600_kernel *kernel = &shader->kernels[state->kernel_index];
457 struct radeon_winsys_cs *cs = rctx->cs;
458 uint64_t va;
459
460 va = r600_resource_va(&rctx->screen->screen, &kernel->code_bo->b.b);
461
462 r600_write_compute_context_reg_seq(cs, R_0288D0_SQ_PGM_START_LS, 3);
463 r600_write_value(cs, va >> 8); /* R_0288D0_SQ_PGM_START_LS */
464 r600_write_value(cs, /* R_0288D4_SQ_PGM_RESOURCES_LS */
465 S_0288D4_NUM_GPRS(kernel->bc.ngpr)
466 | S_0288D4_STACK_SIZE(kernel->bc.nstack));
467 r600_write_value(cs, 0); /* R_0288D8_SQ_PGM_RESOURCES_LS_2 */
468
469 r600_write_value(cs, PKT3C(PKT3_NOP, 0, 0));
470 r600_write_value(cs, r600_context_bo_reloc(rctx, kernel->code_bo,
471 RADEON_USAGE_READ));
472
473 rctx->flags |= R600_CONTEXT_SHADERCONST_FLUSH;
474 }
475
476 static void evergreen_launch_grid(
477 struct pipe_context *ctx_,
478 const uint *block_layout, const uint *grid_layout,
479 uint32_t pc, const void *input)
480 {
481 struct r600_context *ctx = (struct r600_context *)ctx_;
482
483 COMPUTE_DBG("*** evergreen_launch_grid: pc = %u\n", pc);
484
485 #ifdef HAVE_OPENCL
486 if (!shader->kernels[pc].code_bo) {
487 struct r600_kernel *kernel = &shader->kernels[pc];
488 r600_compute_shader_create(ctx_, kernel->llvm_module, &kernel->bc);
489 kernel->code_bo = r600_compute_buffer_alloc_vram(ctx->screen,
490 kernel->bc.ndw * 4);
491 p = ctx->ws->buffer_map(kernel->code_bo->cs_buf, ctx->cs,
492 PIPE_TRANSFER_WRITE);
493 memcpy(p, kernel->bc.bytecode, kernel->bc.ndw * 4);
494 ctx->ws->buffer_unmap(kernel->code_bo->cs_buf);
495 }
496 #endif
497
498 ctx->cs_shader_state.kernel_index = pc;
499 evergreen_compute_upload_input(ctx_, block_layout, grid_layout, input);
500 compute_emit_cs(ctx, block_layout, grid_layout);
501 }
502
503 static void evergreen_set_compute_resources(struct pipe_context * ctx_,
504 unsigned start, unsigned count,
505 struct pipe_surface ** surfaces)
506 {
507 struct r600_context *ctx = (struct r600_context *)ctx_;
508 struct r600_surface **resources = (struct r600_surface **)surfaces;
509
510 COMPUTE_DBG("*** evergreen_set_compute_resources: start = %u count = %u\n",
511 start, count);
512
513 for (int i = 0; i < count; i++) {
514 /* The First two vertex buffers are reserved for parameters and
515 * global buffers. */
516 unsigned vtx_id = 2 + i;
517 if (resources[i]) {
518 struct r600_resource_global *buffer =
519 (struct r600_resource_global*)
520 resources[i]->base.texture;
521 if (resources[i]->base.writable) {
522 assert(i+1 < 12);
523
524 evergreen_set_rat(ctx->cs_shader_state.shader, i+1,
525 (struct r600_resource *)resources[i]->base.texture,
526 buffer->chunk->start_in_dw*4,
527 resources[i]->base.texture->width0);
528 }
529
530 evergreen_cs_set_vertex_buffer(ctx, vtx_id,
531 buffer->chunk->start_in_dw * 4,
532 resources[i]->base.texture);
533 }
534 }
535 }
536
537 static void evergreen_set_cs_sampler_view(struct pipe_context *ctx_,
538 unsigned start_slot, unsigned count,
539 struct pipe_sampler_view **views)
540 {
541 struct r600_context *ctx = (struct r600_context *)ctx_;
542 struct r600_pipe_sampler_view **resource =
543 (struct r600_pipe_sampler_view **)views;
544
545 for (int i = 0; i < count; i++) {
546 if (resource[i]) {
547 assert(i+1 < 12);
548 ///FETCH0 = VTX0 (param buffer),
549 //FETCH1 = VTX1 (global buffer pool), FETCH2... = TEX
550 evergreen_set_tex_resource(ctx->cs_shader_state.shader, resource[i], i+2);
551 }
552 }
553 }
554
555 static void evergreen_bind_compute_sampler_states(
556 struct pipe_context *ctx_,
557 unsigned start_slot,
558 unsigned num_samplers,
559 void **samplers_)
560 {
561 struct r600_context *ctx = (struct r600_context *)ctx_;
562 struct compute_sampler_state ** samplers =
563 (struct compute_sampler_state **)samplers_;
564
565 for (int i = 0; i < num_samplers; i++) {
566 if (samplers[i]) {
567 evergreen_set_sampler_resource(
568 ctx->cs_shader_state.shader, samplers[i], i);
569 }
570 }
571 }
572
573 static void evergreen_set_global_binding(
574 struct pipe_context *ctx_, unsigned first, unsigned n,
575 struct pipe_resource **resources,
576 uint32_t **handles)
577 {
578 struct r600_context *ctx = (struct r600_context *)ctx_;
579 struct compute_memory_pool *pool = ctx->screen->global_pool;
580 struct r600_resource_global **buffers =
581 (struct r600_resource_global **)resources;
582
583 COMPUTE_DBG("*** evergreen_set_global_binding first = %u n = %u\n",
584 first, n);
585
586 if (!resources) {
587 /* XXX: Unset */
588 return;
589 }
590
591 compute_memory_finalize_pending(pool, ctx_);
592
593 for (int i = 0; i < n; i++)
594 {
595 assert(resources[i]->target == PIPE_BUFFER);
596 assert(resources[i]->bind & PIPE_BIND_GLOBAL);
597
598 *(handles[i]) = buffers[i]->chunk->start_in_dw * 4;
599 }
600
601 evergreen_set_rat(ctx->cs_shader_state.shader, 0, pool->bo, 0, pool->size_in_dw * 4);
602 evergreen_cs_set_vertex_buffer(ctx, 1, 0,
603 (struct pipe_resource*)pool->bo);
604 }
605
606 /**
607 * This function initializes all the compute specific registers that need to
608 * be initialized for each compute command stream. Registers that are common
609 * to both compute and 3D will be initialized at the beginning of each compute
610 * command stream by the start_cs_cmd atom. However, since the SET_CONTEXT_REG
611 * packet requires that the shader type bit be set, we must initialize all
612 * context registers needed for compute in this function. The registers
613 * intialized by the start_cs_cmd atom can be found in evereen_state.c in the
614 * functions evergreen_init_atom_start_cs or cayman_init_atom_start_cs depending
615 * on the GPU family.
616 */
617 void evergreen_init_atom_start_compute_cs(struct r600_context *ctx)
618 {
619 struct r600_command_buffer *cb = &ctx->start_compute_cs_cmd;
620 int num_threads;
621 int num_stack_entries;
622
623 /* since all required registers are initialised in the
624 * start_compute_cs_cmd atom, we can EMIT_EARLY here.
625 */
626 r600_init_command_buffer(ctx, cb, 1, 256);
627 cb->pkt_flags = RADEON_CP_PACKET3_COMPUTE_MODE;
628
629 switch (ctx->family) {
630 case CHIP_CEDAR:
631 default:
632 num_threads = 128;
633 num_stack_entries = 256;
634 break;
635 case CHIP_REDWOOD:
636 num_threads = 128;
637 num_stack_entries = 256;
638 break;
639 case CHIP_JUNIPER:
640 num_threads = 128;
641 num_stack_entries = 512;
642 break;
643 case CHIP_CYPRESS:
644 case CHIP_HEMLOCK:
645 num_threads = 128;
646 num_stack_entries = 512;
647 break;
648 case CHIP_PALM:
649 num_threads = 128;
650 num_stack_entries = 256;
651 break;
652 case CHIP_SUMO:
653 num_threads = 128;
654 num_stack_entries = 256;
655 break;
656 case CHIP_SUMO2:
657 num_threads = 128;
658 num_stack_entries = 512;
659 break;
660 case CHIP_BARTS:
661 num_threads = 128;
662 num_stack_entries = 512;
663 break;
664 case CHIP_TURKS:
665 num_threads = 128;
666 num_stack_entries = 256;
667 break;
668 case CHIP_CAICOS:
669 num_threads = 128;
670 num_stack_entries = 256;
671 break;
672 }
673
674 /* Config Registers */
675 evergreen_init_common_regs(cb, ctx->chip_class
676 , ctx->family, ctx->screen->info.drm_minor);
677
678 /* The primitive type always needs to be POINTLIST for compute. */
679 r600_store_config_reg(cb, R_008958_VGT_PRIMITIVE_TYPE,
680 V_008958_DI_PT_POINTLIST);
681
682 if (ctx->chip_class < CAYMAN) {
683
684 /* These registers control which simds can be used by each stage.
685 * The default for these registers is 0xffffffff, which means
686 * all simds are available for each stage. It's possible we may
687 * want to play around with these in the future, but for now
688 * the default value is fine.
689 *
690 * R_008E20_SQ_STATIC_THREAD_MGMT1
691 * R_008E24_SQ_STATIC_THREAD_MGMT2
692 * R_008E28_SQ_STATIC_THREAD_MGMT3
693 */
694
695 /* XXX: We may need to adjust the thread and stack resouce
696 * values for 3D/compute interop */
697
698 r600_store_config_reg_seq(cb, R_008C18_SQ_THREAD_RESOURCE_MGMT_1, 5);
699
700 /* R_008C18_SQ_THREAD_RESOURCE_MGMT_1
701 * Set the number of threads used by the PS/VS/GS/ES stage to
702 * 0.
703 */
704 r600_store_value(cb, 0);
705
706 /* R_008C1C_SQ_THREAD_RESOURCE_MGMT_2
707 * Set the number of threads used by the CS (aka LS) stage to
708 * the maximum number of threads and set the number of threads
709 * for the HS stage to 0. */
710 r600_store_value(cb, S_008C1C_NUM_LS_THREADS(num_threads));
711
712 /* R_008C20_SQ_STACK_RESOURCE_MGMT_1
713 * Set the Control Flow stack entries to 0 for PS/VS stages */
714 r600_store_value(cb, 0);
715
716 /* R_008C24_SQ_STACK_RESOURCE_MGMT_2
717 * Set the Control Flow stack entries to 0 for GS/ES stages */
718 r600_store_value(cb, 0);
719
720 /* R_008C28_SQ_STACK_RESOURCE_MGMT_3
721 * Set the Contol Flow stack entries to 0 for the HS stage, and
722 * set it to the maximum value for the CS (aka LS) stage. */
723 r600_store_value(cb,
724 S_008C28_NUM_LS_STACK_ENTRIES(num_stack_entries));
725 }
726
727 /* Context Registers */
728
729 if (ctx->chip_class < CAYMAN) {
730 /* workaround for hw issues with dyn gpr - must set all limits
731 * to 240 instead of 0, 0x1e == 240 / 8
732 */
733 r600_store_context_reg(cb, R_028838_SQ_DYN_GPR_RESOURCE_LIMIT_1,
734 S_028838_PS_GPRS(0x1e) |
735 S_028838_VS_GPRS(0x1e) |
736 S_028838_GS_GPRS(0x1e) |
737 S_028838_ES_GPRS(0x1e) |
738 S_028838_HS_GPRS(0x1e) |
739 S_028838_LS_GPRS(0x1e));
740 }
741
742 /* XXX: Investigate setting bit 15, which is FAST_COMPUTE_MODE */
743 r600_store_context_reg(cb, R_028A40_VGT_GS_MODE,
744 S_028A40_COMPUTE_MODE(1) | S_028A40_PARTIAL_THD_AT_EOI(1));
745
746 r600_store_context_reg(cb, R_028B54_VGT_SHADER_STAGES_EN, 2/*CS_ON*/);
747
748 r600_store_context_reg(cb, R_0286E8_SPI_COMPUTE_INPUT_CNTL,
749 S_0286E8_TID_IN_GROUP_ENA
750 | S_0286E8_TGID_ENA
751 | S_0286E8_DISABLE_INDEX_PACK)
752 ;
753
754 /* The LOOP_CONST registers are an optimizations for loops that allows
755 * you to store the initial counter, increment value, and maximum
756 * counter value in a register so that hardware can calculate the
757 * correct number of iterations for the loop, so that you don't need
758 * to have the loop counter in your shader code. We don't currently use
759 * this optimization, so we must keep track of the counter in the
760 * shader and use a break instruction to exit loops. However, the
761 * hardware will still uses this register to determine when to exit a
762 * loop, so we need to initialize the counter to 0, set the increment
763 * value to 1 and the maximum counter value to the 4095 (0xfff) which
764 * is the maximum value allowed. This gives us a maximum of 4096
765 * iterations for our loops, but hopefully our break instruction will
766 * execute before some time before the 4096th iteration.
767 */
768 eg_store_loop_const(cb, R_03A200_SQ_LOOP_CONST_0 + (160 * 4), 0x1000FFF);
769 }
770
771 void evergreen_init_compute_state_functions(struct r600_context *ctx)
772 {
773 ctx->context.create_compute_state = evergreen_create_compute_state;
774 ctx->context.delete_compute_state = evergreen_delete_compute_state;
775 ctx->context.bind_compute_state = evergreen_bind_compute_state;
776 // ctx->context.create_sampler_view = evergreen_compute_create_sampler_view;
777 ctx->context.set_compute_resources = evergreen_set_compute_resources;
778 ctx->context.set_compute_sampler_views = evergreen_set_cs_sampler_view;
779 ctx->context.bind_compute_sampler_states = evergreen_bind_compute_sampler_states;
780 ctx->context.set_global_binding = evergreen_set_global_binding;
781 ctx->context.launch_grid = evergreen_launch_grid;
782
783 /* We always use at least two vertex buffers for compute, one for
784 * parameters and one for global memory */
785 ctx->cs_vertex_buffer_state.enabled_mask =
786 ctx->cs_vertex_buffer_state.dirty_mask = 1 | 2;
787 }
788
789
790 struct pipe_resource *r600_compute_global_buffer_create(
791 struct pipe_screen *screen,
792 const struct pipe_resource *templ)
793 {
794 assert(templ->target == PIPE_BUFFER);
795 assert(templ->bind & PIPE_BIND_GLOBAL);
796 assert(templ->array_size == 1 || templ->array_size == 0);
797 assert(templ->depth0 == 1 || templ->depth0 == 0);
798 assert(templ->height0 == 1 || templ->height0 == 0);
799
800 struct r600_resource_global* result = (struct r600_resource_global*)
801 CALLOC(sizeof(struct r600_resource_global), 1);
802 struct r600_screen* rscreen = (struct r600_screen*)screen;
803
804 COMPUTE_DBG("*** r600_compute_global_buffer_create\n");
805 COMPUTE_DBG("width = %u array_size = %u\n", templ->width0,
806 templ->array_size);
807
808 result->base.b.vtbl = &r600_global_buffer_vtbl;
809 result->base.b.b.screen = screen;
810 result->base.b.b = *templ;
811 pipe_reference_init(&result->base.b.b.reference, 1);
812
813 int size_in_dw = (templ->width0+3) / 4;
814
815 result->chunk = compute_memory_alloc(rscreen->global_pool, size_in_dw);
816
817 if (result->chunk == NULL)
818 {
819 free(result);
820 return NULL;
821 }
822
823 return &result->base.b.b;
824 }
825
826 void r600_compute_global_buffer_destroy(
827 struct pipe_screen *screen,
828 struct pipe_resource *res)
829 {
830 assert(res->target == PIPE_BUFFER);
831 assert(res->bind & PIPE_BIND_GLOBAL);
832
833 struct r600_resource_global* buffer = (struct r600_resource_global*)res;
834 struct r600_screen* rscreen = (struct r600_screen*)screen;
835
836 compute_memory_free(rscreen->global_pool, buffer->chunk->id);
837
838 buffer->chunk = NULL;
839 free(res);
840 }
841
842 void* r600_compute_global_transfer_map(
843 struct pipe_context *ctx_,
844 struct pipe_transfer* transfer)
845 {
846 assert(transfer->resource->target == PIPE_BUFFER);
847 assert(transfer->resource->bind & PIPE_BIND_GLOBAL);
848 assert(transfer->box.x >= 0);
849 assert(transfer->box.y == 0);
850 assert(transfer->box.z == 0);
851
852 struct r600_context *ctx = (struct r600_context *)ctx_;
853 struct r600_resource_global* buffer =
854 (struct r600_resource_global*)transfer->resource;
855
856 uint32_t* map;
857 ///TODO: do it better, mapping is not possible if the pool is too big
858
859 COMPUTE_DBG("* r600_compute_global_transfer_map()\n");
860
861 if (!(map = ctx->ws->buffer_map(buffer->chunk->pool->bo->cs_buf,
862 ctx->cs, transfer->usage))) {
863 return NULL;
864 }
865
866 COMPUTE_DBG("Buffer: %p + %u (buffer offset in global memory) "
867 "+ %u (box.x)\n", map, buffer->chunk->start_in_dw, transfer->box.x);
868 return ((char*)(map + buffer->chunk->start_in_dw)) + transfer->box.x;
869 }
870
871 void r600_compute_global_transfer_unmap(
872 struct pipe_context *ctx_,
873 struct pipe_transfer* transfer)
874 {
875 assert(transfer->resource->target == PIPE_BUFFER);
876 assert(transfer->resource->bind & PIPE_BIND_GLOBAL);
877
878 struct r600_context *ctx = (struct r600_context *)ctx_;
879 struct r600_resource_global* buffer =
880 (struct r600_resource_global*)transfer->resource;
881
882 COMPUTE_DBG("* r600_compute_global_transfer_unmap()\n");
883
884 ctx->ws->buffer_unmap(buffer->chunk->pool->bo->cs_buf);
885 }
886
887 struct pipe_transfer * r600_compute_global_get_transfer(
888 struct pipe_context *ctx_,
889 struct pipe_resource *resource,
890 unsigned level,
891 unsigned usage,
892 const struct pipe_box *box)
893 {
894 struct r600_context *ctx = (struct r600_context *)ctx_;
895 struct compute_memory_pool *pool = ctx->screen->global_pool;
896
897 compute_memory_finalize_pending(pool, ctx_);
898
899 assert(resource->target == PIPE_BUFFER);
900 struct r600_context *rctx = (struct r600_context*)ctx_;
901 struct pipe_transfer *transfer = util_slab_alloc(&rctx->pool_transfers);
902
903 COMPUTE_DBG("* r600_compute_global_get_transfer()\n"
904 "level = %u, usage = %u, box(x = %u, y = %u, z = %u "
905 "width = %u, height = %u, depth = %u)\n", level, usage,
906 box->x, box->y, box->z, box->width, box->height,
907 box->depth);
908
909 transfer->resource = resource;
910 transfer->level = level;
911 transfer->usage = usage;
912 transfer->box = *box;
913 transfer->stride = 0;
914 transfer->layer_stride = 0;
915 transfer->data = NULL;
916
917 /* Note strides are zero, this is ok for buffers, but not for
918 * textures 2d & higher at least.
919 */
920 return transfer;
921 }
922
923 void r600_compute_global_transfer_destroy(
924 struct pipe_context *ctx_,
925 struct pipe_transfer *transfer)
926 {
927 struct r600_context *rctx = (struct r600_context*)ctx_;
928 util_slab_free(&rctx->pool_transfers, transfer);
929 }
930
931 void r600_compute_global_transfer_flush_region(
932 struct pipe_context *ctx_,
933 struct pipe_transfer *transfer,
934 const struct pipe_box *box)
935 {
936 assert(0 && "TODO");
937 }
938
939 void r600_compute_global_transfer_inline_write(
940 struct pipe_context *pipe,
941 struct pipe_resource *resource,
942 unsigned level,
943 unsigned usage,
944 const struct pipe_box *box,
945 const void *data,
946 unsigned stride,
947 unsigned layer_stride)
948 {
949 assert(0 && "TODO");
950 }