r600: fix not-very indirect compute
[mesa.git] / src / gallium / drivers / r600 / evergreen_compute.c
1 /*
2 * Copyright 2011 Adam Rak <adam.rak@streamnovation.com>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * on the rights to use, copy, modify, merge, publish, distribute, sub
8 * license, and/or sell copies of the Software, and to permit persons to whom
9 * the Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Adam Rak <adam.rak@streamnovation.com>
25 */
26
27 #ifdef HAVE_OPENCL
28 #include <gelf.h>
29 #include <libelf.h>
30 #endif
31 #include <stdio.h>
32 #include <errno.h>
33 #include "pipe/p_defines.h"
34 #include "pipe/p_state.h"
35 #include "pipe/p_context.h"
36 #include "util/u_blitter.h"
37 #include "util/list.h"
38 #include "util/u_transfer.h"
39 #include "util/u_surface.h"
40 #include "util/u_pack_color.h"
41 #include "util/u_memory.h"
42 #include "util/u_inlines.h"
43 #include "util/u_framebuffer.h"
44 #include "tgsi/tgsi_parse.h"
45 #include "pipebuffer/pb_buffer.h"
46 #include "evergreend.h"
47 #include "r600_shader.h"
48 #include "r600_pipe.h"
49 #include "r600_formats.h"
50 #include "evergreen_compute.h"
51 #include "evergreen_compute_internal.h"
52 #include "compute_memory_pool.h"
53 #include "sb/sb_public.h"
54 #include <inttypes.h>
55
56 /**
57 RAT0 is for global binding write
58 VTX1 is for global binding read
59
60 for wrting images RAT1...
61 for reading images TEX2...
62 TEX2-RAT1 is paired
63
64 TEX2... consumes the same fetch resources, that VTX2... would consume
65
66 CONST0 and VTX0 is for parameters
67 CONST0 is binding smaller input parameter buffer, and for constant indexing,
68 also constant cached
69 VTX0 is for indirect/non-constant indexing, or if the input is bigger than
70 the constant cache can handle
71
72 RAT-s are limited to 12, so we can only bind at most 11 texture for writing
73 because we reserve RAT0 for global bindings. With byteaddressing enabled,
74 we should reserve another one too.=> 10 image binding for writing max.
75
76 from Nvidia OpenCL:
77 CL_DEVICE_MAX_READ_IMAGE_ARGS: 128
78 CL_DEVICE_MAX_WRITE_IMAGE_ARGS: 8
79
80 so 10 for writing is enough. 176 is the max for reading according to the docs
81
82 writable images should be listed first < 10, so their id corresponds to RAT(id+1)
83 writable images will consume TEX slots, VTX slots too because of linear indexing
84
85 */
86
87 struct r600_resource *r600_compute_buffer_alloc_vram(struct r600_screen *screen,
88 unsigned size)
89 {
90 struct pipe_resource *buffer = NULL;
91 assert(size);
92
93 buffer = pipe_buffer_create((struct pipe_screen*) screen,
94 0, PIPE_USAGE_IMMUTABLE, size);
95
96 return (struct r600_resource *)buffer;
97 }
98
99
100 static void evergreen_set_rat(struct r600_pipe_compute *pipe,
101 unsigned id,
102 struct r600_resource *bo,
103 int start,
104 int size)
105 {
106 struct pipe_surface rat_templ;
107 struct r600_surface *surf = NULL;
108 struct r600_context *rctx = NULL;
109
110 assert(id < 12);
111 assert((size & 3) == 0);
112 assert((start & 0xFF) == 0);
113
114 rctx = pipe->ctx;
115
116 COMPUTE_DBG(rctx->screen, "bind rat: %i \n", id);
117
118 /* Create the RAT surface */
119 memset(&rat_templ, 0, sizeof(rat_templ));
120 rat_templ.format = PIPE_FORMAT_R32_UINT;
121 rat_templ.u.tex.level = 0;
122 rat_templ.u.tex.first_layer = 0;
123 rat_templ.u.tex.last_layer = 0;
124
125 /* Add the RAT the list of color buffers */
126 pipe->ctx->framebuffer.state.cbufs[id] = pipe->ctx->b.b.create_surface(
127 (struct pipe_context *)pipe->ctx,
128 (struct pipe_resource *)bo, &rat_templ);
129
130 /* Update the number of color buffers */
131 pipe->ctx->framebuffer.state.nr_cbufs =
132 MAX2(id + 1, pipe->ctx->framebuffer.state.nr_cbufs);
133
134 /* Update the cb_target_mask
135 * XXX: I think this is a potential spot for bugs once we start doing
136 * GL interop. cb_target_mask may be modified in the 3D sections
137 * of this driver. */
138 pipe->ctx->compute_cb_target_mask |= (0xf << (id * 4));
139
140 surf = (struct r600_surface*)pipe->ctx->framebuffer.state.cbufs[id];
141 evergreen_init_color_surface_rat(rctx, surf);
142 }
143
144 static void evergreen_cs_set_vertex_buffer(struct r600_context *rctx,
145 unsigned vb_index,
146 unsigned offset,
147 struct pipe_resource *buffer)
148 {
149 struct r600_vertexbuf_state *state = &rctx->cs_vertex_buffer_state;
150 struct pipe_vertex_buffer *vb = &state->vb[vb_index];
151 vb->stride = 1;
152 vb->buffer_offset = offset;
153 vb->buffer.resource = buffer;
154 vb->is_user_buffer = false;
155
156 /* The vertex instructions in the compute shaders use the texture cache,
157 * so we need to invalidate it. */
158 rctx->b.flags |= R600_CONTEXT_INV_VERTEX_CACHE;
159 state->enabled_mask |= 1 << vb_index;
160 state->dirty_mask |= 1 << vb_index;
161 r600_mark_atom_dirty(rctx, &state->atom);
162 }
163
164 static void evergreen_cs_set_constant_buffer(struct r600_context *rctx,
165 unsigned cb_index,
166 unsigned offset,
167 unsigned size,
168 struct pipe_resource *buffer)
169 {
170 struct pipe_constant_buffer cb;
171 cb.buffer_size = size;
172 cb.buffer_offset = offset;
173 cb.buffer = buffer;
174 cb.user_buffer = NULL;
175
176 rctx->b.b.set_constant_buffer(&rctx->b.b, PIPE_SHADER_COMPUTE, cb_index, &cb);
177 }
178
179 /* We need to define these R600 registers here, because we can't include
180 * evergreend.h and r600d.h.
181 */
182 #define R_028868_SQ_PGM_RESOURCES_VS 0x028868
183 #define R_028850_SQ_PGM_RESOURCES_PS 0x028850
184
185 #ifdef HAVE_OPENCL
186 static void parse_symbol_table(Elf_Data *symbol_table_data,
187 const GElf_Shdr *symbol_table_header,
188 struct ac_shader_binary *binary)
189 {
190 GElf_Sym symbol;
191 unsigned i = 0;
192 unsigned symbol_count =
193 symbol_table_header->sh_size / symbol_table_header->sh_entsize;
194
195 /* We are over allocating this list, because symbol_count gives the
196 * total number of symbols, and we will only be filling the list
197 * with offsets of global symbols. The memory savings from
198 * allocating the correct size of this list will be small, and
199 * I don't think it is worth the cost of pre-computing the number
200 * of global symbols.
201 */
202 binary->global_symbol_offsets = CALLOC(symbol_count, sizeof(uint64_t));
203
204 while (gelf_getsym(symbol_table_data, i++, &symbol)) {
205 unsigned i;
206 if (GELF_ST_BIND(symbol.st_info) != STB_GLOBAL ||
207 symbol.st_shndx == 0 /* Undefined symbol */) {
208 continue;
209 }
210
211 binary->global_symbol_offsets[binary->global_symbol_count] =
212 symbol.st_value;
213
214 /* Sort the list using bubble sort. This list will usually
215 * be small. */
216 for (i = binary->global_symbol_count; i > 0; --i) {
217 uint64_t lhs = binary->global_symbol_offsets[i - 1];
218 uint64_t rhs = binary->global_symbol_offsets[i];
219 if (lhs < rhs) {
220 break;
221 }
222 binary->global_symbol_offsets[i] = lhs;
223 binary->global_symbol_offsets[i - 1] = rhs;
224 }
225 ++binary->global_symbol_count;
226 }
227 }
228
229
230 static void parse_relocs(Elf *elf, Elf_Data *relocs, Elf_Data *symbols,
231 unsigned symbol_sh_link,
232 struct ac_shader_binary *binary)
233 {
234 unsigned i;
235
236 if (!relocs || !symbols || !binary->reloc_count) {
237 return;
238 }
239 binary->relocs = CALLOC(binary->reloc_count,
240 sizeof(struct ac_shader_reloc));
241 for (i = 0; i < binary->reloc_count; i++) {
242 GElf_Sym symbol;
243 GElf_Rel rel;
244 char *symbol_name;
245 struct ac_shader_reloc *reloc = &binary->relocs[i];
246
247 gelf_getrel(relocs, i, &rel);
248 gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &symbol);
249 symbol_name = elf_strptr(elf, symbol_sh_link, symbol.st_name);
250
251 reloc->offset = rel.r_offset;
252 strncpy(reloc->name, symbol_name, sizeof(reloc->name)-1);
253 reloc->name[sizeof(reloc->name)-1] = 0;
254 }
255 }
256
257 static void r600_elf_read(const char *elf_data, unsigned elf_size,
258 struct ac_shader_binary *binary)
259 {
260 char *elf_buffer;
261 Elf *elf;
262 Elf_Scn *section = NULL;
263 Elf_Data *symbols = NULL, *relocs = NULL;
264 size_t section_str_index;
265 unsigned symbol_sh_link = 0;
266
267 /* One of the libelf implementations
268 * (http://www.mr511.de/software/english.htm) requires calling
269 * elf_version() before elf_memory().
270 */
271 elf_version(EV_CURRENT);
272 elf_buffer = MALLOC(elf_size);
273 memcpy(elf_buffer, elf_data, elf_size);
274
275 elf = elf_memory(elf_buffer, elf_size);
276
277 elf_getshdrstrndx(elf, &section_str_index);
278
279 while ((section = elf_nextscn(elf, section))) {
280 const char *name;
281 Elf_Data *section_data = NULL;
282 GElf_Shdr section_header;
283 if (gelf_getshdr(section, &section_header) != &section_header) {
284 fprintf(stderr, "Failed to read ELF section header\n");
285 return;
286 }
287 name = elf_strptr(elf, section_str_index, section_header.sh_name);
288 if (!strcmp(name, ".text")) {
289 section_data = elf_getdata(section, section_data);
290 binary->code_size = section_data->d_size;
291 binary->code = MALLOC(binary->code_size * sizeof(unsigned char));
292 memcpy(binary->code, section_data->d_buf, binary->code_size);
293 } else if (!strcmp(name, ".AMDGPU.config")) {
294 section_data = elf_getdata(section, section_data);
295 binary->config_size = section_data->d_size;
296 binary->config = MALLOC(binary->config_size * sizeof(unsigned char));
297 memcpy(binary->config, section_data->d_buf, binary->config_size);
298 } else if (!strcmp(name, ".AMDGPU.disasm")) {
299 /* Always read disassembly if it's available. */
300 section_data = elf_getdata(section, section_data);
301 binary->disasm_string = strndup(section_data->d_buf,
302 section_data->d_size);
303 } else if (!strncmp(name, ".rodata", 7)) {
304 section_data = elf_getdata(section, section_data);
305 binary->rodata_size = section_data->d_size;
306 binary->rodata = MALLOC(binary->rodata_size * sizeof(unsigned char));
307 memcpy(binary->rodata, section_data->d_buf, binary->rodata_size);
308 } else if (!strncmp(name, ".symtab", 7)) {
309 symbols = elf_getdata(section, section_data);
310 symbol_sh_link = section_header.sh_link;
311 parse_symbol_table(symbols, &section_header, binary);
312 } else if (!strcmp(name, ".rel.text")) {
313 relocs = elf_getdata(section, section_data);
314 binary->reloc_count = section_header.sh_size /
315 section_header.sh_entsize;
316 }
317 }
318
319 parse_relocs(elf, relocs, symbols, symbol_sh_link, binary);
320
321 if (elf){
322 elf_end(elf);
323 }
324 FREE(elf_buffer);
325
326 /* Cache the config size per symbol */
327 if (binary->global_symbol_count) {
328 binary->config_size_per_symbol =
329 binary->config_size / binary->global_symbol_count;
330 } else {
331 binary->global_symbol_count = 1;
332 binary->config_size_per_symbol = binary->config_size;
333 }
334 }
335
336 static const unsigned char *r600_shader_binary_config_start(
337 const struct ac_shader_binary *binary,
338 uint64_t symbol_offset)
339 {
340 unsigned i;
341 for (i = 0; i < binary->global_symbol_count; ++i) {
342 if (binary->global_symbol_offsets[i] == symbol_offset) {
343 unsigned offset = i * binary->config_size_per_symbol;
344 return binary->config + offset;
345 }
346 }
347 return binary->config;
348 }
349
350 static void r600_shader_binary_read_config(const struct ac_shader_binary *binary,
351 struct r600_bytecode *bc,
352 uint64_t symbol_offset,
353 boolean *use_kill)
354 {
355 unsigned i;
356 const unsigned char *config =
357 r600_shader_binary_config_start(binary, symbol_offset);
358
359 for (i = 0; i < binary->config_size_per_symbol; i+= 8) {
360 unsigned reg =
361 util_le32_to_cpu(*(uint32_t*)(config + i));
362 unsigned value =
363 util_le32_to_cpu(*(uint32_t*)(config + i + 4));
364 switch (reg) {
365 /* R600 / R700 */
366 case R_028850_SQ_PGM_RESOURCES_PS:
367 case R_028868_SQ_PGM_RESOURCES_VS:
368 /* Evergreen / Northern Islands */
369 case R_028844_SQ_PGM_RESOURCES_PS:
370 case R_028860_SQ_PGM_RESOURCES_VS:
371 case R_0288D4_SQ_PGM_RESOURCES_LS:
372 bc->ngpr = MAX2(bc->ngpr, G_028844_NUM_GPRS(value));
373 bc->nstack = MAX2(bc->nstack, G_028844_STACK_SIZE(value));
374 break;
375 case R_02880C_DB_SHADER_CONTROL:
376 *use_kill = G_02880C_KILL_ENABLE(value);
377 break;
378 case R_0288E8_SQ_LDS_ALLOC:
379 bc->nlds_dw = value;
380 break;
381 }
382 }
383 }
384
385 static unsigned r600_create_shader(struct r600_bytecode *bc,
386 const struct ac_shader_binary *binary,
387 boolean *use_kill)
388
389 {
390 assert(binary->code_size % 4 == 0);
391 bc->bytecode = CALLOC(1, binary->code_size);
392 memcpy(bc->bytecode, binary->code, binary->code_size);
393 bc->ndw = binary->code_size / 4;
394
395 r600_shader_binary_read_config(binary, bc, 0, use_kill);
396 return 0;
397 }
398
399 #endif
400
401 static void r600_destroy_shader(struct r600_bytecode *bc)
402 {
403 FREE(bc->bytecode);
404 }
405
406 static void *evergreen_create_compute_state(struct pipe_context *ctx,
407 const struct pipe_compute_state *cso)
408 {
409 struct r600_context *rctx = (struct r600_context *)ctx;
410 struct r600_pipe_compute *shader = CALLOC_STRUCT(r600_pipe_compute);
411 #ifdef HAVE_OPENCL
412 const struct pipe_llvm_program_header *header;
413 const char *code;
414 void *p;
415 boolean use_kill;
416 #endif
417
418 shader->ctx = rctx;
419 shader->local_size = cso->req_local_mem;
420 shader->private_size = cso->req_private_mem;
421 shader->input_size = cso->req_input_mem;
422
423 shader->ir_type = cso->ir_type;
424
425 if (shader->ir_type == PIPE_SHADER_IR_TGSI) {
426 shader->sel = r600_create_shader_state_tokens(ctx, cso->prog, PIPE_SHADER_COMPUTE);
427 return shader;
428 }
429 #ifdef HAVE_OPENCL
430 COMPUTE_DBG(rctx->screen, "*** evergreen_create_compute_state\n");
431 header = cso->prog;
432 code = cso->prog + sizeof(struct pipe_llvm_program_header);
433 radeon_shader_binary_init(&shader->binary);
434 r600_elf_read(code, header->num_bytes, &shader->binary);
435 r600_create_shader(&shader->bc, &shader->binary, &use_kill);
436
437 /* Upload code + ROdata */
438 shader->code_bo = r600_compute_buffer_alloc_vram(rctx->screen,
439 shader->bc.ndw * 4);
440 p = r600_buffer_map_sync_with_rings(&rctx->b, shader->code_bo, PIPE_TRANSFER_WRITE);
441 //TODO: use util_memcpy_cpu_to_le32 ?
442 memcpy(p, shader->bc.bytecode, shader->bc.ndw * 4);
443 rctx->b.ws->buffer_unmap(shader->code_bo->buf);
444 #endif
445
446 return shader;
447 }
448
449 static void evergreen_delete_compute_state(struct pipe_context *ctx, void *state)
450 {
451 struct r600_context *rctx = (struct r600_context *)ctx;
452 struct r600_pipe_compute *shader = state;
453
454 COMPUTE_DBG(rctx->screen, "*** evergreen_delete_compute_state\n");
455
456 if (!shader)
457 return;
458
459 if (shader->ir_type == PIPE_SHADER_IR_TGSI) {
460 r600_delete_shader_selector(ctx, shader->sel);
461 } else {
462 #ifdef HAVE_OPENCL
463 radeon_shader_binary_clean(&shader->binary);
464 #endif
465 r600_destroy_shader(&shader->bc);
466
467 /* TODO destroy shader->code_bo, shader->const_bo
468 * we'll need something like r600_buffer_free */
469 }
470 FREE(shader);
471 }
472
473 static void evergreen_bind_compute_state(struct pipe_context *ctx, void *state)
474 {
475 struct r600_context *rctx = (struct r600_context *)ctx;
476 struct r600_pipe_compute *cstate = (struct r600_pipe_compute *)state;
477 COMPUTE_DBG(rctx->screen, "*** evergreen_bind_compute_state\n");
478
479 if (!state) {
480 rctx->cs_shader_state.shader = (struct r600_pipe_compute *)state;
481 return;
482 }
483
484 if (cstate->ir_type == PIPE_SHADER_IR_TGSI) {
485 bool compute_dirty;
486
487 r600_shader_select(ctx, cstate->sel, &compute_dirty);
488 }
489
490 rctx->cs_shader_state.shader = (struct r600_pipe_compute *)state;
491 }
492
493 /* The kernel parameters are stored a vtx buffer (ID=0), besides the explicit
494 * kernel parameters there are implicit parameters that need to be stored
495 * in the vertex buffer as well. Here is how these parameters are organized in
496 * the buffer:
497 *
498 * DWORDS 0-2: Number of work groups in each dimension (x,y,z)
499 * DWORDS 3-5: Number of global work items in each dimension (x,y,z)
500 * DWORDS 6-8: Number of work items within each work group in each dimension
501 * (x,y,z)
502 * DWORDS 9+ : Kernel parameters
503 */
504 static void evergreen_compute_upload_input(struct pipe_context *ctx,
505 const struct pipe_grid_info *info)
506 {
507 struct r600_context *rctx = (struct r600_context *)ctx;
508 struct r600_pipe_compute *shader = rctx->cs_shader_state.shader;
509 unsigned i;
510 /* We need to reserve 9 dwords (36 bytes) for implicit kernel
511 * parameters.
512 */
513 unsigned input_size;
514 uint32_t *num_work_groups_start;
515 uint32_t *global_size_start;
516 uint32_t *local_size_start;
517 uint32_t *kernel_parameters_start;
518 struct pipe_box box;
519 struct pipe_transfer *transfer = NULL;
520
521 if (!shader)
522 return;
523 if (shader->input_size == 0) {
524 return;
525 }
526 input_size = shader->input_size + 36;
527 if (!shader->kernel_param) {
528 /* Add space for the grid dimensions */
529 shader->kernel_param = (struct r600_resource *)
530 pipe_buffer_create(ctx->screen, 0,
531 PIPE_USAGE_IMMUTABLE, input_size);
532 }
533
534 u_box_1d(0, input_size, &box);
535 num_work_groups_start = ctx->transfer_map(ctx,
536 (struct pipe_resource*)shader->kernel_param,
537 0, PIPE_TRANSFER_WRITE | PIPE_TRANSFER_DISCARD_RANGE,
538 &box, &transfer);
539 global_size_start = num_work_groups_start + (3 * (sizeof(uint) /4));
540 local_size_start = global_size_start + (3 * (sizeof(uint)) / 4);
541 kernel_parameters_start = local_size_start + (3 * (sizeof(uint)) / 4);
542
543 /* Copy the work group size */
544 memcpy(num_work_groups_start, info->grid, 3 * sizeof(uint));
545
546 /* Copy the global size */
547 for (i = 0; i < 3; i++) {
548 global_size_start[i] = info->grid[i] * info->block[i];
549 }
550
551 /* Copy the local dimensions */
552 memcpy(local_size_start, info->block, 3 * sizeof(uint));
553
554 /* Copy the kernel inputs */
555 memcpy(kernel_parameters_start, info->input, shader->input_size);
556
557 for (i = 0; i < (input_size / 4); i++) {
558 COMPUTE_DBG(rctx->screen, "input %i : %u\n", i,
559 ((unsigned*)num_work_groups_start)[i]);
560 }
561
562 ctx->transfer_unmap(ctx, transfer);
563
564 /* ID=0 and ID=3 are reserved for the parameters.
565 * LLVM will preferably use ID=0, but it does not work for dynamic
566 * indices. */
567 evergreen_cs_set_vertex_buffer(rctx, 3, 0,
568 (struct pipe_resource*)shader->kernel_param);
569 evergreen_cs_set_constant_buffer(rctx, 0, 0, input_size,
570 (struct pipe_resource*)shader->kernel_param);
571 }
572
573 static void evergreen_emit_dispatch(struct r600_context *rctx,
574 const struct pipe_grid_info *info,
575 uint32_t indirect_grid[3])
576 {
577 int i;
578 struct radeon_winsys_cs *cs = rctx->b.gfx.cs;
579 struct r600_pipe_compute *shader = rctx->cs_shader_state.shader;
580 unsigned num_waves;
581 unsigned num_pipes = rctx->screen->b.info.r600_max_quad_pipes;
582 unsigned wave_divisor = (16 * num_pipes);
583 int group_size = 1;
584 int grid_size = 1;
585 unsigned lds_size = shader->local_size / 4;
586
587 if (shader->ir_type != PIPE_SHADER_IR_TGSI)
588 lds_size += shader->bc.nlds_dw;
589
590 /* Calculate group_size/grid_size */
591 for (i = 0; i < 3; i++) {
592 group_size *= info->block[i];
593 }
594
595 for (i = 0; i < 3; i++) {
596 grid_size *= info->grid[i];
597 }
598
599 /* num_waves = ceil((tg_size.x * tg_size.y, tg_size.z) / (16 * num_pipes)) */
600 num_waves = (info->block[0] * info->block[1] * info->block[2] +
601 wave_divisor - 1) / wave_divisor;
602
603 COMPUTE_DBG(rctx->screen, "Using %u pipes, "
604 "%u wavefronts per thread block, "
605 "allocating %u dwords lds.\n",
606 num_pipes, num_waves, lds_size);
607
608 radeon_set_config_reg(cs, R_008970_VGT_NUM_INDICES, group_size);
609
610 radeon_set_config_reg_seq(cs, R_00899C_VGT_COMPUTE_START_X, 3);
611 radeon_emit(cs, 0); /* R_00899C_VGT_COMPUTE_START_X */
612 radeon_emit(cs, 0); /* R_0089A0_VGT_COMPUTE_START_Y */
613 radeon_emit(cs, 0); /* R_0089A4_VGT_COMPUTE_START_Z */
614
615 radeon_set_config_reg(cs, R_0089AC_VGT_COMPUTE_THREAD_GROUP_SIZE,
616 group_size);
617
618 radeon_compute_set_context_reg_seq(cs, R_0286EC_SPI_COMPUTE_NUM_THREAD_X, 3);
619 radeon_emit(cs, info->block[0]); /* R_0286EC_SPI_COMPUTE_NUM_THREAD_X */
620 radeon_emit(cs, info->block[1]); /* R_0286F0_SPI_COMPUTE_NUM_THREAD_Y */
621 radeon_emit(cs, info->block[2]); /* R_0286F4_SPI_COMPUTE_NUM_THREAD_Z */
622
623 if (rctx->b.chip_class < CAYMAN) {
624 assert(lds_size <= 8192);
625 } else {
626 /* Cayman appears to have a slightly smaller limit, see the
627 * value of CM_R_0286FC_SPI_LDS_MGMT.NUM_LS_LDS */
628 assert(lds_size <= 8160);
629 }
630
631 radeon_compute_set_context_reg(cs, R_0288E8_SQ_LDS_ALLOC,
632 lds_size | (num_waves << 14));
633
634 if (info->indirect) {
635 radeon_emit(cs, PKT3C(PKT3_DISPATCH_DIRECT, 3, 0));
636 radeon_emit(cs, indirect_grid[0]);
637 radeon_emit(cs, indirect_grid[1]);
638 radeon_emit(cs, indirect_grid[2]);
639 radeon_emit(cs, 1);
640 } else {
641 /* Dispatch packet */
642 radeon_emit(cs, PKT3C(PKT3_DISPATCH_DIRECT, 3, 0));
643 radeon_emit(cs, info->grid[0]);
644 radeon_emit(cs, info->grid[1]);
645 radeon_emit(cs, info->grid[2]);
646 /* VGT_DISPATCH_INITIATOR = COMPUTE_SHADER_EN */
647 radeon_emit(cs, 1);
648 }
649
650 if (rctx->is_debug)
651 eg_trace_emit(rctx);
652 }
653
654 static void compute_setup_cbs(struct r600_context *rctx)
655 {
656 struct radeon_winsys_cs *cs = rctx->b.gfx.cs;
657 unsigned i;
658
659 /* Emit colorbuffers. */
660 /* XXX support more than 8 colorbuffers (the offsets are not a multiple of 0x3C for CB8-11) */
661 for (i = 0; i < 8 && i < rctx->framebuffer.state.nr_cbufs; i++) {
662 struct r600_surface *cb = (struct r600_surface*)rctx->framebuffer.state.cbufs[i];
663 unsigned reloc = radeon_add_to_buffer_list(&rctx->b, &rctx->b.gfx,
664 (struct r600_resource*)cb->base.texture,
665 RADEON_USAGE_READWRITE,
666 RADEON_PRIO_SHADER_RW_BUFFER);
667
668 radeon_compute_set_context_reg_seq(cs, R_028C60_CB_COLOR0_BASE + i * 0x3C, 7);
669 radeon_emit(cs, cb->cb_color_base); /* R_028C60_CB_COLOR0_BASE */
670 radeon_emit(cs, cb->cb_color_pitch); /* R_028C64_CB_COLOR0_PITCH */
671 radeon_emit(cs, cb->cb_color_slice); /* R_028C68_CB_COLOR0_SLICE */
672 radeon_emit(cs, cb->cb_color_view); /* R_028C6C_CB_COLOR0_VIEW */
673 radeon_emit(cs, cb->cb_color_info); /* R_028C70_CB_COLOR0_INFO */
674 radeon_emit(cs, cb->cb_color_attrib); /* R_028C74_CB_COLOR0_ATTRIB */
675 radeon_emit(cs, cb->cb_color_dim); /* R_028C78_CB_COLOR0_DIM */
676
677 radeon_emit(cs, PKT3(PKT3_NOP, 0, 0)); /* R_028C60_CB_COLOR0_BASE */
678 radeon_emit(cs, reloc);
679
680 radeon_emit(cs, PKT3(PKT3_NOP, 0, 0)); /* R_028C74_CB_COLOR0_ATTRIB */
681 radeon_emit(cs, reloc);
682 }
683 for (; i < 8 ; i++)
684 radeon_compute_set_context_reg(cs, R_028C70_CB_COLOR0_INFO + i * 0x3C,
685 S_028C70_FORMAT(V_028C70_COLOR_INVALID));
686 for (; i < 12; i++)
687 radeon_compute_set_context_reg(cs, R_028E50_CB_COLOR8_INFO + (i - 8) * 0x1C,
688 S_028C70_FORMAT(V_028C70_COLOR_INVALID));
689
690 /* Set CB_TARGET_MASK XXX: Use cb_misc_state */
691 radeon_compute_set_context_reg(cs, R_028238_CB_TARGET_MASK,
692 rctx->compute_cb_target_mask);
693 }
694
695 static void compute_emit_cs(struct r600_context *rctx,
696 const struct pipe_grid_info *info)
697 {
698 struct radeon_winsys_cs *cs = rctx->b.gfx.cs;
699 bool compute_dirty = false;
700 struct r600_pipe_shader *current;
701 struct r600_shader_atomic combined_atomics[8];
702 uint8_t atomic_used_mask;
703 uint32_t indirect_grid[3] = { 0, 0, 0 };
704
705 /* make sure that the gfx ring is only one active */
706 if (radeon_emitted(rctx->b.dma.cs, 0)) {
707 rctx->b.dma.flush(rctx, PIPE_FLUSH_ASYNC, NULL);
708 }
709
710 r600_update_compressed_resource_state(rctx, true);
711
712 if (!rctx->cmd_buf_is_compute) {
713 rctx->b.gfx.flush(rctx, PIPE_FLUSH_ASYNC, NULL);
714 rctx->cmd_buf_is_compute = true;
715 }
716
717 r600_need_cs_space(rctx, 0, true);
718 if (rctx->cs_shader_state.shader->ir_type == PIPE_SHADER_IR_TGSI) {
719 r600_shader_select(&rctx->b.b, rctx->cs_shader_state.shader->sel, &compute_dirty);
720 current = rctx->cs_shader_state.shader->sel->current;
721 if (compute_dirty) {
722 rctx->cs_shader_state.atom.num_dw = current->command_buffer.num_dw;
723 r600_context_add_resource_size(&rctx->b.b, (struct pipe_resource *)current->bo);
724 r600_set_atom_dirty(rctx, &rctx->cs_shader_state.atom, true);
725 }
726
727 bool need_buf_const = current->shader.uses_tex_buffers ||
728 current->shader.has_txq_cube_array_z_comp;
729
730 if (info->indirect) {
731 struct r600_resource *indirect_resource = (struct r600_resource *)info->indirect;
732 unsigned *data = r600_buffer_map_sync_with_rings(&rctx->b, indirect_resource, PIPE_TRANSFER_READ);
733 unsigned offset = info->indirect_offset / 4;
734 indirect_grid[0] = data[offset];
735 indirect_grid[1] = data[offset + 1];
736 indirect_grid[2] = data[offset + 2];
737 }
738 for (int i = 0; i < 3; i++) {
739 rctx->cs_block_grid_sizes[i] = info->block[i];
740 rctx->cs_block_grid_sizes[i + 4] = info->indirect ? indirect_grid[i] : info->grid[i];
741 }
742 rctx->cs_block_grid_sizes[3] = rctx->cs_block_grid_sizes[7] = 0;
743 rctx->driver_consts[PIPE_SHADER_COMPUTE].cs_block_grid_size_dirty = true;
744 if (need_buf_const) {
745 eg_setup_buffer_constants(rctx, PIPE_SHADER_COMPUTE);
746 }
747 r600_update_driver_const_buffers(rctx, true);
748
749 if (evergreen_emit_atomic_buffer_setup(rctx, current, combined_atomics, &atomic_used_mask)) {
750 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
751 radeon_emit(cs, EVENT_TYPE(EVENT_TYPE_CS_PARTIAL_FLUSH) | EVENT_INDEX(4));
752 }
753 }
754
755 /* Initialize all the compute-related registers.
756 *
757 * See evergreen_init_atom_start_compute_cs() in this file for the list
758 * of registers initialized by the start_compute_cs_cmd atom.
759 */
760 r600_emit_command_buffer(cs, &rctx->start_compute_cs_cmd);
761
762 /* emit config state */
763 if (rctx->b.chip_class == EVERGREEN) {
764 if (rctx->cs_shader_state.shader->ir_type == PIPE_SHADER_IR_TGSI) {
765 radeon_set_config_reg_seq(cs, R_008C04_SQ_GPR_RESOURCE_MGMT_1, 3);
766 radeon_emit(cs, S_008C04_NUM_CLAUSE_TEMP_GPRS(rctx->r6xx_num_clause_temp_gprs));
767 radeon_emit(cs, 0);
768 radeon_emit(cs, 0);
769 radeon_set_config_reg(cs, R_008D8C_SQ_DYN_GPR_CNTL_PS_FLUSH_REQ, (1 << 8));
770 } else
771 r600_emit_atom(rctx, &rctx->config_state.atom);
772 }
773
774 rctx->b.flags |= R600_CONTEXT_WAIT_3D_IDLE | R600_CONTEXT_FLUSH_AND_INV;
775 r600_flush_emit(rctx);
776
777 if (rctx->cs_shader_state.shader->ir_type != PIPE_SHADER_IR_TGSI) {
778
779 compute_setup_cbs(rctx);
780
781 /* Emit vertex buffer state */
782 rctx->cs_vertex_buffer_state.atom.num_dw = 12 * util_bitcount(rctx->cs_vertex_buffer_state.dirty_mask);
783 r600_emit_atom(rctx, &rctx->cs_vertex_buffer_state.atom);
784 } else {
785 uint32_t rat_mask;
786
787 rat_mask = evergreen_construct_rat_mask(rctx, &rctx->cb_misc_state, 0);
788 radeon_compute_set_context_reg(cs, R_028238_CB_TARGET_MASK,
789 rat_mask);
790 }
791
792 /* Emit constant buffer state */
793 r600_emit_atom(rctx, &rctx->constbuf_state[PIPE_SHADER_COMPUTE].atom);
794
795 /* Emit sampler state */
796 r600_emit_atom(rctx, &rctx->samplers[PIPE_SHADER_COMPUTE].states.atom);
797
798 /* Emit sampler view (texture resource) state */
799 r600_emit_atom(rctx, &rctx->samplers[PIPE_SHADER_COMPUTE].views.atom);
800
801 /* Emit images state */
802 r600_emit_atom(rctx, &rctx->compute_images.atom);
803
804 /* Emit buffers state */
805 r600_emit_atom(rctx, &rctx->compute_buffers.atom);
806
807 /* Emit shader state */
808 r600_emit_atom(rctx, &rctx->cs_shader_state.atom);
809
810 /* Emit dispatch state and dispatch packet */
811 evergreen_emit_dispatch(rctx, info, indirect_grid);
812
813 /* XXX evergreen_flush_emit() hardcodes the CP_COHER_SIZE to 0xffffffff
814 */
815 rctx->b.flags |= R600_CONTEXT_INV_CONST_CACHE |
816 R600_CONTEXT_INV_VERTEX_CACHE |
817 R600_CONTEXT_INV_TEX_CACHE;
818 r600_flush_emit(rctx);
819 rctx->b.flags = 0;
820
821 if (rctx->b.chip_class >= CAYMAN) {
822 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
823 radeon_emit(cs, EVENT_TYPE(EVENT_TYPE_CS_PARTIAL_FLUSH) | EVENT_INDEX(4));
824 /* DEALLOC_STATE prevents the GPU from hanging when a
825 * SURFACE_SYNC packet is emitted some time after a DISPATCH_DIRECT
826 * with any of the CB*_DEST_BASE_ENA or DB_DEST_BASE_ENA bits set.
827 */
828 radeon_emit(cs, PKT3C(PKT3_DEALLOC_STATE, 0, 0));
829 radeon_emit(cs, 0);
830 }
831 if (rctx->cs_shader_state.shader->ir_type == PIPE_SHADER_IR_TGSI)
832 evergreen_emit_atomic_buffer_save(rctx, true, combined_atomics, &atomic_used_mask);
833
834 #if 0
835 COMPUTE_DBG(rctx->screen, "cdw: %i\n", cs->cdw);
836 for (i = 0; i < cs->cdw; i++) {
837 COMPUTE_DBG(rctx->screen, "%4i : 0x%08X\n", i, cs->buf[i]);
838 }
839 #endif
840
841 }
842
843
844 /**
845 * Emit function for r600_cs_shader_state atom
846 */
847 void evergreen_emit_cs_shader(struct r600_context *rctx,
848 struct r600_atom *atom)
849 {
850 struct r600_cs_shader_state *state =
851 (struct r600_cs_shader_state*)atom;
852 struct r600_pipe_compute *shader = state->shader;
853 struct radeon_winsys_cs *cs = rctx->b.gfx.cs;
854 uint64_t va;
855 struct r600_resource *code_bo;
856 unsigned ngpr, nstack;
857
858 if (shader->ir_type == PIPE_SHADER_IR_TGSI) {
859 code_bo = shader->sel->current->bo;
860 va = shader->sel->current->bo->gpu_address;
861 ngpr = shader->sel->current->shader.bc.ngpr;
862 nstack = shader->sel->current->shader.bc.nstack;
863 } else {
864 code_bo = shader->code_bo;
865 va = shader->code_bo->gpu_address + state->pc;
866 ngpr = shader->bc.ngpr;
867 nstack = shader->bc.nstack;
868 }
869
870 radeon_compute_set_context_reg_seq(cs, R_0288D0_SQ_PGM_START_LS, 3);
871 radeon_emit(cs, va >> 8); /* R_0288D0_SQ_PGM_START_LS */
872 radeon_emit(cs, /* R_0288D4_SQ_PGM_RESOURCES_LS */
873 S_0288D4_NUM_GPRS(ngpr) |
874 S_0288D4_DX10_CLAMP(1) |
875 S_0288D4_STACK_SIZE(nstack));
876 radeon_emit(cs, 0); /* R_0288D8_SQ_PGM_RESOURCES_LS_2 */
877
878 radeon_emit(cs, PKT3C(PKT3_NOP, 0, 0));
879 radeon_emit(cs, radeon_add_to_buffer_list(&rctx->b, &rctx->b.gfx,
880 code_bo, RADEON_USAGE_READ,
881 RADEON_PRIO_SHADER_BINARY));
882 }
883
884 static void evergreen_launch_grid(struct pipe_context *ctx,
885 const struct pipe_grid_info *info)
886 {
887 struct r600_context *rctx = (struct r600_context *)ctx;
888 #ifdef HAVE_OPENCL
889 struct r600_pipe_compute *shader = rctx->cs_shader_state.shader;
890 boolean use_kill;
891
892 if (shader->ir_type != PIPE_SHADER_IR_TGSI) {
893 rctx->cs_shader_state.pc = info->pc;
894 /* Get the config information for this kernel. */
895 r600_shader_binary_read_config(&shader->binary, &shader->bc,
896 info->pc, &use_kill);
897 } else {
898 use_kill = false;
899 rctx->cs_shader_state.pc = 0;
900 }
901 #endif
902
903 COMPUTE_DBG(rctx->screen, "*** evergreen_launch_grid: pc = %u\n", info->pc);
904
905
906 evergreen_compute_upload_input(ctx, info);
907 compute_emit_cs(rctx, info);
908 }
909
910 static void evergreen_set_compute_resources(struct pipe_context *ctx,
911 unsigned start, unsigned count,
912 struct pipe_surface **surfaces)
913 {
914 struct r600_context *rctx = (struct r600_context *)ctx;
915 struct r600_surface **resources = (struct r600_surface **)surfaces;
916
917 COMPUTE_DBG(rctx->screen, "*** evergreen_set_compute_resources: start = %u count = %u\n",
918 start, count);
919
920 for (unsigned i = 0; i < count; i++) {
921 /* The First four vertex buffers are reserved for parameters and
922 * global buffers. */
923 unsigned vtx_id = 4 + i;
924 if (resources[i]) {
925 struct r600_resource_global *buffer =
926 (struct r600_resource_global*)
927 resources[i]->base.texture;
928 if (resources[i]->base.writable) {
929 assert(i+1 < 12);
930
931 evergreen_set_rat(rctx->cs_shader_state.shader, i+1,
932 (struct r600_resource *)resources[i]->base.texture,
933 buffer->chunk->start_in_dw*4,
934 resources[i]->base.texture->width0);
935 }
936
937 evergreen_cs_set_vertex_buffer(rctx, vtx_id,
938 buffer->chunk->start_in_dw * 4,
939 resources[i]->base.texture);
940 }
941 }
942 }
943
944 static void evergreen_set_global_binding(struct pipe_context *ctx,
945 unsigned first, unsigned n,
946 struct pipe_resource **resources,
947 uint32_t **handles)
948 {
949 struct r600_context *rctx = (struct r600_context *)ctx;
950 struct compute_memory_pool *pool = rctx->screen->global_pool;
951 struct r600_resource_global **buffers =
952 (struct r600_resource_global **)resources;
953 unsigned i;
954
955 COMPUTE_DBG(rctx->screen, "*** evergreen_set_global_binding first = %u n = %u\n",
956 first, n);
957
958 if (!resources) {
959 /* XXX: Unset */
960 return;
961 }
962
963 /* We mark these items for promotion to the pool if they
964 * aren't already there */
965 for (i = first; i < first + n; i++) {
966 struct compute_memory_item *item = buffers[i]->chunk;
967
968 if (!is_item_in_pool(item))
969 buffers[i]->chunk->status |= ITEM_FOR_PROMOTING;
970 }
971
972 if (compute_memory_finalize_pending(pool, ctx) == -1) {
973 /* XXX: Unset */
974 return;
975 }
976
977 for (i = first; i < first + n; i++)
978 {
979 uint32_t buffer_offset;
980 uint32_t handle;
981 assert(resources[i]->target == PIPE_BUFFER);
982 assert(resources[i]->bind & PIPE_BIND_GLOBAL);
983
984 buffer_offset = util_le32_to_cpu(*(handles[i]));
985 handle = buffer_offset + buffers[i]->chunk->start_in_dw * 4;
986
987 *(handles[i]) = util_cpu_to_le32(handle);
988 }
989
990 /* globals for writing */
991 evergreen_set_rat(rctx->cs_shader_state.shader, 0, pool->bo, 0, pool->size_in_dw * 4);
992 /* globals for reading */
993 evergreen_cs_set_vertex_buffer(rctx, 1, 0,
994 (struct pipe_resource*)pool->bo);
995
996 /* constants for reading, LLVM puts them in text segment */
997 evergreen_cs_set_vertex_buffer(rctx, 2, 0,
998 (struct pipe_resource*)rctx->cs_shader_state.shader->code_bo);
999 }
1000
1001 /**
1002 * This function initializes all the compute specific registers that need to
1003 * be initialized for each compute command stream. Registers that are common
1004 * to both compute and 3D will be initialized at the beginning of each compute
1005 * command stream by the start_cs_cmd atom. However, since the SET_CONTEXT_REG
1006 * packet requires that the shader type bit be set, we must initialize all
1007 * context registers needed for compute in this function. The registers
1008 * initialized by the start_cs_cmd atom can be found in evergreen_state.c in the
1009 * functions evergreen_init_atom_start_cs or cayman_init_atom_start_cs depending
1010 * on the GPU family.
1011 */
1012 void evergreen_init_atom_start_compute_cs(struct r600_context *rctx)
1013 {
1014 struct r600_command_buffer *cb = &rctx->start_compute_cs_cmd;
1015 int num_threads;
1016 int num_stack_entries;
1017
1018 /* since all required registers are initialized in the
1019 * start_compute_cs_cmd atom, we can EMIT_EARLY here.
1020 */
1021 r600_init_command_buffer(cb, 256);
1022 cb->pkt_flags = RADEON_CP_PACKET3_COMPUTE_MODE;
1023
1024 /* We're setting config registers here. */
1025 r600_store_value(cb, PKT3(PKT3_EVENT_WRITE, 0, 0));
1026 r600_store_value(cb, EVENT_TYPE(EVENT_TYPE_CS_PARTIAL_FLUSH) | EVENT_INDEX(4));
1027
1028 switch (rctx->b.family) {
1029 case CHIP_CEDAR:
1030 default:
1031 num_threads = 128;
1032 num_stack_entries = 256;
1033 break;
1034 case CHIP_REDWOOD:
1035 num_threads = 128;
1036 num_stack_entries = 256;
1037 break;
1038 case CHIP_JUNIPER:
1039 num_threads = 128;
1040 num_stack_entries = 512;
1041 break;
1042 case CHIP_CYPRESS:
1043 case CHIP_HEMLOCK:
1044 num_threads = 128;
1045 num_stack_entries = 512;
1046 break;
1047 case CHIP_PALM:
1048 num_threads = 128;
1049 num_stack_entries = 256;
1050 break;
1051 case CHIP_SUMO:
1052 num_threads = 128;
1053 num_stack_entries = 256;
1054 break;
1055 case CHIP_SUMO2:
1056 num_threads = 128;
1057 num_stack_entries = 512;
1058 break;
1059 case CHIP_BARTS:
1060 num_threads = 128;
1061 num_stack_entries = 512;
1062 break;
1063 case CHIP_TURKS:
1064 num_threads = 128;
1065 num_stack_entries = 256;
1066 break;
1067 case CHIP_CAICOS:
1068 num_threads = 128;
1069 num_stack_entries = 256;
1070 break;
1071 }
1072
1073 /* The primitive type always needs to be POINTLIST for compute. */
1074 r600_store_config_reg(cb, R_008958_VGT_PRIMITIVE_TYPE,
1075 V_008958_DI_PT_POINTLIST);
1076
1077 if (rctx->b.chip_class < CAYMAN) {
1078
1079 /* These registers control which simds can be used by each stage.
1080 * The default for these registers is 0xffffffff, which means
1081 * all simds are available for each stage. It's possible we may
1082 * want to play around with these in the future, but for now
1083 * the default value is fine.
1084 *
1085 * R_008E20_SQ_STATIC_THREAD_MGMT1
1086 * R_008E24_SQ_STATIC_THREAD_MGMT2
1087 * R_008E28_SQ_STATIC_THREAD_MGMT3
1088 */
1089
1090 /* XXX: We may need to adjust the thread and stack resource
1091 * values for 3D/compute interop */
1092
1093 r600_store_config_reg_seq(cb, R_008C18_SQ_THREAD_RESOURCE_MGMT_1, 5);
1094
1095 /* R_008C18_SQ_THREAD_RESOURCE_MGMT_1
1096 * Set the number of threads used by the PS/VS/GS/ES stage to
1097 * 0.
1098 */
1099 r600_store_value(cb, 0);
1100
1101 /* R_008C1C_SQ_THREAD_RESOURCE_MGMT_2
1102 * Set the number of threads used by the CS (aka LS) stage to
1103 * the maximum number of threads and set the number of threads
1104 * for the HS stage to 0. */
1105 r600_store_value(cb, S_008C1C_NUM_LS_THREADS(num_threads));
1106
1107 /* R_008C20_SQ_STACK_RESOURCE_MGMT_1
1108 * Set the Control Flow stack entries to 0 for PS/VS stages */
1109 r600_store_value(cb, 0);
1110
1111 /* R_008C24_SQ_STACK_RESOURCE_MGMT_2
1112 * Set the Control Flow stack entries to 0 for GS/ES stages */
1113 r600_store_value(cb, 0);
1114
1115 /* R_008C28_SQ_STACK_RESOURCE_MGMT_3
1116 * Set the Contol Flow stack entries to 0 for the HS stage, and
1117 * set it to the maximum value for the CS (aka LS) stage. */
1118 r600_store_value(cb,
1119 S_008C28_NUM_LS_STACK_ENTRIES(num_stack_entries));
1120 }
1121 /* Give the compute shader all the available LDS space.
1122 * NOTE: This only sets the maximum number of dwords that a compute
1123 * shader can allocate. When a shader is executed, we still need to
1124 * allocate the appropriate amount of LDS dwords using the
1125 * CM_R_0288E8_SQ_LDS_ALLOC register.
1126 */
1127 if (rctx->b.chip_class < CAYMAN) {
1128 r600_store_config_reg(cb, R_008E2C_SQ_LDS_RESOURCE_MGMT,
1129 S_008E2C_NUM_PS_LDS(0x0000) | S_008E2C_NUM_LS_LDS(8192));
1130 } else {
1131 r600_store_context_reg(cb, CM_R_0286FC_SPI_LDS_MGMT,
1132 S_0286FC_NUM_PS_LDS(0) |
1133 S_0286FC_NUM_LS_LDS(255)); /* 255 * 32 = 8160 dwords */
1134 }
1135
1136 /* Context Registers */
1137
1138 if (rctx->b.chip_class < CAYMAN) {
1139 /* workaround for hw issues with dyn gpr - must set all limits
1140 * to 240 instead of 0, 0x1e == 240 / 8
1141 */
1142 r600_store_context_reg(cb, R_028838_SQ_DYN_GPR_RESOURCE_LIMIT_1,
1143 S_028838_PS_GPRS(0x1e) |
1144 S_028838_VS_GPRS(0x1e) |
1145 S_028838_GS_GPRS(0x1e) |
1146 S_028838_ES_GPRS(0x1e) |
1147 S_028838_HS_GPRS(0x1e) |
1148 S_028838_LS_GPRS(0x1e));
1149 }
1150
1151 /* XXX: Investigate setting bit 15, which is FAST_COMPUTE_MODE */
1152 r600_store_context_reg(cb, R_028A40_VGT_GS_MODE,
1153 S_028A40_COMPUTE_MODE(1) | S_028A40_PARTIAL_THD_AT_EOI(1));
1154
1155 r600_store_context_reg(cb, R_028B54_VGT_SHADER_STAGES_EN, 2/*CS_ON*/);
1156
1157 r600_store_context_reg(cb, R_0286E8_SPI_COMPUTE_INPUT_CNTL,
1158 S_0286E8_TID_IN_GROUP_ENA(1) |
1159 S_0286E8_TGID_ENA(1) |
1160 S_0286E8_DISABLE_INDEX_PACK(1));
1161
1162 /* The LOOP_CONST registers are an optimizations for loops that allows
1163 * you to store the initial counter, increment value, and maximum
1164 * counter value in a register so that hardware can calculate the
1165 * correct number of iterations for the loop, so that you don't need
1166 * to have the loop counter in your shader code. We don't currently use
1167 * this optimization, so we must keep track of the counter in the
1168 * shader and use a break instruction to exit loops. However, the
1169 * hardware will still uses this register to determine when to exit a
1170 * loop, so we need to initialize the counter to 0, set the increment
1171 * value to 1 and the maximum counter value to the 4095 (0xfff) which
1172 * is the maximum value allowed. This gives us a maximum of 4096
1173 * iterations for our loops, but hopefully our break instruction will
1174 * execute before some time before the 4096th iteration.
1175 */
1176 eg_store_loop_const(cb, R_03A200_SQ_LOOP_CONST_0 + (160 * 4), 0x1000FFF);
1177 }
1178
1179 void evergreen_init_compute_state_functions(struct r600_context *rctx)
1180 {
1181 rctx->b.b.create_compute_state = evergreen_create_compute_state;
1182 rctx->b.b.delete_compute_state = evergreen_delete_compute_state;
1183 rctx->b.b.bind_compute_state = evergreen_bind_compute_state;
1184 // rctx->context.create_sampler_view = evergreen_compute_create_sampler_view;
1185 rctx->b.b.set_compute_resources = evergreen_set_compute_resources;
1186 rctx->b.b.set_global_binding = evergreen_set_global_binding;
1187 rctx->b.b.launch_grid = evergreen_launch_grid;
1188
1189 }
1190
1191 static void *r600_compute_global_transfer_map(struct pipe_context *ctx,
1192 struct pipe_resource *resource,
1193 unsigned level,
1194 unsigned usage,
1195 const struct pipe_box *box,
1196 struct pipe_transfer **ptransfer)
1197 {
1198 struct r600_context *rctx = (struct r600_context*)ctx;
1199 struct compute_memory_pool *pool = rctx->screen->global_pool;
1200 struct r600_resource_global* buffer =
1201 (struct r600_resource_global*)resource;
1202
1203 struct compute_memory_item *item = buffer->chunk;
1204 struct pipe_resource *dst = NULL;
1205 unsigned offset = box->x;
1206
1207 if (is_item_in_pool(item)) {
1208 compute_memory_demote_item(pool, item, ctx);
1209 }
1210 else {
1211 if (item->real_buffer == NULL) {
1212 item->real_buffer =
1213 r600_compute_buffer_alloc_vram(pool->screen, item->size_in_dw * 4);
1214 }
1215 }
1216
1217 dst = (struct pipe_resource*)item->real_buffer;
1218
1219 if (usage & PIPE_TRANSFER_READ)
1220 buffer->chunk->status |= ITEM_MAPPED_FOR_READING;
1221
1222 COMPUTE_DBG(rctx->screen, "* r600_compute_global_transfer_map()\n"
1223 "level = %u, usage = %u, box(x = %u, y = %u, z = %u "
1224 "width = %u, height = %u, depth = %u)\n", level, usage,
1225 box->x, box->y, box->z, box->width, box->height,
1226 box->depth);
1227 COMPUTE_DBG(rctx->screen, "Buffer id = %"PRIi64" offset = "
1228 "%u (box.x)\n", item->id, box->x);
1229
1230
1231 assert(resource->target == PIPE_BUFFER);
1232 assert(resource->bind & PIPE_BIND_GLOBAL);
1233 assert(box->x >= 0);
1234 assert(box->y == 0);
1235 assert(box->z == 0);
1236
1237 ///TODO: do it better, mapping is not possible if the pool is too big
1238 return pipe_buffer_map_range(ctx, dst,
1239 offset, box->width, usage, ptransfer);
1240 }
1241
1242 static void r600_compute_global_transfer_unmap(struct pipe_context *ctx,
1243 struct pipe_transfer *transfer)
1244 {
1245 /* struct r600_resource_global are not real resources, they just map
1246 * to an offset within the compute memory pool. The function
1247 * r600_compute_global_transfer_map() maps the memory pool
1248 * resource rather than the struct r600_resource_global passed to
1249 * it as an argument and then initalizes ptransfer->resource with
1250 * the memory pool resource (via pipe_buffer_map_range).
1251 * When transfer_unmap is called it uses the memory pool's
1252 * vtable which calls r600_buffer_transfer_map() rather than
1253 * this function.
1254 */
1255 assert (!"This function should not be called");
1256 }
1257
1258 static void r600_compute_global_transfer_flush_region(struct pipe_context *ctx,
1259 struct pipe_transfer *transfer,
1260 const struct pipe_box *box)
1261 {
1262 assert(0 && "TODO");
1263 }
1264
1265 static void r600_compute_global_buffer_destroy(struct pipe_screen *screen,
1266 struct pipe_resource *res)
1267 {
1268 struct r600_resource_global* buffer = NULL;
1269 struct r600_screen* rscreen = NULL;
1270
1271 assert(res->target == PIPE_BUFFER);
1272 assert(res->bind & PIPE_BIND_GLOBAL);
1273
1274 buffer = (struct r600_resource_global*)res;
1275 rscreen = (struct r600_screen*)screen;
1276
1277 compute_memory_free(rscreen->global_pool, buffer->chunk->id);
1278
1279 buffer->chunk = NULL;
1280 free(res);
1281 }
1282
1283 static const struct u_resource_vtbl r600_global_buffer_vtbl =
1284 {
1285 u_default_resource_get_handle, /* get_handle */
1286 r600_compute_global_buffer_destroy, /* resource_destroy */
1287 r600_compute_global_transfer_map, /* transfer_map */
1288 r600_compute_global_transfer_flush_region,/* transfer_flush_region */
1289 r600_compute_global_transfer_unmap, /* transfer_unmap */
1290 };
1291
1292 struct pipe_resource *r600_compute_global_buffer_create(struct pipe_screen *screen,
1293 const struct pipe_resource *templ)
1294 {
1295 struct r600_resource_global* result = NULL;
1296 struct r600_screen* rscreen = NULL;
1297 int size_in_dw = 0;
1298
1299 assert(templ->target == PIPE_BUFFER);
1300 assert(templ->bind & PIPE_BIND_GLOBAL);
1301 assert(templ->array_size == 1 || templ->array_size == 0);
1302 assert(templ->depth0 == 1 || templ->depth0 == 0);
1303 assert(templ->height0 == 1 || templ->height0 == 0);
1304
1305 result = (struct r600_resource_global*)
1306 CALLOC(sizeof(struct r600_resource_global), 1);
1307 rscreen = (struct r600_screen*)screen;
1308
1309 COMPUTE_DBG(rscreen, "*** r600_compute_global_buffer_create\n");
1310 COMPUTE_DBG(rscreen, "width = %u array_size = %u\n", templ->width0,
1311 templ->array_size);
1312
1313 result->base.b.vtbl = &r600_global_buffer_vtbl;
1314 result->base.b.b = *templ;
1315 result->base.b.b.screen = screen;
1316 pipe_reference_init(&result->base.b.b.reference, 1);
1317
1318 size_in_dw = (templ->width0+3) / 4;
1319
1320 result->chunk = compute_memory_alloc(rscreen->global_pool, size_in_dw);
1321
1322 if (result->chunk == NULL)
1323 {
1324 free(result);
1325 return NULL;
1326 }
1327
1328 return &result->base.b.b;
1329 }