r600g: remove r600_resource.h
[mesa.git] / src / gallium / drivers / r600 / evergreen_compute.c
1 /*
2 * Copyright 2011 Adam Rak <adam.rak@streamnovation.com>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * on the rights to use, copy, modify, merge, publish, distribute, sub
8 * license, and/or sell copies of the Software, and to permit persons to whom
9 * the Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Adam Rak <adam.rak@streamnovation.com>
25 */
26
27 #include <stdio.h>
28 #include <errno.h>
29 #include "pipe/p_defines.h"
30 #include "pipe/p_state.h"
31 #include "pipe/p_context.h"
32 #include "util/u_blitter.h"
33 #include "util/u_double_list.h"
34 #include "util/u_transfer.h"
35 #include "util/u_surface.h"
36 #include "util/u_pack_color.h"
37 #include "util/u_memory.h"
38 #include "util/u_inlines.h"
39 #include "util/u_framebuffer.h"
40 #include "pipebuffer/pb_buffer.h"
41 #include "evergreend.h"
42 #include "r600_shader.h"
43 #include "r600_pipe.h"
44 #include "r600_formats.h"
45 #include "evergreen_compute.h"
46 #include "evergreen_compute_internal.h"
47 #include "compute_memory_pool.h"
48 #include "sb/sb_public.h"
49 #ifdef HAVE_OPENCL
50 #include "radeon_llvm_util.h"
51 #endif
52
53 /**
54 RAT0 is for global binding write
55 VTX1 is for global binding read
56
57 for wrting images RAT1...
58 for reading images TEX2...
59 TEX2-RAT1 is paired
60
61 TEX2... consumes the same fetch resources, that VTX2... would consume
62
63 CONST0 and VTX0 is for parameters
64 CONST0 is binding smaller input parameter buffer, and for constant indexing,
65 also constant cached
66 VTX0 is for indirect/non-constant indexing, or if the input is bigger than
67 the constant cache can handle
68
69 RAT-s are limited to 12, so we can only bind at most 11 texture for writing
70 because we reserve RAT0 for global bindings. With byteaddressing enabled,
71 we should reserve another one too.=> 10 image binding for writing max.
72
73 from Nvidia OpenCL:
74 CL_DEVICE_MAX_READ_IMAGE_ARGS: 128
75 CL_DEVICE_MAX_WRITE_IMAGE_ARGS: 8
76
77 so 10 for writing is enough. 176 is the max for reading according to the docs
78
79 writable images should be listed first < 10, so their id corresponds to RAT(id+1)
80 writable images will consume TEX slots, VTX slots too because of linear indexing
81
82 */
83
84 struct r600_resource* r600_compute_buffer_alloc_vram(
85 struct r600_screen *screen,
86 unsigned size)
87 {
88 struct pipe_resource * buffer = NULL;
89 assert(size);
90
91 buffer = pipe_buffer_create(
92 (struct pipe_screen*) screen,
93 PIPE_BIND_CUSTOM,
94 PIPE_USAGE_IMMUTABLE,
95 size);
96
97 return (struct r600_resource *)buffer;
98 }
99
100
101 static void evergreen_set_rat(
102 struct r600_pipe_compute *pipe,
103 int id,
104 struct r600_resource* bo,
105 int start,
106 int size)
107 {
108 struct pipe_surface rat_templ;
109 struct r600_surface *surf = NULL;
110 struct r600_context *rctx = NULL;
111
112 assert(id < 12);
113 assert((size & 3) == 0);
114 assert((start & 0xFF) == 0);
115
116 rctx = pipe->ctx;
117
118 COMPUTE_DBG(rctx->screen, "bind rat: %i \n", id);
119
120 /* Create the RAT surface */
121 memset(&rat_templ, 0, sizeof(rat_templ));
122 rat_templ.format = PIPE_FORMAT_R32_UINT;
123 rat_templ.u.tex.level = 0;
124 rat_templ.u.tex.first_layer = 0;
125 rat_templ.u.tex.last_layer = 0;
126
127 /* Add the RAT the list of color buffers */
128 pipe->ctx->framebuffer.state.cbufs[id] = pipe->ctx->b.b.create_surface(
129 (struct pipe_context *)pipe->ctx,
130 (struct pipe_resource *)bo, &rat_templ);
131
132 /* Update the number of color buffers */
133 pipe->ctx->framebuffer.state.nr_cbufs =
134 MAX2(id + 1, pipe->ctx->framebuffer.state.nr_cbufs);
135
136 /* Update the cb_target_mask
137 * XXX: I think this is a potential spot for bugs once we start doing
138 * GL interop. cb_target_mask may be modified in the 3D sections
139 * of this driver. */
140 pipe->ctx->compute_cb_target_mask |= (0xf << (id * 4));
141
142 surf = (struct r600_surface*)pipe->ctx->framebuffer.state.cbufs[id];
143 evergreen_init_color_surface_rat(rctx, surf);
144 }
145
146 static void evergreen_cs_set_vertex_buffer(
147 struct r600_context * rctx,
148 unsigned vb_index,
149 unsigned offset,
150 struct pipe_resource * buffer)
151 {
152 struct r600_vertexbuf_state *state = &rctx->cs_vertex_buffer_state;
153 struct pipe_vertex_buffer *vb = &state->vb[vb_index];
154 vb->stride = 1;
155 vb->buffer_offset = offset;
156 vb->buffer = buffer;
157 vb->user_buffer = NULL;
158
159 /* The vertex instructions in the compute shaders use the texture cache,
160 * so we need to invalidate it. */
161 rctx->b.flags |= R600_CONTEXT_INV_VERTEX_CACHE;
162 state->enabled_mask |= 1 << vb_index;
163 state->dirty_mask |= 1 << vb_index;
164 state->atom.dirty = true;
165 }
166
167 static void evergreen_cs_set_constant_buffer(
168 struct r600_context * rctx,
169 unsigned cb_index,
170 unsigned offset,
171 unsigned size,
172 struct pipe_resource * buffer)
173 {
174 struct pipe_constant_buffer cb;
175 cb.buffer_size = size;
176 cb.buffer_offset = offset;
177 cb.buffer = buffer;
178 cb.user_buffer = NULL;
179
180 rctx->b.b.set_constant_buffer(&rctx->b.b, PIPE_SHADER_COMPUTE, cb_index, &cb);
181 }
182
183 static const struct u_resource_vtbl r600_global_buffer_vtbl =
184 {
185 u_default_resource_get_handle, /* get_handle */
186 r600_compute_global_buffer_destroy, /* resource_destroy */
187 r600_compute_global_transfer_map, /* transfer_map */
188 r600_compute_global_transfer_flush_region,/* transfer_flush_region */
189 r600_compute_global_transfer_unmap, /* transfer_unmap */
190 r600_compute_global_transfer_inline_write /* transfer_inline_write */
191 };
192
193
194 void *evergreen_create_compute_state(
195 struct pipe_context *ctx_,
196 const const struct pipe_compute_state *cso)
197 {
198 struct r600_context *ctx = (struct r600_context *)ctx_;
199 struct r600_pipe_compute *shader = CALLOC_STRUCT(r600_pipe_compute);
200
201 #ifdef HAVE_OPENCL
202 const struct pipe_llvm_program_header * header;
203 const unsigned char * code;
204 unsigned i;
205
206 shader->llvm_ctx = LLVMContextCreate();
207
208 COMPUTE_DBG(ctx->screen, "*** evergreen_create_compute_state\n");
209
210 header = cso->prog;
211 code = cso->prog + sizeof(struct pipe_llvm_program_header);
212 #endif
213
214 shader->ctx = (struct r600_context*)ctx;
215 shader->local_size = cso->req_local_mem;
216 shader->private_size = cso->req_private_mem;
217 shader->input_size = cso->req_input_mem;
218
219 #ifdef HAVE_OPENCL
220 shader->num_kernels = radeon_llvm_get_num_kernels(shader->llvm_ctx, code,
221 header->num_bytes);
222 shader->kernels = CALLOC(sizeof(struct r600_kernel), shader->num_kernels);
223
224 for (i = 0; i < shader->num_kernels; i++) {
225 struct r600_kernel *kernel = &shader->kernels[i];
226 kernel->llvm_module = radeon_llvm_get_kernel_module(shader->llvm_ctx, i,
227 code, header->num_bytes);
228 }
229 #endif
230 return shader;
231 }
232
233 void evergreen_delete_compute_state(struct pipe_context *ctx, void* state)
234 {
235 struct r600_pipe_compute *shader = (struct r600_pipe_compute *)state;
236
237 if (!shader)
238 return;
239
240 FREE(shader->kernels);
241
242 #ifdef HAVE_OPENCL
243 if (shader->llvm_ctx){
244 LLVMContextDispose(shader->llvm_ctx);
245 }
246 #endif
247
248 FREE(shader);
249 }
250
251 static void evergreen_bind_compute_state(struct pipe_context *ctx_, void *state)
252 {
253 struct r600_context *ctx = (struct r600_context *)ctx_;
254
255 COMPUTE_DBG(ctx->screen, "*** evergreen_bind_compute_state\n");
256
257 ctx->cs_shader_state.shader = (struct r600_pipe_compute *)state;
258 }
259
260 /* The kernel parameters are stored a vtx buffer (ID=0), besides the explicit
261 * kernel parameters there are implicit parameters that need to be stored
262 * in the vertex buffer as well. Here is how these parameters are organized in
263 * the buffer:
264 *
265 * DWORDS 0-2: Number of work groups in each dimension (x,y,z)
266 * DWORDS 3-5: Number of global work items in each dimension (x,y,z)
267 * DWORDS 6-8: Number of work items within each work group in each dimension
268 * (x,y,z)
269 * DWORDS 9+ : Kernel parameters
270 */
271 void evergreen_compute_upload_input(
272 struct pipe_context *ctx_,
273 const uint *block_layout,
274 const uint *grid_layout,
275 const void *input)
276 {
277 struct r600_context *ctx = (struct r600_context *)ctx_;
278 struct r600_pipe_compute *shader = ctx->cs_shader_state.shader;
279 int i;
280 /* We need to reserve 9 dwords (36 bytes) for implicit kernel
281 * parameters.
282 */
283 unsigned input_size = shader->input_size + 36;
284 uint32_t * num_work_groups_start;
285 uint32_t * global_size_start;
286 uint32_t * local_size_start;
287 uint32_t * kernel_parameters_start;
288 struct pipe_box box;
289 struct pipe_transfer *transfer = NULL;
290
291 if (shader->input_size == 0) {
292 return;
293 }
294
295 if (!shader->kernel_param) {
296 /* Add space for the grid dimensions */
297 shader->kernel_param = (struct r600_resource *)
298 pipe_buffer_create(ctx_->screen, PIPE_BIND_CUSTOM,
299 PIPE_USAGE_IMMUTABLE, input_size);
300 }
301
302 u_box_1d(0, input_size, &box);
303 num_work_groups_start = ctx_->transfer_map(ctx_,
304 (struct pipe_resource*)shader->kernel_param,
305 0, PIPE_TRANSFER_WRITE | PIPE_TRANSFER_DISCARD_RANGE,
306 &box, &transfer);
307 global_size_start = num_work_groups_start + (3 * (sizeof(uint) /4));
308 local_size_start = global_size_start + (3 * (sizeof(uint)) / 4);
309 kernel_parameters_start = local_size_start + (3 * (sizeof(uint)) / 4);
310
311 /* Copy the work group size */
312 memcpy(num_work_groups_start, grid_layout, 3 * sizeof(uint));
313
314 /* Copy the global size */
315 for (i = 0; i < 3; i++) {
316 global_size_start[i] = grid_layout[i] * block_layout[i];
317 }
318
319 /* Copy the local dimensions */
320 memcpy(local_size_start, block_layout, 3 * sizeof(uint));
321
322 /* Copy the kernel inputs */
323 memcpy(kernel_parameters_start, input, shader->input_size);
324
325 for (i = 0; i < (input_size / 4); i++) {
326 COMPUTE_DBG(ctx->screen, "input %i : %i\n", i,
327 ((unsigned*)num_work_groups_start)[i]);
328 }
329
330 ctx_->transfer_unmap(ctx_, transfer);
331
332 /* ID=0 is reserved for the parameters */
333 evergreen_cs_set_constant_buffer(ctx, 0, 0, input_size,
334 (struct pipe_resource*)shader->kernel_param);
335 }
336
337 static void evergreen_emit_direct_dispatch(
338 struct r600_context *rctx,
339 const uint *block_layout, const uint *grid_layout)
340 {
341 int i;
342 struct radeon_winsys_cs *cs = rctx->b.rings.gfx.cs;
343 struct r600_pipe_compute *shader = rctx->cs_shader_state.shader;
344 unsigned num_waves;
345 unsigned num_pipes = rctx->screen->b.info.r600_max_pipes;
346 unsigned wave_divisor = (16 * num_pipes);
347 int group_size = 1;
348 int grid_size = 1;
349 unsigned lds_size = shader->local_size / 4 + shader->active_kernel->bc.nlds_dw;
350
351 /* Calculate group_size/grid_size */
352 for (i = 0; i < 3; i++) {
353 group_size *= block_layout[i];
354 }
355
356 for (i = 0; i < 3; i++) {
357 grid_size *= grid_layout[i];
358 }
359
360 /* num_waves = ceil((tg_size.x * tg_size.y, tg_size.z) / (16 * num_pipes)) */
361 num_waves = (block_layout[0] * block_layout[1] * block_layout[2] +
362 wave_divisor - 1) / wave_divisor;
363
364 COMPUTE_DBG(rctx->screen, "Using %u pipes, "
365 "%u wavefronts per thread block, "
366 "allocating %u dwords lds.\n",
367 num_pipes, num_waves, lds_size);
368
369 r600_write_config_reg(cs, R_008970_VGT_NUM_INDICES, group_size);
370
371 r600_write_config_reg_seq(cs, R_00899C_VGT_COMPUTE_START_X, 3);
372 radeon_emit(cs, 0); /* R_00899C_VGT_COMPUTE_START_X */
373 radeon_emit(cs, 0); /* R_0089A0_VGT_COMPUTE_START_Y */
374 radeon_emit(cs, 0); /* R_0089A4_VGT_COMPUTE_START_Z */
375
376 r600_write_config_reg(cs, R_0089AC_VGT_COMPUTE_THREAD_GROUP_SIZE,
377 group_size);
378
379 r600_write_compute_context_reg_seq(cs, R_0286EC_SPI_COMPUTE_NUM_THREAD_X, 3);
380 radeon_emit(cs, block_layout[0]); /* R_0286EC_SPI_COMPUTE_NUM_THREAD_X */
381 radeon_emit(cs, block_layout[1]); /* R_0286F0_SPI_COMPUTE_NUM_THREAD_Y */
382 radeon_emit(cs, block_layout[2]); /* R_0286F4_SPI_COMPUTE_NUM_THREAD_Z */
383
384 if (rctx->b.chip_class < CAYMAN) {
385 assert(lds_size <= 8192);
386 } else {
387 /* Cayman appears to have a slightly smaller limit, see the
388 * value of CM_R_0286FC_SPI_LDS_MGMT.NUM_LS_LDS */
389 assert(lds_size <= 8160);
390 }
391
392 r600_write_compute_context_reg(cs, CM_R_0288E8_SQ_LDS_ALLOC,
393 lds_size | (num_waves << 14));
394
395 /* Dispatch packet */
396 radeon_emit(cs, PKT3C(PKT3_DISPATCH_DIRECT, 3, 0));
397 radeon_emit(cs, grid_layout[0]);
398 radeon_emit(cs, grid_layout[1]);
399 radeon_emit(cs, grid_layout[2]);
400 /* VGT_DISPATCH_INITIATOR = COMPUTE_SHADER_EN */
401 radeon_emit(cs, 1);
402 }
403
404 static void compute_emit_cs(struct r600_context *ctx, const uint *block_layout,
405 const uint *grid_layout)
406 {
407 struct radeon_winsys_cs *cs = ctx->b.rings.gfx.cs;
408 int i;
409
410 /* make sure that the gfx ring is only one active */
411 if (ctx->b.rings.dma.cs) {
412 ctx->b.rings.dma.flush(ctx, RADEON_FLUSH_ASYNC);
413 }
414
415 /* Initialize all the compute-related registers.
416 *
417 * See evergreen_init_atom_start_compute_cs() in this file for the list
418 * of registers initialized by the start_compute_cs_cmd atom.
419 */
420 r600_emit_command_buffer(cs, &ctx->start_compute_cs_cmd);
421
422 ctx->b.flags |= R600_CONTEXT_WAIT_3D_IDLE | R600_CONTEXT_FLUSH_AND_INV;
423 r600_flush_emit(ctx);
424
425 /* Emit colorbuffers. */
426 /* XXX support more than 8 colorbuffers (the offsets are not a multiple of 0x3C for CB8-11) */
427 for (i = 0; i < 8 && i < ctx->framebuffer.state.nr_cbufs; i++) {
428 struct r600_surface *cb = (struct r600_surface*)ctx->framebuffer.state.cbufs[i];
429 unsigned reloc = r600_context_bo_reloc(&ctx->b, &ctx->b.rings.gfx,
430 (struct r600_resource*)cb->base.texture,
431 RADEON_USAGE_READWRITE);
432
433 r600_write_compute_context_reg_seq(cs, R_028C60_CB_COLOR0_BASE + i * 0x3C, 7);
434 radeon_emit(cs, cb->cb_color_base); /* R_028C60_CB_COLOR0_BASE */
435 radeon_emit(cs, cb->cb_color_pitch); /* R_028C64_CB_COLOR0_PITCH */
436 radeon_emit(cs, cb->cb_color_slice); /* R_028C68_CB_COLOR0_SLICE */
437 radeon_emit(cs, cb->cb_color_view); /* R_028C6C_CB_COLOR0_VIEW */
438 radeon_emit(cs, cb->cb_color_info); /* R_028C70_CB_COLOR0_INFO */
439 radeon_emit(cs, cb->cb_color_attrib); /* R_028C74_CB_COLOR0_ATTRIB */
440 radeon_emit(cs, cb->cb_color_dim); /* R_028C78_CB_COLOR0_DIM */
441
442 radeon_emit(cs, PKT3(PKT3_NOP, 0, 0)); /* R_028C60_CB_COLOR0_BASE */
443 radeon_emit(cs, reloc);
444
445 if (!ctx->keep_tiling_flags) {
446 radeon_emit(cs, PKT3(PKT3_NOP, 0, 0)); /* R_028C70_CB_COLOR0_INFO */
447 radeon_emit(cs, reloc);
448 }
449
450 radeon_emit(cs, PKT3(PKT3_NOP, 0, 0)); /* R_028C74_CB_COLOR0_ATTRIB */
451 radeon_emit(cs, reloc);
452 }
453 if (ctx->keep_tiling_flags) {
454 for (; i < 8 ; i++) {
455 r600_write_compute_context_reg(cs, R_028C70_CB_COLOR0_INFO + i * 0x3C,
456 S_028C70_FORMAT(V_028C70_COLOR_INVALID));
457 }
458 for (; i < 12; i++) {
459 r600_write_compute_context_reg(cs, R_028E50_CB_COLOR8_INFO + (i - 8) * 0x1C,
460 S_028C70_FORMAT(V_028C70_COLOR_INVALID));
461 }
462 }
463
464 /* Set CB_TARGET_MASK XXX: Use cb_misc_state */
465 r600_write_compute_context_reg(cs, R_028238_CB_TARGET_MASK,
466 ctx->compute_cb_target_mask);
467
468
469 /* Emit vertex buffer state */
470 ctx->cs_vertex_buffer_state.atom.num_dw = 12 * util_bitcount(ctx->cs_vertex_buffer_state.dirty_mask);
471 r600_emit_atom(ctx, &ctx->cs_vertex_buffer_state.atom);
472
473 /* Emit constant buffer state */
474 r600_emit_atom(ctx, &ctx->constbuf_state[PIPE_SHADER_COMPUTE].atom);
475
476 /* Emit compute shader state */
477 r600_emit_atom(ctx, &ctx->cs_shader_state.atom);
478
479 /* Emit dispatch state and dispatch packet */
480 evergreen_emit_direct_dispatch(ctx, block_layout, grid_layout);
481
482 /* XXX evergreen_flush_emit() hardcodes the CP_COHER_SIZE to 0xffffffff
483 */
484 ctx->b.flags |= R600_CONTEXT_INV_CONST_CACHE |
485 R600_CONTEXT_INV_VERTEX_CACHE |
486 R600_CONTEXT_INV_TEX_CACHE;
487 r600_flush_emit(ctx);
488 ctx->b.flags = 0;
489
490 if (ctx->b.chip_class >= CAYMAN) {
491 cs->buf[cs->cdw++] = PKT3(PKT3_EVENT_WRITE, 0, 0);
492 cs->buf[cs->cdw++] = EVENT_TYPE(EVENT_TYPE_CS_PARTIAL_FLUSH) | EVENT_INDEX(4);
493 /* DEALLOC_STATE prevents the GPU from hanging when a
494 * SURFACE_SYNC packet is emitted some time after a DISPATCH_DIRECT
495 * with any of the CB*_DEST_BASE_ENA or DB_DEST_BASE_ENA bits set.
496 */
497 cs->buf[cs->cdw++] = PKT3C(PKT3_DEALLOC_STATE, 0, 0);
498 cs->buf[cs->cdw++] = 0;
499 }
500
501 #if 0
502 COMPUTE_DBG(ctx->screen, "cdw: %i\n", cs->cdw);
503 for (i = 0; i < cs->cdw; i++) {
504 COMPUTE_DBG(ctx->screen, "%4i : 0x%08X\n", i, cs->buf[i]);
505 }
506 #endif
507
508 }
509
510
511 /**
512 * Emit function for r600_cs_shader_state atom
513 */
514 void evergreen_emit_cs_shader(
515 struct r600_context *rctx,
516 struct r600_atom *atom)
517 {
518 struct r600_cs_shader_state *state =
519 (struct r600_cs_shader_state*)atom;
520 struct r600_pipe_compute *shader = state->shader;
521 struct r600_kernel *kernel = &shader->kernels[state->kernel_index];
522 struct radeon_winsys_cs *cs = rctx->b.rings.gfx.cs;
523 uint64_t va;
524
525 va = r600_resource_va(&rctx->screen->b.b, &kernel->code_bo->b.b);
526
527 r600_write_compute_context_reg_seq(cs, R_0288D0_SQ_PGM_START_LS, 3);
528 radeon_emit(cs, va >> 8); /* R_0288D0_SQ_PGM_START_LS */
529 radeon_emit(cs, /* R_0288D4_SQ_PGM_RESOURCES_LS */
530 S_0288D4_NUM_GPRS(kernel->bc.ngpr)
531 | S_0288D4_STACK_SIZE(kernel->bc.nstack));
532 radeon_emit(cs, 0); /* R_0288D8_SQ_PGM_RESOURCES_LS_2 */
533
534 radeon_emit(cs, PKT3C(PKT3_NOP, 0, 0));
535 radeon_emit(cs, r600_context_bo_reloc(&rctx->b, &rctx->b.rings.gfx,
536 kernel->code_bo, RADEON_USAGE_READ));
537 }
538
539 static void evergreen_launch_grid(
540 struct pipe_context *ctx_,
541 const uint *block_layout, const uint *grid_layout,
542 uint32_t pc, const void *input)
543 {
544 struct r600_context *ctx = (struct r600_context *)ctx_;
545
546 struct r600_pipe_compute *shader = ctx->cs_shader_state.shader;
547 struct r600_kernel *kernel = &shader->kernels[pc];
548
549 COMPUTE_DBG(ctx->screen, "*** evergreen_launch_grid: pc = %u\n", pc);
550
551 #ifdef HAVE_OPENCL
552
553 if (!kernel->code_bo) {
554 void *p;
555 struct r600_bytecode *bc = &kernel->bc;
556 LLVMModuleRef mod = kernel->llvm_module;
557 boolean use_kill = false;
558 bool dump = (ctx->screen->b.debug_flags & DBG_CS) != 0;
559 unsigned use_sb = ctx->screen->b.debug_flags & DBG_SB_CS;
560 unsigned sb_disasm = use_sb ||
561 (ctx->screen->b.debug_flags & DBG_SB_DISASM);
562
563 r600_bytecode_init(bc, ctx->b.chip_class, ctx->b.family,
564 ctx->screen->has_compressed_msaa_texturing);
565 bc->type = TGSI_PROCESSOR_COMPUTE;
566 bc->isa = ctx->isa;
567 r600_llvm_compile(mod, ctx->b.family, bc, &use_kill, dump);
568
569 if (dump && !sb_disasm) {
570 r600_bytecode_disasm(bc);
571 } else if ((dump && sb_disasm) || use_sb) {
572 if (r600_sb_bytecode_process(ctx, bc, NULL, dump, use_sb))
573 R600_ERR("r600_sb_bytecode_process failed!\n");
574 }
575
576 kernel->code_bo = r600_compute_buffer_alloc_vram(ctx->screen,
577 kernel->bc.ndw * 4);
578 p = r600_buffer_map_sync_with_rings(&ctx->b, kernel->code_bo, PIPE_TRANSFER_WRITE);
579 memcpy(p, kernel->bc.bytecode, kernel->bc.ndw * 4);
580 ctx->b.ws->buffer_unmap(kernel->code_bo->cs_buf);
581 }
582 #endif
583 shader->active_kernel = kernel;
584 ctx->cs_shader_state.kernel_index = pc;
585 evergreen_compute_upload_input(ctx_, block_layout, grid_layout, input);
586 compute_emit_cs(ctx, block_layout, grid_layout);
587 }
588
589 static void evergreen_set_compute_resources(struct pipe_context * ctx_,
590 unsigned start, unsigned count,
591 struct pipe_surface ** surfaces)
592 {
593 struct r600_context *ctx = (struct r600_context *)ctx_;
594 struct r600_surface **resources = (struct r600_surface **)surfaces;
595
596 COMPUTE_DBG(ctx->screen, "*** evergreen_set_compute_resources: start = %u count = %u\n",
597 start, count);
598
599 for (int i = 0; i < count; i++) {
600 /* The First two vertex buffers are reserved for parameters and
601 * global buffers. */
602 unsigned vtx_id = 2 + i;
603 if (resources[i]) {
604 struct r600_resource_global *buffer =
605 (struct r600_resource_global*)
606 resources[i]->base.texture;
607 if (resources[i]->base.writable) {
608 assert(i+1 < 12);
609
610 evergreen_set_rat(ctx->cs_shader_state.shader, i+1,
611 (struct r600_resource *)resources[i]->base.texture,
612 buffer->chunk->start_in_dw*4,
613 resources[i]->base.texture->width0);
614 }
615
616 evergreen_cs_set_vertex_buffer(ctx, vtx_id,
617 buffer->chunk->start_in_dw * 4,
618 resources[i]->base.texture);
619 }
620 }
621 }
622
623 void evergreen_set_cs_sampler_view(struct pipe_context *ctx_,
624 unsigned start_slot, unsigned count,
625 struct pipe_sampler_view **views)
626 {
627 struct r600_pipe_sampler_view **resource =
628 (struct r600_pipe_sampler_view **)views;
629
630 for (int i = 0; i < count; i++) {
631 if (resource[i]) {
632 assert(i+1 < 12);
633 /* XXX: Implement */
634 assert(!"Compute samplers not implemented.");
635 ///FETCH0 = VTX0 (param buffer),
636 //FETCH1 = VTX1 (global buffer pool), FETCH2... = TEX
637 }
638 }
639 }
640
641
642 static void evergreen_set_global_binding(
643 struct pipe_context *ctx_, unsigned first, unsigned n,
644 struct pipe_resource **resources,
645 uint32_t **handles)
646 {
647 struct r600_context *ctx = (struct r600_context *)ctx_;
648 struct compute_memory_pool *pool = ctx->screen->global_pool;
649 struct r600_resource_global **buffers =
650 (struct r600_resource_global **)resources;
651
652 COMPUTE_DBG(ctx->screen, "*** evergreen_set_global_binding first = %u n = %u\n",
653 first, n);
654
655 if (!resources) {
656 /* XXX: Unset */
657 return;
658 }
659
660 compute_memory_finalize_pending(pool, ctx_);
661
662 for (int i = 0; i < n; i++)
663 {
664 uint32_t buffer_offset;
665 uint32_t handle;
666 assert(resources[i]->target == PIPE_BUFFER);
667 assert(resources[i]->bind & PIPE_BIND_GLOBAL);
668
669 buffer_offset = util_le32_to_cpu(*(handles[i]));
670 handle = buffer_offset + buffers[i]->chunk->start_in_dw * 4;
671
672 *(handles[i]) = util_cpu_to_le32(handle);
673 }
674
675 evergreen_set_rat(ctx->cs_shader_state.shader, 0, pool->bo, 0, pool->size_in_dw * 4);
676 evergreen_cs_set_vertex_buffer(ctx, 1, 0,
677 (struct pipe_resource*)pool->bo);
678 }
679
680 /**
681 * This function initializes all the compute specific registers that need to
682 * be initialized for each compute command stream. Registers that are common
683 * to both compute and 3D will be initialized at the beginning of each compute
684 * command stream by the start_cs_cmd atom. However, since the SET_CONTEXT_REG
685 * packet requires that the shader type bit be set, we must initialize all
686 * context registers needed for compute in this function. The registers
687 * intialized by the start_cs_cmd atom can be found in evereen_state.c in the
688 * functions evergreen_init_atom_start_cs or cayman_init_atom_start_cs depending
689 * on the GPU family.
690 */
691 void evergreen_init_atom_start_compute_cs(struct r600_context *ctx)
692 {
693 struct r600_command_buffer *cb = &ctx->start_compute_cs_cmd;
694 int num_threads;
695 int num_stack_entries;
696
697 /* since all required registers are initialised in the
698 * start_compute_cs_cmd atom, we can EMIT_EARLY here.
699 */
700 r600_init_command_buffer(cb, 256);
701 cb->pkt_flags = RADEON_CP_PACKET3_COMPUTE_MODE;
702
703 /* This must be first. */
704 r600_store_value(cb, PKT3(PKT3_CONTEXT_CONTROL, 1, 0));
705 r600_store_value(cb, 0x80000000);
706 r600_store_value(cb, 0x80000000);
707
708 /* We're setting config registers here. */
709 r600_store_value(cb, PKT3(PKT3_EVENT_WRITE, 0, 0));
710 r600_store_value(cb, EVENT_TYPE(EVENT_TYPE_CS_PARTIAL_FLUSH) | EVENT_INDEX(4));
711
712 switch (ctx->b.family) {
713 case CHIP_CEDAR:
714 default:
715 num_threads = 128;
716 num_stack_entries = 256;
717 break;
718 case CHIP_REDWOOD:
719 num_threads = 128;
720 num_stack_entries = 256;
721 break;
722 case CHIP_JUNIPER:
723 num_threads = 128;
724 num_stack_entries = 512;
725 break;
726 case CHIP_CYPRESS:
727 case CHIP_HEMLOCK:
728 num_threads = 128;
729 num_stack_entries = 512;
730 break;
731 case CHIP_PALM:
732 num_threads = 128;
733 num_stack_entries = 256;
734 break;
735 case CHIP_SUMO:
736 num_threads = 128;
737 num_stack_entries = 256;
738 break;
739 case CHIP_SUMO2:
740 num_threads = 128;
741 num_stack_entries = 512;
742 break;
743 case CHIP_BARTS:
744 num_threads = 128;
745 num_stack_entries = 512;
746 break;
747 case CHIP_TURKS:
748 num_threads = 128;
749 num_stack_entries = 256;
750 break;
751 case CHIP_CAICOS:
752 num_threads = 128;
753 num_stack_entries = 256;
754 break;
755 }
756
757 /* Config Registers */
758 if (ctx->b.chip_class < CAYMAN)
759 evergreen_init_common_regs(cb, ctx->b.chip_class, ctx->b.family,
760 ctx->screen->b.info.drm_minor);
761 else
762 cayman_init_common_regs(cb, ctx->b.chip_class, ctx->b.family,
763 ctx->screen->b.info.drm_minor);
764
765 /* The primitive type always needs to be POINTLIST for compute. */
766 r600_store_config_reg(cb, R_008958_VGT_PRIMITIVE_TYPE,
767 V_008958_DI_PT_POINTLIST);
768
769 if (ctx->b.chip_class < CAYMAN) {
770
771 /* These registers control which simds can be used by each stage.
772 * The default for these registers is 0xffffffff, which means
773 * all simds are available for each stage. It's possible we may
774 * want to play around with these in the future, but for now
775 * the default value is fine.
776 *
777 * R_008E20_SQ_STATIC_THREAD_MGMT1
778 * R_008E24_SQ_STATIC_THREAD_MGMT2
779 * R_008E28_SQ_STATIC_THREAD_MGMT3
780 */
781
782 /* XXX: We may need to adjust the thread and stack resouce
783 * values for 3D/compute interop */
784
785 r600_store_config_reg_seq(cb, R_008C18_SQ_THREAD_RESOURCE_MGMT_1, 5);
786
787 /* R_008C18_SQ_THREAD_RESOURCE_MGMT_1
788 * Set the number of threads used by the PS/VS/GS/ES stage to
789 * 0.
790 */
791 r600_store_value(cb, 0);
792
793 /* R_008C1C_SQ_THREAD_RESOURCE_MGMT_2
794 * Set the number of threads used by the CS (aka LS) stage to
795 * the maximum number of threads and set the number of threads
796 * for the HS stage to 0. */
797 r600_store_value(cb, S_008C1C_NUM_LS_THREADS(num_threads));
798
799 /* R_008C20_SQ_STACK_RESOURCE_MGMT_1
800 * Set the Control Flow stack entries to 0 for PS/VS stages */
801 r600_store_value(cb, 0);
802
803 /* R_008C24_SQ_STACK_RESOURCE_MGMT_2
804 * Set the Control Flow stack entries to 0 for GS/ES stages */
805 r600_store_value(cb, 0);
806
807 /* R_008C28_SQ_STACK_RESOURCE_MGMT_3
808 * Set the Contol Flow stack entries to 0 for the HS stage, and
809 * set it to the maximum value for the CS (aka LS) stage. */
810 r600_store_value(cb,
811 S_008C28_NUM_LS_STACK_ENTRIES(num_stack_entries));
812 }
813 /* Give the compute shader all the available LDS space.
814 * NOTE: This only sets the maximum number of dwords that a compute
815 * shader can allocate. When a shader is executed, we still need to
816 * allocate the appropriate amount of LDS dwords using the
817 * CM_R_0288E8_SQ_LDS_ALLOC register.
818 */
819 if (ctx->b.chip_class < CAYMAN) {
820 r600_store_config_reg(cb, R_008E2C_SQ_LDS_RESOURCE_MGMT,
821 S_008E2C_NUM_PS_LDS(0x0000) | S_008E2C_NUM_LS_LDS(8192));
822 } else {
823 r600_store_context_reg(cb, CM_R_0286FC_SPI_LDS_MGMT,
824 S_0286FC_NUM_PS_LDS(0) |
825 S_0286FC_NUM_LS_LDS(255)); /* 255 * 32 = 8160 dwords */
826 }
827
828 /* Context Registers */
829
830 if (ctx->b.chip_class < CAYMAN) {
831 /* workaround for hw issues with dyn gpr - must set all limits
832 * to 240 instead of 0, 0x1e == 240 / 8
833 */
834 r600_store_context_reg(cb, R_028838_SQ_DYN_GPR_RESOURCE_LIMIT_1,
835 S_028838_PS_GPRS(0x1e) |
836 S_028838_VS_GPRS(0x1e) |
837 S_028838_GS_GPRS(0x1e) |
838 S_028838_ES_GPRS(0x1e) |
839 S_028838_HS_GPRS(0x1e) |
840 S_028838_LS_GPRS(0x1e));
841 }
842
843 /* XXX: Investigate setting bit 15, which is FAST_COMPUTE_MODE */
844 r600_store_context_reg(cb, R_028A40_VGT_GS_MODE,
845 S_028A40_COMPUTE_MODE(1) | S_028A40_PARTIAL_THD_AT_EOI(1));
846
847 r600_store_context_reg(cb, R_028B54_VGT_SHADER_STAGES_EN, 2/*CS_ON*/);
848
849 r600_store_context_reg(cb, R_0286E8_SPI_COMPUTE_INPUT_CNTL,
850 S_0286E8_TID_IN_GROUP_ENA
851 | S_0286E8_TGID_ENA
852 | S_0286E8_DISABLE_INDEX_PACK)
853 ;
854
855 /* The LOOP_CONST registers are an optimizations for loops that allows
856 * you to store the initial counter, increment value, and maximum
857 * counter value in a register so that hardware can calculate the
858 * correct number of iterations for the loop, so that you don't need
859 * to have the loop counter in your shader code. We don't currently use
860 * this optimization, so we must keep track of the counter in the
861 * shader and use a break instruction to exit loops. However, the
862 * hardware will still uses this register to determine when to exit a
863 * loop, so we need to initialize the counter to 0, set the increment
864 * value to 1 and the maximum counter value to the 4095 (0xfff) which
865 * is the maximum value allowed. This gives us a maximum of 4096
866 * iterations for our loops, but hopefully our break instruction will
867 * execute before some time before the 4096th iteration.
868 */
869 eg_store_loop_const(cb, R_03A200_SQ_LOOP_CONST_0 + (160 * 4), 0x1000FFF);
870 }
871
872 void evergreen_init_compute_state_functions(struct r600_context *ctx)
873 {
874 ctx->b.b.create_compute_state = evergreen_create_compute_state;
875 ctx->b.b.delete_compute_state = evergreen_delete_compute_state;
876 ctx->b.b.bind_compute_state = evergreen_bind_compute_state;
877 // ctx->context.create_sampler_view = evergreen_compute_create_sampler_view;
878 ctx->b.b.set_compute_resources = evergreen_set_compute_resources;
879 ctx->b.b.set_global_binding = evergreen_set_global_binding;
880 ctx->b.b.launch_grid = evergreen_launch_grid;
881
882 /* We always use at least one vertex buffer for parameters (id = 1)*/
883 ctx->cs_vertex_buffer_state.enabled_mask =
884 ctx->cs_vertex_buffer_state.dirty_mask = 0x2;
885 }
886
887 struct pipe_resource *r600_compute_global_buffer_create(
888 struct pipe_screen *screen,
889 const struct pipe_resource *templ)
890 {
891 struct r600_resource_global* result = NULL;
892 struct r600_screen* rscreen = NULL;
893 int size_in_dw = 0;
894
895 assert(templ->target == PIPE_BUFFER);
896 assert(templ->bind & PIPE_BIND_GLOBAL);
897 assert(templ->array_size == 1 || templ->array_size == 0);
898 assert(templ->depth0 == 1 || templ->depth0 == 0);
899 assert(templ->height0 == 1 || templ->height0 == 0);
900
901 result = (struct r600_resource_global*)
902 CALLOC(sizeof(struct r600_resource_global), 1);
903 rscreen = (struct r600_screen*)screen;
904
905 COMPUTE_DBG(rscreen, "*** r600_compute_global_buffer_create\n");
906 COMPUTE_DBG(rscreen, "width = %u array_size = %u\n", templ->width0,
907 templ->array_size);
908
909 result->base.b.vtbl = &r600_global_buffer_vtbl;
910 result->base.b.b.screen = screen;
911 result->base.b.b = *templ;
912 pipe_reference_init(&result->base.b.b.reference, 1);
913
914 size_in_dw = (templ->width0+3) / 4;
915
916 result->chunk = compute_memory_alloc(rscreen->global_pool, size_in_dw);
917
918 if (result->chunk == NULL)
919 {
920 free(result);
921 return NULL;
922 }
923
924 return &result->base.b.b;
925 }
926
927 void r600_compute_global_buffer_destroy(
928 struct pipe_screen *screen,
929 struct pipe_resource *res)
930 {
931 struct r600_resource_global* buffer = NULL;
932 struct r600_screen* rscreen = NULL;
933
934 assert(res->target == PIPE_BUFFER);
935 assert(res->bind & PIPE_BIND_GLOBAL);
936
937 buffer = (struct r600_resource_global*)res;
938 rscreen = (struct r600_screen*)screen;
939
940 compute_memory_free(rscreen->global_pool, buffer->chunk->id);
941
942 buffer->chunk = NULL;
943 free(res);
944 }
945
946 void *r600_compute_global_transfer_map(
947 struct pipe_context *ctx_,
948 struct pipe_resource *resource,
949 unsigned level,
950 unsigned usage,
951 const struct pipe_box *box,
952 struct pipe_transfer **ptransfer)
953 {
954 struct r600_context *rctx = (struct r600_context*)ctx_;
955 struct compute_memory_pool *pool = rctx->screen->global_pool;
956 struct r600_resource_global* buffer =
957 (struct r600_resource_global*)resource;
958
959 COMPUTE_DBG(rctx->screen, "* r600_compute_global_transfer_map()\n"
960 "level = %u, usage = %u, box(x = %u, y = %u, z = %u "
961 "width = %u, height = %u, depth = %u)\n", level, usage,
962 box->x, box->y, box->z, box->width, box->height,
963 box->depth);
964 COMPUTE_DBG(rctx->screen, "Buffer id = %u offset = "
965 "%u (box.x)\n", buffer->chunk->id, box->x);
966
967
968 compute_memory_finalize_pending(pool, ctx_);
969
970 assert(resource->target == PIPE_BUFFER);
971 assert(resource->bind & PIPE_BIND_GLOBAL);
972 assert(box->x >= 0);
973 assert(box->y == 0);
974 assert(box->z == 0);
975
976 ///TODO: do it better, mapping is not possible if the pool is too big
977 return pipe_buffer_map_range(ctx_, (struct pipe_resource*)buffer->chunk->pool->bo,
978 box->x + (buffer->chunk->start_in_dw * 4),
979 box->width, usage, ptransfer);
980 }
981
982 void r600_compute_global_transfer_unmap(
983 struct pipe_context *ctx_,
984 struct pipe_transfer* transfer)
985 {
986 /* struct r600_resource_global are not real resources, they just map
987 * to an offset within the compute memory pool. The function
988 * r600_compute_global_transfer_map() maps the memory pool
989 * resource rather than the struct r600_resource_global passed to
990 * it as an argument and then initalizes ptransfer->resource with
991 * the memory pool resource (via pipe_buffer_map_range).
992 * When transfer_unmap is called it uses the memory pool's
993 * vtable which calls r600_buffer_transfer_map() rather than
994 * this function.
995 */
996 assert (!"This function should not be called");
997 }
998
999 void r600_compute_global_transfer_flush_region(
1000 struct pipe_context *ctx_,
1001 struct pipe_transfer *transfer,
1002 const struct pipe_box *box)
1003 {
1004 assert(0 && "TODO");
1005 }
1006
1007 void r600_compute_global_transfer_inline_write(
1008 struct pipe_context *pipe,
1009 struct pipe_resource *resource,
1010 unsigned level,
1011 unsigned usage,
1012 const struct pipe_box *box,
1013 const void *data,
1014 unsigned stride,
1015 unsigned layer_stride)
1016 {
1017 assert(0 && "TODO");
1018 }