r600g: atomize streamout enabling
[mesa.git] / src / gallium / drivers / r600 / evergreen_compute.c
1 /*
2 * Copyright 2011 Adam Rak <adam.rak@streamnovation.com>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * on the rights to use, copy, modify, merge, publish, distribute, sub
8 * license, and/or sell copies of the Software, and to permit persons to whom
9 * the Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Adam Rak <adam.rak@streamnovation.com>
25 */
26
27 #include <stdio.h>
28 #include <errno.h>
29 #include "pipe/p_defines.h"
30 #include "pipe/p_state.h"
31 #include "pipe/p_context.h"
32 #include "util/u_blitter.h"
33 #include "util/u_double_list.h"
34 #include "util/u_transfer.h"
35 #include "util/u_surface.h"
36 #include "util/u_pack_color.h"
37 #include "util/u_memory.h"
38 #include "util/u_inlines.h"
39 #include "util/u_framebuffer.h"
40 #include "pipebuffer/pb_buffer.h"
41 #include "r600.h"
42 #include "evergreend.h"
43 #include "r600_resource.h"
44 #include "r600_shader.h"
45 #include "r600_pipe.h"
46 #include "r600_formats.h"
47 #include "evergreen_compute.h"
48 #include "r600_hw_context_priv.h"
49 #include "evergreen_compute_internal.h"
50 #include "compute_memory_pool.h"
51 #ifdef HAVE_OPENCL
52 #include "llvm_wrapper.h"
53 #endif
54
55 /**
56 RAT0 is for global binding write
57 VTX1 is for global binding read
58
59 for wrting images RAT1...
60 for reading images TEX2...
61 TEX2-RAT1 is paired
62
63 TEX2... consumes the same fetch resources, that VTX2... would consume
64
65 CONST0 and VTX0 is for parameters
66 CONST0 is binding smaller input parameter buffer, and for constant indexing,
67 also constant cached
68 VTX0 is for indirect/non-constant indexing, or if the input is bigger than
69 the constant cache can handle
70
71 RAT-s are limited to 12, so we can only bind at most 11 texture for writing
72 because we reserve RAT0 for global bindings. With byteaddressing enabled,
73 we should reserve another one too.=> 10 image binding for writing max.
74
75 from Nvidia OpenCL:
76 CL_DEVICE_MAX_READ_IMAGE_ARGS: 128
77 CL_DEVICE_MAX_WRITE_IMAGE_ARGS: 8
78
79 so 10 for writing is enough. 176 is the max for reading according to the docs
80
81 writable images should be listed first < 10, so their id corresponds to RAT(id+1)
82 writable images will consume TEX slots, VTX slots too because of linear indexing
83
84 */
85
86 static void evergreen_cs_set_vertex_buffer(
87 struct r600_context * rctx,
88 unsigned vb_index,
89 unsigned offset,
90 struct pipe_resource * buffer)
91 {
92 struct r600_vertexbuf_state *state = &rctx->cs_vertex_buffer_state;
93 struct pipe_vertex_buffer *vb = &state->vb[vb_index];
94 vb->stride = 1;
95 vb->buffer_offset = offset;
96 vb->buffer = buffer;
97 vb->user_buffer = NULL;
98
99 /* The vertex instructions in the compute shaders use the texture cache,
100 * so we need to invalidate it. */
101 rctx->flags |= R600_CONTEXT_INVAL_READ_CACHES;
102 state->enabled_mask |= 1 << vb_index;
103 state->dirty_mask |= 1 << vb_index;
104 state->atom.dirty = true;
105 }
106
107 static const struct u_resource_vtbl r600_global_buffer_vtbl =
108 {
109 u_default_resource_get_handle, /* get_handle */
110 r600_compute_global_buffer_destroy, /* resource_destroy */
111 r600_compute_global_transfer_map, /* transfer_map */
112 r600_compute_global_transfer_flush_region,/* transfer_flush_region */
113 r600_compute_global_transfer_unmap, /* transfer_unmap */
114 r600_compute_global_transfer_inline_write /* transfer_inline_write */
115 };
116
117
118 void *evergreen_create_compute_state(
119 struct pipe_context *ctx_,
120 const const struct pipe_compute_state *cso)
121 {
122 struct r600_context *ctx = (struct r600_context *)ctx_;
123 struct r600_pipe_compute *shader = CALLOC_STRUCT(r600_pipe_compute);
124
125 #ifdef HAVE_OPENCL
126 const struct pipe_llvm_program_header * header;
127 const unsigned char * code;
128 unsigned i;
129
130 COMPUTE_DBG("*** evergreen_create_compute_state\n");
131
132 header = cso->prog;
133 code = cso->prog + sizeof(struct pipe_llvm_program_header);
134 #endif
135
136 shader->ctx = (struct r600_context*)ctx;
137 shader->resources = (struct evergreen_compute_resource*)
138 CALLOC(sizeof(struct evergreen_compute_resource),
139 get_compute_resource_num());
140 shader->local_size = cso->req_local_mem; ///TODO: assert it
141 shader->private_size = cso->req_private_mem;
142 shader->input_size = cso->req_input_mem;
143
144 #ifdef HAVE_OPENCL
145 shader->num_kernels = llvm_get_num_kernels(code, header->num_bytes);
146 shader->kernels = CALLOC(sizeof(struct r600_kernel), shader->num_kernels);
147
148 for (i = 0; i < shader->num_kernels; i++) {
149 struct r600_kernel *kernel = &shader->kernels[i];
150 kernel->llvm_module = llvm_get_kernel_module(i, code,
151 header->num_bytes);
152 }
153 #endif
154 return shader;
155 }
156
157 void evergreen_delete_compute_state(struct pipe_context *ctx, void* state)
158 {
159 struct r600_pipe_compute *shader = (struct r600_pipe_compute *)state;
160
161 free(shader->resources);
162 free(shader);
163 }
164
165 static void evergreen_bind_compute_state(struct pipe_context *ctx_, void *state)
166 {
167 struct r600_context *ctx = (struct r600_context *)ctx_;
168
169 COMPUTE_DBG("*** evergreen_bind_compute_state\n");
170
171 ctx->cs_shader_state.shader = (struct r600_pipe_compute *)state;
172 }
173
174 /* The kernel parameters are stored a vtx buffer (ID=0), besides the explicit
175 * kernel parameters there are inplicit parameters that need to be stored
176 * in the vertex buffer as well. Here is how these parameters are organized in
177 * the buffer:
178 *
179 * DWORDS 0-2: Number of work groups in each dimension (x,y,z)
180 * DWORDS 3-5: Number of global work items in each dimension (x,y,z)
181 * DWORDS 6-8: Number of work items within each work group in each dimension
182 * (x,y,z)
183 * DWORDS 9+ : Kernel parameters
184 */
185 void evergreen_compute_upload_input(
186 struct pipe_context *ctx_,
187 const uint *block_layout,
188 const uint *grid_layout,
189 const void *input)
190 {
191 struct r600_context *ctx = (struct r600_context *)ctx_;
192 struct r600_pipe_compute *shader = ctx->cs_shader_state.shader;
193 int i;
194 unsigned kernel_parameters_offset_bytes = 36;
195 uint32_t * num_work_groups_start;
196 uint32_t * global_size_start;
197 uint32_t * local_size_start;
198 uint32_t * kernel_parameters_start;
199
200 if (shader->input_size == 0) {
201 return;
202 }
203
204 if (!shader->kernel_param) {
205 unsigned buffer_size = shader->input_size;
206
207 /* Add space for the grid dimensions */
208 buffer_size += kernel_parameters_offset_bytes * sizeof(uint);
209 shader->kernel_param = r600_compute_buffer_alloc_vram(
210 ctx->screen, buffer_size);
211 }
212
213 num_work_groups_start = r600_buffer_mmap_sync_with_rings(ctx, shader->kernel_param, PIPE_TRANSFER_WRITE);
214 global_size_start = num_work_groups_start + (3 * (sizeof(uint) /4));
215 local_size_start = global_size_start + (3 * (sizeof(uint)) / 4);
216 kernel_parameters_start = local_size_start + (3 * (sizeof(uint)) / 4);
217
218 /* Copy the work group size */
219 memcpy(num_work_groups_start, grid_layout, 3 * sizeof(uint));
220
221 /* Copy the global size */
222 for (i = 0; i < 3; i++) {
223 global_size_start[i] = grid_layout[i] * block_layout[i];
224 }
225
226 /* Copy the local dimensions */
227 memcpy(local_size_start, block_layout, 3 * sizeof(uint));
228
229 /* Copy the kernel inputs */
230 memcpy(kernel_parameters_start, input, shader->input_size);
231
232 for (i = 0; i < (kernel_parameters_offset_bytes / 4) +
233 (shader->input_size / 4); i++) {
234 COMPUTE_DBG("input %i : %i\n", i,
235 ((unsigned*)num_work_groups_start)[i]);
236 }
237
238 ctx->ws->buffer_unmap(shader->kernel_param->cs_buf);
239
240 ///ID=0 is reserved for the parameters
241 evergreen_cs_set_vertex_buffer(ctx, 0, 0,
242 (struct pipe_resource*)shader->kernel_param);
243 ///ID=0 is reserved for parameters
244 evergreen_set_const_cache(shader, 0, shader->kernel_param,
245 shader->input_size, 0);
246 }
247
248 static void evergreen_emit_direct_dispatch(
249 struct r600_context *rctx,
250 const uint *block_layout, const uint *grid_layout)
251 {
252 int i;
253 struct radeon_winsys_cs *cs = rctx->rings.gfx.cs;
254 unsigned num_waves;
255 unsigned num_pipes = rctx->screen->info.r600_max_pipes;
256 unsigned wave_divisor = (16 * num_pipes);
257 int group_size = 1;
258 int grid_size = 1;
259 /* XXX: Enable lds and get size from cs_shader_state */
260 unsigned lds_size = 0;
261
262 /* Calculate group_size/grid_size */
263 for (i = 0; i < 3; i++) {
264 group_size *= block_layout[i];
265 }
266
267 for (i = 0; i < 3; i++) {
268 grid_size *= grid_layout[i];
269 }
270
271 /* num_waves = ceil((tg_size.x * tg_size.y, tg_size.z) / (16 * num_pipes)) */
272 num_waves = (block_layout[0] * block_layout[1] * block_layout[2] +
273 wave_divisor - 1) / wave_divisor;
274
275 COMPUTE_DBG("Using %u pipes, there are %u wavefronts per thread block\n",
276 num_pipes, num_waves);
277
278 /* XXX: Partition the LDS between PS/CS. By default half (4096 dwords
279 * on Evergreen) oes to Pixel Shaders and half goes to Compute Shaders.
280 * We may need to allocat the entire LDS space for Compute Shaders.
281 *
282 * EG: R_008E2C_SQ_LDS_RESOURCE_MGMT := S_008E2C_NUM_LS_LDS(lds_dwords)
283 * CM: CM_R_0286FC_SPI_LDS_MGMT := S_0286FC_NUM_LS_LDS(lds_dwords)
284 */
285
286 r600_write_config_reg(cs, R_008970_VGT_NUM_INDICES, group_size);
287
288 r600_write_config_reg_seq(cs, R_00899C_VGT_COMPUTE_START_X, 3);
289 r600_write_value(cs, 0); /* R_00899C_VGT_COMPUTE_START_X */
290 r600_write_value(cs, 0); /* R_0089A0_VGT_COMPUTE_START_Y */
291 r600_write_value(cs, 0); /* R_0089A4_VGT_COMPUTE_START_Z */
292
293 r600_write_config_reg(cs, R_0089AC_VGT_COMPUTE_THREAD_GROUP_SIZE,
294 group_size);
295
296 r600_write_compute_context_reg_seq(cs, R_0286EC_SPI_COMPUTE_NUM_THREAD_X, 3);
297 r600_write_value(cs, block_layout[0]); /* R_0286EC_SPI_COMPUTE_NUM_THREAD_X */
298 r600_write_value(cs, block_layout[1]); /* R_0286F0_SPI_COMPUTE_NUM_THREAD_Y */
299 r600_write_value(cs, block_layout[2]); /* R_0286F4_SPI_COMPUTE_NUM_THREAD_Z */
300
301 r600_write_compute_context_reg(cs, CM_R_0288E8_SQ_LDS_ALLOC,
302 lds_size | (num_waves << 14));
303
304 /* Dispatch packet */
305 r600_write_value(cs, PKT3C(PKT3_DISPATCH_DIRECT, 3, 0));
306 r600_write_value(cs, grid_layout[0]);
307 r600_write_value(cs, grid_layout[1]);
308 r600_write_value(cs, grid_layout[2]);
309 /* VGT_DISPATCH_INITIATOR = COMPUTE_SHADER_EN */
310 r600_write_value(cs, 1);
311 }
312
313 static void compute_emit_cs(struct r600_context *ctx, const uint *block_layout,
314 const uint *grid_layout)
315 {
316 struct radeon_winsys_cs *cs = ctx->rings.gfx.cs;
317 unsigned flush_flags = 0;
318 int i;
319 struct r600_resource *onebo = NULL;
320 struct evergreen_compute_resource *resources =
321 ctx->cs_shader_state.shader->resources;
322
323 /* make sure that the gfx ring is only one active */
324 if (ctx->rings.dma.cs) {
325 ctx->rings.dma.flush(ctx, RADEON_FLUSH_ASYNC);
326 }
327
328 /* Initialize all the compute-related registers.
329 *
330 * See evergreen_init_atom_start_compute_cs() in this file for the list
331 * of registers initialized by the start_compute_cs_cmd atom.
332 */
333 r600_emit_command_buffer(cs, &ctx->start_compute_cs_cmd);
334
335 ctx->flags |= R600_CONTEXT_WAIT_3D_IDLE | R600_CONTEXT_FLUSH_AND_INV;
336 r600_flush_emit(ctx);
337
338 /* Emit colorbuffers. */
339 for (i = 0; i < ctx->framebuffer.state.nr_cbufs; i++) {
340 struct r600_surface *cb = (struct r600_surface*)ctx->framebuffer.state.cbufs[i];
341 unsigned reloc = r600_context_bo_reloc(ctx, &ctx->rings.gfx,
342 (struct r600_resource*)cb->base.texture,
343 RADEON_USAGE_READWRITE);
344
345 r600_write_compute_context_reg_seq(cs, R_028C60_CB_COLOR0_BASE + i * 0x3C, 7);
346 r600_write_value(cs, cb->cb_color_base); /* R_028C60_CB_COLOR0_BASE */
347 r600_write_value(cs, cb->cb_color_pitch); /* R_028C64_CB_COLOR0_PITCH */
348 r600_write_value(cs, cb->cb_color_slice); /* R_028C68_CB_COLOR0_SLICE */
349 r600_write_value(cs, cb->cb_color_view); /* R_028C6C_CB_COLOR0_VIEW */
350 r600_write_value(cs, cb->cb_color_info); /* R_028C70_CB_COLOR0_INFO */
351 r600_write_value(cs, cb->cb_color_attrib); /* R_028C74_CB_COLOR0_ATTRIB */
352 r600_write_value(cs, cb->cb_color_dim); /* R_028C78_CB_COLOR0_DIM */
353
354 r600_write_value(cs, PKT3(PKT3_NOP, 0, 0)); /* R_028C60_CB_COLOR0_BASE */
355 r600_write_value(cs, reloc);
356
357 if (!ctx->keep_tiling_flags) {
358 r600_write_value(cs, PKT3(PKT3_NOP, 0, 0)); /* R_028C70_CB_COLOR0_INFO */
359 r600_write_value(cs, reloc);
360 }
361
362 r600_write_value(cs, PKT3(PKT3_NOP, 0, 0)); /* R_028C74_CB_COLOR0_ATTRIB */
363 r600_write_value(cs, reloc);
364 }
365
366 /* Set CB_TARGET_MASK XXX: Use cb_misc_state */
367 r600_write_compute_context_reg(cs, R_028238_CB_TARGET_MASK,
368 ctx->compute_cb_target_mask);
369
370
371 /* Emit vertex buffer state */
372 ctx->cs_vertex_buffer_state.atom.num_dw = 12 * util_bitcount(ctx->cs_vertex_buffer_state.dirty_mask);
373 r600_emit_atom(ctx, &ctx->cs_vertex_buffer_state.atom);
374
375 /* Emit compute shader state */
376 r600_emit_atom(ctx, &ctx->cs_shader_state.atom);
377
378 for (i = 0; i < get_compute_resource_num(); i++) {
379 if (resources[i].enabled) {
380 int j;
381 COMPUTE_DBG("resnum: %i, cdw: %i\n", i, cs->cdw);
382
383 for (j = 0; j < resources[i].cs_end; j++) {
384 if (resources[i].do_reloc[j]) {
385 assert(resources[i].bo);
386 evergreen_emit_ctx_reloc(ctx,
387 resources[i].bo,
388 resources[i].usage);
389 }
390
391 cs->buf[cs->cdw++] = resources[i].cs[j];
392 }
393
394 if (resources[i].bo) {
395 onebo = resources[i].bo;
396 evergreen_emit_ctx_reloc(ctx,
397 resources[i].bo,
398 resources[i].usage);
399
400 ///special case for textures
401 if (resources[i].do_reloc
402 [resources[i].cs_end] == 2) {
403 evergreen_emit_ctx_reloc(ctx,
404 resources[i].bo,
405 resources[i].usage);
406 }
407 }
408 }
409 }
410
411 /* Emit dispatch state and dispatch packet */
412 evergreen_emit_direct_dispatch(ctx, block_layout, grid_layout);
413
414 /* XXX evergreen_flush_emit() hardcodes the CP_COHER_SIZE to 0xffffffff
415 */
416 ctx->flags |= R600_CONTEXT_INVAL_READ_CACHES;
417 r600_flush_emit(ctx);
418
419 #if 0
420 COMPUTE_DBG("cdw: %i\n", cs->cdw);
421 for (i = 0; i < cs->cdw; i++) {
422 COMPUTE_DBG("%4i : 0x%08X\n", i, ctx->cs->buf[i]);
423 }
424 #endif
425
426 flush_flags = RADEON_FLUSH_ASYNC | RADEON_FLUSH_COMPUTE;
427 if (ctx->keep_tiling_flags) {
428 flush_flags |= RADEON_FLUSH_KEEP_TILING_FLAGS;
429 }
430
431 ctx->ws->cs_flush(ctx->rings.gfx.cs, flush_flags);
432
433 ctx->pm4_dirty_cdwords = 0;
434 ctx->flags = 0;
435
436 COMPUTE_DBG("shader started\n");
437
438 ctx->ws->buffer_wait(onebo->buf, 0);
439
440 COMPUTE_DBG("...\n");
441 }
442
443
444 /**
445 * Emit function for r600_cs_shader_state atom
446 */
447 void evergreen_emit_cs_shader(
448 struct r600_context *rctx,
449 struct r600_atom *atom)
450 {
451 struct r600_cs_shader_state *state =
452 (struct r600_cs_shader_state*)atom;
453 struct r600_pipe_compute *shader = state->shader;
454 struct r600_kernel *kernel = &shader->kernels[state->kernel_index];
455 struct radeon_winsys_cs *cs = rctx->rings.gfx.cs;
456 uint64_t va;
457
458 va = r600_resource_va(&rctx->screen->screen, &kernel->code_bo->b.b);
459
460 r600_write_compute_context_reg_seq(cs, R_0288D0_SQ_PGM_START_LS, 3);
461 r600_write_value(cs, va >> 8); /* R_0288D0_SQ_PGM_START_LS */
462 r600_write_value(cs, /* R_0288D4_SQ_PGM_RESOURCES_LS */
463 S_0288D4_NUM_GPRS(kernel->bc.ngpr)
464 | S_0288D4_STACK_SIZE(kernel->bc.nstack));
465 r600_write_value(cs, 0); /* R_0288D8_SQ_PGM_RESOURCES_LS_2 */
466
467 r600_write_value(cs, PKT3C(PKT3_NOP, 0, 0));
468 r600_write_value(cs, r600_context_bo_reloc(rctx, &rctx->rings.gfx,
469 kernel->code_bo, RADEON_USAGE_READ));
470
471 rctx->flags |= R600_CONTEXT_INVAL_READ_CACHES;
472 }
473
474 static void evergreen_launch_grid(
475 struct pipe_context *ctx_,
476 const uint *block_layout, const uint *grid_layout,
477 uint32_t pc, const void *input)
478 {
479 struct r600_context *ctx = (struct r600_context *)ctx_;
480
481 #ifdef HAVE_OPENCL
482 COMPUTE_DBG("*** evergreen_launch_grid: pc = %u\n", pc);
483
484 struct r600_pipe_compute *shader = ctx->cs_shader_state.shader;
485 if (!shader->kernels[pc].code_bo) {
486 void *p;
487 struct r600_kernel *kernel = &shader->kernels[pc];
488 r600_compute_shader_create(ctx_, kernel->llvm_module, &kernel->bc);
489 kernel->code_bo = r600_compute_buffer_alloc_vram(ctx->screen,
490 kernel->bc.ndw * 4);
491 p = r600_buffer_mmap_sync_with_rings(ctx, kernel->code_bo, PIPE_TRANSFER_WRITE);
492 memcpy(p, kernel->bc.bytecode, kernel->bc.ndw * 4);
493 ctx->ws->buffer_unmap(kernel->code_bo->cs_buf);
494 }
495 #endif
496
497 ctx->cs_shader_state.kernel_index = pc;
498 evergreen_compute_upload_input(ctx_, block_layout, grid_layout, input);
499 compute_emit_cs(ctx, block_layout, grid_layout);
500 }
501
502 static void evergreen_set_compute_resources(struct pipe_context * ctx_,
503 unsigned start, unsigned count,
504 struct pipe_surface ** surfaces)
505 {
506 struct r600_context *ctx = (struct r600_context *)ctx_;
507 struct r600_surface **resources = (struct r600_surface **)surfaces;
508
509 COMPUTE_DBG("*** evergreen_set_compute_resources: start = %u count = %u\n",
510 start, count);
511
512 for (int i = 0; i < count; i++) {
513 /* The First two vertex buffers are reserved for parameters and
514 * global buffers. */
515 unsigned vtx_id = 2 + i;
516 if (resources[i]) {
517 struct r600_resource_global *buffer =
518 (struct r600_resource_global*)
519 resources[i]->base.texture;
520 if (resources[i]->base.writable) {
521 assert(i+1 < 12);
522
523 evergreen_set_rat(ctx->cs_shader_state.shader, i+1,
524 (struct r600_resource *)resources[i]->base.texture,
525 buffer->chunk->start_in_dw*4,
526 resources[i]->base.texture->width0);
527 }
528
529 evergreen_cs_set_vertex_buffer(ctx, vtx_id,
530 buffer->chunk->start_in_dw * 4,
531 resources[i]->base.texture);
532 }
533 }
534 }
535
536 static void evergreen_set_cs_sampler_view(struct pipe_context *ctx_,
537 unsigned start_slot, unsigned count,
538 struct pipe_sampler_view **views)
539 {
540 struct r600_context *ctx = (struct r600_context *)ctx_;
541 struct r600_pipe_sampler_view **resource =
542 (struct r600_pipe_sampler_view **)views;
543
544 for (int i = 0; i < count; i++) {
545 if (resource[i]) {
546 assert(i+1 < 12);
547 ///FETCH0 = VTX0 (param buffer),
548 //FETCH1 = VTX1 (global buffer pool), FETCH2... = TEX
549 evergreen_set_tex_resource(ctx->cs_shader_state.shader, resource[i], i+2);
550 }
551 }
552 }
553
554 static void evergreen_bind_compute_sampler_states(
555 struct pipe_context *ctx_,
556 unsigned start_slot,
557 unsigned num_samplers,
558 void **samplers_)
559 {
560 struct r600_context *ctx = (struct r600_context *)ctx_;
561 struct compute_sampler_state ** samplers =
562 (struct compute_sampler_state **)samplers_;
563
564 for (int i = 0; i < num_samplers; i++) {
565 if (samplers[i]) {
566 evergreen_set_sampler_resource(
567 ctx->cs_shader_state.shader, samplers[i], i);
568 }
569 }
570 }
571
572 static void evergreen_set_global_binding(
573 struct pipe_context *ctx_, unsigned first, unsigned n,
574 struct pipe_resource **resources,
575 uint32_t **handles)
576 {
577 struct r600_context *ctx = (struct r600_context *)ctx_;
578 struct compute_memory_pool *pool = ctx->screen->global_pool;
579 struct r600_resource_global **buffers =
580 (struct r600_resource_global **)resources;
581
582 COMPUTE_DBG("*** evergreen_set_global_binding first = %u n = %u\n",
583 first, n);
584
585 if (!resources) {
586 /* XXX: Unset */
587 return;
588 }
589
590 compute_memory_finalize_pending(pool, ctx_);
591
592 for (int i = 0; i < n; i++)
593 {
594 assert(resources[i]->target == PIPE_BUFFER);
595 assert(resources[i]->bind & PIPE_BIND_GLOBAL);
596
597 *(handles[i]) = buffers[i]->chunk->start_in_dw * 4;
598 }
599
600 evergreen_set_rat(ctx->cs_shader_state.shader, 0, pool->bo, 0, pool->size_in_dw * 4);
601 evergreen_cs_set_vertex_buffer(ctx, 1, 0,
602 (struct pipe_resource*)pool->bo);
603 }
604
605 /**
606 * This function initializes all the compute specific registers that need to
607 * be initialized for each compute command stream. Registers that are common
608 * to both compute and 3D will be initialized at the beginning of each compute
609 * command stream by the start_cs_cmd atom. However, since the SET_CONTEXT_REG
610 * packet requires that the shader type bit be set, we must initialize all
611 * context registers needed for compute in this function. The registers
612 * intialized by the start_cs_cmd atom can be found in evereen_state.c in the
613 * functions evergreen_init_atom_start_cs or cayman_init_atom_start_cs depending
614 * on the GPU family.
615 */
616 void evergreen_init_atom_start_compute_cs(struct r600_context *ctx)
617 {
618 struct r600_command_buffer *cb = &ctx->start_compute_cs_cmd;
619 int num_threads;
620 int num_stack_entries;
621
622 /* since all required registers are initialised in the
623 * start_compute_cs_cmd atom, we can EMIT_EARLY here.
624 */
625 r600_init_command_buffer(cb, 256);
626 cb->pkt_flags = RADEON_CP_PACKET3_COMPUTE_MODE;
627
628 /* This must be first. */
629 r600_store_value(cb, PKT3(PKT3_CONTEXT_CONTROL, 1, 0));
630 r600_store_value(cb, 0x80000000);
631 r600_store_value(cb, 0x80000000);
632
633 /* We're setting config registers here. */
634 r600_store_value(cb, PKT3(PKT3_EVENT_WRITE, 0, 0));
635 r600_store_value(cb, EVENT_TYPE(EVENT_TYPE_CS_PARTIAL_FLUSH) | EVENT_INDEX(4));
636
637 switch (ctx->family) {
638 case CHIP_CEDAR:
639 default:
640 num_threads = 128;
641 num_stack_entries = 256;
642 break;
643 case CHIP_REDWOOD:
644 num_threads = 128;
645 num_stack_entries = 256;
646 break;
647 case CHIP_JUNIPER:
648 num_threads = 128;
649 num_stack_entries = 512;
650 break;
651 case CHIP_CYPRESS:
652 case CHIP_HEMLOCK:
653 num_threads = 128;
654 num_stack_entries = 512;
655 break;
656 case CHIP_PALM:
657 num_threads = 128;
658 num_stack_entries = 256;
659 break;
660 case CHIP_SUMO:
661 num_threads = 128;
662 num_stack_entries = 256;
663 break;
664 case CHIP_SUMO2:
665 num_threads = 128;
666 num_stack_entries = 512;
667 break;
668 case CHIP_BARTS:
669 num_threads = 128;
670 num_stack_entries = 512;
671 break;
672 case CHIP_TURKS:
673 num_threads = 128;
674 num_stack_entries = 256;
675 break;
676 case CHIP_CAICOS:
677 num_threads = 128;
678 num_stack_entries = 256;
679 break;
680 }
681
682 /* Config Registers */
683 if (ctx->chip_class < CAYMAN)
684 evergreen_init_common_regs(cb, ctx->chip_class, ctx->family,
685 ctx->screen->info.drm_minor);
686 else
687 cayman_init_common_regs(cb, ctx->chip_class, ctx->family,
688 ctx->screen->info.drm_minor);
689
690 /* The primitive type always needs to be POINTLIST for compute. */
691 r600_store_config_reg(cb, R_008958_VGT_PRIMITIVE_TYPE,
692 V_008958_DI_PT_POINTLIST);
693
694 if (ctx->chip_class < CAYMAN) {
695
696 /* These registers control which simds can be used by each stage.
697 * The default for these registers is 0xffffffff, which means
698 * all simds are available for each stage. It's possible we may
699 * want to play around with these in the future, but for now
700 * the default value is fine.
701 *
702 * R_008E20_SQ_STATIC_THREAD_MGMT1
703 * R_008E24_SQ_STATIC_THREAD_MGMT2
704 * R_008E28_SQ_STATIC_THREAD_MGMT3
705 */
706
707 /* XXX: We may need to adjust the thread and stack resouce
708 * values for 3D/compute interop */
709
710 r600_store_config_reg_seq(cb, R_008C18_SQ_THREAD_RESOURCE_MGMT_1, 5);
711
712 /* R_008C18_SQ_THREAD_RESOURCE_MGMT_1
713 * Set the number of threads used by the PS/VS/GS/ES stage to
714 * 0.
715 */
716 r600_store_value(cb, 0);
717
718 /* R_008C1C_SQ_THREAD_RESOURCE_MGMT_2
719 * Set the number of threads used by the CS (aka LS) stage to
720 * the maximum number of threads and set the number of threads
721 * for the HS stage to 0. */
722 r600_store_value(cb, S_008C1C_NUM_LS_THREADS(num_threads));
723
724 /* R_008C20_SQ_STACK_RESOURCE_MGMT_1
725 * Set the Control Flow stack entries to 0 for PS/VS stages */
726 r600_store_value(cb, 0);
727
728 /* R_008C24_SQ_STACK_RESOURCE_MGMT_2
729 * Set the Control Flow stack entries to 0 for GS/ES stages */
730 r600_store_value(cb, 0);
731
732 /* R_008C28_SQ_STACK_RESOURCE_MGMT_3
733 * Set the Contol Flow stack entries to 0 for the HS stage, and
734 * set it to the maximum value for the CS (aka LS) stage. */
735 r600_store_value(cb,
736 S_008C28_NUM_LS_STACK_ENTRIES(num_stack_entries));
737 }
738
739 /* Context Registers */
740
741 if (ctx->chip_class < CAYMAN) {
742 /* workaround for hw issues with dyn gpr - must set all limits
743 * to 240 instead of 0, 0x1e == 240 / 8
744 */
745 r600_store_context_reg(cb, R_028838_SQ_DYN_GPR_RESOURCE_LIMIT_1,
746 S_028838_PS_GPRS(0x1e) |
747 S_028838_VS_GPRS(0x1e) |
748 S_028838_GS_GPRS(0x1e) |
749 S_028838_ES_GPRS(0x1e) |
750 S_028838_HS_GPRS(0x1e) |
751 S_028838_LS_GPRS(0x1e));
752 }
753
754 /* XXX: Investigate setting bit 15, which is FAST_COMPUTE_MODE */
755 r600_store_context_reg(cb, R_028A40_VGT_GS_MODE,
756 S_028A40_COMPUTE_MODE(1) | S_028A40_PARTIAL_THD_AT_EOI(1));
757
758 r600_store_context_reg(cb, R_028B54_VGT_SHADER_STAGES_EN, 2/*CS_ON*/);
759
760 r600_store_context_reg(cb, R_0286E8_SPI_COMPUTE_INPUT_CNTL,
761 S_0286E8_TID_IN_GROUP_ENA
762 | S_0286E8_TGID_ENA
763 | S_0286E8_DISABLE_INDEX_PACK)
764 ;
765
766 /* The LOOP_CONST registers are an optimizations for loops that allows
767 * you to store the initial counter, increment value, and maximum
768 * counter value in a register so that hardware can calculate the
769 * correct number of iterations for the loop, so that you don't need
770 * to have the loop counter in your shader code. We don't currently use
771 * this optimization, so we must keep track of the counter in the
772 * shader and use a break instruction to exit loops. However, the
773 * hardware will still uses this register to determine when to exit a
774 * loop, so we need to initialize the counter to 0, set the increment
775 * value to 1 and the maximum counter value to the 4095 (0xfff) which
776 * is the maximum value allowed. This gives us a maximum of 4096
777 * iterations for our loops, but hopefully our break instruction will
778 * execute before some time before the 4096th iteration.
779 */
780 eg_store_loop_const(cb, R_03A200_SQ_LOOP_CONST_0 + (160 * 4), 0x1000FFF);
781 }
782
783 void evergreen_init_compute_state_functions(struct r600_context *ctx)
784 {
785 ctx->context.create_compute_state = evergreen_create_compute_state;
786 ctx->context.delete_compute_state = evergreen_delete_compute_state;
787 ctx->context.bind_compute_state = evergreen_bind_compute_state;
788 // ctx->context.create_sampler_view = evergreen_compute_create_sampler_view;
789 ctx->context.set_compute_resources = evergreen_set_compute_resources;
790 ctx->context.set_compute_sampler_views = evergreen_set_cs_sampler_view;
791 ctx->context.bind_compute_sampler_states = evergreen_bind_compute_sampler_states;
792 ctx->context.set_global_binding = evergreen_set_global_binding;
793 ctx->context.launch_grid = evergreen_launch_grid;
794
795 /* We always use at least two vertex buffers for compute, one for
796 * parameters and one for global memory */
797 ctx->cs_vertex_buffer_state.enabled_mask =
798 ctx->cs_vertex_buffer_state.dirty_mask = 1 | 2;
799 }
800
801
802 struct pipe_resource *r600_compute_global_buffer_create(
803 struct pipe_screen *screen,
804 const struct pipe_resource *templ)
805 {
806 struct r600_resource_global* result = NULL;
807 struct r600_screen* rscreen = NULL;
808 int size_in_dw = 0;
809
810 assert(templ->target == PIPE_BUFFER);
811 assert(templ->bind & PIPE_BIND_GLOBAL);
812 assert(templ->array_size == 1 || templ->array_size == 0);
813 assert(templ->depth0 == 1 || templ->depth0 == 0);
814 assert(templ->height0 == 1 || templ->height0 == 0);
815
816 result = (struct r600_resource_global*)
817 CALLOC(sizeof(struct r600_resource_global), 1);
818 rscreen = (struct r600_screen*)screen;
819
820 COMPUTE_DBG("*** r600_compute_global_buffer_create\n");
821 COMPUTE_DBG("width = %u array_size = %u\n", templ->width0,
822 templ->array_size);
823
824 result->base.b.vtbl = &r600_global_buffer_vtbl;
825 result->base.b.b.screen = screen;
826 result->base.b.b = *templ;
827 pipe_reference_init(&result->base.b.b.reference, 1);
828
829 size_in_dw = (templ->width0+3) / 4;
830
831 result->chunk = compute_memory_alloc(rscreen->global_pool, size_in_dw);
832
833 if (result->chunk == NULL)
834 {
835 free(result);
836 return NULL;
837 }
838
839 return &result->base.b.b;
840 }
841
842 void r600_compute_global_buffer_destroy(
843 struct pipe_screen *screen,
844 struct pipe_resource *res)
845 {
846 struct r600_resource_global* buffer = NULL;
847 struct r600_screen* rscreen = NULL;
848
849 assert(res->target == PIPE_BUFFER);
850 assert(res->bind & PIPE_BIND_GLOBAL);
851
852 buffer = (struct r600_resource_global*)res;
853 rscreen = (struct r600_screen*)screen;
854
855 compute_memory_free(rscreen->global_pool, buffer->chunk->id);
856
857 buffer->chunk = NULL;
858 free(res);
859 }
860
861 void *r600_compute_global_transfer_map(
862 struct pipe_context *ctx_,
863 struct pipe_resource *resource,
864 unsigned level,
865 unsigned usage,
866 const struct pipe_box *box,
867 struct pipe_transfer **ptransfer)
868 {
869 struct r600_context *rctx = (struct r600_context*)ctx_;
870 struct compute_memory_pool *pool = rctx->screen->global_pool;
871 struct pipe_transfer *transfer = util_slab_alloc(&rctx->pool_transfers);
872 struct r600_resource_global* buffer =
873 (struct r600_resource_global*)resource;
874 uint32_t* map;
875
876 compute_memory_finalize_pending(pool, ctx_);
877
878 assert(resource->target == PIPE_BUFFER);
879
880 COMPUTE_DBG("* r600_compute_global_get_transfer()\n"
881 "level = %u, usage = %u, box(x = %u, y = %u, z = %u "
882 "width = %u, height = %u, depth = %u)\n", level, usage,
883 box->x, box->y, box->z, box->width, box->height,
884 box->depth);
885
886 transfer->resource = resource;
887 transfer->level = level;
888 transfer->usage = usage;
889 transfer->box = *box;
890 transfer->stride = 0;
891 transfer->layer_stride = 0;
892
893 assert(transfer->resource->target == PIPE_BUFFER);
894 assert(transfer->resource->bind & PIPE_BIND_GLOBAL);
895 assert(transfer->box.x >= 0);
896 assert(transfer->box.y == 0);
897 assert(transfer->box.z == 0);
898
899 ///TODO: do it better, mapping is not possible if the pool is too big
900
901 COMPUTE_DBG("* r600_compute_global_transfer_map()\n");
902
903 if (!(map = r600_buffer_mmap_sync_with_rings(rctx, buffer->chunk->pool->bo, transfer->usage))) {
904 util_slab_free(&rctx->pool_transfers, transfer);
905 return NULL;
906 }
907
908 *ptransfer = transfer;
909
910 COMPUTE_DBG("Buffer: %p + %u (buffer offset in global memory) "
911 "+ %u (box.x)\n", map, buffer->chunk->start_in_dw, transfer->box.x);
912 return ((char*)(map + buffer->chunk->start_in_dw)) + transfer->box.x;
913 }
914
915 void r600_compute_global_transfer_unmap(
916 struct pipe_context *ctx_,
917 struct pipe_transfer* transfer)
918 {
919 struct r600_context *ctx = NULL;
920 struct r600_resource_global* buffer = NULL;
921
922 assert(transfer->resource->target == PIPE_BUFFER);
923 assert(transfer->resource->bind & PIPE_BIND_GLOBAL);
924
925 ctx = (struct r600_context *)ctx_;
926 buffer = (struct r600_resource_global*)transfer->resource;
927
928 COMPUTE_DBG("* r600_compute_global_transfer_unmap()\n");
929
930 ctx->ws->buffer_unmap(buffer->chunk->pool->bo->cs_buf);
931 util_slab_free(&ctx->pool_transfers, transfer);
932 }
933
934 void r600_compute_global_transfer_flush_region(
935 struct pipe_context *ctx_,
936 struct pipe_transfer *transfer,
937 const struct pipe_box *box)
938 {
939 assert(0 && "TODO");
940 }
941
942 void r600_compute_global_transfer_inline_write(
943 struct pipe_context *pipe,
944 struct pipe_resource *resource,
945 unsigned level,
946 unsigned usage,
947 const struct pipe_box *box,
948 const void *data,
949 unsigned stride,
950 unsigned layer_stride)
951 {
952 assert(0 && "TODO");
953 }