r600g/compute: Add a work-around for flushing issues on Cayman
[mesa.git] / src / gallium / drivers / r600 / evergreen_compute.c
1 /*
2 * Copyright 2011 Adam Rak <adam.rak@streamnovation.com>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * on the rights to use, copy, modify, merge, publish, distribute, sub
8 * license, and/or sell copies of the Software, and to permit persons to whom
9 * the Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Adam Rak <adam.rak@streamnovation.com>
25 */
26
27 #include <stdio.h>
28 #include <errno.h>
29 #include "pipe/p_defines.h"
30 #include "pipe/p_state.h"
31 #include "pipe/p_context.h"
32 #include "util/u_blitter.h"
33 #include "util/u_double_list.h"
34 #include "util/u_transfer.h"
35 #include "util/u_surface.h"
36 #include "util/u_pack_color.h"
37 #include "util/u_memory.h"
38 #include "util/u_inlines.h"
39 #include "util/u_framebuffer.h"
40 #include "pipebuffer/pb_buffer.h"
41 #include "evergreend.h"
42 #include "r600_resource.h"
43 #include "r600_shader.h"
44 #include "r600_pipe.h"
45 #include "r600_formats.h"
46 #include "evergreen_compute.h"
47 #include "evergreen_compute_internal.h"
48 #include "compute_memory_pool.h"
49 #include "sb/sb_public.h"
50 #ifdef HAVE_OPENCL
51 #include "radeon_llvm_util.h"
52 #endif
53
54 /**
55 RAT0 is for global binding write
56 VTX1 is for global binding read
57
58 for wrting images RAT1...
59 for reading images TEX2...
60 TEX2-RAT1 is paired
61
62 TEX2... consumes the same fetch resources, that VTX2... would consume
63
64 CONST0 and VTX0 is for parameters
65 CONST0 is binding smaller input parameter buffer, and for constant indexing,
66 also constant cached
67 VTX0 is for indirect/non-constant indexing, or if the input is bigger than
68 the constant cache can handle
69
70 RAT-s are limited to 12, so we can only bind at most 11 texture for writing
71 because we reserve RAT0 for global bindings. With byteaddressing enabled,
72 we should reserve another one too.=> 10 image binding for writing max.
73
74 from Nvidia OpenCL:
75 CL_DEVICE_MAX_READ_IMAGE_ARGS: 128
76 CL_DEVICE_MAX_WRITE_IMAGE_ARGS: 8
77
78 so 10 for writing is enough. 176 is the max for reading according to the docs
79
80 writable images should be listed first < 10, so their id corresponds to RAT(id+1)
81 writable images will consume TEX slots, VTX slots too because of linear indexing
82
83 */
84
85 struct r600_resource* r600_compute_buffer_alloc_vram(
86 struct r600_screen *screen,
87 unsigned size)
88 {
89 struct pipe_resource * buffer = NULL;
90 assert(size);
91
92 buffer = pipe_buffer_create(
93 (struct pipe_screen*) screen,
94 PIPE_BIND_CUSTOM,
95 PIPE_USAGE_IMMUTABLE,
96 size);
97
98 return (struct r600_resource *)buffer;
99 }
100
101
102 static void evergreen_set_rat(
103 struct r600_pipe_compute *pipe,
104 int id,
105 struct r600_resource* bo,
106 int start,
107 int size)
108 {
109 struct pipe_surface rat_templ;
110 struct r600_surface *surf = NULL;
111 struct r600_context *rctx = NULL;
112
113 assert(id < 12);
114 assert((size & 3) == 0);
115 assert((start & 0xFF) == 0);
116
117 rctx = pipe->ctx;
118
119 COMPUTE_DBG(rctx->screen, "bind rat: %i \n", id);
120
121 /* Create the RAT surface */
122 memset(&rat_templ, 0, sizeof(rat_templ));
123 rat_templ.format = PIPE_FORMAT_R32_UINT;
124 rat_templ.u.tex.level = 0;
125 rat_templ.u.tex.first_layer = 0;
126 rat_templ.u.tex.last_layer = 0;
127
128 /* Add the RAT the list of color buffers */
129 pipe->ctx->framebuffer.state.cbufs[id] = pipe->ctx->b.b.create_surface(
130 (struct pipe_context *)pipe->ctx,
131 (struct pipe_resource *)bo, &rat_templ);
132
133 /* Update the number of color buffers */
134 pipe->ctx->framebuffer.state.nr_cbufs =
135 MAX2(id + 1, pipe->ctx->framebuffer.state.nr_cbufs);
136
137 /* Update the cb_target_mask
138 * XXX: I think this is a potential spot for bugs once we start doing
139 * GL interop. cb_target_mask may be modified in the 3D sections
140 * of this driver. */
141 pipe->ctx->compute_cb_target_mask |= (0xf << (id * 4));
142
143 surf = (struct r600_surface*)pipe->ctx->framebuffer.state.cbufs[id];
144 evergreen_init_color_surface_rat(rctx, surf);
145 }
146
147 static void evergreen_cs_set_vertex_buffer(
148 struct r600_context * rctx,
149 unsigned vb_index,
150 unsigned offset,
151 struct pipe_resource * buffer)
152 {
153 struct r600_vertexbuf_state *state = &rctx->cs_vertex_buffer_state;
154 struct pipe_vertex_buffer *vb = &state->vb[vb_index];
155 vb->stride = 1;
156 vb->buffer_offset = offset;
157 vb->buffer = buffer;
158 vb->user_buffer = NULL;
159
160 /* The vertex instructions in the compute shaders use the texture cache,
161 * so we need to invalidate it. */
162 rctx->b.flags |= R600_CONTEXT_INV_VERTEX_CACHE;
163 state->enabled_mask |= 1 << vb_index;
164 state->dirty_mask |= 1 << vb_index;
165 state->atom.dirty = true;
166 }
167
168 static void evergreen_cs_set_constant_buffer(
169 struct r600_context * rctx,
170 unsigned cb_index,
171 unsigned offset,
172 unsigned size,
173 struct pipe_resource * buffer)
174 {
175 struct pipe_constant_buffer cb;
176 cb.buffer_size = size;
177 cb.buffer_offset = offset;
178 cb.buffer = buffer;
179 cb.user_buffer = NULL;
180
181 rctx->b.b.set_constant_buffer(&rctx->b.b, PIPE_SHADER_COMPUTE, cb_index, &cb);
182 }
183
184 static const struct u_resource_vtbl r600_global_buffer_vtbl =
185 {
186 u_default_resource_get_handle, /* get_handle */
187 r600_compute_global_buffer_destroy, /* resource_destroy */
188 r600_compute_global_transfer_map, /* transfer_map */
189 r600_compute_global_transfer_flush_region,/* transfer_flush_region */
190 r600_compute_global_transfer_unmap, /* transfer_unmap */
191 r600_compute_global_transfer_inline_write /* transfer_inline_write */
192 };
193
194
195 void *evergreen_create_compute_state(
196 struct pipe_context *ctx_,
197 const const struct pipe_compute_state *cso)
198 {
199 struct r600_context *ctx = (struct r600_context *)ctx_;
200 struct r600_pipe_compute *shader = CALLOC_STRUCT(r600_pipe_compute);
201
202 #ifdef HAVE_OPENCL
203 const struct pipe_llvm_program_header * header;
204 const unsigned char * code;
205 unsigned i;
206
207 COMPUTE_DBG(ctx->screen, "*** evergreen_create_compute_state\n");
208
209 header = cso->prog;
210 code = cso->prog + sizeof(struct pipe_llvm_program_header);
211 #endif
212
213 shader->ctx = (struct r600_context*)ctx;
214 shader->local_size = cso->req_local_mem;
215 shader->private_size = cso->req_private_mem;
216 shader->input_size = cso->req_input_mem;
217
218 #ifdef HAVE_OPENCL
219 shader->num_kernels = radeon_llvm_get_num_kernels(code, header->num_bytes);
220 shader->kernels = CALLOC(sizeof(struct r600_kernel), shader->num_kernels);
221
222 for (i = 0; i < shader->num_kernels; i++) {
223 struct r600_kernel *kernel = &shader->kernels[i];
224 kernel->llvm_module = radeon_llvm_get_kernel_module(i, code,
225 header->num_bytes);
226 }
227 #endif
228 return shader;
229 }
230
231 void evergreen_delete_compute_state(struct pipe_context *ctx, void* state)
232 {
233 struct r600_pipe_compute *shader = (struct r600_pipe_compute *)state;
234
235 free(shader);
236 }
237
238 static void evergreen_bind_compute_state(struct pipe_context *ctx_, void *state)
239 {
240 struct r600_context *ctx = (struct r600_context *)ctx_;
241
242 COMPUTE_DBG(ctx->screen, "*** evergreen_bind_compute_state\n");
243
244 ctx->cs_shader_state.shader = (struct r600_pipe_compute *)state;
245 }
246
247 /* The kernel parameters are stored a vtx buffer (ID=0), besides the explicit
248 * kernel parameters there are inplicit parameters that need to be stored
249 * in the vertex buffer as well. Here is how these parameters are organized in
250 * the buffer:
251 *
252 * DWORDS 0-2: Number of work groups in each dimension (x,y,z)
253 * DWORDS 3-5: Number of global work items in each dimension (x,y,z)
254 * DWORDS 6-8: Number of work items within each work group in each dimension
255 * (x,y,z)
256 * DWORDS 9+ : Kernel parameters
257 */
258 void evergreen_compute_upload_input(
259 struct pipe_context *ctx_,
260 const uint *block_layout,
261 const uint *grid_layout,
262 const void *input)
263 {
264 struct r600_context *ctx = (struct r600_context *)ctx_;
265 struct r600_pipe_compute *shader = ctx->cs_shader_state.shader;
266 int i;
267 /* We need to reserve 9 dwords (36 bytes) for implicit kernel
268 * parameters.
269 */
270 unsigned input_size = shader->input_size + 36;
271 uint32_t * num_work_groups_start;
272 uint32_t * global_size_start;
273 uint32_t * local_size_start;
274 uint32_t * kernel_parameters_start;
275 struct pipe_box box;
276 struct pipe_transfer *transfer = NULL;
277
278 if (shader->input_size == 0) {
279 return;
280 }
281
282 if (!shader->kernel_param) {
283 /* Add space for the grid dimensions */
284 shader->kernel_param = (struct r600_resource *)
285 pipe_buffer_create(ctx_->screen, PIPE_BIND_CUSTOM,
286 PIPE_USAGE_IMMUTABLE, input_size);
287 }
288
289 u_box_1d(0, input_size, &box);
290 num_work_groups_start = ctx_->transfer_map(ctx_,
291 (struct pipe_resource*)shader->kernel_param,
292 0, PIPE_TRANSFER_WRITE | PIPE_TRANSFER_DISCARD_RANGE,
293 &box, &transfer);
294 global_size_start = num_work_groups_start + (3 * (sizeof(uint) /4));
295 local_size_start = global_size_start + (3 * (sizeof(uint)) / 4);
296 kernel_parameters_start = local_size_start + (3 * (sizeof(uint)) / 4);
297
298 /* Copy the work group size */
299 memcpy(num_work_groups_start, grid_layout, 3 * sizeof(uint));
300
301 /* Copy the global size */
302 for (i = 0; i < 3; i++) {
303 global_size_start[i] = grid_layout[i] * block_layout[i];
304 }
305
306 /* Copy the local dimensions */
307 memcpy(local_size_start, block_layout, 3 * sizeof(uint));
308
309 /* Copy the kernel inputs */
310 memcpy(kernel_parameters_start, input, shader->input_size);
311
312 for (i = 0; i < (input_size / 4); i++) {
313 COMPUTE_DBG(ctx->screen, "input %i : %i\n", i,
314 ((unsigned*)num_work_groups_start)[i]);
315 }
316
317 ctx_->transfer_unmap(ctx_, transfer);
318
319 /* ID=0 is reserved for the parameters */
320 evergreen_cs_set_constant_buffer(ctx, 0, 0, input_size,
321 (struct pipe_resource*)shader->kernel_param);
322 }
323
324 static void evergreen_emit_direct_dispatch(
325 struct r600_context *rctx,
326 const uint *block_layout, const uint *grid_layout)
327 {
328 int i;
329 struct radeon_winsys_cs *cs = rctx->b.rings.gfx.cs;
330 struct r600_pipe_compute *shader = rctx->cs_shader_state.shader;
331 unsigned num_waves;
332 unsigned num_pipes = rctx->screen->b.info.r600_max_pipes;
333 unsigned wave_divisor = (16 * num_pipes);
334 int group_size = 1;
335 int grid_size = 1;
336 unsigned lds_size = shader->local_size / 4 + shader->active_kernel->bc.nlds_dw;
337
338 /* Calculate group_size/grid_size */
339 for (i = 0; i < 3; i++) {
340 group_size *= block_layout[i];
341 }
342
343 for (i = 0; i < 3; i++) {
344 grid_size *= grid_layout[i];
345 }
346
347 /* num_waves = ceil((tg_size.x * tg_size.y, tg_size.z) / (16 * num_pipes)) */
348 num_waves = (block_layout[0] * block_layout[1] * block_layout[2] +
349 wave_divisor - 1) / wave_divisor;
350
351 COMPUTE_DBG(rctx->screen, "Using %u pipes, "
352 "%u wavefronts per thread block, "
353 "allocating %u dwords lds.\n",
354 num_pipes, num_waves, lds_size);
355
356 r600_write_config_reg(cs, R_008970_VGT_NUM_INDICES, group_size);
357
358 r600_write_config_reg_seq(cs, R_00899C_VGT_COMPUTE_START_X, 3);
359 radeon_emit(cs, 0); /* R_00899C_VGT_COMPUTE_START_X */
360 radeon_emit(cs, 0); /* R_0089A0_VGT_COMPUTE_START_Y */
361 radeon_emit(cs, 0); /* R_0089A4_VGT_COMPUTE_START_Z */
362
363 r600_write_config_reg(cs, R_0089AC_VGT_COMPUTE_THREAD_GROUP_SIZE,
364 group_size);
365
366 r600_write_compute_context_reg_seq(cs, R_0286EC_SPI_COMPUTE_NUM_THREAD_X, 3);
367 radeon_emit(cs, block_layout[0]); /* R_0286EC_SPI_COMPUTE_NUM_THREAD_X */
368 radeon_emit(cs, block_layout[1]); /* R_0286F0_SPI_COMPUTE_NUM_THREAD_Y */
369 radeon_emit(cs, block_layout[2]); /* R_0286F4_SPI_COMPUTE_NUM_THREAD_Z */
370
371 if (rctx->b.chip_class < CAYMAN) {
372 assert(lds_size <= 8192);
373 } else {
374 /* Cayman appears to have a slightly smaller limit, see the
375 * value of CM_R_0286FC_SPI_LDS_MGMT.NUM_LS_LDS */
376 assert(lds_size <= 8160);
377 }
378
379 r600_write_compute_context_reg(cs, CM_R_0288E8_SQ_LDS_ALLOC,
380 lds_size | (num_waves << 14));
381
382 /* Dispatch packet */
383 radeon_emit(cs, PKT3C(PKT3_DISPATCH_DIRECT, 3, 0));
384 radeon_emit(cs, grid_layout[0]);
385 radeon_emit(cs, grid_layout[1]);
386 radeon_emit(cs, grid_layout[2]);
387 /* VGT_DISPATCH_INITIATOR = COMPUTE_SHADER_EN */
388 radeon_emit(cs, 1);
389 }
390
391 static void compute_emit_cs(struct r600_context *ctx, const uint *block_layout,
392 const uint *grid_layout)
393 {
394 struct radeon_winsys_cs *cs = ctx->b.rings.gfx.cs;
395 int i;
396
397 /* make sure that the gfx ring is only one active */
398 if (ctx->b.rings.dma.cs) {
399 ctx->b.rings.dma.flush(ctx, RADEON_FLUSH_ASYNC);
400 }
401
402 /* Initialize all the compute-related registers.
403 *
404 * See evergreen_init_atom_start_compute_cs() in this file for the list
405 * of registers initialized by the start_compute_cs_cmd atom.
406 */
407 r600_emit_command_buffer(cs, &ctx->start_compute_cs_cmd);
408
409 ctx->b.flags |= R600_CONTEXT_WAIT_3D_IDLE | R600_CONTEXT_FLUSH_AND_INV;
410 r600_flush_emit(ctx);
411
412 /* Emit colorbuffers. */
413 /* XXX support more than 8 colorbuffers (the offsets are not a multiple of 0x3C for CB8-11) */
414 for (i = 0; i < 8 && i < ctx->framebuffer.state.nr_cbufs; i++) {
415 struct r600_surface *cb = (struct r600_surface*)ctx->framebuffer.state.cbufs[i];
416 unsigned reloc = r600_context_bo_reloc(&ctx->b, &ctx->b.rings.gfx,
417 (struct r600_resource*)cb->base.texture,
418 RADEON_USAGE_READWRITE);
419
420 r600_write_compute_context_reg_seq(cs, R_028C60_CB_COLOR0_BASE + i * 0x3C, 7);
421 radeon_emit(cs, cb->cb_color_base); /* R_028C60_CB_COLOR0_BASE */
422 radeon_emit(cs, cb->cb_color_pitch); /* R_028C64_CB_COLOR0_PITCH */
423 radeon_emit(cs, cb->cb_color_slice); /* R_028C68_CB_COLOR0_SLICE */
424 radeon_emit(cs, cb->cb_color_view); /* R_028C6C_CB_COLOR0_VIEW */
425 radeon_emit(cs, cb->cb_color_info); /* R_028C70_CB_COLOR0_INFO */
426 radeon_emit(cs, cb->cb_color_attrib); /* R_028C74_CB_COLOR0_ATTRIB */
427 radeon_emit(cs, cb->cb_color_dim); /* R_028C78_CB_COLOR0_DIM */
428
429 radeon_emit(cs, PKT3(PKT3_NOP, 0, 0)); /* R_028C60_CB_COLOR0_BASE */
430 radeon_emit(cs, reloc);
431
432 if (!ctx->keep_tiling_flags) {
433 radeon_emit(cs, PKT3(PKT3_NOP, 0, 0)); /* R_028C70_CB_COLOR0_INFO */
434 radeon_emit(cs, reloc);
435 }
436
437 radeon_emit(cs, PKT3(PKT3_NOP, 0, 0)); /* R_028C74_CB_COLOR0_ATTRIB */
438 radeon_emit(cs, reloc);
439 }
440 if (ctx->keep_tiling_flags) {
441 for (; i < 8 ; i++) {
442 r600_write_compute_context_reg(cs, R_028C70_CB_COLOR0_INFO + i * 0x3C,
443 S_028C70_FORMAT(V_028C70_COLOR_INVALID));
444 }
445 for (; i < 12; i++) {
446 r600_write_compute_context_reg(cs, R_028E50_CB_COLOR8_INFO + (i - 8) * 0x1C,
447 S_028C70_FORMAT(V_028C70_COLOR_INVALID));
448 }
449 }
450
451 /* Set CB_TARGET_MASK XXX: Use cb_misc_state */
452 r600_write_compute_context_reg(cs, R_028238_CB_TARGET_MASK,
453 ctx->compute_cb_target_mask);
454
455
456 /* Emit vertex buffer state */
457 ctx->cs_vertex_buffer_state.atom.num_dw = 12 * util_bitcount(ctx->cs_vertex_buffer_state.dirty_mask);
458 r600_emit_atom(ctx, &ctx->cs_vertex_buffer_state.atom);
459
460 /* Emit constant buffer state */
461 r600_emit_atom(ctx, &ctx->constbuf_state[PIPE_SHADER_COMPUTE].atom);
462
463 /* Emit compute shader state */
464 r600_emit_atom(ctx, &ctx->cs_shader_state.atom);
465
466 /* Emit dispatch state and dispatch packet */
467 evergreen_emit_direct_dispatch(ctx, block_layout, grid_layout);
468
469 /* XXX evergreen_flush_emit() hardcodes the CP_COHER_SIZE to 0xffffffff
470 */
471 ctx->b.flags |= R600_CONTEXT_INV_CONST_CACHE |
472 R600_CONTEXT_INV_VERTEX_CACHE |
473 R600_CONTEXT_INV_TEX_CACHE;
474 r600_flush_emit(ctx);
475 ctx->b.flags = 0;
476
477 if (ctx->b.chip_class >= CAYMAN) {
478 ctx->skip_surface_sync_on_next_cs_flush = true;
479 }
480
481 #if 0
482 COMPUTE_DBG(ctx->screen, "cdw: %i\n", cs->cdw);
483 for (i = 0; i < cs->cdw; i++) {
484 COMPUTE_DBG(ctx->screen, "%4i : 0x%08X\n", i, cs->buf[i]);
485 }
486 #endif
487
488 }
489
490
491 /**
492 * Emit function for r600_cs_shader_state atom
493 */
494 void evergreen_emit_cs_shader(
495 struct r600_context *rctx,
496 struct r600_atom *atom)
497 {
498 struct r600_cs_shader_state *state =
499 (struct r600_cs_shader_state*)atom;
500 struct r600_pipe_compute *shader = state->shader;
501 struct r600_kernel *kernel = &shader->kernels[state->kernel_index];
502 struct radeon_winsys_cs *cs = rctx->b.rings.gfx.cs;
503 uint64_t va;
504
505 va = r600_resource_va(&rctx->screen->b.b, &kernel->code_bo->b.b);
506
507 r600_write_compute_context_reg_seq(cs, R_0288D0_SQ_PGM_START_LS, 3);
508 radeon_emit(cs, va >> 8); /* R_0288D0_SQ_PGM_START_LS */
509 radeon_emit(cs, /* R_0288D4_SQ_PGM_RESOURCES_LS */
510 S_0288D4_NUM_GPRS(kernel->bc.ngpr)
511 | S_0288D4_STACK_SIZE(kernel->bc.nstack));
512 radeon_emit(cs, 0); /* R_0288D8_SQ_PGM_RESOURCES_LS_2 */
513
514 radeon_emit(cs, PKT3C(PKT3_NOP, 0, 0));
515 radeon_emit(cs, r600_context_bo_reloc(&rctx->b, &rctx->b.rings.gfx,
516 kernel->code_bo, RADEON_USAGE_READ));
517 }
518
519 static void evergreen_launch_grid(
520 struct pipe_context *ctx_,
521 const uint *block_layout, const uint *grid_layout,
522 uint32_t pc, const void *input)
523 {
524 struct r600_context *ctx = (struct r600_context *)ctx_;
525
526 struct r600_pipe_compute *shader = ctx->cs_shader_state.shader;
527 struct r600_kernel *kernel = &shader->kernels[pc];
528
529 COMPUTE_DBG(ctx->screen, "*** evergreen_launch_grid: pc = %u\n", pc);
530
531 #ifdef HAVE_OPENCL
532
533 if (!kernel->code_bo) {
534 void *p;
535 struct r600_bytecode *bc = &kernel->bc;
536 LLVMModuleRef mod = kernel->llvm_module;
537 boolean use_kill = false;
538 bool dump = (ctx->screen->b.debug_flags & DBG_CS) != 0;
539 unsigned use_sb = ctx->screen->b.debug_flags & DBG_SB_CS;
540 unsigned sb_disasm = use_sb ||
541 (ctx->screen->b.debug_flags & DBG_SB_DISASM);
542
543 r600_bytecode_init(bc, ctx->b.chip_class, ctx->b.family,
544 ctx->screen->has_compressed_msaa_texturing);
545 bc->type = TGSI_PROCESSOR_COMPUTE;
546 bc->isa = ctx->isa;
547 r600_llvm_compile(mod, ctx->b.family, bc, &use_kill, dump);
548
549 if (dump && !sb_disasm) {
550 r600_bytecode_disasm(bc);
551 } else if ((dump && sb_disasm) || use_sb) {
552 if (r600_sb_bytecode_process(ctx, bc, NULL, dump, use_sb))
553 R600_ERR("r600_sb_bytecode_process failed!\n");
554 }
555
556 kernel->code_bo = r600_compute_buffer_alloc_vram(ctx->screen,
557 kernel->bc.ndw * 4);
558 p = r600_buffer_map_sync_with_rings(&ctx->b, kernel->code_bo, PIPE_TRANSFER_WRITE);
559 memcpy(p, kernel->bc.bytecode, kernel->bc.ndw * 4);
560 ctx->b.ws->buffer_unmap(kernel->code_bo->cs_buf);
561 }
562 #endif
563 shader->active_kernel = kernel;
564 ctx->cs_shader_state.kernel_index = pc;
565 evergreen_compute_upload_input(ctx_, block_layout, grid_layout, input);
566 compute_emit_cs(ctx, block_layout, grid_layout);
567 }
568
569 static void evergreen_set_compute_resources(struct pipe_context * ctx_,
570 unsigned start, unsigned count,
571 struct pipe_surface ** surfaces)
572 {
573 struct r600_context *ctx = (struct r600_context *)ctx_;
574 struct r600_surface **resources = (struct r600_surface **)surfaces;
575
576 COMPUTE_DBG(ctx->screen, "*** evergreen_set_compute_resources: start = %u count = %u\n",
577 start, count);
578
579 for (int i = 0; i < count; i++) {
580 /* The First two vertex buffers are reserved for parameters and
581 * global buffers. */
582 unsigned vtx_id = 2 + i;
583 if (resources[i]) {
584 struct r600_resource_global *buffer =
585 (struct r600_resource_global*)
586 resources[i]->base.texture;
587 if (resources[i]->base.writable) {
588 assert(i+1 < 12);
589
590 evergreen_set_rat(ctx->cs_shader_state.shader, i+1,
591 (struct r600_resource *)resources[i]->base.texture,
592 buffer->chunk->start_in_dw*4,
593 resources[i]->base.texture->width0);
594 }
595
596 evergreen_cs_set_vertex_buffer(ctx, vtx_id,
597 buffer->chunk->start_in_dw * 4,
598 resources[i]->base.texture);
599 }
600 }
601 }
602
603 void evergreen_set_cs_sampler_view(struct pipe_context *ctx_,
604 unsigned start_slot, unsigned count,
605 struct pipe_sampler_view **views)
606 {
607 struct r600_pipe_sampler_view **resource =
608 (struct r600_pipe_sampler_view **)views;
609
610 for (int i = 0; i < count; i++) {
611 if (resource[i]) {
612 assert(i+1 < 12);
613 /* XXX: Implement */
614 assert(!"Compute samplers not implemented.");
615 ///FETCH0 = VTX0 (param buffer),
616 //FETCH1 = VTX1 (global buffer pool), FETCH2... = TEX
617 }
618 }
619 }
620
621
622 static void evergreen_set_global_binding(
623 struct pipe_context *ctx_, unsigned first, unsigned n,
624 struct pipe_resource **resources,
625 uint32_t **handles)
626 {
627 struct r600_context *ctx = (struct r600_context *)ctx_;
628 struct compute_memory_pool *pool = ctx->screen->global_pool;
629 struct r600_resource_global **buffers =
630 (struct r600_resource_global **)resources;
631
632 COMPUTE_DBG(ctx->screen, "*** evergreen_set_global_binding first = %u n = %u\n",
633 first, n);
634
635 if (!resources) {
636 /* XXX: Unset */
637 return;
638 }
639
640 compute_memory_finalize_pending(pool, ctx_);
641
642 for (int i = 0; i < n; i++)
643 {
644 assert(resources[i]->target == PIPE_BUFFER);
645 assert(resources[i]->bind & PIPE_BIND_GLOBAL);
646
647 *(handles[i]) = buffers[i]->chunk->start_in_dw * 4;
648 }
649
650 evergreen_set_rat(ctx->cs_shader_state.shader, 0, pool->bo, 0, pool->size_in_dw * 4);
651 evergreen_cs_set_vertex_buffer(ctx, 1, 0,
652 (struct pipe_resource*)pool->bo);
653 }
654
655 /**
656 * This function initializes all the compute specific registers that need to
657 * be initialized for each compute command stream. Registers that are common
658 * to both compute and 3D will be initialized at the beginning of each compute
659 * command stream by the start_cs_cmd atom. However, since the SET_CONTEXT_REG
660 * packet requires that the shader type bit be set, we must initialize all
661 * context registers needed for compute in this function. The registers
662 * intialized by the start_cs_cmd atom can be found in evereen_state.c in the
663 * functions evergreen_init_atom_start_cs or cayman_init_atom_start_cs depending
664 * on the GPU family.
665 */
666 void evergreen_init_atom_start_compute_cs(struct r600_context *ctx)
667 {
668 struct r600_command_buffer *cb = &ctx->start_compute_cs_cmd;
669 int num_threads;
670 int num_stack_entries;
671
672 /* since all required registers are initialised in the
673 * start_compute_cs_cmd atom, we can EMIT_EARLY here.
674 */
675 r600_init_command_buffer(cb, 256);
676 cb->pkt_flags = RADEON_CP_PACKET3_COMPUTE_MODE;
677
678 /* This must be first. */
679 r600_store_value(cb, PKT3(PKT3_CONTEXT_CONTROL, 1, 0));
680 r600_store_value(cb, 0x80000000);
681 r600_store_value(cb, 0x80000000);
682
683 /* We're setting config registers here. */
684 r600_store_value(cb, PKT3(PKT3_EVENT_WRITE, 0, 0));
685 r600_store_value(cb, EVENT_TYPE(EVENT_TYPE_CS_PARTIAL_FLUSH) | EVENT_INDEX(4));
686
687 switch (ctx->b.family) {
688 case CHIP_CEDAR:
689 default:
690 num_threads = 128;
691 num_stack_entries = 256;
692 break;
693 case CHIP_REDWOOD:
694 num_threads = 128;
695 num_stack_entries = 256;
696 break;
697 case CHIP_JUNIPER:
698 num_threads = 128;
699 num_stack_entries = 512;
700 break;
701 case CHIP_CYPRESS:
702 case CHIP_HEMLOCK:
703 num_threads = 128;
704 num_stack_entries = 512;
705 break;
706 case CHIP_PALM:
707 num_threads = 128;
708 num_stack_entries = 256;
709 break;
710 case CHIP_SUMO:
711 num_threads = 128;
712 num_stack_entries = 256;
713 break;
714 case CHIP_SUMO2:
715 num_threads = 128;
716 num_stack_entries = 512;
717 break;
718 case CHIP_BARTS:
719 num_threads = 128;
720 num_stack_entries = 512;
721 break;
722 case CHIP_TURKS:
723 num_threads = 128;
724 num_stack_entries = 256;
725 break;
726 case CHIP_CAICOS:
727 num_threads = 128;
728 num_stack_entries = 256;
729 break;
730 }
731
732 /* Config Registers */
733 if (ctx->b.chip_class < CAYMAN)
734 evergreen_init_common_regs(cb, ctx->b.chip_class, ctx->b.family,
735 ctx->screen->b.info.drm_minor);
736 else
737 cayman_init_common_regs(cb, ctx->b.chip_class, ctx->b.family,
738 ctx->screen->b.info.drm_minor);
739
740 /* The primitive type always needs to be POINTLIST for compute. */
741 r600_store_config_reg(cb, R_008958_VGT_PRIMITIVE_TYPE,
742 V_008958_DI_PT_POINTLIST);
743
744 if (ctx->b.chip_class < CAYMAN) {
745
746 /* These registers control which simds can be used by each stage.
747 * The default for these registers is 0xffffffff, which means
748 * all simds are available for each stage. It's possible we may
749 * want to play around with these in the future, but for now
750 * the default value is fine.
751 *
752 * R_008E20_SQ_STATIC_THREAD_MGMT1
753 * R_008E24_SQ_STATIC_THREAD_MGMT2
754 * R_008E28_SQ_STATIC_THREAD_MGMT3
755 */
756
757 /* XXX: We may need to adjust the thread and stack resouce
758 * values for 3D/compute interop */
759
760 r600_store_config_reg_seq(cb, R_008C18_SQ_THREAD_RESOURCE_MGMT_1, 5);
761
762 /* R_008C18_SQ_THREAD_RESOURCE_MGMT_1
763 * Set the number of threads used by the PS/VS/GS/ES stage to
764 * 0.
765 */
766 r600_store_value(cb, 0);
767
768 /* R_008C1C_SQ_THREAD_RESOURCE_MGMT_2
769 * Set the number of threads used by the CS (aka LS) stage to
770 * the maximum number of threads and set the number of threads
771 * for the HS stage to 0. */
772 r600_store_value(cb, S_008C1C_NUM_LS_THREADS(num_threads));
773
774 /* R_008C20_SQ_STACK_RESOURCE_MGMT_1
775 * Set the Control Flow stack entries to 0 for PS/VS stages */
776 r600_store_value(cb, 0);
777
778 /* R_008C24_SQ_STACK_RESOURCE_MGMT_2
779 * Set the Control Flow stack entries to 0 for GS/ES stages */
780 r600_store_value(cb, 0);
781
782 /* R_008C28_SQ_STACK_RESOURCE_MGMT_3
783 * Set the Contol Flow stack entries to 0 for the HS stage, and
784 * set it to the maximum value for the CS (aka LS) stage. */
785 r600_store_value(cb,
786 S_008C28_NUM_LS_STACK_ENTRIES(num_stack_entries));
787 }
788 /* Give the compute shader all the available LDS space.
789 * NOTE: This only sets the maximum number of dwords that a compute
790 * shader can allocate. When a shader is executed, we still need to
791 * allocate the appropriate amount of LDS dwords using the
792 * CM_R_0288E8_SQ_LDS_ALLOC register.
793 */
794 if (ctx->b.chip_class < CAYMAN) {
795 r600_store_config_reg(cb, R_008E2C_SQ_LDS_RESOURCE_MGMT,
796 S_008E2C_NUM_PS_LDS(0x0000) | S_008E2C_NUM_LS_LDS(8192));
797 } else {
798 r600_store_context_reg(cb, CM_R_0286FC_SPI_LDS_MGMT,
799 S_0286FC_NUM_PS_LDS(0) |
800 S_0286FC_NUM_LS_LDS(255)); /* 255 * 32 = 8160 dwords */
801 }
802
803 /* Context Registers */
804
805 if (ctx->b.chip_class < CAYMAN) {
806 /* workaround for hw issues with dyn gpr - must set all limits
807 * to 240 instead of 0, 0x1e == 240 / 8
808 */
809 r600_store_context_reg(cb, R_028838_SQ_DYN_GPR_RESOURCE_LIMIT_1,
810 S_028838_PS_GPRS(0x1e) |
811 S_028838_VS_GPRS(0x1e) |
812 S_028838_GS_GPRS(0x1e) |
813 S_028838_ES_GPRS(0x1e) |
814 S_028838_HS_GPRS(0x1e) |
815 S_028838_LS_GPRS(0x1e));
816 }
817
818 /* XXX: Investigate setting bit 15, which is FAST_COMPUTE_MODE */
819 r600_store_context_reg(cb, R_028A40_VGT_GS_MODE,
820 S_028A40_COMPUTE_MODE(1) | S_028A40_PARTIAL_THD_AT_EOI(1));
821
822 r600_store_context_reg(cb, R_028B54_VGT_SHADER_STAGES_EN, 2/*CS_ON*/);
823
824 r600_store_context_reg(cb, R_0286E8_SPI_COMPUTE_INPUT_CNTL,
825 S_0286E8_TID_IN_GROUP_ENA
826 | S_0286E8_TGID_ENA
827 | S_0286E8_DISABLE_INDEX_PACK)
828 ;
829
830 /* The LOOP_CONST registers are an optimizations for loops that allows
831 * you to store the initial counter, increment value, and maximum
832 * counter value in a register so that hardware can calculate the
833 * correct number of iterations for the loop, so that you don't need
834 * to have the loop counter in your shader code. We don't currently use
835 * this optimization, so we must keep track of the counter in the
836 * shader and use a break instruction to exit loops. However, the
837 * hardware will still uses this register to determine when to exit a
838 * loop, so we need to initialize the counter to 0, set the increment
839 * value to 1 and the maximum counter value to the 4095 (0xfff) which
840 * is the maximum value allowed. This gives us a maximum of 4096
841 * iterations for our loops, but hopefully our break instruction will
842 * execute before some time before the 4096th iteration.
843 */
844 eg_store_loop_const(cb, R_03A200_SQ_LOOP_CONST_0 + (160 * 4), 0x1000FFF);
845 }
846
847 void evergreen_init_compute_state_functions(struct r600_context *ctx)
848 {
849 ctx->b.b.create_compute_state = evergreen_create_compute_state;
850 ctx->b.b.delete_compute_state = evergreen_delete_compute_state;
851 ctx->b.b.bind_compute_state = evergreen_bind_compute_state;
852 // ctx->context.create_sampler_view = evergreen_compute_create_sampler_view;
853 ctx->b.b.set_compute_resources = evergreen_set_compute_resources;
854 ctx->b.b.set_global_binding = evergreen_set_global_binding;
855 ctx->b.b.launch_grid = evergreen_launch_grid;
856
857 /* We always use at least one vertex buffer for parameters (id = 1)*/
858 ctx->cs_vertex_buffer_state.enabled_mask =
859 ctx->cs_vertex_buffer_state.dirty_mask = 0x2;
860 }
861
862 struct pipe_resource *r600_compute_global_buffer_create(
863 struct pipe_screen *screen,
864 const struct pipe_resource *templ)
865 {
866 struct r600_resource_global* result = NULL;
867 struct r600_screen* rscreen = NULL;
868 int size_in_dw = 0;
869
870 assert(templ->target == PIPE_BUFFER);
871 assert(templ->bind & PIPE_BIND_GLOBAL);
872 assert(templ->array_size == 1 || templ->array_size == 0);
873 assert(templ->depth0 == 1 || templ->depth0 == 0);
874 assert(templ->height0 == 1 || templ->height0 == 0);
875
876 result = (struct r600_resource_global*)
877 CALLOC(sizeof(struct r600_resource_global), 1);
878 rscreen = (struct r600_screen*)screen;
879
880 COMPUTE_DBG(rscreen, "*** r600_compute_global_buffer_create\n");
881 COMPUTE_DBG(rscreen, "width = %u array_size = %u\n", templ->width0,
882 templ->array_size);
883
884 result->base.b.vtbl = &r600_global_buffer_vtbl;
885 result->base.b.b.screen = screen;
886 result->base.b.b = *templ;
887 pipe_reference_init(&result->base.b.b.reference, 1);
888
889 size_in_dw = (templ->width0+3) / 4;
890
891 result->chunk = compute_memory_alloc(rscreen->global_pool, size_in_dw);
892
893 if (result->chunk == NULL)
894 {
895 free(result);
896 return NULL;
897 }
898
899 return &result->base.b.b;
900 }
901
902 void r600_compute_global_buffer_destroy(
903 struct pipe_screen *screen,
904 struct pipe_resource *res)
905 {
906 struct r600_resource_global* buffer = NULL;
907 struct r600_screen* rscreen = NULL;
908
909 assert(res->target == PIPE_BUFFER);
910 assert(res->bind & PIPE_BIND_GLOBAL);
911
912 buffer = (struct r600_resource_global*)res;
913 rscreen = (struct r600_screen*)screen;
914
915 compute_memory_free(rscreen->global_pool, buffer->chunk->id);
916
917 buffer->chunk = NULL;
918 free(res);
919 }
920
921 void *r600_compute_global_transfer_map(
922 struct pipe_context *ctx_,
923 struct pipe_resource *resource,
924 unsigned level,
925 unsigned usage,
926 const struct pipe_box *box,
927 struct pipe_transfer **ptransfer)
928 {
929 struct r600_context *rctx = (struct r600_context*)ctx_;
930 struct compute_memory_pool *pool = rctx->screen->global_pool;
931 struct r600_resource_global* buffer =
932 (struct r600_resource_global*)resource;
933
934 COMPUTE_DBG(rctx->screen, "* r600_compute_global_transfer_map()\n"
935 "level = %u, usage = %u, box(x = %u, y = %u, z = %u "
936 "width = %u, height = %u, depth = %u)\n", level, usage,
937 box->x, box->y, box->z, box->width, box->height,
938 box->depth);
939 COMPUTE_DBG(rctx->screen, "Buffer id = %u offset = "
940 "%u (box.x)\n", buffer->chunk->id, box->x);
941
942
943 compute_memory_finalize_pending(pool, ctx_);
944
945 assert(resource->target == PIPE_BUFFER);
946 assert(resource->bind & PIPE_BIND_GLOBAL);
947 assert(box->x >= 0);
948 assert(box->y == 0);
949 assert(box->z == 0);
950
951 ///TODO: do it better, mapping is not possible if the pool is too big
952 return pipe_buffer_map_range(ctx_, (struct pipe_resource*)buffer->chunk->pool->bo,
953 box->x + (buffer->chunk->start_in_dw * 4),
954 box->width, usage, ptransfer);
955 }
956
957 void r600_compute_global_transfer_unmap(
958 struct pipe_context *ctx_,
959 struct pipe_transfer* transfer)
960 {
961 /* struct r600_resource_global are not real resources, they just map
962 * to an offset within the compute memory pool. The function
963 * r600_compute_global_transfer_map() maps the memory pool
964 * resource rather than the struct r600_resource_global passed to
965 * it as an argument and then initalizes ptransfer->resource with
966 * the memory pool resource (via pipe_buffer_map_range).
967 * When transfer_unmap is called it uses the memory pool's
968 * vtable which calls r600_buffer_transfer_map() rather than
969 * this function.
970 */
971 assert (!"This function should not be called");
972 }
973
974 void r600_compute_global_transfer_flush_region(
975 struct pipe_context *ctx_,
976 struct pipe_transfer *transfer,
977 const struct pipe_box *box)
978 {
979 assert(0 && "TODO");
980 }
981
982 void r600_compute_global_transfer_inline_write(
983 struct pipe_context *pipe,
984 struct pipe_resource *resource,
985 unsigned level,
986 unsigned usage,
987 const struct pipe_box *box,
988 const void *data,
989 unsigned stride,
990 unsigned layer_stride)
991 {
992 assert(0 && "TODO");
993 }