r600g/compute: fix compile warnings
[mesa.git] / src / gallium / drivers / r600 / evergreen_compute.c
1 /*
2 * Copyright 2011 Adam Rak <adam.rak@streamnovation.com>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * on the rights to use, copy, modify, merge, publish, distribute, sub
8 * license, and/or sell copies of the Software, and to permit persons to whom
9 * the Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Adam Rak <adam.rak@streamnovation.com>
25 */
26
27 #include <stdio.h>
28 #include <errno.h>
29 #include "pipe/p_defines.h"
30 #include "pipe/p_state.h"
31 #include "pipe/p_context.h"
32 #include "util/u_blitter.h"
33 #include "util/u_double_list.h"
34 #include "util/u_transfer.h"
35 #include "util/u_surface.h"
36 #include "util/u_pack_color.h"
37 #include "util/u_memory.h"
38 #include "util/u_inlines.h"
39 #include "util/u_framebuffer.h"
40 #include "pipebuffer/pb_buffer.h"
41 #include "evergreend.h"
42 #include "r600_shader.h"
43 #include "r600_pipe.h"
44 #include "r600_formats.h"
45 #include "evergreen_compute.h"
46 #include "evergreen_compute_internal.h"
47 #include "compute_memory_pool.h"
48 #include "sb/sb_public.h"
49 #ifdef HAVE_OPENCL
50 #include "radeon_llvm_util.h"
51 #endif
52 #include <inttypes.h>
53
54 /**
55 RAT0 is for global binding write
56 VTX1 is for global binding read
57
58 for wrting images RAT1...
59 for reading images TEX2...
60 TEX2-RAT1 is paired
61
62 TEX2... consumes the same fetch resources, that VTX2... would consume
63
64 CONST0 and VTX0 is for parameters
65 CONST0 is binding smaller input parameter buffer, and for constant indexing,
66 also constant cached
67 VTX0 is for indirect/non-constant indexing, or if the input is bigger than
68 the constant cache can handle
69
70 RAT-s are limited to 12, so we can only bind at most 11 texture for writing
71 because we reserve RAT0 for global bindings. With byteaddressing enabled,
72 we should reserve another one too.=> 10 image binding for writing max.
73
74 from Nvidia OpenCL:
75 CL_DEVICE_MAX_READ_IMAGE_ARGS: 128
76 CL_DEVICE_MAX_WRITE_IMAGE_ARGS: 8
77
78 so 10 for writing is enough. 176 is the max for reading according to the docs
79
80 writable images should be listed first < 10, so their id corresponds to RAT(id+1)
81 writable images will consume TEX slots, VTX slots too because of linear indexing
82
83 */
84
85 struct r600_resource* r600_compute_buffer_alloc_vram(
86 struct r600_screen *screen,
87 unsigned size)
88 {
89 struct pipe_resource * buffer = NULL;
90 assert(size);
91
92 buffer = pipe_buffer_create(
93 (struct pipe_screen*) screen,
94 PIPE_BIND_CUSTOM,
95 PIPE_USAGE_IMMUTABLE,
96 size);
97
98 return (struct r600_resource *)buffer;
99 }
100
101
102 static void evergreen_set_rat(
103 struct r600_pipe_compute *pipe,
104 unsigned id,
105 struct r600_resource* bo,
106 int start,
107 int size)
108 {
109 struct pipe_surface rat_templ;
110 struct r600_surface *surf = NULL;
111 struct r600_context *rctx = NULL;
112
113 assert(id < 12);
114 assert((size & 3) == 0);
115 assert((start & 0xFF) == 0);
116
117 rctx = pipe->ctx;
118
119 COMPUTE_DBG(rctx->screen, "bind rat: %i \n", id);
120
121 /* Create the RAT surface */
122 memset(&rat_templ, 0, sizeof(rat_templ));
123 rat_templ.format = PIPE_FORMAT_R32_UINT;
124 rat_templ.u.tex.level = 0;
125 rat_templ.u.tex.first_layer = 0;
126 rat_templ.u.tex.last_layer = 0;
127
128 /* Add the RAT the list of color buffers */
129 pipe->ctx->framebuffer.state.cbufs[id] = pipe->ctx->b.b.create_surface(
130 (struct pipe_context *)pipe->ctx,
131 (struct pipe_resource *)bo, &rat_templ);
132
133 /* Update the number of color buffers */
134 pipe->ctx->framebuffer.state.nr_cbufs =
135 MAX2(id + 1, pipe->ctx->framebuffer.state.nr_cbufs);
136
137 /* Update the cb_target_mask
138 * XXX: I think this is a potential spot for bugs once we start doing
139 * GL interop. cb_target_mask may be modified in the 3D sections
140 * of this driver. */
141 pipe->ctx->compute_cb_target_mask |= (0xf << (id * 4));
142
143 surf = (struct r600_surface*)pipe->ctx->framebuffer.state.cbufs[id];
144 evergreen_init_color_surface_rat(rctx, surf);
145 }
146
147 static void evergreen_cs_set_vertex_buffer(
148 struct r600_context * rctx,
149 unsigned vb_index,
150 unsigned offset,
151 struct pipe_resource * buffer)
152 {
153 struct r600_vertexbuf_state *state = &rctx->cs_vertex_buffer_state;
154 struct pipe_vertex_buffer *vb = &state->vb[vb_index];
155 vb->stride = 1;
156 vb->buffer_offset = offset;
157 vb->buffer = buffer;
158 vb->user_buffer = NULL;
159
160 /* The vertex instructions in the compute shaders use the texture cache,
161 * so we need to invalidate it. */
162 rctx->b.flags |= R600_CONTEXT_INV_VERTEX_CACHE;
163 state->enabled_mask |= 1 << vb_index;
164 state->dirty_mask |= 1 << vb_index;
165 state->atom.dirty = true;
166 }
167
168 static void evergreen_cs_set_constant_buffer(
169 struct r600_context * rctx,
170 unsigned cb_index,
171 unsigned offset,
172 unsigned size,
173 struct pipe_resource * buffer)
174 {
175 struct pipe_constant_buffer cb;
176 cb.buffer_size = size;
177 cb.buffer_offset = offset;
178 cb.buffer = buffer;
179 cb.user_buffer = NULL;
180
181 rctx->b.b.set_constant_buffer(&rctx->b.b, PIPE_SHADER_COMPUTE, cb_index, &cb);
182 }
183
184 static const struct u_resource_vtbl r600_global_buffer_vtbl =
185 {
186 u_default_resource_get_handle, /* get_handle */
187 r600_compute_global_buffer_destroy, /* resource_destroy */
188 r600_compute_global_transfer_map, /* transfer_map */
189 r600_compute_global_transfer_flush_region,/* transfer_flush_region */
190 r600_compute_global_transfer_unmap, /* transfer_unmap */
191 r600_compute_global_transfer_inline_write /* transfer_inline_write */
192 };
193
194
195 void *evergreen_create_compute_state(
196 struct pipe_context *ctx_,
197 const const struct pipe_compute_state *cso)
198 {
199 struct r600_context *ctx = (struct r600_context *)ctx_;
200 struct r600_pipe_compute *shader = CALLOC_STRUCT(r600_pipe_compute);
201
202 #ifdef HAVE_OPENCL
203 const struct pipe_llvm_program_header * header;
204 const unsigned char * code;
205 unsigned i;
206
207 shader->llvm_ctx = LLVMContextCreate();
208
209 COMPUTE_DBG(ctx->screen, "*** evergreen_create_compute_state\n");
210
211 header = cso->prog;
212 code = cso->prog + sizeof(struct pipe_llvm_program_header);
213 #endif
214
215 shader->ctx = (struct r600_context*)ctx;
216 shader->local_size = cso->req_local_mem;
217 shader->private_size = cso->req_private_mem;
218 shader->input_size = cso->req_input_mem;
219
220 #ifdef HAVE_OPENCL
221 shader->num_kernels = radeon_llvm_get_num_kernels(shader->llvm_ctx, code,
222 header->num_bytes);
223 shader->kernels = CALLOC(sizeof(struct r600_kernel), shader->num_kernels);
224
225 for (i = 0; i < shader->num_kernels; i++) {
226 struct r600_kernel *kernel = &shader->kernels[i];
227 kernel->llvm_module = radeon_llvm_get_kernel_module(shader->llvm_ctx, i,
228 code, header->num_bytes);
229 }
230 #endif
231 return shader;
232 }
233
234 void evergreen_delete_compute_state(struct pipe_context *ctx, void* state)
235 {
236 struct r600_pipe_compute *shader = (struct r600_pipe_compute *)state;
237
238 if (!shader)
239 return;
240
241 FREE(shader->kernels);
242
243 #ifdef HAVE_OPENCL
244 if (shader->llvm_ctx){
245 LLVMContextDispose(shader->llvm_ctx);
246 }
247 #endif
248
249 FREE(shader);
250 }
251
252 static void evergreen_bind_compute_state(struct pipe_context *ctx_, void *state)
253 {
254 struct r600_context *ctx = (struct r600_context *)ctx_;
255
256 COMPUTE_DBG(ctx->screen, "*** evergreen_bind_compute_state\n");
257
258 ctx->cs_shader_state.shader = (struct r600_pipe_compute *)state;
259 }
260
261 /* The kernel parameters are stored a vtx buffer (ID=0), besides the explicit
262 * kernel parameters there are implicit parameters that need to be stored
263 * in the vertex buffer as well. Here is how these parameters are organized in
264 * the buffer:
265 *
266 * DWORDS 0-2: Number of work groups in each dimension (x,y,z)
267 * DWORDS 3-5: Number of global work items in each dimension (x,y,z)
268 * DWORDS 6-8: Number of work items within each work group in each dimension
269 * (x,y,z)
270 * DWORDS 9+ : Kernel parameters
271 */
272 void evergreen_compute_upload_input(
273 struct pipe_context *ctx_,
274 const uint *block_layout,
275 const uint *grid_layout,
276 const void *input)
277 {
278 struct r600_context *ctx = (struct r600_context *)ctx_;
279 struct r600_pipe_compute *shader = ctx->cs_shader_state.shader;
280 unsigned i;
281 /* We need to reserve 9 dwords (36 bytes) for implicit kernel
282 * parameters.
283 */
284 unsigned input_size = shader->input_size + 36;
285 uint32_t * num_work_groups_start;
286 uint32_t * global_size_start;
287 uint32_t * local_size_start;
288 uint32_t * kernel_parameters_start;
289 struct pipe_box box;
290 struct pipe_transfer *transfer = NULL;
291
292 if (shader->input_size == 0) {
293 return;
294 }
295
296 if (!shader->kernel_param) {
297 /* Add space for the grid dimensions */
298 shader->kernel_param = (struct r600_resource *)
299 pipe_buffer_create(ctx_->screen, PIPE_BIND_CUSTOM,
300 PIPE_USAGE_IMMUTABLE, input_size);
301 }
302
303 u_box_1d(0, input_size, &box);
304 num_work_groups_start = ctx_->transfer_map(ctx_,
305 (struct pipe_resource*)shader->kernel_param,
306 0, PIPE_TRANSFER_WRITE | PIPE_TRANSFER_DISCARD_RANGE,
307 &box, &transfer);
308 global_size_start = num_work_groups_start + (3 * (sizeof(uint) /4));
309 local_size_start = global_size_start + (3 * (sizeof(uint)) / 4);
310 kernel_parameters_start = local_size_start + (3 * (sizeof(uint)) / 4);
311
312 /* Copy the work group size */
313 memcpy(num_work_groups_start, grid_layout, 3 * sizeof(uint));
314
315 /* Copy the global size */
316 for (i = 0; i < 3; i++) {
317 global_size_start[i] = grid_layout[i] * block_layout[i];
318 }
319
320 /* Copy the local dimensions */
321 memcpy(local_size_start, block_layout, 3 * sizeof(uint));
322
323 /* Copy the kernel inputs */
324 memcpy(kernel_parameters_start, input, shader->input_size);
325
326 for (i = 0; i < (input_size / 4); i++) {
327 COMPUTE_DBG(ctx->screen, "input %i : %u\n", i,
328 ((unsigned*)num_work_groups_start)[i]);
329 }
330
331 ctx_->transfer_unmap(ctx_, transfer);
332
333 /* ID=0 is reserved for the parameters */
334 evergreen_cs_set_constant_buffer(ctx, 0, 0, input_size,
335 (struct pipe_resource*)shader->kernel_param);
336 }
337
338 static void evergreen_emit_direct_dispatch(
339 struct r600_context *rctx,
340 const uint *block_layout, const uint *grid_layout)
341 {
342 int i;
343 struct radeon_winsys_cs *cs = rctx->b.rings.gfx.cs;
344 struct r600_pipe_compute *shader = rctx->cs_shader_state.shader;
345 unsigned num_waves;
346 unsigned num_pipes = rctx->screen->b.info.r600_max_pipes;
347 unsigned wave_divisor = (16 * num_pipes);
348 int group_size = 1;
349 int grid_size = 1;
350 unsigned lds_size = shader->local_size / 4 + shader->active_kernel->bc.nlds_dw;
351
352 /* Calculate group_size/grid_size */
353 for (i = 0; i < 3; i++) {
354 group_size *= block_layout[i];
355 }
356
357 for (i = 0; i < 3; i++) {
358 grid_size *= grid_layout[i];
359 }
360
361 /* num_waves = ceil((tg_size.x * tg_size.y, tg_size.z) / (16 * num_pipes)) */
362 num_waves = (block_layout[0] * block_layout[1] * block_layout[2] +
363 wave_divisor - 1) / wave_divisor;
364
365 COMPUTE_DBG(rctx->screen, "Using %u pipes, "
366 "%u wavefronts per thread block, "
367 "allocating %u dwords lds.\n",
368 num_pipes, num_waves, lds_size);
369
370 r600_write_config_reg(cs, R_008970_VGT_NUM_INDICES, group_size);
371
372 r600_write_config_reg_seq(cs, R_00899C_VGT_COMPUTE_START_X, 3);
373 radeon_emit(cs, 0); /* R_00899C_VGT_COMPUTE_START_X */
374 radeon_emit(cs, 0); /* R_0089A0_VGT_COMPUTE_START_Y */
375 radeon_emit(cs, 0); /* R_0089A4_VGT_COMPUTE_START_Z */
376
377 r600_write_config_reg(cs, R_0089AC_VGT_COMPUTE_THREAD_GROUP_SIZE,
378 group_size);
379
380 r600_write_compute_context_reg_seq(cs, R_0286EC_SPI_COMPUTE_NUM_THREAD_X, 3);
381 radeon_emit(cs, block_layout[0]); /* R_0286EC_SPI_COMPUTE_NUM_THREAD_X */
382 radeon_emit(cs, block_layout[1]); /* R_0286F0_SPI_COMPUTE_NUM_THREAD_Y */
383 radeon_emit(cs, block_layout[2]); /* R_0286F4_SPI_COMPUTE_NUM_THREAD_Z */
384
385 if (rctx->b.chip_class < CAYMAN) {
386 assert(lds_size <= 8192);
387 } else {
388 /* Cayman appears to have a slightly smaller limit, see the
389 * value of CM_R_0286FC_SPI_LDS_MGMT.NUM_LS_LDS */
390 assert(lds_size <= 8160);
391 }
392
393 r600_write_compute_context_reg(cs, CM_R_0288E8_SQ_LDS_ALLOC,
394 lds_size | (num_waves << 14));
395
396 /* Dispatch packet */
397 radeon_emit(cs, PKT3C(PKT3_DISPATCH_DIRECT, 3, 0));
398 radeon_emit(cs, grid_layout[0]);
399 radeon_emit(cs, grid_layout[1]);
400 radeon_emit(cs, grid_layout[2]);
401 /* VGT_DISPATCH_INITIATOR = COMPUTE_SHADER_EN */
402 radeon_emit(cs, 1);
403 }
404
405 static void compute_emit_cs(struct r600_context *ctx, const uint *block_layout,
406 const uint *grid_layout)
407 {
408 struct radeon_winsys_cs *cs = ctx->b.rings.gfx.cs;
409 unsigned i;
410
411 /* make sure that the gfx ring is only one active */
412 if (ctx->b.rings.dma.cs && ctx->b.rings.dma.cs->cdw) {
413 ctx->b.rings.dma.flush(ctx, RADEON_FLUSH_ASYNC, NULL);
414 }
415
416 /* Initialize all the compute-related registers.
417 *
418 * See evergreen_init_atom_start_compute_cs() in this file for the list
419 * of registers initialized by the start_compute_cs_cmd atom.
420 */
421 r600_emit_command_buffer(cs, &ctx->start_compute_cs_cmd);
422
423 ctx->b.flags |= R600_CONTEXT_WAIT_3D_IDLE | R600_CONTEXT_FLUSH_AND_INV;
424 r600_flush_emit(ctx);
425
426 /* Emit colorbuffers. */
427 /* XXX support more than 8 colorbuffers (the offsets are not a multiple of 0x3C for CB8-11) */
428 for (i = 0; i < 8 && i < ctx->framebuffer.state.nr_cbufs; i++) {
429 struct r600_surface *cb = (struct r600_surface*)ctx->framebuffer.state.cbufs[i];
430 unsigned reloc = r600_context_bo_reloc(&ctx->b, &ctx->b.rings.gfx,
431 (struct r600_resource*)cb->base.texture,
432 RADEON_USAGE_READWRITE,
433 RADEON_PRIO_SHADER_RESOURCE_RW);
434
435 r600_write_compute_context_reg_seq(cs, R_028C60_CB_COLOR0_BASE + i * 0x3C, 7);
436 radeon_emit(cs, cb->cb_color_base); /* R_028C60_CB_COLOR0_BASE */
437 radeon_emit(cs, cb->cb_color_pitch); /* R_028C64_CB_COLOR0_PITCH */
438 radeon_emit(cs, cb->cb_color_slice); /* R_028C68_CB_COLOR0_SLICE */
439 radeon_emit(cs, cb->cb_color_view); /* R_028C6C_CB_COLOR0_VIEW */
440 radeon_emit(cs, cb->cb_color_info); /* R_028C70_CB_COLOR0_INFO */
441 radeon_emit(cs, cb->cb_color_attrib); /* R_028C74_CB_COLOR0_ATTRIB */
442 radeon_emit(cs, cb->cb_color_dim); /* R_028C78_CB_COLOR0_DIM */
443
444 radeon_emit(cs, PKT3(PKT3_NOP, 0, 0)); /* R_028C60_CB_COLOR0_BASE */
445 radeon_emit(cs, reloc);
446
447 if (!ctx->keep_tiling_flags) {
448 radeon_emit(cs, PKT3(PKT3_NOP, 0, 0)); /* R_028C70_CB_COLOR0_INFO */
449 radeon_emit(cs, reloc);
450 }
451
452 radeon_emit(cs, PKT3(PKT3_NOP, 0, 0)); /* R_028C74_CB_COLOR0_ATTRIB */
453 radeon_emit(cs, reloc);
454 }
455 if (ctx->keep_tiling_flags) {
456 for (; i < 8 ; i++) {
457 r600_write_compute_context_reg(cs, R_028C70_CB_COLOR0_INFO + i * 0x3C,
458 S_028C70_FORMAT(V_028C70_COLOR_INVALID));
459 }
460 for (; i < 12; i++) {
461 r600_write_compute_context_reg(cs, R_028E50_CB_COLOR8_INFO + (i - 8) * 0x1C,
462 S_028C70_FORMAT(V_028C70_COLOR_INVALID));
463 }
464 }
465
466 /* Set CB_TARGET_MASK XXX: Use cb_misc_state */
467 r600_write_compute_context_reg(cs, R_028238_CB_TARGET_MASK,
468 ctx->compute_cb_target_mask);
469
470
471 /* Emit vertex buffer state */
472 ctx->cs_vertex_buffer_state.atom.num_dw = 12 * util_bitcount(ctx->cs_vertex_buffer_state.dirty_mask);
473 r600_emit_atom(ctx, &ctx->cs_vertex_buffer_state.atom);
474
475 /* Emit constant buffer state */
476 r600_emit_atom(ctx, &ctx->constbuf_state[PIPE_SHADER_COMPUTE].atom);
477
478 /* Emit compute shader state */
479 r600_emit_atom(ctx, &ctx->cs_shader_state.atom);
480
481 /* Emit dispatch state and dispatch packet */
482 evergreen_emit_direct_dispatch(ctx, block_layout, grid_layout);
483
484 /* XXX evergreen_flush_emit() hardcodes the CP_COHER_SIZE to 0xffffffff
485 */
486 ctx->b.flags |= R600_CONTEXT_INV_CONST_CACHE |
487 R600_CONTEXT_INV_VERTEX_CACHE |
488 R600_CONTEXT_INV_TEX_CACHE;
489 r600_flush_emit(ctx);
490 ctx->b.flags = 0;
491
492 if (ctx->b.chip_class >= CAYMAN) {
493 cs->buf[cs->cdw++] = PKT3(PKT3_EVENT_WRITE, 0, 0);
494 cs->buf[cs->cdw++] = EVENT_TYPE(EVENT_TYPE_CS_PARTIAL_FLUSH) | EVENT_INDEX(4);
495 /* DEALLOC_STATE prevents the GPU from hanging when a
496 * SURFACE_SYNC packet is emitted some time after a DISPATCH_DIRECT
497 * with any of the CB*_DEST_BASE_ENA or DB_DEST_BASE_ENA bits set.
498 */
499 cs->buf[cs->cdw++] = PKT3C(PKT3_DEALLOC_STATE, 0, 0);
500 cs->buf[cs->cdw++] = 0;
501 }
502
503 #if 0
504 COMPUTE_DBG(ctx->screen, "cdw: %i\n", cs->cdw);
505 for (i = 0; i < cs->cdw; i++) {
506 COMPUTE_DBG(ctx->screen, "%4i : 0x%08X\n", i, cs->buf[i]);
507 }
508 #endif
509
510 }
511
512
513 /**
514 * Emit function for r600_cs_shader_state atom
515 */
516 void evergreen_emit_cs_shader(
517 struct r600_context *rctx,
518 struct r600_atom *atom)
519 {
520 struct r600_cs_shader_state *state =
521 (struct r600_cs_shader_state*)atom;
522 struct r600_pipe_compute *shader = state->shader;
523 struct r600_kernel *kernel = &shader->kernels[state->kernel_index];
524 struct radeon_winsys_cs *cs = rctx->b.rings.gfx.cs;
525
526 r600_write_compute_context_reg_seq(cs, R_0288D0_SQ_PGM_START_LS, 3);
527 radeon_emit(cs, kernel->code_bo->gpu_address >> 8); /* R_0288D0_SQ_PGM_START_LS */
528 radeon_emit(cs, /* R_0288D4_SQ_PGM_RESOURCES_LS */
529 S_0288D4_NUM_GPRS(kernel->bc.ngpr)
530 | S_0288D4_STACK_SIZE(kernel->bc.nstack));
531 radeon_emit(cs, 0); /* R_0288D8_SQ_PGM_RESOURCES_LS_2 */
532
533 radeon_emit(cs, PKT3C(PKT3_NOP, 0, 0));
534 radeon_emit(cs, r600_context_bo_reloc(&rctx->b, &rctx->b.rings.gfx,
535 kernel->code_bo, RADEON_USAGE_READ,
536 RADEON_PRIO_SHADER_DATA));
537 }
538
539 static void evergreen_launch_grid(
540 struct pipe_context *ctx_,
541 const uint *block_layout, const uint *grid_layout,
542 uint32_t pc, const void *input)
543 {
544 struct r600_context *ctx = (struct r600_context *)ctx_;
545
546 struct r600_pipe_compute *shader = ctx->cs_shader_state.shader;
547 struct r600_kernel *kernel = &shader->kernels[pc];
548
549 COMPUTE_DBG(ctx->screen, "*** evergreen_launch_grid: pc = %u\n", pc);
550
551 #ifdef HAVE_OPENCL
552
553 if (!kernel->code_bo) {
554 void *p;
555 struct r600_bytecode *bc = &kernel->bc;
556 LLVMModuleRef mod = kernel->llvm_module;
557 boolean use_kill = false;
558 bool dump = (ctx->screen->b.debug_flags & DBG_CS) != 0;
559 unsigned use_sb = ctx->screen->b.debug_flags & DBG_SB_CS;
560 unsigned sb_disasm = use_sb ||
561 (ctx->screen->b.debug_flags & DBG_SB_DISASM);
562
563 r600_bytecode_init(bc, ctx->b.chip_class, ctx->b.family,
564 ctx->screen->has_compressed_msaa_texturing);
565 bc->type = TGSI_PROCESSOR_COMPUTE;
566 bc->isa = ctx->isa;
567 r600_llvm_compile(mod, ctx->b.family, bc, &use_kill, dump);
568
569 if (dump && !sb_disasm) {
570 r600_bytecode_disasm(bc);
571 } else if ((dump && sb_disasm) || use_sb) {
572 if (r600_sb_bytecode_process(ctx, bc, NULL, dump, use_sb))
573 R600_ERR("r600_sb_bytecode_process failed!\n");
574 }
575
576 kernel->code_bo = r600_compute_buffer_alloc_vram(ctx->screen,
577 kernel->bc.ndw * 4);
578 p = r600_buffer_map_sync_with_rings(&ctx->b, kernel->code_bo, PIPE_TRANSFER_WRITE);
579 memcpy(p, kernel->bc.bytecode, kernel->bc.ndw * 4);
580 ctx->b.ws->buffer_unmap(kernel->code_bo->cs_buf);
581 }
582 #endif
583 shader->active_kernel = kernel;
584 ctx->cs_shader_state.kernel_index = pc;
585 evergreen_compute_upload_input(ctx_, block_layout, grid_layout, input);
586 compute_emit_cs(ctx, block_layout, grid_layout);
587 }
588
589 static void evergreen_set_compute_resources(struct pipe_context * ctx_,
590 unsigned start, unsigned count,
591 struct pipe_surface ** surfaces)
592 {
593 struct r600_context *ctx = (struct r600_context *)ctx_;
594 struct r600_surface **resources = (struct r600_surface **)surfaces;
595
596 COMPUTE_DBG(ctx->screen, "*** evergreen_set_compute_resources: start = %u count = %u\n",
597 start, count);
598
599 for (unsigned i = 0; i < count; i++) {
600 /* The First two vertex buffers are reserved for parameters and
601 * global buffers. */
602 unsigned vtx_id = 2 + i;
603 if (resources[i]) {
604 struct r600_resource_global *buffer =
605 (struct r600_resource_global*)
606 resources[i]->base.texture;
607 if (resources[i]->base.writable) {
608 assert(i+1 < 12);
609
610 evergreen_set_rat(ctx->cs_shader_state.shader, i+1,
611 (struct r600_resource *)resources[i]->base.texture,
612 buffer->chunk->start_in_dw*4,
613 resources[i]->base.texture->width0);
614 }
615
616 evergreen_cs_set_vertex_buffer(ctx, vtx_id,
617 buffer->chunk->start_in_dw * 4,
618 resources[i]->base.texture);
619 }
620 }
621 }
622
623 void evergreen_set_cs_sampler_view(struct pipe_context *ctx_,
624 unsigned start_slot, unsigned count,
625 struct pipe_sampler_view **views)
626 {
627 struct r600_pipe_sampler_view **resource =
628 (struct r600_pipe_sampler_view **)views;
629
630 for (unsigned i = 0; i < count; i++) {
631 if (resource[i]) {
632 assert(i+1 < 12);
633 /* XXX: Implement */
634 assert(!"Compute samplers not implemented.");
635 ///FETCH0 = VTX0 (param buffer),
636 //FETCH1 = VTX1 (global buffer pool), FETCH2... = TEX
637 }
638 }
639 }
640
641
642 static void evergreen_set_global_binding(
643 struct pipe_context *ctx_, unsigned first, unsigned n,
644 struct pipe_resource **resources,
645 uint32_t **handles)
646 {
647 struct r600_context *ctx = (struct r600_context *)ctx_;
648 struct compute_memory_pool *pool = ctx->screen->global_pool;
649 struct r600_resource_global **buffers =
650 (struct r600_resource_global **)resources;
651
652 COMPUTE_DBG(ctx->screen, "*** evergreen_set_global_binding first = %u n = %u\n",
653 first, n);
654
655 if (!resources) {
656 /* XXX: Unset */
657 return;
658 }
659
660 /* We mark these items for promotion to the pool if they
661 * aren't already there */
662 for (unsigned i = 0; i < n; i++) {
663 struct compute_memory_item *item = buffers[i]->chunk;
664
665 if (!is_item_in_pool(item))
666 buffers[i]->chunk->status |= ITEM_FOR_PROMOTING;
667 }
668
669 if (compute_memory_finalize_pending(pool, ctx_) == -1) {
670 /* XXX: Unset */
671 return;
672 }
673
674 for (unsigned i = 0; i < n; i++)
675 {
676 uint32_t buffer_offset;
677 uint32_t handle;
678 assert(resources[i]->target == PIPE_BUFFER);
679 assert(resources[i]->bind & PIPE_BIND_GLOBAL);
680
681 buffer_offset = util_le32_to_cpu(*(handles[i]));
682 handle = buffer_offset + buffers[i]->chunk->start_in_dw * 4;
683
684 *(handles[i]) = util_cpu_to_le32(handle);
685 }
686
687 evergreen_set_rat(ctx->cs_shader_state.shader, 0, pool->bo, 0, pool->size_in_dw * 4);
688 evergreen_cs_set_vertex_buffer(ctx, 1, 0,
689 (struct pipe_resource*)pool->bo);
690 }
691
692 /**
693 * This function initializes all the compute specific registers that need to
694 * be initialized for each compute command stream. Registers that are common
695 * to both compute and 3D will be initialized at the beginning of each compute
696 * command stream by the start_cs_cmd atom. However, since the SET_CONTEXT_REG
697 * packet requires that the shader type bit be set, we must initialize all
698 * context registers needed for compute in this function. The registers
699 * intialized by the start_cs_cmd atom can be found in evereen_state.c in the
700 * functions evergreen_init_atom_start_cs or cayman_init_atom_start_cs depending
701 * on the GPU family.
702 */
703 void evergreen_init_atom_start_compute_cs(struct r600_context *ctx)
704 {
705 struct r600_command_buffer *cb = &ctx->start_compute_cs_cmd;
706 int num_threads;
707 int num_stack_entries;
708
709 /* since all required registers are initialised in the
710 * start_compute_cs_cmd atom, we can EMIT_EARLY here.
711 */
712 r600_init_command_buffer(cb, 256);
713 cb->pkt_flags = RADEON_CP_PACKET3_COMPUTE_MODE;
714
715 /* This must be first. */
716 r600_store_value(cb, PKT3(PKT3_CONTEXT_CONTROL, 1, 0));
717 r600_store_value(cb, 0x80000000);
718 r600_store_value(cb, 0x80000000);
719
720 /* We're setting config registers here. */
721 r600_store_value(cb, PKT3(PKT3_EVENT_WRITE, 0, 0));
722 r600_store_value(cb, EVENT_TYPE(EVENT_TYPE_CS_PARTIAL_FLUSH) | EVENT_INDEX(4));
723
724 switch (ctx->b.family) {
725 case CHIP_CEDAR:
726 default:
727 num_threads = 128;
728 num_stack_entries = 256;
729 break;
730 case CHIP_REDWOOD:
731 num_threads = 128;
732 num_stack_entries = 256;
733 break;
734 case CHIP_JUNIPER:
735 num_threads = 128;
736 num_stack_entries = 512;
737 break;
738 case CHIP_CYPRESS:
739 case CHIP_HEMLOCK:
740 num_threads = 128;
741 num_stack_entries = 512;
742 break;
743 case CHIP_PALM:
744 num_threads = 128;
745 num_stack_entries = 256;
746 break;
747 case CHIP_SUMO:
748 num_threads = 128;
749 num_stack_entries = 256;
750 break;
751 case CHIP_SUMO2:
752 num_threads = 128;
753 num_stack_entries = 512;
754 break;
755 case CHIP_BARTS:
756 num_threads = 128;
757 num_stack_entries = 512;
758 break;
759 case CHIP_TURKS:
760 num_threads = 128;
761 num_stack_entries = 256;
762 break;
763 case CHIP_CAICOS:
764 num_threads = 128;
765 num_stack_entries = 256;
766 break;
767 }
768
769 /* Config Registers */
770 if (ctx->b.chip_class < CAYMAN)
771 evergreen_init_common_regs(cb, ctx->b.chip_class, ctx->b.family,
772 ctx->screen->b.info.drm_minor);
773 else
774 cayman_init_common_regs(cb, ctx->b.chip_class, ctx->b.family,
775 ctx->screen->b.info.drm_minor);
776
777 /* The primitive type always needs to be POINTLIST for compute. */
778 r600_store_config_reg(cb, R_008958_VGT_PRIMITIVE_TYPE,
779 V_008958_DI_PT_POINTLIST);
780
781 if (ctx->b.chip_class < CAYMAN) {
782
783 /* These registers control which simds can be used by each stage.
784 * The default for these registers is 0xffffffff, which means
785 * all simds are available for each stage. It's possible we may
786 * want to play around with these in the future, but for now
787 * the default value is fine.
788 *
789 * R_008E20_SQ_STATIC_THREAD_MGMT1
790 * R_008E24_SQ_STATIC_THREAD_MGMT2
791 * R_008E28_SQ_STATIC_THREAD_MGMT3
792 */
793
794 /* XXX: We may need to adjust the thread and stack resouce
795 * values for 3D/compute interop */
796
797 r600_store_config_reg_seq(cb, R_008C18_SQ_THREAD_RESOURCE_MGMT_1, 5);
798
799 /* R_008C18_SQ_THREAD_RESOURCE_MGMT_1
800 * Set the number of threads used by the PS/VS/GS/ES stage to
801 * 0.
802 */
803 r600_store_value(cb, 0);
804
805 /* R_008C1C_SQ_THREAD_RESOURCE_MGMT_2
806 * Set the number of threads used by the CS (aka LS) stage to
807 * the maximum number of threads and set the number of threads
808 * for the HS stage to 0. */
809 r600_store_value(cb, S_008C1C_NUM_LS_THREADS(num_threads));
810
811 /* R_008C20_SQ_STACK_RESOURCE_MGMT_1
812 * Set the Control Flow stack entries to 0 for PS/VS stages */
813 r600_store_value(cb, 0);
814
815 /* R_008C24_SQ_STACK_RESOURCE_MGMT_2
816 * Set the Control Flow stack entries to 0 for GS/ES stages */
817 r600_store_value(cb, 0);
818
819 /* R_008C28_SQ_STACK_RESOURCE_MGMT_3
820 * Set the Contol Flow stack entries to 0 for the HS stage, and
821 * set it to the maximum value for the CS (aka LS) stage. */
822 r600_store_value(cb,
823 S_008C28_NUM_LS_STACK_ENTRIES(num_stack_entries));
824 }
825 /* Give the compute shader all the available LDS space.
826 * NOTE: This only sets the maximum number of dwords that a compute
827 * shader can allocate. When a shader is executed, we still need to
828 * allocate the appropriate amount of LDS dwords using the
829 * CM_R_0288E8_SQ_LDS_ALLOC register.
830 */
831 if (ctx->b.chip_class < CAYMAN) {
832 r600_store_config_reg(cb, R_008E2C_SQ_LDS_RESOURCE_MGMT,
833 S_008E2C_NUM_PS_LDS(0x0000) | S_008E2C_NUM_LS_LDS(8192));
834 } else {
835 r600_store_context_reg(cb, CM_R_0286FC_SPI_LDS_MGMT,
836 S_0286FC_NUM_PS_LDS(0) |
837 S_0286FC_NUM_LS_LDS(255)); /* 255 * 32 = 8160 dwords */
838 }
839
840 /* Context Registers */
841
842 if (ctx->b.chip_class < CAYMAN) {
843 /* workaround for hw issues with dyn gpr - must set all limits
844 * to 240 instead of 0, 0x1e == 240 / 8
845 */
846 r600_store_context_reg(cb, R_028838_SQ_DYN_GPR_RESOURCE_LIMIT_1,
847 S_028838_PS_GPRS(0x1e) |
848 S_028838_VS_GPRS(0x1e) |
849 S_028838_GS_GPRS(0x1e) |
850 S_028838_ES_GPRS(0x1e) |
851 S_028838_HS_GPRS(0x1e) |
852 S_028838_LS_GPRS(0x1e));
853 }
854
855 /* XXX: Investigate setting bit 15, which is FAST_COMPUTE_MODE */
856 r600_store_context_reg(cb, R_028A40_VGT_GS_MODE,
857 S_028A40_COMPUTE_MODE(1) | S_028A40_PARTIAL_THD_AT_EOI(1));
858
859 r600_store_context_reg(cb, R_028B54_VGT_SHADER_STAGES_EN, 2/*CS_ON*/);
860
861 r600_store_context_reg(cb, R_0286E8_SPI_COMPUTE_INPUT_CNTL,
862 S_0286E8_TID_IN_GROUP_ENA
863 | S_0286E8_TGID_ENA
864 | S_0286E8_DISABLE_INDEX_PACK)
865 ;
866
867 /* The LOOP_CONST registers are an optimizations for loops that allows
868 * you to store the initial counter, increment value, and maximum
869 * counter value in a register so that hardware can calculate the
870 * correct number of iterations for the loop, so that you don't need
871 * to have the loop counter in your shader code. We don't currently use
872 * this optimization, so we must keep track of the counter in the
873 * shader and use a break instruction to exit loops. However, the
874 * hardware will still uses this register to determine when to exit a
875 * loop, so we need to initialize the counter to 0, set the increment
876 * value to 1 and the maximum counter value to the 4095 (0xfff) which
877 * is the maximum value allowed. This gives us a maximum of 4096
878 * iterations for our loops, but hopefully our break instruction will
879 * execute before some time before the 4096th iteration.
880 */
881 eg_store_loop_const(cb, R_03A200_SQ_LOOP_CONST_0 + (160 * 4), 0x1000FFF);
882 }
883
884 void evergreen_init_compute_state_functions(struct r600_context *ctx)
885 {
886 ctx->b.b.create_compute_state = evergreen_create_compute_state;
887 ctx->b.b.delete_compute_state = evergreen_delete_compute_state;
888 ctx->b.b.bind_compute_state = evergreen_bind_compute_state;
889 // ctx->context.create_sampler_view = evergreen_compute_create_sampler_view;
890 ctx->b.b.set_compute_resources = evergreen_set_compute_resources;
891 ctx->b.b.set_global_binding = evergreen_set_global_binding;
892 ctx->b.b.launch_grid = evergreen_launch_grid;
893
894 /* We always use at least one vertex buffer for parameters (id = 1)*/
895 ctx->cs_vertex_buffer_state.enabled_mask =
896 ctx->cs_vertex_buffer_state.dirty_mask = 0x2;
897 }
898
899 struct pipe_resource *r600_compute_global_buffer_create(
900 struct pipe_screen *screen,
901 const struct pipe_resource *templ)
902 {
903 struct r600_resource_global* result = NULL;
904 struct r600_screen* rscreen = NULL;
905 int size_in_dw = 0;
906
907 assert(templ->target == PIPE_BUFFER);
908 assert(templ->bind & PIPE_BIND_GLOBAL);
909 assert(templ->array_size == 1 || templ->array_size == 0);
910 assert(templ->depth0 == 1 || templ->depth0 == 0);
911 assert(templ->height0 == 1 || templ->height0 == 0);
912
913 result = (struct r600_resource_global*)
914 CALLOC(sizeof(struct r600_resource_global), 1);
915 rscreen = (struct r600_screen*)screen;
916
917 COMPUTE_DBG(rscreen, "*** r600_compute_global_buffer_create\n");
918 COMPUTE_DBG(rscreen, "width = %u array_size = %u\n", templ->width0,
919 templ->array_size);
920
921 result->base.b.vtbl = &r600_global_buffer_vtbl;
922 result->base.b.b.screen = screen;
923 result->base.b.b = *templ;
924 pipe_reference_init(&result->base.b.b.reference, 1);
925
926 size_in_dw = (templ->width0+3) / 4;
927
928 result->chunk = compute_memory_alloc(rscreen->global_pool, size_in_dw);
929
930 if (result->chunk == NULL)
931 {
932 free(result);
933 return NULL;
934 }
935
936 return &result->base.b.b;
937 }
938
939 void r600_compute_global_buffer_destroy(
940 struct pipe_screen *screen,
941 struct pipe_resource *res)
942 {
943 struct r600_resource_global* buffer = NULL;
944 struct r600_screen* rscreen = NULL;
945
946 assert(res->target == PIPE_BUFFER);
947 assert(res->bind & PIPE_BIND_GLOBAL);
948
949 buffer = (struct r600_resource_global*)res;
950 rscreen = (struct r600_screen*)screen;
951
952 compute_memory_free(rscreen->global_pool, buffer->chunk->id);
953
954 buffer->chunk = NULL;
955 free(res);
956 }
957
958 void *r600_compute_global_transfer_map(
959 struct pipe_context *ctx_,
960 struct pipe_resource *resource,
961 unsigned level,
962 unsigned usage,
963 const struct pipe_box *box,
964 struct pipe_transfer **ptransfer)
965 {
966 struct r600_context *rctx = (struct r600_context*)ctx_;
967 struct compute_memory_pool *pool = rctx->screen->global_pool;
968 struct r600_resource_global* buffer =
969 (struct r600_resource_global*)resource;
970
971 struct compute_memory_item *item = buffer->chunk;
972 struct pipe_resource *dst = NULL;
973 unsigned offset = box->x;
974
975 if (is_item_in_pool(item)) {
976 compute_memory_demote_item(pool, item, ctx_);
977 }
978 else {
979 if (item->real_buffer == NULL) {
980 item->real_buffer = (struct r600_resource*)
981 r600_compute_buffer_alloc_vram(pool->screen, item->size_in_dw * 4);
982 }
983 }
984
985 dst = (struct pipe_resource*)item->real_buffer;
986
987 if (usage & PIPE_TRANSFER_READ)
988 buffer->chunk->status |= ITEM_MAPPED_FOR_READING;
989
990 COMPUTE_DBG(rctx->screen, "* r600_compute_global_transfer_map()\n"
991 "level = %u, usage = %u, box(x = %u, y = %u, z = %u "
992 "width = %u, height = %u, depth = %u)\n", level, usage,
993 box->x, box->y, box->z, box->width, box->height,
994 box->depth);
995 COMPUTE_DBG(rctx->screen, "Buffer id = %"PRIi64" offset = "
996 "%u (box.x)\n", item->id, box->x);
997
998
999 assert(resource->target == PIPE_BUFFER);
1000 assert(resource->bind & PIPE_BIND_GLOBAL);
1001 assert(box->x >= 0);
1002 assert(box->y == 0);
1003 assert(box->z == 0);
1004
1005 ///TODO: do it better, mapping is not possible if the pool is too big
1006 return pipe_buffer_map_range(ctx_, dst,
1007 offset, box->width, usage, ptransfer);
1008 }
1009
1010 void r600_compute_global_transfer_unmap(
1011 struct pipe_context *ctx_,
1012 struct pipe_transfer* transfer)
1013 {
1014 /* struct r600_resource_global are not real resources, they just map
1015 * to an offset within the compute memory pool. The function
1016 * r600_compute_global_transfer_map() maps the memory pool
1017 * resource rather than the struct r600_resource_global passed to
1018 * it as an argument and then initalizes ptransfer->resource with
1019 * the memory pool resource (via pipe_buffer_map_range).
1020 * When transfer_unmap is called it uses the memory pool's
1021 * vtable which calls r600_buffer_transfer_map() rather than
1022 * this function.
1023 */
1024 assert (!"This function should not be called");
1025 }
1026
1027 void r600_compute_global_transfer_flush_region(
1028 struct pipe_context *ctx_,
1029 struct pipe_transfer *transfer,
1030 const struct pipe_box *box)
1031 {
1032 assert(0 && "TODO");
1033 }
1034
1035 void r600_compute_global_transfer_inline_write(
1036 struct pipe_context *pipe,
1037 struct pipe_resource *resource,
1038 unsigned level,
1039 unsigned usage,
1040 const struct pipe_box *box,
1041 const void *data,
1042 unsigned stride,
1043 unsigned layer_stride)
1044 {
1045 assert(0 && "TODO");
1046 }