r600/compute: silence unused var warning
[mesa.git] / src / gallium / drivers / r600 / evergreen_compute.c
1 /*
2 * Copyright 2011 Adam Rak <adam.rak@streamnovation.com>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * on the rights to use, copy, modify, merge, publish, distribute, sub
8 * license, and/or sell copies of the Software, and to permit persons to whom
9 * the Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Adam Rak <adam.rak@streamnovation.com>
25 */
26
27 #include <stdio.h>
28 #include <errno.h>
29 #include "pipe/p_defines.h"
30 #include "pipe/p_state.h"
31 #include "pipe/p_context.h"
32 #include "util/u_blitter.h"
33 #include "util/u_double_list.h"
34 #include "util/u_transfer.h"
35 #include "util/u_surface.h"
36 #include "util/u_pack_color.h"
37 #include "util/u_memory.h"
38 #include "util/u_inlines.h"
39 #include "util/u_framebuffer.h"
40 #include "pipebuffer/pb_buffer.h"
41 #include "evergreend.h"
42 #include "r600_resource.h"
43 #include "r600_shader.h"
44 #include "r600_pipe.h"
45 #include "r600_formats.h"
46 #include "evergreen_compute.h"
47 #include "evergreen_compute_internal.h"
48 #include "compute_memory_pool.h"
49 #include "sb/sb_public.h"
50 #ifdef HAVE_OPENCL
51 #include "radeon_llvm_util.h"
52 #endif
53
54 /**
55 RAT0 is for global binding write
56 VTX1 is for global binding read
57
58 for wrting images RAT1...
59 for reading images TEX2...
60 TEX2-RAT1 is paired
61
62 TEX2... consumes the same fetch resources, that VTX2... would consume
63
64 CONST0 and VTX0 is for parameters
65 CONST0 is binding smaller input parameter buffer, and for constant indexing,
66 also constant cached
67 VTX0 is for indirect/non-constant indexing, or if the input is bigger than
68 the constant cache can handle
69
70 RAT-s are limited to 12, so we can only bind at most 11 texture for writing
71 because we reserve RAT0 for global bindings. With byteaddressing enabled,
72 we should reserve another one too.=> 10 image binding for writing max.
73
74 from Nvidia OpenCL:
75 CL_DEVICE_MAX_READ_IMAGE_ARGS: 128
76 CL_DEVICE_MAX_WRITE_IMAGE_ARGS: 8
77
78 so 10 for writing is enough. 176 is the max for reading according to the docs
79
80 writable images should be listed first < 10, so their id corresponds to RAT(id+1)
81 writable images will consume TEX slots, VTX slots too because of linear indexing
82
83 */
84
85 struct r600_resource* r600_compute_buffer_alloc_vram(
86 struct r600_screen *screen,
87 unsigned size)
88 {
89 struct pipe_resource * buffer = NULL;
90 assert(size);
91
92 buffer = pipe_buffer_create(
93 (struct pipe_screen*) screen,
94 PIPE_BIND_CUSTOM,
95 PIPE_USAGE_IMMUTABLE,
96 size);
97
98 return (struct r600_resource *)buffer;
99 }
100
101
102 static void evergreen_set_rat(
103 struct r600_pipe_compute *pipe,
104 int id,
105 struct r600_resource* bo,
106 int start,
107 int size)
108 {
109 struct pipe_surface rat_templ;
110 struct r600_surface *surf = NULL;
111 struct r600_context *rctx = NULL;
112
113 assert(id < 12);
114 assert((size & 3) == 0);
115 assert((start & 0xFF) == 0);
116
117 rctx = pipe->ctx;
118
119 COMPUTE_DBG(rctx->screen, "bind rat: %i \n", id);
120
121 /* Create the RAT surface */
122 memset(&rat_templ, 0, sizeof(rat_templ));
123 rat_templ.format = PIPE_FORMAT_R32_UINT;
124 rat_templ.u.tex.level = 0;
125 rat_templ.u.tex.first_layer = 0;
126 rat_templ.u.tex.last_layer = 0;
127
128 /* Add the RAT the list of color buffers */
129 pipe->ctx->framebuffer.state.cbufs[id] = pipe->ctx->b.b.create_surface(
130 (struct pipe_context *)pipe->ctx,
131 (struct pipe_resource *)bo, &rat_templ);
132
133 /* Update the number of color buffers */
134 pipe->ctx->framebuffer.state.nr_cbufs =
135 MAX2(id + 1, pipe->ctx->framebuffer.state.nr_cbufs);
136
137 /* Update the cb_target_mask
138 * XXX: I think this is a potential spot for bugs once we start doing
139 * GL interop. cb_target_mask may be modified in the 3D sections
140 * of this driver. */
141 pipe->ctx->compute_cb_target_mask |= (0xf << (id * 4));
142
143 surf = (struct r600_surface*)pipe->ctx->framebuffer.state.cbufs[id];
144 evergreen_init_color_surface_rat(rctx, surf);
145 }
146
147 static void evergreen_cs_set_vertex_buffer(
148 struct r600_context * rctx,
149 unsigned vb_index,
150 unsigned offset,
151 struct pipe_resource * buffer)
152 {
153 struct r600_vertexbuf_state *state = &rctx->cs_vertex_buffer_state;
154 struct pipe_vertex_buffer *vb = &state->vb[vb_index];
155 vb->stride = 1;
156 vb->buffer_offset = offset;
157 vb->buffer = buffer;
158 vb->user_buffer = NULL;
159
160 /* The vertex instructions in the compute shaders use the texture cache,
161 * so we need to invalidate it. */
162 rctx->b.flags |= R600_CONTEXT_INV_VERTEX_CACHE;
163 state->enabled_mask |= 1 << vb_index;
164 state->dirty_mask |= 1 << vb_index;
165 state->atom.dirty = true;
166 }
167
168 static void evergreen_cs_set_constant_buffer(
169 struct r600_context * rctx,
170 unsigned cb_index,
171 unsigned offset,
172 unsigned size,
173 struct pipe_resource * buffer)
174 {
175 struct pipe_constant_buffer cb;
176 cb.buffer_size = size;
177 cb.buffer_offset = offset;
178 cb.buffer = buffer;
179 cb.user_buffer = NULL;
180
181 rctx->b.b.set_constant_buffer(&rctx->b.b, PIPE_SHADER_COMPUTE, cb_index, &cb);
182 }
183
184 static const struct u_resource_vtbl r600_global_buffer_vtbl =
185 {
186 u_default_resource_get_handle, /* get_handle */
187 r600_compute_global_buffer_destroy, /* resource_destroy */
188 r600_compute_global_transfer_map, /* transfer_map */
189 r600_compute_global_transfer_flush_region,/* transfer_flush_region */
190 r600_compute_global_transfer_unmap, /* transfer_unmap */
191 r600_compute_global_transfer_inline_write /* transfer_inline_write */
192 };
193
194
195 void *evergreen_create_compute_state(
196 struct pipe_context *ctx_,
197 const const struct pipe_compute_state *cso)
198 {
199 struct r600_context *ctx = (struct r600_context *)ctx_;
200 struct r600_pipe_compute *shader = CALLOC_STRUCT(r600_pipe_compute);
201
202 #ifdef HAVE_OPENCL
203 const struct pipe_llvm_program_header * header;
204 const unsigned char * code;
205 unsigned i;
206
207 COMPUTE_DBG(ctx->screen, "*** evergreen_create_compute_state\n");
208
209 header = cso->prog;
210 code = cso->prog + sizeof(struct pipe_llvm_program_header);
211 #endif
212
213 shader->ctx = (struct r600_context*)ctx;
214 shader->local_size = cso->req_local_mem;
215 shader->private_size = cso->req_private_mem;
216 shader->input_size = cso->req_input_mem;
217
218 #ifdef HAVE_OPENCL
219 shader->num_kernels = radeon_llvm_get_num_kernels(code, header->num_bytes);
220 shader->kernels = CALLOC(sizeof(struct r600_kernel), shader->num_kernels);
221
222 for (i = 0; i < shader->num_kernels; i++) {
223 struct r600_kernel *kernel = &shader->kernels[i];
224 kernel->llvm_module = radeon_llvm_get_kernel_module(i, code,
225 header->num_bytes);
226 }
227 #endif
228 return shader;
229 }
230
231 void evergreen_delete_compute_state(struct pipe_context *ctx, void* state)
232 {
233 struct r600_pipe_compute *shader = (struct r600_pipe_compute *)state;
234
235 free(shader);
236 }
237
238 static void evergreen_bind_compute_state(struct pipe_context *ctx_, void *state)
239 {
240 struct r600_context *ctx = (struct r600_context *)ctx_;
241
242 COMPUTE_DBG(ctx->screen, "*** evergreen_bind_compute_state\n");
243
244 ctx->cs_shader_state.shader = (struct r600_pipe_compute *)state;
245 }
246
247 /* The kernel parameters are stored a vtx buffer (ID=0), besides the explicit
248 * kernel parameters there are inplicit parameters that need to be stored
249 * in the vertex buffer as well. Here is how these parameters are organized in
250 * the buffer:
251 *
252 * DWORDS 0-2: Number of work groups in each dimension (x,y,z)
253 * DWORDS 3-5: Number of global work items in each dimension (x,y,z)
254 * DWORDS 6-8: Number of work items within each work group in each dimension
255 * (x,y,z)
256 * DWORDS 9+ : Kernel parameters
257 */
258 void evergreen_compute_upload_input(
259 struct pipe_context *ctx_,
260 const uint *block_layout,
261 const uint *grid_layout,
262 const void *input)
263 {
264 struct r600_context *ctx = (struct r600_context *)ctx_;
265 struct r600_pipe_compute *shader = ctx->cs_shader_state.shader;
266 int i;
267 /* We need to reserve 9 dwords (36 bytes) for implicit kernel
268 * parameters.
269 */
270 unsigned input_size = shader->input_size + 36;
271 uint32_t * num_work_groups_start;
272 uint32_t * global_size_start;
273 uint32_t * local_size_start;
274 uint32_t * kernel_parameters_start;
275 struct pipe_box box;
276 struct pipe_transfer *transfer = NULL;
277
278 if (shader->input_size == 0) {
279 return;
280 }
281
282 if (!shader->kernel_param) {
283 /* Add space for the grid dimensions */
284 shader->kernel_param = (struct r600_resource *)
285 pipe_buffer_create(ctx_->screen, PIPE_BIND_CUSTOM,
286 PIPE_USAGE_IMMUTABLE, input_size);
287 }
288
289 u_box_1d(0, input_size, &box);
290 num_work_groups_start = ctx_->transfer_map(ctx_,
291 (struct pipe_resource*)shader->kernel_param,
292 0, PIPE_TRANSFER_WRITE | PIPE_TRANSFER_DISCARD_RANGE,
293 &box, &transfer);
294 global_size_start = num_work_groups_start + (3 * (sizeof(uint) /4));
295 local_size_start = global_size_start + (3 * (sizeof(uint)) / 4);
296 kernel_parameters_start = local_size_start + (3 * (sizeof(uint)) / 4);
297
298 /* Copy the work group size */
299 memcpy(num_work_groups_start, grid_layout, 3 * sizeof(uint));
300
301 /* Copy the global size */
302 for (i = 0; i < 3; i++) {
303 global_size_start[i] = grid_layout[i] * block_layout[i];
304 }
305
306 /* Copy the local dimensions */
307 memcpy(local_size_start, block_layout, 3 * sizeof(uint));
308
309 /* Copy the kernel inputs */
310 memcpy(kernel_parameters_start, input, shader->input_size);
311
312 for (i = 0; i < (input_size / 4); i++) {
313 COMPUTE_DBG(ctx->screen, "input %i : %i\n", i,
314 ((unsigned*)num_work_groups_start)[i]);
315 }
316
317 ctx_->transfer_unmap(ctx_, transfer);
318
319 /* ID=0 is reserved for the parameters */
320 evergreen_cs_set_constant_buffer(ctx, 0, 0, input_size,
321 (struct pipe_resource*)shader->kernel_param);
322 }
323
324 static void evergreen_emit_direct_dispatch(
325 struct r600_context *rctx,
326 const uint *block_layout, const uint *grid_layout)
327 {
328 int i;
329 struct radeon_winsys_cs *cs = rctx->b.rings.gfx.cs;
330 struct r600_pipe_compute *shader = rctx->cs_shader_state.shader;
331 unsigned num_waves;
332 unsigned num_pipes = rctx->screen->b.info.r600_max_pipes;
333 unsigned wave_divisor = (16 * num_pipes);
334 int group_size = 1;
335 int grid_size = 1;
336 unsigned lds_size = shader->local_size / 4 + shader->active_kernel->bc.nlds_dw;
337
338 /* Calculate group_size/grid_size */
339 for (i = 0; i < 3; i++) {
340 group_size *= block_layout[i];
341 }
342
343 for (i = 0; i < 3; i++) {
344 grid_size *= grid_layout[i];
345 }
346
347 /* num_waves = ceil((tg_size.x * tg_size.y, tg_size.z) / (16 * num_pipes)) */
348 num_waves = (block_layout[0] * block_layout[1] * block_layout[2] +
349 wave_divisor - 1) / wave_divisor;
350
351 COMPUTE_DBG(rctx->screen, "Using %u pipes, "
352 "%u wavefronts per thread block, "
353 "allocating %u dwords lds.\n",
354 num_pipes, num_waves, lds_size);
355
356 r600_write_config_reg(cs, R_008970_VGT_NUM_INDICES, group_size);
357
358 r600_write_config_reg_seq(cs, R_00899C_VGT_COMPUTE_START_X, 3);
359 radeon_emit(cs, 0); /* R_00899C_VGT_COMPUTE_START_X */
360 radeon_emit(cs, 0); /* R_0089A0_VGT_COMPUTE_START_Y */
361 radeon_emit(cs, 0); /* R_0089A4_VGT_COMPUTE_START_Z */
362
363 r600_write_config_reg(cs, R_0089AC_VGT_COMPUTE_THREAD_GROUP_SIZE,
364 group_size);
365
366 r600_write_compute_context_reg_seq(cs, R_0286EC_SPI_COMPUTE_NUM_THREAD_X, 3);
367 radeon_emit(cs, block_layout[0]); /* R_0286EC_SPI_COMPUTE_NUM_THREAD_X */
368 radeon_emit(cs, block_layout[1]); /* R_0286F0_SPI_COMPUTE_NUM_THREAD_Y */
369 radeon_emit(cs, block_layout[2]); /* R_0286F4_SPI_COMPUTE_NUM_THREAD_Z */
370
371 if (rctx->b.chip_class < CAYMAN) {
372 assert(lds_size <= 8192);
373 } else {
374 /* Cayman appears to have a slightly smaller limit, see the
375 * value of CM_R_0286FC_SPI_LDS_MGMT.NUM_LS_LDS */
376 assert(lds_size <= 8160);
377 }
378
379 r600_write_compute_context_reg(cs, CM_R_0288E8_SQ_LDS_ALLOC,
380 lds_size | (num_waves << 14));
381
382 /* Dispatch packet */
383 radeon_emit(cs, PKT3C(PKT3_DISPATCH_DIRECT, 3, 0));
384 radeon_emit(cs, grid_layout[0]);
385 radeon_emit(cs, grid_layout[1]);
386 radeon_emit(cs, grid_layout[2]);
387 /* VGT_DISPATCH_INITIATOR = COMPUTE_SHADER_EN */
388 radeon_emit(cs, 1);
389 }
390
391 static void compute_emit_cs(struct r600_context *ctx, const uint *block_layout,
392 const uint *grid_layout)
393 {
394 struct radeon_winsys_cs *cs = ctx->b.rings.gfx.cs;
395 int i;
396
397 /* make sure that the gfx ring is only one active */
398 if (ctx->b.rings.dma.cs) {
399 ctx->b.rings.dma.flush(ctx, RADEON_FLUSH_ASYNC);
400 }
401
402 /* Initialize all the compute-related registers.
403 *
404 * See evergreen_init_atom_start_compute_cs() in this file for the list
405 * of registers initialized by the start_compute_cs_cmd atom.
406 */
407 r600_emit_command_buffer(cs, &ctx->start_compute_cs_cmd);
408
409 ctx->b.flags |= R600_CONTEXT_WAIT_3D_IDLE | R600_CONTEXT_FLUSH_AND_INV;
410 r600_flush_emit(ctx);
411
412 /* Emit colorbuffers. */
413 /* XXX support more than 8 colorbuffers (the offsets are not a multiple of 0x3C for CB8-11) */
414 for (i = 0; i < 8 && i < ctx->framebuffer.state.nr_cbufs; i++) {
415 struct r600_surface *cb = (struct r600_surface*)ctx->framebuffer.state.cbufs[i];
416 unsigned reloc = r600_context_bo_reloc(&ctx->b, &ctx->b.rings.gfx,
417 (struct r600_resource*)cb->base.texture,
418 RADEON_USAGE_READWRITE);
419
420 r600_write_compute_context_reg_seq(cs, R_028C60_CB_COLOR0_BASE + i * 0x3C, 7);
421 radeon_emit(cs, cb->cb_color_base); /* R_028C60_CB_COLOR0_BASE */
422 radeon_emit(cs, cb->cb_color_pitch); /* R_028C64_CB_COLOR0_PITCH */
423 radeon_emit(cs, cb->cb_color_slice); /* R_028C68_CB_COLOR0_SLICE */
424 radeon_emit(cs, cb->cb_color_view); /* R_028C6C_CB_COLOR0_VIEW */
425 radeon_emit(cs, cb->cb_color_info); /* R_028C70_CB_COLOR0_INFO */
426 radeon_emit(cs, cb->cb_color_attrib); /* R_028C74_CB_COLOR0_ATTRIB */
427 radeon_emit(cs, cb->cb_color_dim); /* R_028C78_CB_COLOR0_DIM */
428
429 radeon_emit(cs, PKT3(PKT3_NOP, 0, 0)); /* R_028C60_CB_COLOR0_BASE */
430 radeon_emit(cs, reloc);
431
432 if (!ctx->keep_tiling_flags) {
433 radeon_emit(cs, PKT3(PKT3_NOP, 0, 0)); /* R_028C70_CB_COLOR0_INFO */
434 radeon_emit(cs, reloc);
435 }
436
437 radeon_emit(cs, PKT3(PKT3_NOP, 0, 0)); /* R_028C74_CB_COLOR0_ATTRIB */
438 radeon_emit(cs, reloc);
439 }
440 if (ctx->keep_tiling_flags) {
441 for (; i < 8 ; i++) {
442 r600_write_compute_context_reg(cs, R_028C70_CB_COLOR0_INFO + i * 0x3C,
443 S_028C70_FORMAT(V_028C70_COLOR_INVALID));
444 }
445 for (; i < 12; i++) {
446 r600_write_compute_context_reg(cs, R_028E50_CB_COLOR8_INFO + (i - 8) * 0x1C,
447 S_028C70_FORMAT(V_028C70_COLOR_INVALID));
448 }
449 }
450
451 /* Set CB_TARGET_MASK XXX: Use cb_misc_state */
452 r600_write_compute_context_reg(cs, R_028238_CB_TARGET_MASK,
453 ctx->compute_cb_target_mask);
454
455
456 /* Emit vertex buffer state */
457 ctx->cs_vertex_buffer_state.atom.num_dw = 12 * util_bitcount(ctx->cs_vertex_buffer_state.dirty_mask);
458 r600_emit_atom(ctx, &ctx->cs_vertex_buffer_state.atom);
459
460 /* Emit constant buffer state */
461 r600_emit_atom(ctx, &ctx->constbuf_state[PIPE_SHADER_COMPUTE].atom);
462
463 /* Emit compute shader state */
464 r600_emit_atom(ctx, &ctx->cs_shader_state.atom);
465
466 /* Emit dispatch state and dispatch packet */
467 evergreen_emit_direct_dispatch(ctx, block_layout, grid_layout);
468
469 /* XXX evergreen_flush_emit() hardcodes the CP_COHER_SIZE to 0xffffffff
470 */
471 ctx->b.flags |= R600_CONTEXT_INV_CONST_CACHE |
472 R600_CONTEXT_INV_VERTEX_CACHE |
473 R600_CONTEXT_INV_TEX_CACHE;
474 r600_flush_emit(ctx);
475 ctx->b.flags = 0;
476
477 #if 0
478 COMPUTE_DBG(ctx->screen, "cdw: %i\n", cs->cdw);
479 for (i = 0; i < cs->cdw; i++) {
480 COMPUTE_DBG(ctx->screen, "%4i : 0x%08X\n", i, cs->buf[i]);
481 }
482 #endif
483
484 }
485
486
487 /**
488 * Emit function for r600_cs_shader_state atom
489 */
490 void evergreen_emit_cs_shader(
491 struct r600_context *rctx,
492 struct r600_atom *atom)
493 {
494 struct r600_cs_shader_state *state =
495 (struct r600_cs_shader_state*)atom;
496 struct r600_pipe_compute *shader = state->shader;
497 struct r600_kernel *kernel = &shader->kernels[state->kernel_index];
498 struct radeon_winsys_cs *cs = rctx->b.rings.gfx.cs;
499 uint64_t va;
500
501 va = r600_resource_va(&rctx->screen->b.b, &kernel->code_bo->b.b);
502
503 r600_write_compute_context_reg_seq(cs, R_0288D0_SQ_PGM_START_LS, 3);
504 radeon_emit(cs, va >> 8); /* R_0288D0_SQ_PGM_START_LS */
505 radeon_emit(cs, /* R_0288D4_SQ_PGM_RESOURCES_LS */
506 S_0288D4_NUM_GPRS(kernel->bc.ngpr)
507 | S_0288D4_STACK_SIZE(kernel->bc.nstack));
508 radeon_emit(cs, 0); /* R_0288D8_SQ_PGM_RESOURCES_LS_2 */
509
510 radeon_emit(cs, PKT3C(PKT3_NOP, 0, 0));
511 radeon_emit(cs, r600_context_bo_reloc(&rctx->b, &rctx->b.rings.gfx,
512 kernel->code_bo, RADEON_USAGE_READ));
513 }
514
515 static void evergreen_launch_grid(
516 struct pipe_context *ctx_,
517 const uint *block_layout, const uint *grid_layout,
518 uint32_t pc, const void *input)
519 {
520 struct r600_context *ctx = (struct r600_context *)ctx_;
521
522 struct r600_pipe_compute *shader = ctx->cs_shader_state.shader;
523 struct r600_kernel *kernel = &shader->kernels[pc];
524
525 COMPUTE_DBG(ctx->screen, "*** evergreen_launch_grid: pc = %u\n", pc);
526
527 #ifdef HAVE_OPENCL
528
529 if (!kernel->code_bo) {
530 void *p;
531 struct r600_bytecode *bc = &kernel->bc;
532 LLVMModuleRef mod = kernel->llvm_module;
533 boolean use_kill = false;
534 bool dump = (ctx->screen->b.debug_flags & DBG_CS) != 0;
535 unsigned use_sb = ctx->screen->b.debug_flags & DBG_SB_CS;
536 unsigned sb_disasm = use_sb ||
537 (ctx->screen->b.debug_flags & DBG_SB_DISASM);
538
539 r600_bytecode_init(bc, ctx->b.chip_class, ctx->b.family,
540 ctx->screen->has_compressed_msaa_texturing);
541 bc->type = TGSI_PROCESSOR_COMPUTE;
542 bc->isa = ctx->isa;
543 r600_llvm_compile(mod, ctx->b.family, bc, &use_kill, dump);
544
545 if (dump && !sb_disasm) {
546 r600_bytecode_disasm(bc);
547 } else if ((dump && sb_disasm) || use_sb) {
548 if (r600_sb_bytecode_process(ctx, bc, NULL, dump, use_sb))
549 R600_ERR("r600_sb_bytecode_process failed!\n");
550 }
551
552 kernel->code_bo = r600_compute_buffer_alloc_vram(ctx->screen,
553 kernel->bc.ndw * 4);
554 p = r600_buffer_map_sync_with_rings(&ctx->b, kernel->code_bo, PIPE_TRANSFER_WRITE);
555 memcpy(p, kernel->bc.bytecode, kernel->bc.ndw * 4);
556 ctx->b.ws->buffer_unmap(kernel->code_bo->cs_buf);
557 }
558 #endif
559 shader->active_kernel = kernel;
560 ctx->cs_shader_state.kernel_index = pc;
561 evergreen_compute_upload_input(ctx_, block_layout, grid_layout, input);
562 compute_emit_cs(ctx, block_layout, grid_layout);
563 }
564
565 static void evergreen_set_compute_resources(struct pipe_context * ctx_,
566 unsigned start, unsigned count,
567 struct pipe_surface ** surfaces)
568 {
569 struct r600_context *ctx = (struct r600_context *)ctx_;
570 struct r600_surface **resources = (struct r600_surface **)surfaces;
571
572 COMPUTE_DBG(ctx->screen, "*** evergreen_set_compute_resources: start = %u count = %u\n",
573 start, count);
574
575 for (int i = 0; i < count; i++) {
576 /* The First two vertex buffers are reserved for parameters and
577 * global buffers. */
578 unsigned vtx_id = 2 + i;
579 if (resources[i]) {
580 struct r600_resource_global *buffer =
581 (struct r600_resource_global*)
582 resources[i]->base.texture;
583 if (resources[i]->base.writable) {
584 assert(i+1 < 12);
585
586 evergreen_set_rat(ctx->cs_shader_state.shader, i+1,
587 (struct r600_resource *)resources[i]->base.texture,
588 buffer->chunk->start_in_dw*4,
589 resources[i]->base.texture->width0);
590 }
591
592 evergreen_cs_set_vertex_buffer(ctx, vtx_id,
593 buffer->chunk->start_in_dw * 4,
594 resources[i]->base.texture);
595 }
596 }
597 }
598
599 void evergreen_set_cs_sampler_view(struct pipe_context *ctx_,
600 unsigned start_slot, unsigned count,
601 struct pipe_sampler_view **views)
602 {
603 struct r600_pipe_sampler_view **resource =
604 (struct r600_pipe_sampler_view **)views;
605
606 for (int i = 0; i < count; i++) {
607 if (resource[i]) {
608 assert(i+1 < 12);
609 /* XXX: Implement */
610 assert(!"Compute samplers not implemented.");
611 ///FETCH0 = VTX0 (param buffer),
612 //FETCH1 = VTX1 (global buffer pool), FETCH2... = TEX
613 }
614 }
615 }
616
617
618 static void evergreen_set_global_binding(
619 struct pipe_context *ctx_, unsigned first, unsigned n,
620 struct pipe_resource **resources,
621 uint32_t **handles)
622 {
623 struct r600_context *ctx = (struct r600_context *)ctx_;
624 struct compute_memory_pool *pool = ctx->screen->global_pool;
625 struct r600_resource_global **buffers =
626 (struct r600_resource_global **)resources;
627
628 COMPUTE_DBG(ctx->screen, "*** evergreen_set_global_binding first = %u n = %u\n",
629 first, n);
630
631 if (!resources) {
632 /* XXX: Unset */
633 return;
634 }
635
636 compute_memory_finalize_pending(pool, ctx_);
637
638 for (int i = 0; i < n; i++)
639 {
640 assert(resources[i]->target == PIPE_BUFFER);
641 assert(resources[i]->bind & PIPE_BIND_GLOBAL);
642
643 *(handles[i]) = buffers[i]->chunk->start_in_dw * 4;
644 }
645
646 evergreen_set_rat(ctx->cs_shader_state.shader, 0, pool->bo, 0, pool->size_in_dw * 4);
647 evergreen_cs_set_vertex_buffer(ctx, 1, 0,
648 (struct pipe_resource*)pool->bo);
649 }
650
651 /**
652 * This function initializes all the compute specific registers that need to
653 * be initialized for each compute command stream. Registers that are common
654 * to both compute and 3D will be initialized at the beginning of each compute
655 * command stream by the start_cs_cmd atom. However, since the SET_CONTEXT_REG
656 * packet requires that the shader type bit be set, we must initialize all
657 * context registers needed for compute in this function. The registers
658 * intialized by the start_cs_cmd atom can be found in evereen_state.c in the
659 * functions evergreen_init_atom_start_cs or cayman_init_atom_start_cs depending
660 * on the GPU family.
661 */
662 void evergreen_init_atom_start_compute_cs(struct r600_context *ctx)
663 {
664 struct r600_command_buffer *cb = &ctx->start_compute_cs_cmd;
665 int num_threads;
666 int num_stack_entries;
667
668 /* since all required registers are initialised in the
669 * start_compute_cs_cmd atom, we can EMIT_EARLY here.
670 */
671 r600_init_command_buffer(cb, 256);
672 cb->pkt_flags = RADEON_CP_PACKET3_COMPUTE_MODE;
673
674 /* This must be first. */
675 r600_store_value(cb, PKT3(PKT3_CONTEXT_CONTROL, 1, 0));
676 r600_store_value(cb, 0x80000000);
677 r600_store_value(cb, 0x80000000);
678
679 /* We're setting config registers here. */
680 r600_store_value(cb, PKT3(PKT3_EVENT_WRITE, 0, 0));
681 r600_store_value(cb, EVENT_TYPE(EVENT_TYPE_CS_PARTIAL_FLUSH) | EVENT_INDEX(4));
682
683 switch (ctx->b.family) {
684 case CHIP_CEDAR:
685 default:
686 num_threads = 128;
687 num_stack_entries = 256;
688 break;
689 case CHIP_REDWOOD:
690 num_threads = 128;
691 num_stack_entries = 256;
692 break;
693 case CHIP_JUNIPER:
694 num_threads = 128;
695 num_stack_entries = 512;
696 break;
697 case CHIP_CYPRESS:
698 case CHIP_HEMLOCK:
699 num_threads = 128;
700 num_stack_entries = 512;
701 break;
702 case CHIP_PALM:
703 num_threads = 128;
704 num_stack_entries = 256;
705 break;
706 case CHIP_SUMO:
707 num_threads = 128;
708 num_stack_entries = 256;
709 break;
710 case CHIP_SUMO2:
711 num_threads = 128;
712 num_stack_entries = 512;
713 break;
714 case CHIP_BARTS:
715 num_threads = 128;
716 num_stack_entries = 512;
717 break;
718 case CHIP_TURKS:
719 num_threads = 128;
720 num_stack_entries = 256;
721 break;
722 case CHIP_CAICOS:
723 num_threads = 128;
724 num_stack_entries = 256;
725 break;
726 }
727
728 /* Config Registers */
729 if (ctx->b.chip_class < CAYMAN)
730 evergreen_init_common_regs(cb, ctx->b.chip_class, ctx->b.family,
731 ctx->screen->b.info.drm_minor);
732 else
733 cayman_init_common_regs(cb, ctx->b.chip_class, ctx->b.family,
734 ctx->screen->b.info.drm_minor);
735
736 /* The primitive type always needs to be POINTLIST for compute. */
737 r600_store_config_reg(cb, R_008958_VGT_PRIMITIVE_TYPE,
738 V_008958_DI_PT_POINTLIST);
739
740 if (ctx->b.chip_class < CAYMAN) {
741
742 /* These registers control which simds can be used by each stage.
743 * The default for these registers is 0xffffffff, which means
744 * all simds are available for each stage. It's possible we may
745 * want to play around with these in the future, but for now
746 * the default value is fine.
747 *
748 * R_008E20_SQ_STATIC_THREAD_MGMT1
749 * R_008E24_SQ_STATIC_THREAD_MGMT2
750 * R_008E28_SQ_STATIC_THREAD_MGMT3
751 */
752
753 /* XXX: We may need to adjust the thread and stack resouce
754 * values for 3D/compute interop */
755
756 r600_store_config_reg_seq(cb, R_008C18_SQ_THREAD_RESOURCE_MGMT_1, 5);
757
758 /* R_008C18_SQ_THREAD_RESOURCE_MGMT_1
759 * Set the number of threads used by the PS/VS/GS/ES stage to
760 * 0.
761 */
762 r600_store_value(cb, 0);
763
764 /* R_008C1C_SQ_THREAD_RESOURCE_MGMT_2
765 * Set the number of threads used by the CS (aka LS) stage to
766 * the maximum number of threads and set the number of threads
767 * for the HS stage to 0. */
768 r600_store_value(cb, S_008C1C_NUM_LS_THREADS(num_threads));
769
770 /* R_008C20_SQ_STACK_RESOURCE_MGMT_1
771 * Set the Control Flow stack entries to 0 for PS/VS stages */
772 r600_store_value(cb, 0);
773
774 /* R_008C24_SQ_STACK_RESOURCE_MGMT_2
775 * Set the Control Flow stack entries to 0 for GS/ES stages */
776 r600_store_value(cb, 0);
777
778 /* R_008C28_SQ_STACK_RESOURCE_MGMT_3
779 * Set the Contol Flow stack entries to 0 for the HS stage, and
780 * set it to the maximum value for the CS (aka LS) stage. */
781 r600_store_value(cb,
782 S_008C28_NUM_LS_STACK_ENTRIES(num_stack_entries));
783 }
784 /* Give the compute shader all the available LDS space.
785 * NOTE: This only sets the maximum number of dwords that a compute
786 * shader can allocate. When a shader is executed, we still need to
787 * allocate the appropriate amount of LDS dwords using the
788 * CM_R_0288E8_SQ_LDS_ALLOC register.
789 */
790 if (ctx->b.chip_class < CAYMAN) {
791 r600_store_config_reg(cb, R_008E2C_SQ_LDS_RESOURCE_MGMT,
792 S_008E2C_NUM_PS_LDS(0x0000) | S_008E2C_NUM_LS_LDS(8192));
793 } else {
794 r600_store_context_reg(cb, CM_R_0286FC_SPI_LDS_MGMT,
795 S_0286FC_NUM_PS_LDS(0) |
796 S_0286FC_NUM_LS_LDS(255)); /* 255 * 32 = 8160 dwords */
797 }
798
799 /* Context Registers */
800
801 if (ctx->b.chip_class < CAYMAN) {
802 /* workaround for hw issues with dyn gpr - must set all limits
803 * to 240 instead of 0, 0x1e == 240 / 8
804 */
805 r600_store_context_reg(cb, R_028838_SQ_DYN_GPR_RESOURCE_LIMIT_1,
806 S_028838_PS_GPRS(0x1e) |
807 S_028838_VS_GPRS(0x1e) |
808 S_028838_GS_GPRS(0x1e) |
809 S_028838_ES_GPRS(0x1e) |
810 S_028838_HS_GPRS(0x1e) |
811 S_028838_LS_GPRS(0x1e));
812 }
813
814 /* XXX: Investigate setting bit 15, which is FAST_COMPUTE_MODE */
815 r600_store_context_reg(cb, R_028A40_VGT_GS_MODE,
816 S_028A40_COMPUTE_MODE(1) | S_028A40_PARTIAL_THD_AT_EOI(1));
817
818 r600_store_context_reg(cb, R_028B54_VGT_SHADER_STAGES_EN, 2/*CS_ON*/);
819
820 r600_store_context_reg(cb, R_0286E8_SPI_COMPUTE_INPUT_CNTL,
821 S_0286E8_TID_IN_GROUP_ENA
822 | S_0286E8_TGID_ENA
823 | S_0286E8_DISABLE_INDEX_PACK)
824 ;
825
826 /* The LOOP_CONST registers are an optimizations for loops that allows
827 * you to store the initial counter, increment value, and maximum
828 * counter value in a register so that hardware can calculate the
829 * correct number of iterations for the loop, so that you don't need
830 * to have the loop counter in your shader code. We don't currently use
831 * this optimization, so we must keep track of the counter in the
832 * shader and use a break instruction to exit loops. However, the
833 * hardware will still uses this register to determine when to exit a
834 * loop, so we need to initialize the counter to 0, set the increment
835 * value to 1 and the maximum counter value to the 4095 (0xfff) which
836 * is the maximum value allowed. This gives us a maximum of 4096
837 * iterations for our loops, but hopefully our break instruction will
838 * execute before some time before the 4096th iteration.
839 */
840 eg_store_loop_const(cb, R_03A200_SQ_LOOP_CONST_0 + (160 * 4), 0x1000FFF);
841 }
842
843 void evergreen_init_compute_state_functions(struct r600_context *ctx)
844 {
845 ctx->b.b.create_compute_state = evergreen_create_compute_state;
846 ctx->b.b.delete_compute_state = evergreen_delete_compute_state;
847 ctx->b.b.bind_compute_state = evergreen_bind_compute_state;
848 // ctx->context.create_sampler_view = evergreen_compute_create_sampler_view;
849 ctx->b.b.set_compute_resources = evergreen_set_compute_resources;
850 ctx->b.b.set_global_binding = evergreen_set_global_binding;
851 ctx->b.b.launch_grid = evergreen_launch_grid;
852
853 /* We always use at least one vertex buffer for parameters (id = 1)*/
854 ctx->cs_vertex_buffer_state.enabled_mask =
855 ctx->cs_vertex_buffer_state.dirty_mask = 0x2;
856 }
857
858 struct pipe_resource *r600_compute_global_buffer_create(
859 struct pipe_screen *screen,
860 const struct pipe_resource *templ)
861 {
862 struct r600_resource_global* result = NULL;
863 struct r600_screen* rscreen = NULL;
864 int size_in_dw = 0;
865
866 assert(templ->target == PIPE_BUFFER);
867 assert(templ->bind & PIPE_BIND_GLOBAL);
868 assert(templ->array_size == 1 || templ->array_size == 0);
869 assert(templ->depth0 == 1 || templ->depth0 == 0);
870 assert(templ->height0 == 1 || templ->height0 == 0);
871
872 result = (struct r600_resource_global*)
873 CALLOC(sizeof(struct r600_resource_global), 1);
874 rscreen = (struct r600_screen*)screen;
875
876 COMPUTE_DBG(rscreen, "*** r600_compute_global_buffer_create\n");
877 COMPUTE_DBG(rscreen, "width = %u array_size = %u\n", templ->width0,
878 templ->array_size);
879
880 result->base.b.vtbl = &r600_global_buffer_vtbl;
881 result->base.b.b.screen = screen;
882 result->base.b.b = *templ;
883 pipe_reference_init(&result->base.b.b.reference, 1);
884
885 size_in_dw = (templ->width0+3) / 4;
886
887 result->chunk = compute_memory_alloc(rscreen->global_pool, size_in_dw);
888
889 if (result->chunk == NULL)
890 {
891 free(result);
892 return NULL;
893 }
894
895 return &result->base.b.b;
896 }
897
898 void r600_compute_global_buffer_destroy(
899 struct pipe_screen *screen,
900 struct pipe_resource *res)
901 {
902 struct r600_resource_global* buffer = NULL;
903 struct r600_screen* rscreen = NULL;
904
905 assert(res->target == PIPE_BUFFER);
906 assert(res->bind & PIPE_BIND_GLOBAL);
907
908 buffer = (struct r600_resource_global*)res;
909 rscreen = (struct r600_screen*)screen;
910
911 compute_memory_free(rscreen->global_pool, buffer->chunk->id);
912
913 buffer->chunk = NULL;
914 free(res);
915 }
916
917 void *r600_compute_global_transfer_map(
918 struct pipe_context *ctx_,
919 struct pipe_resource *resource,
920 unsigned level,
921 unsigned usage,
922 const struct pipe_box *box,
923 struct pipe_transfer **ptransfer)
924 {
925 struct r600_context *rctx = (struct r600_context*)ctx_;
926 struct compute_memory_pool *pool = rctx->screen->global_pool;
927 struct r600_resource_global* buffer =
928 (struct r600_resource_global*)resource;
929
930 COMPUTE_DBG(rctx->screen, "* r600_compute_global_transfer_map()\n"
931 "level = %u, usage = %u, box(x = %u, y = %u, z = %u "
932 "width = %u, height = %u, depth = %u)\n", level, usage,
933 box->x, box->y, box->z, box->width, box->height,
934 box->depth);
935 COMPUTE_DBG(rctx->screen, "Buffer id = %u offset = "
936 "%u (box.x)\n", buffer->chunk->id, box->x);
937
938
939 compute_memory_finalize_pending(pool, ctx_);
940
941 assert(resource->target == PIPE_BUFFER);
942 assert(resource->bind & PIPE_BIND_GLOBAL);
943 assert(box->x >= 0);
944 assert(box->y == 0);
945 assert(box->z == 0);
946
947 ///TODO: do it better, mapping is not possible if the pool is too big
948 return pipe_buffer_map_range(ctx_, (struct pipe_resource*)buffer->chunk->pool->bo,
949 box->x + (buffer->chunk->start_in_dw * 4),
950 box->width, usage, ptransfer);
951 }
952
953 void r600_compute_global_transfer_unmap(
954 struct pipe_context *ctx_,
955 struct pipe_transfer* transfer)
956 {
957 /* struct r600_resource_global are not real resources, they just map
958 * to an offset within the compute memory pool. The function
959 * r600_compute_global_transfer_map() maps the memory pool
960 * resource rather than the struct r600_resource_global passed to
961 * it as an argument and then initalizes ptransfer->resource with
962 * the memory pool resource (via pipe_buffer_map_range).
963 * When transfer_unmap is called it uses the memory pool's
964 * vtable which calls r600_buffer_transfer_map() rather than
965 * this function.
966 */
967 assert (!"This function should not be called");
968 }
969
970 void r600_compute_global_transfer_flush_region(
971 struct pipe_context *ctx_,
972 struct pipe_transfer *transfer,
973 const struct pipe_box *box)
974 {
975 assert(0 && "TODO");
976 }
977
978 void r600_compute_global_transfer_inline_write(
979 struct pipe_context *pipe,
980 struct pipe_resource *resource,
981 unsigned level,
982 unsigned usage,
983 const struct pipe_box *box,
984 const void *data,
985 unsigned stride,
986 unsigned layer_stride)
987 {
988 assert(0 && "TODO");
989 }