r600g: Initialize VGT_PRIMITIVE_TYPE in the start_cs_cmd atom
[mesa.git] / src / gallium / drivers / r600 / evergreen_compute.c
1 /*
2 * Copyright 2011 Adam Rak <adam.rak@streamnovation.com>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * on the rights to use, copy, modify, merge, publish, distribute, sub
8 * license, and/or sell copies of the Software, and to permit persons to whom
9 * the Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Adam Rak <adam.rak@streamnovation.com>
25 */
26
27 #include <stdio.h>
28 #include <errno.h>
29 #include "pipe/p_defines.h"
30 #include "pipe/p_state.h"
31 #include "pipe/p_context.h"
32 #include "util/u_blitter.h"
33 #include "util/u_double_list.h"
34 #include "util/u_transfer.h"
35 #include "util/u_surface.h"
36 #include "util/u_pack_color.h"
37 #include "util/u_memory.h"
38 #include "util/u_inlines.h"
39 #include "util/u_framebuffer.h"
40 #include "pipebuffer/pb_buffer.h"
41 #include "r600.h"
42 #include "evergreend.h"
43 #include "r600_resource.h"
44 #include "r600_shader.h"
45 #include "r600_pipe.h"
46 #include "r600_formats.h"
47 #include "evergreen_compute.h"
48 #include "r600_hw_context_priv.h"
49 #include "evergreen_compute_internal.h"
50 #include "compute_memory_pool.h"
51 #ifdef HAVE_OPENCL
52 #include "llvm_wrapper.h"
53 #endif
54
55 /**
56 RAT0 is for global binding write
57 VTX1 is for global binding read
58
59 for wrting images RAT1...
60 for reading images TEX2...
61 TEX2-RAT1 is paired
62
63 TEX2... consumes the same fetch resources, that VTX2... would consume
64
65 CONST0 and VTX0 is for parameters
66 CONST0 is binding smaller input parameter buffer, and for constant indexing,
67 also constant cached
68 VTX0 is for indirect/non-constant indexing, or if the input is bigger than
69 the constant cache can handle
70
71 RAT-s are limited to 12, so we can only bind at most 11 texture for writing
72 because we reserve RAT0 for global bindings. With byteaddressing enabled,
73 we should reserve another one too.=> 10 image binding for writing max.
74
75 from Nvidia OpenCL:
76 CL_DEVICE_MAX_READ_IMAGE_ARGS: 128
77 CL_DEVICE_MAX_WRITE_IMAGE_ARGS: 8
78
79 so 10 for writing is enough. 176 is the max for reading according to the docs
80
81 writable images should be listed first < 10, so their id corresponds to RAT(id+1)
82 writable images will consume TEX slots, VTX slots too because of linear indexing
83
84 */
85
86 static void evergreen_cs_set_vertex_buffer(
87 struct r600_context * rctx,
88 unsigned vb_index,
89 unsigned offset,
90 struct pipe_resource * buffer)
91 {
92 struct r600_vertexbuf_state *state = &rctx->cs_vertex_buffer_state;
93 struct pipe_vertex_buffer *vb = &state->vb[vb_index];
94 vb->stride = 1;
95 vb->buffer_offset = offset;
96 vb->buffer = buffer;
97 vb->user_buffer = NULL;
98
99 r600_inval_vertex_cache(rctx);
100 state->enabled_mask |= 1 << vb_index;
101 state->dirty_mask |= 1 << vb_index;
102 r600_atom_dirty(rctx, &state->atom);
103 }
104
105 const struct u_resource_vtbl r600_global_buffer_vtbl =
106 {
107 u_default_resource_get_handle, /* get_handle */
108 r600_compute_global_buffer_destroy, /* resource_destroy */
109 r600_compute_global_get_transfer, /* get_transfer */
110 r600_compute_global_transfer_destroy, /* transfer_destroy */
111 r600_compute_global_transfer_map, /* transfer_map */
112 r600_compute_global_transfer_flush_region,/* transfer_flush_region */
113 r600_compute_global_transfer_unmap, /* transfer_unmap */
114 r600_compute_global_transfer_inline_write /* transfer_inline_write */
115 };
116
117
118 void *evergreen_create_compute_state(
119 struct pipe_context *ctx_,
120 const const struct pipe_compute_state *cso)
121 {
122 struct r600_context *ctx = (struct r600_context *)ctx_;
123 struct r600_pipe_compute *shader = CALLOC_STRUCT(r600_pipe_compute);
124 void *p;
125
126 #ifdef HAVE_OPENCL
127 const struct pipe_llvm_program_header * header;
128 const unsigned char * code;
129
130 COMPUTE_DBG("*** evergreen_create_compute_state\n");
131
132 header = cso->prog;
133 code = cso->prog + sizeof(struct pipe_llvm_program_header);
134 #endif
135
136 shader->ctx = (struct r600_context*)ctx;
137 shader->resources = (struct evergreen_compute_resource*)
138 CALLOC(sizeof(struct evergreen_compute_resource),
139 get_compute_resource_num());
140 shader->local_size = cso->req_local_mem; ///TODO: assert it
141 shader->private_size = cso->req_private_mem;
142 shader->input_size = cso->req_input_mem;
143
144 #ifdef HAVE_OPENCL
145 shader->mod = llvm_parse_bitcode(code, header->num_bytes);
146
147 r600_compute_shader_create(ctx_, shader->mod, &shader->bc);
148 #endif
149 shader->shader_code_bo = r600_compute_buffer_alloc_vram(ctx->screen,
150 shader->bc.ndw * 4);
151
152 p = ctx->ws->buffer_map(shader->shader_code_bo->cs_buf, ctx->cs,
153 PIPE_TRANSFER_WRITE);
154
155 memcpy(p, shader->bc.bytecode, shader->bc.ndw * 4);
156 ctx->ws->buffer_unmap(shader->shader_code_bo->cs_buf);
157 return shader;
158 }
159
160 void evergreen_delete_compute_state(struct pipe_context *ctx, void* state)
161 {
162 struct r600_pipe_compute *shader = (struct r600_pipe_compute *)state;
163
164 free(shader->resources);
165 free(shader);
166 }
167
168 static void evergreen_bind_compute_state(struct pipe_context *ctx_, void *state)
169 {
170 struct r600_context *ctx = (struct r600_context *)ctx_;
171
172 COMPUTE_DBG("*** evergreen_bind_compute_state\n");
173
174 ctx->cs_shader_state.shader = (struct r600_pipe_compute *)state;
175 }
176
177 /* The kernel parameters are stored a vtx buffer (ID=0), besides the explicit
178 * kernel parameters there are inplicit parameters that need to be stored
179 * in the vertex buffer as well. Here is how these parameters are organized in
180 * the buffer:
181 *
182 * DWORDS 0-2: Number of work groups in each dimension (x,y,z)
183 * DWORDS 3-5: Number of global work items in each dimension (x,y,z)
184 * DWORDS 6-8: Number of work items within each work group in each dimension
185 * (x,y,z)
186 * DWORDS 9+ : Kernel parameters
187 */
188 void evergreen_compute_upload_input(
189 struct pipe_context *ctx_,
190 const uint *block_layout,
191 const uint *grid_layout,
192 const void *input)
193 {
194 struct r600_context *ctx = (struct r600_context *)ctx_;
195 struct r600_pipe_compute *shader = ctx->cs_shader_state.shader;
196 int i;
197 unsigned kernel_parameters_offset_bytes = 36;
198 uint32_t * num_work_groups_start;
199 uint32_t * global_size_start;
200 uint32_t * local_size_start;
201 uint32_t * kernel_parameters_start;
202
203 if (shader->input_size == 0) {
204 return;
205 }
206
207 if (!shader->kernel_param) {
208 unsigned buffer_size = shader->input_size;
209
210 /* Add space for the grid dimensions */
211 buffer_size += kernel_parameters_offset_bytes * sizeof(uint);
212 shader->kernel_param = r600_compute_buffer_alloc_vram(
213 ctx->screen, buffer_size);
214 }
215
216 num_work_groups_start = ctx->ws->buffer_map(
217 shader->kernel_param->cs_buf, ctx->cs, PIPE_TRANSFER_WRITE);
218 global_size_start = num_work_groups_start + (3 * (sizeof(uint) /4));
219 local_size_start = global_size_start + (3 * (sizeof(uint)) / 4);
220 kernel_parameters_start = local_size_start + (3 * (sizeof(uint)) / 4);
221
222 /* Copy the work group size */
223 memcpy(num_work_groups_start, grid_layout, 3 * sizeof(uint));
224
225 /* Copy the global size */
226 for (i = 0; i < 3; i++) {
227 global_size_start[i] = grid_layout[i] * block_layout[i];
228 }
229
230 /* Copy the local dimensions */
231 memcpy(local_size_start, block_layout, 3 * sizeof(uint));
232
233 /* Copy the kernel inputs */
234 memcpy(kernel_parameters_start, input, shader->input_size);
235
236 for (i = 0; i < (kernel_parameters_offset_bytes / 4) +
237 (shader->input_size / 4); i++) {
238 COMPUTE_DBG("input %i : %i\n", i,
239 ((unsigned*)num_work_groups_start)[i]);
240 }
241
242 ctx->ws->buffer_unmap(shader->kernel_param->cs_buf);
243
244 ///ID=0 is reserved for the parameters
245 evergreen_cs_set_vertex_buffer(ctx, 0, 0,
246 (struct pipe_resource*)shader->kernel_param);
247 ///ID=0 is reserved for parameters
248 evergreen_set_const_cache(shader, 0, shader->kernel_param,
249 shader->input_size, 0);
250 }
251
252 void evergreen_direct_dispatch(
253 struct pipe_context *ctx_,
254 const uint *block_layout, const uint *grid_layout)
255 {
256 /* This struct r600_context* must be called rctx, because the
257 * r600_pipe_state_add_reg macro assumes there is a local variable
258 * of type struct r600_context* called rctx.
259 */
260 struct r600_context *rctx = (struct r600_context *)ctx_;
261 struct r600_pipe_compute *shader = rctx->cs_shader_state.shader;
262
263 int i;
264
265 struct evergreen_compute_resource* res = get_empty_res(shader,
266 COMPUTE_RESOURCE_DISPATCH, 0);
267
268 /* Set CB_TARGET_MASK */
269 evergreen_reg_set(res, R_028238_CB_TARGET_MASK, rctx->compute_cb_target_mask);
270
271 evergreen_reg_set(res, R_00899C_VGT_COMPUTE_START_X, 0);
272 evergreen_reg_set(res, R_0089A0_VGT_COMPUTE_START_Y, 0);
273 evergreen_reg_set(res, R_0089A4_VGT_COMPUTE_START_Z, 0);
274
275 evergreen_reg_set(res, R_0286EC_SPI_COMPUTE_NUM_THREAD_X, block_layout[0]);
276 evergreen_reg_set(res, R_0286F0_SPI_COMPUTE_NUM_THREAD_Y, block_layout[1]);
277 evergreen_reg_set(res, R_0286F4_SPI_COMPUTE_NUM_THREAD_Z, block_layout[2]);
278
279 int group_size = 1;
280
281 int grid_size = 1;
282
283 for (i = 0; i < 3; i++) {
284 group_size *= block_layout[i];
285 }
286
287 for (i = 0; i < 3; i++) {
288 grid_size *= grid_layout[i];
289 }
290
291 evergreen_reg_set(res, R_008970_VGT_NUM_INDICES, group_size);
292 evergreen_reg_set(res, R_0089AC_VGT_COMPUTE_THREAD_GROUP_SIZE, group_size);
293
294 evergreen_emit_raw_value(res, PKT3C(PKT3_DISPATCH_DIRECT, 3, 0));
295 evergreen_emit_raw_value(res, grid_layout[0]);
296 evergreen_emit_raw_value(res, grid_layout[1]);
297 evergreen_emit_raw_value(res, grid_layout[2]);
298 ///VGT_DISPATCH_INITIATOR = COMPUTE_SHADER_EN
299 evergreen_emit_raw_value(res, 1);
300 }
301
302 static void compute_emit_cs(struct r600_context *ctx)
303 {
304 struct radeon_winsys_cs *cs = ctx->cs;
305 int i;
306
307 struct r600_resource *onebo = NULL;
308 struct r600_pipe_state *cb_state;
309 struct evergreen_compute_resource *resources =
310 ctx->cs_shader_state.shader->resources;
311
312 /* Initialize all the registers common to both 3D and compute. Some
313 * 3D only register will be initialized by this atom as well, but
314 * this is OK for now.
315 *
316 * See evergreen_init_atom_start_cs() or cayman_init_atom_start_cs() in
317 * evergreen_state.c for the list of registers that are intialized by
318 * the start_cs_cmd atom.
319 */
320 r600_emit_atom(ctx, &ctx->start_cs_cmd.atom);
321
322 /* Initialize all the compute specific registers.
323 *
324 * See evergreen_init_atom_start_compute_cs() in this file for the list
325 * of registers initialized by the start_compuet_cs_cmd atom.
326 */
327 r600_emit_atom(ctx, &ctx->start_compute_cs_cmd.atom);
328
329 /* Emit cb_state */
330 cb_state = ctx->states[R600_PIPE_STATE_FRAMEBUFFER];
331 r600_context_pipe_state_emit(ctx, cb_state, RADEON_CP_PACKET3_COMPUTE_MODE);
332
333 /* Emit vertex buffer state */
334 ctx->cs_vertex_buffer_state.atom.num_dw = 12 * util_bitcount(ctx->cs_vertex_buffer_state.dirty_mask);
335 r600_emit_atom(ctx, &ctx->cs_vertex_buffer_state.atom);
336
337 /* Emit compute shader state */
338 r600_emit_atom(ctx, &ctx->cs_shader_state.atom);
339
340 for (i = 0; i < get_compute_resource_num(); i++) {
341 if (resources[i].enabled) {
342 int j;
343 COMPUTE_DBG("resnum: %i, cdw: %i\n", i, cs->cdw);
344
345 for (j = 0; j < resources[i].cs_end; j++) {
346 if (resources[i].do_reloc[j]) {
347 assert(resources[i].bo);
348 evergreen_emit_ctx_reloc(ctx,
349 resources[i].bo,
350 resources[i].usage);
351 }
352
353 cs->buf[cs->cdw++] = resources[i].cs[j];
354 }
355
356 if (resources[i].bo) {
357 onebo = resources[i].bo;
358 evergreen_emit_ctx_reloc(ctx,
359 resources[i].bo,
360 resources[i].usage);
361
362 ///special case for textures
363 if (resources[i].do_reloc
364 [resources[i].cs_end] == 2) {
365 evergreen_emit_ctx_reloc(ctx,
366 resources[i].bo,
367 resources[i].usage);
368 }
369 }
370 }
371 }
372
373 /* r600_flush_framebuffer() updates the cb_flush_flags and then
374 * calls r600_emit_atom() on the ctx->surface_sync_cmd.atom, which emits
375 * a SURFACE_SYNC packet via r600_emit_surface_sync().
376 *
377 * XXX r600_emit_surface_sync() hardcodes the CP_COHER_SIZE to
378 * 0xffffffff, so we will need to add a field to struct
379 * r600_surface_sync_cmd if we want to manually set this value.
380 */
381 r600_flush_framebuffer(ctx, true /* Flush now */);
382
383 #if 0
384 COMPUTE_DBG("cdw: %i\n", cs->cdw);
385 for (i = 0; i < cs->cdw; i++) {
386 COMPUTE_DBG("%4i : 0x%08X\n", i, ctx->cs->buf[i]);
387 }
388 #endif
389
390 ctx->ws->cs_flush(ctx->cs, RADEON_FLUSH_ASYNC | RADEON_FLUSH_COMPUTE);
391
392 ctx->pm4_dirty_cdwords = 0;
393 ctx->flags = 0;
394
395 COMPUTE_DBG("shader started\n");
396
397 ctx->ws->buffer_wait(onebo->buf, 0);
398
399 COMPUTE_DBG("...\n");
400
401 ctx->streamout_start = TRUE;
402 ctx->streamout_append_bitmask = ~0;
403
404 }
405
406
407 /**
408 * Emit function for r600_cs_shader_state atom
409 */
410 void evergreen_emit_cs_shader(
411 struct r600_context *rctx,
412 struct r600_atom *atom)
413 {
414 struct r600_cs_shader_state *state =
415 (struct r600_cs_shader_state*)atom;
416 struct r600_pipe_compute *shader = state->shader;
417 struct radeon_winsys_cs *cs = rctx->cs;
418 uint64_t va;
419
420 va = r600_resource_va(&rctx->screen->screen, &shader->shader_code_bo->b.b);
421
422 r600_write_compute_context_reg_seq(cs, R_0288D0_SQ_PGM_START_LS, 3);
423 r600_write_value(cs, va >> 8); /* R_0288D0_SQ_PGM_START_LS */
424 r600_write_value(cs, /* R_0288D4_SQ_PGM_RESOURCES_LS */
425 S_0288D4_NUM_GPRS(shader->bc.ngpr)
426 | S_0288D4_STACK_SIZE(shader->bc.nstack));
427 r600_write_value(cs, 0); /* R_0288D8_SQ_PGM_RESOURCES_LS_2 */
428
429 r600_write_value(cs, PKT3C(PKT3_NOP, 0, 0));
430 r600_write_value(cs, r600_context_bo_reloc(rctx, shader->shader_code_bo,
431 RADEON_USAGE_READ));
432
433 r600_inval_shader_cache(rctx);
434 }
435
436 static void evergreen_launch_grid(
437 struct pipe_context *ctx_,
438 const uint *block_layout, const uint *grid_layout,
439 uint32_t pc, const void *input)
440 {
441 COMPUTE_DBG("PC: %i\n", pc);
442
443 struct r600_context *ctx = (struct r600_context *)ctx_;
444 unsigned num_waves;
445 unsigned num_pipes = ctx->screen->info.r600_max_pipes;
446 unsigned wave_divisor = (16 * num_pipes);
447
448 /* num_waves = ceil((tg_size.x * tg_size.y, tg_size.z) / (16 * num_pipes)) */
449 num_waves = (block_layout[0] * block_layout[1] * block_layout[2] +
450 wave_divisor - 1) / wave_divisor;
451
452 COMPUTE_DBG("Using %u pipes, there are %u wavefronts per thread block\n",
453 num_pipes, num_waves);
454
455 evergreen_set_lds(ctx->cs_shader_state.shader, 0, 0, num_waves);
456 evergreen_compute_upload_input(ctx_, block_layout, grid_layout, input);
457 evergreen_direct_dispatch(ctx_, block_layout, grid_layout);
458 compute_emit_cs(ctx);
459 }
460
461 static void evergreen_set_compute_resources(struct pipe_context * ctx_,
462 unsigned start, unsigned count,
463 struct pipe_surface ** surfaces)
464 {
465 struct r600_context *ctx = (struct r600_context *)ctx_;
466 struct r600_surface **resources = (struct r600_surface **)surfaces;
467
468 COMPUTE_DBG("*** evergreen_set_compute_resources: start = %u count = %u\n",
469 start, count);
470
471 for (int i = 0; i < count; i++) {
472 /* The First two vertex buffers are reserved for parameters and
473 * global buffers. */
474 unsigned vtx_id = 2 + i;
475 if (resources[i]) {
476 struct r600_resource_global *buffer =
477 (struct r600_resource_global*)
478 resources[i]->base.texture;
479 if (resources[i]->base.writable) {
480 assert(i+1 < 12);
481
482 evergreen_set_rat(ctx->cs_shader_state.shader, i+1,
483 (struct r600_resource *)resources[i]->base.texture,
484 buffer->chunk->start_in_dw*4,
485 resources[i]->base.texture->width0);
486 }
487
488 evergreen_cs_set_vertex_buffer(ctx, vtx_id,
489 buffer->chunk->start_in_dw * 4,
490 resources[i]->base.texture);
491 }
492 }
493 }
494
495 static void evergreen_set_cs_sampler_view(struct pipe_context *ctx_,
496 unsigned start_slot, unsigned count,
497 struct pipe_sampler_view **views)
498 {
499 struct r600_context *ctx = (struct r600_context *)ctx_;
500 struct r600_pipe_sampler_view **resource =
501 (struct r600_pipe_sampler_view **)views;
502
503 for (int i = 0; i < count; i++) {
504 if (resource[i]) {
505 assert(i+1 < 12);
506 ///FETCH0 = VTX0 (param buffer),
507 //FETCH1 = VTX1 (global buffer pool), FETCH2... = TEX
508 evergreen_set_tex_resource(ctx->cs_shader_state.shader, resource[i], i+2);
509 }
510 }
511 }
512
513 static void evergreen_bind_compute_sampler_states(
514 struct pipe_context *ctx_,
515 unsigned start_slot,
516 unsigned num_samplers,
517 void **samplers_)
518 {
519 struct r600_context *ctx = (struct r600_context *)ctx_;
520 struct compute_sampler_state ** samplers =
521 (struct compute_sampler_state **)samplers_;
522
523 for (int i = 0; i < num_samplers; i++) {
524 if (samplers[i]) {
525 evergreen_set_sampler_resource(
526 ctx->cs_shader_state.shader, samplers[i], i);
527 }
528 }
529 }
530
531 static void evergreen_set_global_binding(
532 struct pipe_context *ctx_, unsigned first, unsigned n,
533 struct pipe_resource **resources,
534 uint32_t **handles)
535 {
536 struct r600_context *ctx = (struct r600_context *)ctx_;
537 struct compute_memory_pool *pool = ctx->screen->global_pool;
538 struct r600_resource_global **buffers =
539 (struct r600_resource_global **)resources;
540
541 COMPUTE_DBG("*** evergreen_set_global_binding first = %u n = %u\n",
542 first, n);
543
544 if (!resources) {
545 /* XXX: Unset */
546 return;
547 }
548
549 compute_memory_finalize_pending(pool, ctx_);
550
551 for (int i = 0; i < n; i++)
552 {
553 assert(resources[i]->target == PIPE_BUFFER);
554 assert(resources[i]->bind & PIPE_BIND_GLOBAL);
555
556 *(handles[i]) = buffers[i]->chunk->start_in_dw * 4;
557 }
558
559 evergreen_set_rat(ctx->cs_shader_state.shader, 0, pool->bo, 0, pool->size_in_dw * 4);
560 evergreen_cs_set_vertex_buffer(ctx, 1, 0,
561 (struct pipe_resource*)pool->bo);
562 }
563
564 /**
565 * This function initializes all the compute specific registers that need to
566 * be initialized for each compute command stream. Registers that are common
567 * to both compute and 3D will be initialized at the beginning of each compute
568 * command stream by the start_cs_cmd atom. However, since the SET_CONTEXT_REG
569 * packet requires that the shader type bit be set, we must initialize all
570 * context registers needed for compute in this function. The registers
571 * intialized by the start_cs_cmd atom can be found in evereen_state.c in the
572 * functions evergreen_init_atom_start_cs or cayman_init_atom_start_cs depending
573 * on the GPU family.
574 */
575 void evergreen_init_atom_start_compute_cs(struct r600_context *ctx)
576 {
577 struct r600_command_buffer *cb = &ctx->start_compute_cs_cmd;
578 int num_threads;
579 int num_stack_entries;
580
581 /* We aren't passing the EMIT_EARLY flag as the third argument
582 * because we will be emitting this atom manually in order to
583 * ensure it gets emitted after the start_cs_cmd atom.
584 */
585 r600_init_command_buffer(cb, 256, 0);
586 cb->pkt_flags = RADEON_CP_PACKET3_COMPUTE_MODE;
587
588 switch (ctx->family) {
589 case CHIP_CEDAR:
590 default:
591 num_threads = 128;
592 num_stack_entries = 256;
593 break;
594 case CHIP_REDWOOD:
595 num_threads = 128;
596 num_stack_entries = 256;
597 break;
598 case CHIP_JUNIPER:
599 num_threads = 128;
600 num_stack_entries = 512;
601 break;
602 case CHIP_CYPRESS:
603 case CHIP_HEMLOCK:
604 num_threads = 128;
605 num_stack_entries = 512;
606 break;
607 case CHIP_PALM:
608 num_threads = 128;
609 num_stack_entries = 256;
610 break;
611 case CHIP_SUMO:
612 num_threads = 128;
613 num_stack_entries = 256;
614 break;
615 case CHIP_SUMO2:
616 num_threads = 128;
617 num_stack_entries = 512;
618 break;
619 case CHIP_BARTS:
620 num_threads = 128;
621 num_stack_entries = 512;
622 break;
623 case CHIP_TURKS:
624 num_threads = 128;
625 num_stack_entries = 256;
626 break;
627 case CHIP_CAICOS:
628 num_threads = 128;
629 num_stack_entries = 256;
630 break;
631 }
632
633 /* Config Registers */
634
635 /* The primitive type always needs to be POINTLIST for compute. */
636 r600_store_config_reg(cb, R_008958_VGT_PRIMITIVE_TYPE,
637 V_008958_DI_PT_POINTLIST);
638
639 if (ctx->chip_class < CAYMAN) {
640
641 /* These registers control which simds can be used by each stage.
642 * The default for these registers is 0xffffffff, which means
643 * all simds are available for each stage. It's possible we may
644 * want to play around with these in the future, but for now
645 * the default value is fine.
646 *
647 * R_008E20_SQ_STATIC_THREAD_MGMT1
648 * R_008E24_SQ_STATIC_THREAD_MGMT2
649 * R_008E28_SQ_STATIC_THREAD_MGMT3
650 */
651
652 /* XXX: We may need to adjust the thread and stack resouce
653 * values for 3D/compute interop */
654
655 r600_store_config_reg_seq(cb, R_008C18_SQ_THREAD_RESOURCE_MGMT_1, 5);
656
657 /* R_008C18_SQ_THREAD_RESOURCE_MGMT_1
658 * Set the number of threads used by the PS/VS/GS/ES stage to
659 * 0.
660 */
661 r600_store_value(cb, 0);
662
663 /* R_008C1C_SQ_THREAD_RESOURCE_MGMT_2
664 * Set the number of threads used by the CS (aka LS) stage to
665 * the maximum number of threads and set the number of threads
666 * for the HS stage to 0. */
667 r600_store_value(cb, S_008C1C_NUM_LS_THREADS(num_threads));
668
669 /* R_008C20_SQ_STACK_RESOURCE_MGMT_1
670 * Set the Control Flow stack entries to 0 for PS/VS stages */
671 r600_store_value(cb, 0);
672
673 /* R_008C24_SQ_STACK_RESOURCE_MGMT_2
674 * Set the Control Flow stack entries to 0 for GS/ES stages */
675 r600_store_value(cb, 0);
676
677 /* R_008C28_SQ_STACK_RESOURCE_MGMT_3
678 * Set the Contol Flow stack entries to 0 for the HS stage, and
679 * set it to the maximum value for the CS (aka LS) stage. */
680 r600_store_value(cb,
681 S_008C28_NUM_LS_STACK_ENTRIES(num_stack_entries));
682 }
683
684 /* Context Registers */
685
686 if (ctx->chip_class < CAYMAN) {
687 /* workaround for hw issues with dyn gpr - must set all limits
688 * to 240 instead of 0, 0x1e == 240 / 8
689 */
690 r600_store_context_reg(cb, R_028838_SQ_DYN_GPR_RESOURCE_LIMIT_1,
691 S_028838_PS_GPRS(0x1e) |
692 S_028838_VS_GPRS(0x1e) |
693 S_028838_GS_GPRS(0x1e) |
694 S_028838_ES_GPRS(0x1e) |
695 S_028838_HS_GPRS(0x1e) |
696 S_028838_LS_GPRS(0x1e));
697 }
698
699 /* XXX: Investigate setting bit 15, which is FAST_COMPUTE_MODE */
700 r600_store_context_reg(cb, R_028A40_VGT_GS_MODE,
701 S_028A40_COMPUTE_MODE(1) | S_028A40_PARTIAL_THD_AT_EOI(1));
702
703 r600_store_context_reg(cb, R_028B54_VGT_SHADER_STAGES_EN, 2/*CS_ON*/);
704
705 r600_store_context_reg(cb, R_0286E8_SPI_COMPUTE_INPUT_CNTL,
706 S_0286E8_TID_IN_GROUP_ENA
707 | S_0286E8_TGID_ENA
708 | S_0286E8_DISABLE_INDEX_PACK)
709 ;
710
711 /* The LOOP_CONST registers are an optimizations for loops that allows
712 * you to store the initial counter, increment value, and maximum
713 * counter value in a register so that hardware can calculate the
714 * correct number of iterations for the loop, so that you don't need
715 * to have the loop counter in your shader code. We don't currently use
716 * this optimization, so we must keep track of the counter in the
717 * shader and use a break instruction to exit loops. However, the
718 * hardware will still uses this register to determine when to exit a
719 * loop, so we need to initialize the counter to 0, set the increment
720 * value to 1 and the maximum counter value to the 4095 (0xfff) which
721 * is the maximum value allowed. This gives us a maximum of 4096
722 * iterations for our loops, but hopefully our break instruction will
723 * execute before some time before the 4096th iteration.
724 */
725 eg_store_loop_const(cb, R_03A200_SQ_LOOP_CONST_0 + (160 * 4), 0x1000FFF);
726 }
727
728 void evergreen_init_compute_state_functions(struct r600_context *ctx)
729 {
730 ctx->context.create_compute_state = evergreen_create_compute_state;
731 ctx->context.delete_compute_state = evergreen_delete_compute_state;
732 ctx->context.bind_compute_state = evergreen_bind_compute_state;
733 // ctx->context.create_sampler_view = evergreen_compute_create_sampler_view;
734 ctx->context.set_compute_resources = evergreen_set_compute_resources;
735 ctx->context.set_compute_sampler_views = evergreen_set_cs_sampler_view;
736 ctx->context.bind_compute_sampler_states = evergreen_bind_compute_sampler_states;
737 ctx->context.set_global_binding = evergreen_set_global_binding;
738 ctx->context.launch_grid = evergreen_launch_grid;
739
740 /* We always use at least two vertex buffers for compute, one for
741 * parameters and one for global memory */
742 ctx->cs_vertex_buffer_state.enabled_mask =
743 ctx->cs_vertex_buffer_state.dirty_mask = 1 | 2;
744 }
745
746
747 struct pipe_resource *r600_compute_global_buffer_create(
748 struct pipe_screen *screen,
749 const struct pipe_resource *templ)
750 {
751 assert(templ->target == PIPE_BUFFER);
752 assert(templ->bind & PIPE_BIND_GLOBAL);
753 assert(templ->array_size == 1 || templ->array_size == 0);
754 assert(templ->depth0 == 1 || templ->depth0 == 0);
755 assert(templ->height0 == 1 || templ->height0 == 0);
756
757 struct r600_resource_global* result = (struct r600_resource_global*)
758 CALLOC(sizeof(struct r600_resource_global), 1);
759 struct r600_screen* rscreen = (struct r600_screen*)screen;
760
761 COMPUTE_DBG("*** r600_compute_global_buffer_create\n");
762 COMPUTE_DBG("width = %u array_size = %u\n", templ->width0,
763 templ->array_size);
764
765 result->base.b.vtbl = &r600_global_buffer_vtbl;
766 result->base.b.b.screen = screen;
767 result->base.b.b = *templ;
768 pipe_reference_init(&result->base.b.b.reference, 1);
769
770 int size_in_dw = (templ->width0+3) / 4;
771
772 result->chunk = compute_memory_alloc(rscreen->global_pool, size_in_dw);
773
774 if (result->chunk == NULL)
775 {
776 free(result);
777 return NULL;
778 }
779
780 return &result->base.b.b;
781 }
782
783 void r600_compute_global_buffer_destroy(
784 struct pipe_screen *screen,
785 struct pipe_resource *res)
786 {
787 assert(res->target == PIPE_BUFFER);
788 assert(res->bind & PIPE_BIND_GLOBAL);
789
790 struct r600_resource_global* buffer = (struct r600_resource_global*)res;
791 struct r600_screen* rscreen = (struct r600_screen*)screen;
792
793 compute_memory_free(rscreen->global_pool, buffer->chunk->id);
794
795 buffer->chunk = NULL;
796 free(res);
797 }
798
799 void* r600_compute_global_transfer_map(
800 struct pipe_context *ctx_,
801 struct pipe_transfer* transfer)
802 {
803 assert(transfer->resource->target == PIPE_BUFFER);
804 assert(transfer->resource->bind & PIPE_BIND_GLOBAL);
805 assert(transfer->box.x >= 0);
806 assert(transfer->box.y == 0);
807 assert(transfer->box.z == 0);
808
809 struct r600_context *ctx = (struct r600_context *)ctx_;
810 struct r600_resource_global* buffer =
811 (struct r600_resource_global*)transfer->resource;
812
813 uint32_t* map;
814 ///TODO: do it better, mapping is not possible if the pool is too big
815
816 if (!(map = ctx->ws->buffer_map(buffer->chunk->pool->bo->cs_buf,
817 ctx->cs, transfer->usage))) {
818 return NULL;
819 }
820
821 COMPUTE_DBG("buffer start: %lli\n", buffer->chunk->start_in_dw);
822 return ((char*)(map + buffer->chunk->start_in_dw)) + transfer->box.x;
823 }
824
825 void r600_compute_global_transfer_unmap(
826 struct pipe_context *ctx_,
827 struct pipe_transfer* transfer)
828 {
829 assert(transfer->resource->target == PIPE_BUFFER);
830 assert(transfer->resource->bind & PIPE_BIND_GLOBAL);
831
832 struct r600_context *ctx = (struct r600_context *)ctx_;
833 struct r600_resource_global* buffer =
834 (struct r600_resource_global*)transfer->resource;
835
836 ctx->ws->buffer_unmap(buffer->chunk->pool->bo->cs_buf);
837 }
838
839 struct pipe_transfer * r600_compute_global_get_transfer(
840 struct pipe_context *ctx_,
841 struct pipe_resource *resource,
842 unsigned level,
843 unsigned usage,
844 const struct pipe_box *box)
845 {
846 struct r600_context *ctx = (struct r600_context *)ctx_;
847 struct compute_memory_pool *pool = ctx->screen->global_pool;
848
849 compute_memory_finalize_pending(pool, ctx_);
850
851 assert(resource->target == PIPE_BUFFER);
852 struct r600_context *rctx = (struct r600_context*)ctx_;
853 struct pipe_transfer *transfer = util_slab_alloc(&rctx->pool_transfers);
854
855 transfer->resource = resource;
856 transfer->level = level;
857 transfer->usage = usage;
858 transfer->box = *box;
859 transfer->stride = 0;
860 transfer->layer_stride = 0;
861 transfer->data = NULL;
862
863 /* Note strides are zero, this is ok for buffers, but not for
864 * textures 2d & higher at least.
865 */
866 return transfer;
867 }
868
869 void r600_compute_global_transfer_destroy(
870 struct pipe_context *ctx_,
871 struct pipe_transfer *transfer)
872 {
873 struct r600_context *rctx = (struct r600_context*)ctx_;
874 util_slab_free(&rctx->pool_transfers, transfer);
875 }
876
877 void r600_compute_global_transfer_flush_region(
878 struct pipe_context *ctx_,
879 struct pipe_transfer *transfer,
880 const struct pipe_box *box)
881 {
882 assert(0 && "TODO");
883 }
884
885 void r600_compute_global_transfer_inline_write(
886 struct pipe_context *pipe,
887 struct pipe_resource *resource,
888 unsigned level,
889 unsigned usage,
890 const struct pipe_box *box,
891 const void *data,
892 unsigned stride,
893 unsigned layer_stride)
894 {
895 assert(0 && "TODO");
896 }