r600/compute: Free compiled kernels when deleting compute state
[mesa.git] / src / gallium / drivers / r600 / evergreen_compute.c
1 /*
2 * Copyright 2011 Adam Rak <adam.rak@streamnovation.com>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * on the rights to use, copy, modify, merge, publish, distribute, sub
8 * license, and/or sell copies of the Software, and to permit persons to whom
9 * the Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Adam Rak <adam.rak@streamnovation.com>
25 */
26
27 #include <stdio.h>
28 #include <errno.h>
29 #include "pipe/p_defines.h"
30 #include "pipe/p_state.h"
31 #include "pipe/p_context.h"
32 #include "util/u_blitter.h"
33 #include "util/u_double_list.h"
34 #include "util/u_transfer.h"
35 #include "util/u_surface.h"
36 #include "util/u_pack_color.h"
37 #include "util/u_memory.h"
38 #include "util/u_inlines.h"
39 #include "util/u_framebuffer.h"
40 #include "pipebuffer/pb_buffer.h"
41 #include "evergreend.h"
42 #include "r600_resource.h"
43 #include "r600_shader.h"
44 #include "r600_pipe.h"
45 #include "r600_formats.h"
46 #include "evergreen_compute.h"
47 #include "evergreen_compute_internal.h"
48 #include "compute_memory_pool.h"
49 #include "sb/sb_public.h"
50 #ifdef HAVE_OPENCL
51 #include "radeon_llvm_util.h"
52 #endif
53
54 /**
55 RAT0 is for global binding write
56 VTX1 is for global binding read
57
58 for wrting images RAT1...
59 for reading images TEX2...
60 TEX2-RAT1 is paired
61
62 TEX2... consumes the same fetch resources, that VTX2... would consume
63
64 CONST0 and VTX0 is for parameters
65 CONST0 is binding smaller input parameter buffer, and for constant indexing,
66 also constant cached
67 VTX0 is for indirect/non-constant indexing, or if the input is bigger than
68 the constant cache can handle
69
70 RAT-s are limited to 12, so we can only bind at most 11 texture for writing
71 because we reserve RAT0 for global bindings. With byteaddressing enabled,
72 we should reserve another one too.=> 10 image binding for writing max.
73
74 from Nvidia OpenCL:
75 CL_DEVICE_MAX_READ_IMAGE_ARGS: 128
76 CL_DEVICE_MAX_WRITE_IMAGE_ARGS: 8
77
78 so 10 for writing is enough. 176 is the max for reading according to the docs
79
80 writable images should be listed first < 10, so their id corresponds to RAT(id+1)
81 writable images will consume TEX slots, VTX slots too because of linear indexing
82
83 */
84
85 struct r600_resource* r600_compute_buffer_alloc_vram(
86 struct r600_screen *screen,
87 unsigned size)
88 {
89 struct pipe_resource * buffer = NULL;
90 assert(size);
91
92 buffer = pipe_buffer_create(
93 (struct pipe_screen*) screen,
94 PIPE_BIND_CUSTOM,
95 PIPE_USAGE_IMMUTABLE,
96 size);
97
98 return (struct r600_resource *)buffer;
99 }
100
101
102 static void evergreen_set_rat(
103 struct r600_pipe_compute *pipe,
104 int id,
105 struct r600_resource* bo,
106 int start,
107 int size)
108 {
109 struct pipe_surface rat_templ;
110 struct r600_surface *surf = NULL;
111 struct r600_context *rctx = NULL;
112
113 assert(id < 12);
114 assert((size & 3) == 0);
115 assert((start & 0xFF) == 0);
116
117 rctx = pipe->ctx;
118
119 COMPUTE_DBG(rctx->screen, "bind rat: %i \n", id);
120
121 /* Create the RAT surface */
122 memset(&rat_templ, 0, sizeof(rat_templ));
123 rat_templ.format = PIPE_FORMAT_R32_UINT;
124 rat_templ.u.tex.level = 0;
125 rat_templ.u.tex.first_layer = 0;
126 rat_templ.u.tex.last_layer = 0;
127
128 /* Add the RAT the list of color buffers */
129 pipe->ctx->framebuffer.state.cbufs[id] = pipe->ctx->b.b.create_surface(
130 (struct pipe_context *)pipe->ctx,
131 (struct pipe_resource *)bo, &rat_templ);
132
133 /* Update the number of color buffers */
134 pipe->ctx->framebuffer.state.nr_cbufs =
135 MAX2(id + 1, pipe->ctx->framebuffer.state.nr_cbufs);
136
137 /* Update the cb_target_mask
138 * XXX: I think this is a potential spot for bugs once we start doing
139 * GL interop. cb_target_mask may be modified in the 3D sections
140 * of this driver. */
141 pipe->ctx->compute_cb_target_mask |= (0xf << (id * 4));
142
143 surf = (struct r600_surface*)pipe->ctx->framebuffer.state.cbufs[id];
144 evergreen_init_color_surface_rat(rctx, surf);
145 }
146
147 static void evergreen_cs_set_vertex_buffer(
148 struct r600_context * rctx,
149 unsigned vb_index,
150 unsigned offset,
151 struct pipe_resource * buffer)
152 {
153 struct r600_vertexbuf_state *state = &rctx->cs_vertex_buffer_state;
154 struct pipe_vertex_buffer *vb = &state->vb[vb_index];
155 vb->stride = 1;
156 vb->buffer_offset = offset;
157 vb->buffer = buffer;
158 vb->user_buffer = NULL;
159
160 /* The vertex instructions in the compute shaders use the texture cache,
161 * so we need to invalidate it. */
162 rctx->b.flags |= R600_CONTEXT_INV_VERTEX_CACHE;
163 state->enabled_mask |= 1 << vb_index;
164 state->dirty_mask |= 1 << vb_index;
165 state->atom.dirty = true;
166 }
167
168 static void evergreen_cs_set_constant_buffer(
169 struct r600_context * rctx,
170 unsigned cb_index,
171 unsigned offset,
172 unsigned size,
173 struct pipe_resource * buffer)
174 {
175 struct pipe_constant_buffer cb;
176 cb.buffer_size = size;
177 cb.buffer_offset = offset;
178 cb.buffer = buffer;
179 cb.user_buffer = NULL;
180
181 rctx->b.b.set_constant_buffer(&rctx->b.b, PIPE_SHADER_COMPUTE, cb_index, &cb);
182 }
183
184 static const struct u_resource_vtbl r600_global_buffer_vtbl =
185 {
186 u_default_resource_get_handle, /* get_handle */
187 r600_compute_global_buffer_destroy, /* resource_destroy */
188 r600_compute_global_transfer_map, /* transfer_map */
189 r600_compute_global_transfer_flush_region,/* transfer_flush_region */
190 r600_compute_global_transfer_unmap, /* transfer_unmap */
191 r600_compute_global_transfer_inline_write /* transfer_inline_write */
192 };
193
194
195 void *evergreen_create_compute_state(
196 struct pipe_context *ctx_,
197 const const struct pipe_compute_state *cso)
198 {
199 struct r600_context *ctx = (struct r600_context *)ctx_;
200 struct r600_pipe_compute *shader = CALLOC_STRUCT(r600_pipe_compute);
201
202 #ifdef HAVE_OPENCL
203 const struct pipe_llvm_program_header * header;
204 const unsigned char * code;
205 unsigned i;
206
207 shader->llvm_ctx = LLVMContextCreate();
208
209 COMPUTE_DBG(ctx->screen, "*** evergreen_create_compute_state\n");
210
211 header = cso->prog;
212 code = cso->prog + sizeof(struct pipe_llvm_program_header);
213 #endif
214
215 shader->ctx = (struct r600_context*)ctx;
216 shader->local_size = cso->req_local_mem;
217 shader->private_size = cso->req_private_mem;
218 shader->input_size = cso->req_input_mem;
219
220 #ifdef HAVE_OPENCL
221 shader->num_kernels = radeon_llvm_get_num_kernels(shader->llvm_ctx, code,
222 header->num_bytes);
223 shader->kernels = CALLOC(sizeof(struct r600_kernel), shader->num_kernels);
224
225 for (i = 0; i < shader->num_kernels; i++) {
226 struct r600_kernel *kernel = &shader->kernels[i];
227 kernel->llvm_module = radeon_llvm_get_kernel_module(shader->llvm_ctx, i,
228 code, header->num_bytes);
229 }
230 #endif
231 return shader;
232 }
233
234 void evergreen_delete_compute_state(struct pipe_context *ctx, void* state)
235 {
236 struct r600_pipe_compute *shader = (struct r600_pipe_compute *)state;
237
238 if (!shader)
239 return;
240
241 FREE(shader->kernels);
242
243 #ifdef HAVE_OPENCL
244 if (shader->llvm_ctx){
245 LLVMContextDispose(shader->llvm_ctx);
246 }
247 #endif
248
249 free(shader);
250 }
251
252 static void evergreen_bind_compute_state(struct pipe_context *ctx_, void *state)
253 {
254 struct r600_context *ctx = (struct r600_context *)ctx_;
255
256 COMPUTE_DBG(ctx->screen, "*** evergreen_bind_compute_state\n");
257
258 ctx->cs_shader_state.shader = (struct r600_pipe_compute *)state;
259 }
260
261 /* The kernel parameters are stored a vtx buffer (ID=0), besides the explicit
262 * kernel parameters there are implicit parameters that need to be stored
263 * in the vertex buffer as well. Here is how these parameters are organized in
264 * the buffer:
265 *
266 * DWORDS 0-2: Number of work groups in each dimension (x,y,z)
267 * DWORDS 3-5: Number of global work items in each dimension (x,y,z)
268 * DWORDS 6-8: Number of work items within each work group in each dimension
269 * (x,y,z)
270 * DWORDS 9+ : Kernel parameters
271 */
272 void evergreen_compute_upload_input(
273 struct pipe_context *ctx_,
274 const uint *block_layout,
275 const uint *grid_layout,
276 const void *input)
277 {
278 struct r600_context *ctx = (struct r600_context *)ctx_;
279 struct r600_pipe_compute *shader = ctx->cs_shader_state.shader;
280 int i;
281 /* We need to reserve 9 dwords (36 bytes) for implicit kernel
282 * parameters.
283 */
284 unsigned input_size = shader->input_size + 36;
285 uint32_t * num_work_groups_start;
286 uint32_t * global_size_start;
287 uint32_t * local_size_start;
288 uint32_t * kernel_parameters_start;
289 struct pipe_box box;
290 struct pipe_transfer *transfer = NULL;
291
292 if (shader->input_size == 0) {
293 return;
294 }
295
296 if (!shader->kernel_param) {
297 /* Add space for the grid dimensions */
298 shader->kernel_param = (struct r600_resource *)
299 pipe_buffer_create(ctx_->screen, PIPE_BIND_CUSTOM,
300 PIPE_USAGE_IMMUTABLE, input_size);
301 }
302
303 u_box_1d(0, input_size, &box);
304 num_work_groups_start = ctx_->transfer_map(ctx_,
305 (struct pipe_resource*)shader->kernel_param,
306 0, PIPE_TRANSFER_WRITE | PIPE_TRANSFER_DISCARD_RANGE,
307 &box, &transfer);
308 global_size_start = num_work_groups_start + (3 * (sizeof(uint) /4));
309 local_size_start = global_size_start + (3 * (sizeof(uint)) / 4);
310 kernel_parameters_start = local_size_start + (3 * (sizeof(uint)) / 4);
311
312 /* Copy the work group size */
313 memcpy(num_work_groups_start, grid_layout, 3 * sizeof(uint));
314
315 /* Copy the global size */
316 for (i = 0; i < 3; i++) {
317 global_size_start[i] = grid_layout[i] * block_layout[i];
318 }
319
320 /* Copy the local dimensions */
321 memcpy(local_size_start, block_layout, 3 * sizeof(uint));
322
323 /* Copy the kernel inputs */
324 memcpy(kernel_parameters_start, input, shader->input_size);
325
326 for (i = 0; i < (input_size / 4); i++) {
327 COMPUTE_DBG(ctx->screen, "input %i : %i\n", i,
328 ((unsigned*)num_work_groups_start)[i]);
329 }
330
331 ctx_->transfer_unmap(ctx_, transfer);
332
333 /* ID=0 is reserved for the parameters */
334 evergreen_cs_set_constant_buffer(ctx, 0, 0, input_size,
335 (struct pipe_resource*)shader->kernel_param);
336 }
337
338 static void evergreen_emit_direct_dispatch(
339 struct r600_context *rctx,
340 const uint *block_layout, const uint *grid_layout)
341 {
342 int i;
343 struct radeon_winsys_cs *cs = rctx->b.rings.gfx.cs;
344 struct r600_pipe_compute *shader = rctx->cs_shader_state.shader;
345 unsigned num_waves;
346 unsigned num_pipes = rctx->screen->b.info.r600_max_pipes;
347 unsigned wave_divisor = (16 * num_pipes);
348 int group_size = 1;
349 int grid_size = 1;
350 unsigned lds_size = shader->local_size / 4 + shader->active_kernel->bc.nlds_dw;
351
352 /* Calculate group_size/grid_size */
353 for (i = 0; i < 3; i++) {
354 group_size *= block_layout[i];
355 }
356
357 for (i = 0; i < 3; i++) {
358 grid_size *= grid_layout[i];
359 }
360
361 /* num_waves = ceil((tg_size.x * tg_size.y, tg_size.z) / (16 * num_pipes)) */
362 num_waves = (block_layout[0] * block_layout[1] * block_layout[2] +
363 wave_divisor - 1) / wave_divisor;
364
365 COMPUTE_DBG(rctx->screen, "Using %u pipes, "
366 "%u wavefronts per thread block, "
367 "allocating %u dwords lds.\n",
368 num_pipes, num_waves, lds_size);
369
370 r600_write_config_reg(cs, R_008970_VGT_NUM_INDICES, group_size);
371
372 r600_write_config_reg_seq(cs, R_00899C_VGT_COMPUTE_START_X, 3);
373 radeon_emit(cs, 0); /* R_00899C_VGT_COMPUTE_START_X */
374 radeon_emit(cs, 0); /* R_0089A0_VGT_COMPUTE_START_Y */
375 radeon_emit(cs, 0); /* R_0089A4_VGT_COMPUTE_START_Z */
376
377 r600_write_config_reg(cs, R_0089AC_VGT_COMPUTE_THREAD_GROUP_SIZE,
378 group_size);
379
380 r600_write_compute_context_reg_seq(cs, R_0286EC_SPI_COMPUTE_NUM_THREAD_X, 3);
381 radeon_emit(cs, block_layout[0]); /* R_0286EC_SPI_COMPUTE_NUM_THREAD_X */
382 radeon_emit(cs, block_layout[1]); /* R_0286F0_SPI_COMPUTE_NUM_THREAD_Y */
383 radeon_emit(cs, block_layout[2]); /* R_0286F4_SPI_COMPUTE_NUM_THREAD_Z */
384
385 if (rctx->b.chip_class < CAYMAN) {
386 assert(lds_size <= 8192);
387 } else {
388 /* Cayman appears to have a slightly smaller limit, see the
389 * value of CM_R_0286FC_SPI_LDS_MGMT.NUM_LS_LDS */
390 assert(lds_size <= 8160);
391 }
392
393 r600_write_compute_context_reg(cs, CM_R_0288E8_SQ_LDS_ALLOC,
394 lds_size | (num_waves << 14));
395
396 /* Dispatch packet */
397 radeon_emit(cs, PKT3C(PKT3_DISPATCH_DIRECT, 3, 0));
398 radeon_emit(cs, grid_layout[0]);
399 radeon_emit(cs, grid_layout[1]);
400 radeon_emit(cs, grid_layout[2]);
401 /* VGT_DISPATCH_INITIATOR = COMPUTE_SHADER_EN */
402 radeon_emit(cs, 1);
403 }
404
405 static void compute_emit_cs(struct r600_context *ctx, const uint *block_layout,
406 const uint *grid_layout)
407 {
408 struct radeon_winsys_cs *cs = ctx->b.rings.gfx.cs;
409 int i;
410
411 /* make sure that the gfx ring is only one active */
412 if (ctx->b.rings.dma.cs) {
413 ctx->b.rings.dma.flush(ctx, RADEON_FLUSH_ASYNC);
414 }
415
416 /* Initialize all the compute-related registers.
417 *
418 * See evergreen_init_atom_start_compute_cs() in this file for the list
419 * of registers initialized by the start_compute_cs_cmd atom.
420 */
421 r600_emit_command_buffer(cs, &ctx->start_compute_cs_cmd);
422
423 ctx->b.flags |= R600_CONTEXT_WAIT_3D_IDLE | R600_CONTEXT_FLUSH_AND_INV;
424 r600_flush_emit(ctx);
425
426 /* Emit colorbuffers. */
427 /* XXX support more than 8 colorbuffers (the offsets are not a multiple of 0x3C for CB8-11) */
428 for (i = 0; i < 8 && i < ctx->framebuffer.state.nr_cbufs; i++) {
429 struct r600_surface *cb = (struct r600_surface*)ctx->framebuffer.state.cbufs[i];
430 unsigned reloc = r600_context_bo_reloc(&ctx->b, &ctx->b.rings.gfx,
431 (struct r600_resource*)cb->base.texture,
432 RADEON_USAGE_READWRITE);
433
434 r600_write_compute_context_reg_seq(cs, R_028C60_CB_COLOR0_BASE + i * 0x3C, 7);
435 radeon_emit(cs, cb->cb_color_base); /* R_028C60_CB_COLOR0_BASE */
436 radeon_emit(cs, cb->cb_color_pitch); /* R_028C64_CB_COLOR0_PITCH */
437 radeon_emit(cs, cb->cb_color_slice); /* R_028C68_CB_COLOR0_SLICE */
438 radeon_emit(cs, cb->cb_color_view); /* R_028C6C_CB_COLOR0_VIEW */
439 radeon_emit(cs, cb->cb_color_info); /* R_028C70_CB_COLOR0_INFO */
440 radeon_emit(cs, cb->cb_color_attrib); /* R_028C74_CB_COLOR0_ATTRIB */
441 radeon_emit(cs, cb->cb_color_dim); /* R_028C78_CB_COLOR0_DIM */
442
443 radeon_emit(cs, PKT3(PKT3_NOP, 0, 0)); /* R_028C60_CB_COLOR0_BASE */
444 radeon_emit(cs, reloc);
445
446 if (!ctx->keep_tiling_flags) {
447 radeon_emit(cs, PKT3(PKT3_NOP, 0, 0)); /* R_028C70_CB_COLOR0_INFO */
448 radeon_emit(cs, reloc);
449 }
450
451 radeon_emit(cs, PKT3(PKT3_NOP, 0, 0)); /* R_028C74_CB_COLOR0_ATTRIB */
452 radeon_emit(cs, reloc);
453 }
454 if (ctx->keep_tiling_flags) {
455 for (; i < 8 ; i++) {
456 r600_write_compute_context_reg(cs, R_028C70_CB_COLOR0_INFO + i * 0x3C,
457 S_028C70_FORMAT(V_028C70_COLOR_INVALID));
458 }
459 for (; i < 12; i++) {
460 r600_write_compute_context_reg(cs, R_028E50_CB_COLOR8_INFO + (i - 8) * 0x1C,
461 S_028C70_FORMAT(V_028C70_COLOR_INVALID));
462 }
463 }
464
465 /* Set CB_TARGET_MASK XXX: Use cb_misc_state */
466 r600_write_compute_context_reg(cs, R_028238_CB_TARGET_MASK,
467 ctx->compute_cb_target_mask);
468
469
470 /* Emit vertex buffer state */
471 ctx->cs_vertex_buffer_state.atom.num_dw = 12 * util_bitcount(ctx->cs_vertex_buffer_state.dirty_mask);
472 r600_emit_atom(ctx, &ctx->cs_vertex_buffer_state.atom);
473
474 /* Emit constant buffer state */
475 r600_emit_atom(ctx, &ctx->constbuf_state[PIPE_SHADER_COMPUTE].atom);
476
477 /* Emit compute shader state */
478 r600_emit_atom(ctx, &ctx->cs_shader_state.atom);
479
480 /* Emit dispatch state and dispatch packet */
481 evergreen_emit_direct_dispatch(ctx, block_layout, grid_layout);
482
483 /* XXX evergreen_flush_emit() hardcodes the CP_COHER_SIZE to 0xffffffff
484 */
485 ctx->b.flags |= R600_CONTEXT_INV_CONST_CACHE |
486 R600_CONTEXT_INV_VERTEX_CACHE |
487 R600_CONTEXT_INV_TEX_CACHE;
488 r600_flush_emit(ctx);
489 ctx->b.flags = 0;
490
491 if (ctx->b.chip_class >= CAYMAN) {
492 ctx->skip_surface_sync_on_next_cs_flush = true;
493 }
494
495 #if 0
496 COMPUTE_DBG(ctx->screen, "cdw: %i\n", cs->cdw);
497 for (i = 0; i < cs->cdw; i++) {
498 COMPUTE_DBG(ctx->screen, "%4i : 0x%08X\n", i, cs->buf[i]);
499 }
500 #endif
501
502 }
503
504
505 /**
506 * Emit function for r600_cs_shader_state atom
507 */
508 void evergreen_emit_cs_shader(
509 struct r600_context *rctx,
510 struct r600_atom *atom)
511 {
512 struct r600_cs_shader_state *state =
513 (struct r600_cs_shader_state*)atom;
514 struct r600_pipe_compute *shader = state->shader;
515 struct r600_kernel *kernel = &shader->kernels[state->kernel_index];
516 struct radeon_winsys_cs *cs = rctx->b.rings.gfx.cs;
517 uint64_t va;
518
519 va = r600_resource_va(&rctx->screen->b.b, &kernel->code_bo->b.b);
520
521 r600_write_compute_context_reg_seq(cs, R_0288D0_SQ_PGM_START_LS, 3);
522 radeon_emit(cs, va >> 8); /* R_0288D0_SQ_PGM_START_LS */
523 radeon_emit(cs, /* R_0288D4_SQ_PGM_RESOURCES_LS */
524 S_0288D4_NUM_GPRS(kernel->bc.ngpr)
525 | S_0288D4_STACK_SIZE(kernel->bc.nstack));
526 radeon_emit(cs, 0); /* R_0288D8_SQ_PGM_RESOURCES_LS_2 */
527
528 radeon_emit(cs, PKT3C(PKT3_NOP, 0, 0));
529 radeon_emit(cs, r600_context_bo_reloc(&rctx->b, &rctx->b.rings.gfx,
530 kernel->code_bo, RADEON_USAGE_READ));
531 }
532
533 static void evergreen_launch_grid(
534 struct pipe_context *ctx_,
535 const uint *block_layout, const uint *grid_layout,
536 uint32_t pc, const void *input)
537 {
538 struct r600_context *ctx = (struct r600_context *)ctx_;
539
540 struct r600_pipe_compute *shader = ctx->cs_shader_state.shader;
541 struct r600_kernel *kernel = &shader->kernels[pc];
542
543 COMPUTE_DBG(ctx->screen, "*** evergreen_launch_grid: pc = %u\n", pc);
544
545 #ifdef HAVE_OPENCL
546
547 if (!kernel->code_bo) {
548 void *p;
549 struct r600_bytecode *bc = &kernel->bc;
550 LLVMModuleRef mod = kernel->llvm_module;
551 boolean use_kill = false;
552 bool dump = (ctx->screen->b.debug_flags & DBG_CS) != 0;
553 unsigned use_sb = ctx->screen->b.debug_flags & DBG_SB_CS;
554 unsigned sb_disasm = use_sb ||
555 (ctx->screen->b.debug_flags & DBG_SB_DISASM);
556
557 r600_bytecode_init(bc, ctx->b.chip_class, ctx->b.family,
558 ctx->screen->has_compressed_msaa_texturing);
559 bc->type = TGSI_PROCESSOR_COMPUTE;
560 bc->isa = ctx->isa;
561 r600_llvm_compile(mod, ctx->b.family, bc, &use_kill, dump);
562
563 if (dump && !sb_disasm) {
564 r600_bytecode_disasm(bc);
565 } else if ((dump && sb_disasm) || use_sb) {
566 if (r600_sb_bytecode_process(ctx, bc, NULL, dump, use_sb))
567 R600_ERR("r600_sb_bytecode_process failed!\n");
568 }
569
570 kernel->code_bo = r600_compute_buffer_alloc_vram(ctx->screen,
571 kernel->bc.ndw * 4);
572 p = r600_buffer_map_sync_with_rings(&ctx->b, kernel->code_bo, PIPE_TRANSFER_WRITE);
573 memcpy(p, kernel->bc.bytecode, kernel->bc.ndw * 4);
574 ctx->b.ws->buffer_unmap(kernel->code_bo->cs_buf);
575 }
576 #endif
577 shader->active_kernel = kernel;
578 ctx->cs_shader_state.kernel_index = pc;
579 evergreen_compute_upload_input(ctx_, block_layout, grid_layout, input);
580 compute_emit_cs(ctx, block_layout, grid_layout);
581 }
582
583 static void evergreen_set_compute_resources(struct pipe_context * ctx_,
584 unsigned start, unsigned count,
585 struct pipe_surface ** surfaces)
586 {
587 struct r600_context *ctx = (struct r600_context *)ctx_;
588 struct r600_surface **resources = (struct r600_surface **)surfaces;
589
590 COMPUTE_DBG(ctx->screen, "*** evergreen_set_compute_resources: start = %u count = %u\n",
591 start, count);
592
593 for (int i = 0; i < count; i++) {
594 /* The First two vertex buffers are reserved for parameters and
595 * global buffers. */
596 unsigned vtx_id = 2 + i;
597 if (resources[i]) {
598 struct r600_resource_global *buffer =
599 (struct r600_resource_global*)
600 resources[i]->base.texture;
601 if (resources[i]->base.writable) {
602 assert(i+1 < 12);
603
604 evergreen_set_rat(ctx->cs_shader_state.shader, i+1,
605 (struct r600_resource *)resources[i]->base.texture,
606 buffer->chunk->start_in_dw*4,
607 resources[i]->base.texture->width0);
608 }
609
610 evergreen_cs_set_vertex_buffer(ctx, vtx_id,
611 buffer->chunk->start_in_dw * 4,
612 resources[i]->base.texture);
613 }
614 }
615 }
616
617 void evergreen_set_cs_sampler_view(struct pipe_context *ctx_,
618 unsigned start_slot, unsigned count,
619 struct pipe_sampler_view **views)
620 {
621 struct r600_pipe_sampler_view **resource =
622 (struct r600_pipe_sampler_view **)views;
623
624 for (int i = 0; i < count; i++) {
625 if (resource[i]) {
626 assert(i+1 < 12);
627 /* XXX: Implement */
628 assert(!"Compute samplers not implemented.");
629 ///FETCH0 = VTX0 (param buffer),
630 //FETCH1 = VTX1 (global buffer pool), FETCH2... = TEX
631 }
632 }
633 }
634
635
636 static void evergreen_set_global_binding(
637 struct pipe_context *ctx_, unsigned first, unsigned n,
638 struct pipe_resource **resources,
639 uint32_t **handles)
640 {
641 struct r600_context *ctx = (struct r600_context *)ctx_;
642 struct compute_memory_pool *pool = ctx->screen->global_pool;
643 struct r600_resource_global **buffers =
644 (struct r600_resource_global **)resources;
645
646 COMPUTE_DBG(ctx->screen, "*** evergreen_set_global_binding first = %u n = %u\n",
647 first, n);
648
649 if (!resources) {
650 /* XXX: Unset */
651 return;
652 }
653
654 compute_memory_finalize_pending(pool, ctx_);
655
656 for (int i = 0; i < n; i++)
657 {
658 assert(resources[i]->target == PIPE_BUFFER);
659 assert(resources[i]->bind & PIPE_BIND_GLOBAL);
660
661 *(handles[i]) = buffers[i]->chunk->start_in_dw * 4;
662 }
663
664 evergreen_set_rat(ctx->cs_shader_state.shader, 0, pool->bo, 0, pool->size_in_dw * 4);
665 evergreen_cs_set_vertex_buffer(ctx, 1, 0,
666 (struct pipe_resource*)pool->bo);
667 }
668
669 /**
670 * This function initializes all the compute specific registers that need to
671 * be initialized for each compute command stream. Registers that are common
672 * to both compute and 3D will be initialized at the beginning of each compute
673 * command stream by the start_cs_cmd atom. However, since the SET_CONTEXT_REG
674 * packet requires that the shader type bit be set, we must initialize all
675 * context registers needed for compute in this function. The registers
676 * intialized by the start_cs_cmd atom can be found in evereen_state.c in the
677 * functions evergreen_init_atom_start_cs or cayman_init_atom_start_cs depending
678 * on the GPU family.
679 */
680 void evergreen_init_atom_start_compute_cs(struct r600_context *ctx)
681 {
682 struct r600_command_buffer *cb = &ctx->start_compute_cs_cmd;
683 int num_threads;
684 int num_stack_entries;
685
686 /* since all required registers are initialised in the
687 * start_compute_cs_cmd atom, we can EMIT_EARLY here.
688 */
689 r600_init_command_buffer(cb, 256);
690 cb->pkt_flags = RADEON_CP_PACKET3_COMPUTE_MODE;
691
692 /* This must be first. */
693 r600_store_value(cb, PKT3(PKT3_CONTEXT_CONTROL, 1, 0));
694 r600_store_value(cb, 0x80000000);
695 r600_store_value(cb, 0x80000000);
696
697 /* We're setting config registers here. */
698 r600_store_value(cb, PKT3(PKT3_EVENT_WRITE, 0, 0));
699 r600_store_value(cb, EVENT_TYPE(EVENT_TYPE_CS_PARTIAL_FLUSH) | EVENT_INDEX(4));
700
701 switch (ctx->b.family) {
702 case CHIP_CEDAR:
703 default:
704 num_threads = 128;
705 num_stack_entries = 256;
706 break;
707 case CHIP_REDWOOD:
708 num_threads = 128;
709 num_stack_entries = 256;
710 break;
711 case CHIP_JUNIPER:
712 num_threads = 128;
713 num_stack_entries = 512;
714 break;
715 case CHIP_CYPRESS:
716 case CHIP_HEMLOCK:
717 num_threads = 128;
718 num_stack_entries = 512;
719 break;
720 case CHIP_PALM:
721 num_threads = 128;
722 num_stack_entries = 256;
723 break;
724 case CHIP_SUMO:
725 num_threads = 128;
726 num_stack_entries = 256;
727 break;
728 case CHIP_SUMO2:
729 num_threads = 128;
730 num_stack_entries = 512;
731 break;
732 case CHIP_BARTS:
733 num_threads = 128;
734 num_stack_entries = 512;
735 break;
736 case CHIP_TURKS:
737 num_threads = 128;
738 num_stack_entries = 256;
739 break;
740 case CHIP_CAICOS:
741 num_threads = 128;
742 num_stack_entries = 256;
743 break;
744 }
745
746 /* Config Registers */
747 if (ctx->b.chip_class < CAYMAN)
748 evergreen_init_common_regs(cb, ctx->b.chip_class, ctx->b.family,
749 ctx->screen->b.info.drm_minor);
750 else
751 cayman_init_common_regs(cb, ctx->b.chip_class, ctx->b.family,
752 ctx->screen->b.info.drm_minor);
753
754 /* The primitive type always needs to be POINTLIST for compute. */
755 r600_store_config_reg(cb, R_008958_VGT_PRIMITIVE_TYPE,
756 V_008958_DI_PT_POINTLIST);
757
758 if (ctx->b.chip_class < CAYMAN) {
759
760 /* These registers control which simds can be used by each stage.
761 * The default for these registers is 0xffffffff, which means
762 * all simds are available for each stage. It's possible we may
763 * want to play around with these in the future, but for now
764 * the default value is fine.
765 *
766 * R_008E20_SQ_STATIC_THREAD_MGMT1
767 * R_008E24_SQ_STATIC_THREAD_MGMT2
768 * R_008E28_SQ_STATIC_THREAD_MGMT3
769 */
770
771 /* XXX: We may need to adjust the thread and stack resouce
772 * values for 3D/compute interop */
773
774 r600_store_config_reg_seq(cb, R_008C18_SQ_THREAD_RESOURCE_MGMT_1, 5);
775
776 /* R_008C18_SQ_THREAD_RESOURCE_MGMT_1
777 * Set the number of threads used by the PS/VS/GS/ES stage to
778 * 0.
779 */
780 r600_store_value(cb, 0);
781
782 /* R_008C1C_SQ_THREAD_RESOURCE_MGMT_2
783 * Set the number of threads used by the CS (aka LS) stage to
784 * the maximum number of threads and set the number of threads
785 * for the HS stage to 0. */
786 r600_store_value(cb, S_008C1C_NUM_LS_THREADS(num_threads));
787
788 /* R_008C20_SQ_STACK_RESOURCE_MGMT_1
789 * Set the Control Flow stack entries to 0 for PS/VS stages */
790 r600_store_value(cb, 0);
791
792 /* R_008C24_SQ_STACK_RESOURCE_MGMT_2
793 * Set the Control Flow stack entries to 0 for GS/ES stages */
794 r600_store_value(cb, 0);
795
796 /* R_008C28_SQ_STACK_RESOURCE_MGMT_3
797 * Set the Contol Flow stack entries to 0 for the HS stage, and
798 * set it to the maximum value for the CS (aka LS) stage. */
799 r600_store_value(cb,
800 S_008C28_NUM_LS_STACK_ENTRIES(num_stack_entries));
801 }
802 /* Give the compute shader all the available LDS space.
803 * NOTE: This only sets the maximum number of dwords that a compute
804 * shader can allocate. When a shader is executed, we still need to
805 * allocate the appropriate amount of LDS dwords using the
806 * CM_R_0288E8_SQ_LDS_ALLOC register.
807 */
808 if (ctx->b.chip_class < CAYMAN) {
809 r600_store_config_reg(cb, R_008E2C_SQ_LDS_RESOURCE_MGMT,
810 S_008E2C_NUM_PS_LDS(0x0000) | S_008E2C_NUM_LS_LDS(8192));
811 } else {
812 r600_store_context_reg(cb, CM_R_0286FC_SPI_LDS_MGMT,
813 S_0286FC_NUM_PS_LDS(0) |
814 S_0286FC_NUM_LS_LDS(255)); /* 255 * 32 = 8160 dwords */
815 }
816
817 /* Context Registers */
818
819 if (ctx->b.chip_class < CAYMAN) {
820 /* workaround for hw issues with dyn gpr - must set all limits
821 * to 240 instead of 0, 0x1e == 240 / 8
822 */
823 r600_store_context_reg(cb, R_028838_SQ_DYN_GPR_RESOURCE_LIMIT_1,
824 S_028838_PS_GPRS(0x1e) |
825 S_028838_VS_GPRS(0x1e) |
826 S_028838_GS_GPRS(0x1e) |
827 S_028838_ES_GPRS(0x1e) |
828 S_028838_HS_GPRS(0x1e) |
829 S_028838_LS_GPRS(0x1e));
830 }
831
832 /* XXX: Investigate setting bit 15, which is FAST_COMPUTE_MODE */
833 r600_store_context_reg(cb, R_028A40_VGT_GS_MODE,
834 S_028A40_COMPUTE_MODE(1) | S_028A40_PARTIAL_THD_AT_EOI(1));
835
836 r600_store_context_reg(cb, R_028B54_VGT_SHADER_STAGES_EN, 2/*CS_ON*/);
837
838 r600_store_context_reg(cb, R_0286E8_SPI_COMPUTE_INPUT_CNTL,
839 S_0286E8_TID_IN_GROUP_ENA
840 | S_0286E8_TGID_ENA
841 | S_0286E8_DISABLE_INDEX_PACK)
842 ;
843
844 /* The LOOP_CONST registers are an optimizations for loops that allows
845 * you to store the initial counter, increment value, and maximum
846 * counter value in a register so that hardware can calculate the
847 * correct number of iterations for the loop, so that you don't need
848 * to have the loop counter in your shader code. We don't currently use
849 * this optimization, so we must keep track of the counter in the
850 * shader and use a break instruction to exit loops. However, the
851 * hardware will still uses this register to determine when to exit a
852 * loop, so we need to initialize the counter to 0, set the increment
853 * value to 1 and the maximum counter value to the 4095 (0xfff) which
854 * is the maximum value allowed. This gives us a maximum of 4096
855 * iterations for our loops, but hopefully our break instruction will
856 * execute before some time before the 4096th iteration.
857 */
858 eg_store_loop_const(cb, R_03A200_SQ_LOOP_CONST_0 + (160 * 4), 0x1000FFF);
859 }
860
861 void evergreen_init_compute_state_functions(struct r600_context *ctx)
862 {
863 ctx->b.b.create_compute_state = evergreen_create_compute_state;
864 ctx->b.b.delete_compute_state = evergreen_delete_compute_state;
865 ctx->b.b.bind_compute_state = evergreen_bind_compute_state;
866 // ctx->context.create_sampler_view = evergreen_compute_create_sampler_view;
867 ctx->b.b.set_compute_resources = evergreen_set_compute_resources;
868 ctx->b.b.set_global_binding = evergreen_set_global_binding;
869 ctx->b.b.launch_grid = evergreen_launch_grid;
870
871 /* We always use at least one vertex buffer for parameters (id = 1)*/
872 ctx->cs_vertex_buffer_state.enabled_mask =
873 ctx->cs_vertex_buffer_state.dirty_mask = 0x2;
874 }
875
876 struct pipe_resource *r600_compute_global_buffer_create(
877 struct pipe_screen *screen,
878 const struct pipe_resource *templ)
879 {
880 struct r600_resource_global* result = NULL;
881 struct r600_screen* rscreen = NULL;
882 int size_in_dw = 0;
883
884 assert(templ->target == PIPE_BUFFER);
885 assert(templ->bind & PIPE_BIND_GLOBAL);
886 assert(templ->array_size == 1 || templ->array_size == 0);
887 assert(templ->depth0 == 1 || templ->depth0 == 0);
888 assert(templ->height0 == 1 || templ->height0 == 0);
889
890 result = (struct r600_resource_global*)
891 CALLOC(sizeof(struct r600_resource_global), 1);
892 rscreen = (struct r600_screen*)screen;
893
894 COMPUTE_DBG(rscreen, "*** r600_compute_global_buffer_create\n");
895 COMPUTE_DBG(rscreen, "width = %u array_size = %u\n", templ->width0,
896 templ->array_size);
897
898 result->base.b.vtbl = &r600_global_buffer_vtbl;
899 result->base.b.b.screen = screen;
900 result->base.b.b = *templ;
901 pipe_reference_init(&result->base.b.b.reference, 1);
902
903 size_in_dw = (templ->width0+3) / 4;
904
905 result->chunk = compute_memory_alloc(rscreen->global_pool, size_in_dw);
906
907 if (result->chunk == NULL)
908 {
909 free(result);
910 return NULL;
911 }
912
913 return &result->base.b.b;
914 }
915
916 void r600_compute_global_buffer_destroy(
917 struct pipe_screen *screen,
918 struct pipe_resource *res)
919 {
920 struct r600_resource_global* buffer = NULL;
921 struct r600_screen* rscreen = NULL;
922
923 assert(res->target == PIPE_BUFFER);
924 assert(res->bind & PIPE_BIND_GLOBAL);
925
926 buffer = (struct r600_resource_global*)res;
927 rscreen = (struct r600_screen*)screen;
928
929 compute_memory_free(rscreen->global_pool, buffer->chunk->id);
930
931 buffer->chunk = NULL;
932 free(res);
933 }
934
935 void *r600_compute_global_transfer_map(
936 struct pipe_context *ctx_,
937 struct pipe_resource *resource,
938 unsigned level,
939 unsigned usage,
940 const struct pipe_box *box,
941 struct pipe_transfer **ptransfer)
942 {
943 struct r600_context *rctx = (struct r600_context*)ctx_;
944 struct compute_memory_pool *pool = rctx->screen->global_pool;
945 struct r600_resource_global* buffer =
946 (struct r600_resource_global*)resource;
947
948 COMPUTE_DBG(rctx->screen, "* r600_compute_global_transfer_map()\n"
949 "level = %u, usage = %u, box(x = %u, y = %u, z = %u "
950 "width = %u, height = %u, depth = %u)\n", level, usage,
951 box->x, box->y, box->z, box->width, box->height,
952 box->depth);
953 COMPUTE_DBG(rctx->screen, "Buffer id = %u offset = "
954 "%u (box.x)\n", buffer->chunk->id, box->x);
955
956
957 compute_memory_finalize_pending(pool, ctx_);
958
959 assert(resource->target == PIPE_BUFFER);
960 assert(resource->bind & PIPE_BIND_GLOBAL);
961 assert(box->x >= 0);
962 assert(box->y == 0);
963 assert(box->z == 0);
964
965 ///TODO: do it better, mapping is not possible if the pool is too big
966 return pipe_buffer_map_range(ctx_, (struct pipe_resource*)buffer->chunk->pool->bo,
967 box->x + (buffer->chunk->start_in_dw * 4),
968 box->width, usage, ptransfer);
969 }
970
971 void r600_compute_global_transfer_unmap(
972 struct pipe_context *ctx_,
973 struct pipe_transfer* transfer)
974 {
975 /* struct r600_resource_global are not real resources, they just map
976 * to an offset within the compute memory pool. The function
977 * r600_compute_global_transfer_map() maps the memory pool
978 * resource rather than the struct r600_resource_global passed to
979 * it as an argument and then initalizes ptransfer->resource with
980 * the memory pool resource (via pipe_buffer_map_range).
981 * When transfer_unmap is called it uses the memory pool's
982 * vtable which calls r600_buffer_transfer_map() rather than
983 * this function.
984 */
985 assert (!"This function should not be called");
986 }
987
988 void r600_compute_global_transfer_flush_region(
989 struct pipe_context *ctx_,
990 struct pipe_transfer *transfer,
991 const struct pipe_box *box)
992 {
993 assert(0 && "TODO");
994 }
995
996 void r600_compute_global_transfer_inline_write(
997 struct pipe_context *pipe,
998 struct pipe_resource *resource,
999 unsigned level,
1000 unsigned usage,
1001 const struct pipe_box *box,
1002 const void *data,
1003 unsigned stride,
1004 unsigned layer_stride)
1005 {
1006 assert(0 && "TODO");
1007 }