63bd8e9058b0f1acd371f78c488c3f2bd3c94d6d
[mesa.git] / src / gallium / drivers / r600 / r600_asm.c
1 /*
2 * Copyright 2010 Jerome Glisse <glisse@freedesktop.org>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * on the rights to use, copy, modify, merge, publish, distribute, sub
8 * license, and/or sell copies of the Software, and to permit persons to whom
9 * the Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 */
23 #include "r600_sq.h"
24 #include "r600_opcodes.h"
25 #include "r600_formats.h"
26 #include "r600d.h"
27
28 #include <errno.h>
29 #include <byteswap.h>
30 #include "util/u_memory.h"
31 #include "pipe/p_shader_tokens.h"
32
33 #define NUM_OF_CYCLES 3
34 #define NUM_OF_COMPONENTS 4
35
36 static inline unsigned int r600_bytecode_get_num_operands(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
37 {
38 if(alu->is_op3)
39 return 3;
40
41 switch (bc->chip_class) {
42 case R600:
43 case R700:
44 switch (alu->inst) {
45 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_NOP:
46 return 0;
47 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_ADD:
48 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_ADD_INT:
49 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SUB_INT:
50 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_AND_INT:
51 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_OR_INT:
52 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLE:
53 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGT:
54 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGE:
55 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLNE:
56 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MUL:
57 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MUL_IEEE:
58 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MULHI_INT:
59 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MULLO_INT:
60 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MULHI_UINT:
61 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MULLO_UINT:
62 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MAX:
63 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MIN:
64 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MAX_UINT:
65 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MIN_UINT:
66 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MAX_INT:
67 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MIN_INT:
68 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETE:
69 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETE_INT:
70 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETNE:
71 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETNE_INT:
72 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETGT:
73 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETGT_INT:
74 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETGT_UINT:
75 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETGE:
76 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETGE_INT:
77 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETGE_UINT:
78 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETE:
79 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGT:
80 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGE:
81 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETNE:
82 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETNE_INT:
83 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETE_INT:
84 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_DOT4:
85 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_DOT4_IEEE:
86 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_CUBE:
87 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_XOR_INT:
88 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_LSHL_INT:
89 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_LSHR_INT:
90 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_ASHR_INT:
91 return 2;
92
93 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOV:
94 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOVA:
95 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOVA_FLOOR:
96 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOVA_GPR_INT:
97 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOVA_INT:
98 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_FRACT:
99 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_CEIL:
100 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_FLOOR:
101 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_TRUNC:
102 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_EXP_IEEE:
103 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_LOG_CLAMPED:
104 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_LOG_IEEE:
105 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIP_CLAMPED:
106 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIP_IEEE:
107 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIP_INT:
108 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIP_UINT:
109 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIPSQRT_CLAMPED:
110 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIPSQRT_IEEE:
111 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_FLT_TO_INT:
112 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_INT_TO_FLT:
113 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_UINT_TO_FLT:
114 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_FLT_TO_UINT:
115 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SIN:
116 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_COS:
117 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RNDNE:
118 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_NOT_INT:
119 return 1;
120 default: R600_ERR(
121 "Need instruction operand number for 0x%x.\n", alu->inst);
122 }
123 break;
124 case EVERGREEN:
125 case CAYMAN:
126 switch (alu->inst) {
127 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_NOP:
128 return 0;
129 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_ADD:
130 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_ADD_INT:
131 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SUB_INT:
132 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_AND_INT:
133 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_OR_INT:
134 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLE:
135 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGT:
136 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGE:
137 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLNE:
138 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MUL:
139 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MUL_IEEE:
140 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MULHI_INT:
141 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MULLO_INT:
142 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MULHI_UINT:
143 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MULLO_UINT:
144 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MAX:
145 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MIN:
146 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MAX_UINT:
147 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MIN_UINT:
148 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MAX_INT:
149 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MIN_INT:
150 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETE:
151 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETE_INT:
152 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETNE:
153 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETNE_INT:
154 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETGT:
155 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETGT_INT:
156 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETGT_UINT:
157 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETGE:
158 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETGE_INT:
159 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETGE_UINT:
160 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETE:
161 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETE_INT:
162 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGT:
163 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGE:
164 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETNE:
165 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETNE_INT:
166 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_DOT4:
167 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_DOT4_IEEE:
168 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_CUBE:
169 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_INTERP_XY:
170 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_INTERP_ZW:
171 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_XOR_INT:
172 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_LSHL_INT:
173 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_LSHR_INT:
174 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_ASHR_INT:
175 return 2;
176
177 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOV:
178 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOVA_INT:
179 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_FRACT:
180 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_CEIL:
181 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_FLOOR:
182 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_TRUNC:
183 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_EXP_IEEE:
184 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_LOG_CLAMPED:
185 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_LOG_IEEE:
186 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIP_CLAMPED:
187 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIP_IEEE:
188 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIPSQRT_CLAMPED:
189 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIPSQRT_IEEE:
190 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_FLT_TO_INT:
191 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_FLT_TO_INT_FLOOR:
192 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_INT_TO_FLT:
193 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_UINT_TO_FLT:
194 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_FLT_TO_UINT:
195 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SIN:
196 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_COS:
197 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RNDNE:
198 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_NOT_INT:
199 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_INTERP_LOAD_P0:
200 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIP_INT:
201 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIP_UINT:
202 return 1;
203 default: R600_ERR(
204 "Need instruction operand number for 0x%x.\n", alu->inst);
205 }
206 break;
207 }
208
209 return 3;
210 }
211
212 int r700_bytecode_alu_build(struct r600_bytecode *bc, struct r600_bytecode_alu *alu, unsigned id);
213
214 static struct r600_bytecode_cf *r600_bytecode_cf(void)
215 {
216 struct r600_bytecode_cf *cf = CALLOC_STRUCT(r600_bytecode_cf);
217
218 if (cf == NULL)
219 return NULL;
220 LIST_INITHEAD(&cf->list);
221 LIST_INITHEAD(&cf->alu);
222 LIST_INITHEAD(&cf->vtx);
223 LIST_INITHEAD(&cf->tex);
224 return cf;
225 }
226
227 static struct r600_bytecode_alu *r600_bytecode_alu(void)
228 {
229 struct r600_bytecode_alu *alu = CALLOC_STRUCT(r600_bytecode_alu);
230
231 if (alu == NULL)
232 return NULL;
233 LIST_INITHEAD(&alu->list);
234 return alu;
235 }
236
237 static struct r600_bytecode_vtx *r600_bytecode_vtx(void)
238 {
239 struct r600_bytecode_vtx *vtx = CALLOC_STRUCT(r600_bytecode_vtx);
240
241 if (vtx == NULL)
242 return NULL;
243 LIST_INITHEAD(&vtx->list);
244 return vtx;
245 }
246
247 static struct r600_bytecode_tex *r600_bytecode_tex(void)
248 {
249 struct r600_bytecode_tex *tex = CALLOC_STRUCT(r600_bytecode_tex);
250
251 if (tex == NULL)
252 return NULL;
253 LIST_INITHEAD(&tex->list);
254 return tex;
255 }
256
257 void r600_bytecode_init(struct r600_bytecode *bc, enum chip_class chip_class, enum radeon_family family)
258 {
259 if ((chip_class == R600) &&
260 (family != CHIP_RV670 && family != CHIP_RS780 && family != CHIP_RS880)) {
261 bc->ar_handling = AR_HANDLE_RV6XX;
262 bc->r6xx_nop_after_rel_dst = 1;
263 } else {
264 bc->ar_handling = AR_HANDLE_NORMAL;
265 bc->r6xx_nop_after_rel_dst = 0;
266 }
267
268 LIST_INITHEAD(&bc->cf);
269 bc->chip_class = chip_class;
270 }
271
272 static int r600_bytecode_add_cf(struct r600_bytecode *bc)
273 {
274 struct r600_bytecode_cf *cf = r600_bytecode_cf();
275
276 if (cf == NULL)
277 return -ENOMEM;
278 LIST_ADDTAIL(&cf->list, &bc->cf);
279 if (bc->cf_last) {
280 cf->id = bc->cf_last->id + 2;
281 if (bc->cf_last->eg_alu_extended) {
282 /* take into account extended alu size */
283 cf->id += 2;
284 bc->ndw += 2;
285 }
286 }
287 bc->cf_last = cf;
288 bc->ncf++;
289 bc->ndw += 2;
290 bc->force_add_cf = 0;
291 bc->ar_loaded = 0;
292 return 0;
293 }
294
295 int r600_bytecode_add_output(struct r600_bytecode *bc, const struct r600_bytecode_output *output)
296 {
297 int r;
298
299 if (output->gpr >= bc->ngpr)
300 bc->ngpr = output->gpr + 1;
301
302 if (bc->cf_last && (bc->cf_last->inst == output->inst ||
303 (bc->cf_last->inst == BC_INST(bc, V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT) &&
304 output->inst == BC_INST(bc, V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT_DONE))) &&
305 output->type == bc->cf_last->output.type &&
306 output->elem_size == bc->cf_last->output.elem_size &&
307 output->swizzle_x == bc->cf_last->output.swizzle_x &&
308 output->swizzle_y == bc->cf_last->output.swizzle_y &&
309 output->swizzle_z == bc->cf_last->output.swizzle_z &&
310 output->swizzle_w == bc->cf_last->output.swizzle_w &&
311 (output->burst_count + bc->cf_last->output.burst_count) <= 16) {
312
313 if ((output->gpr + output->burst_count) == bc->cf_last->output.gpr &&
314 (output->array_base + output->burst_count) == bc->cf_last->output.array_base) {
315
316 bc->cf_last->output.end_of_program |= output->end_of_program;
317 bc->cf_last->output.inst = output->inst;
318 bc->cf_last->output.gpr = output->gpr;
319 bc->cf_last->output.array_base = output->array_base;
320 bc->cf_last->output.burst_count += output->burst_count;
321 return 0;
322
323 } else if (output->gpr == (bc->cf_last->output.gpr + bc->cf_last->output.burst_count) &&
324 output->array_base == (bc->cf_last->output.array_base + bc->cf_last->output.burst_count)) {
325
326 bc->cf_last->output.end_of_program |= output->end_of_program;
327 bc->cf_last->output.inst = output->inst;
328 bc->cf_last->output.burst_count += output->burst_count;
329 return 0;
330 }
331 }
332
333 r = r600_bytecode_add_cf(bc);
334 if (r)
335 return r;
336 bc->cf_last->inst = output->inst;
337 memcpy(&bc->cf_last->output, output, sizeof(struct r600_bytecode_output));
338 return 0;
339 }
340
341 /* alu instructions that can ony exits once per group */
342 static int is_alu_once_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
343 {
344 switch (bc->chip_class) {
345 case R600:
346 case R700:
347 return !alu->is_op3 && (
348 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLE ||
349 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGT ||
350 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGE ||
351 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLNE ||
352 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGT_UINT ||
353 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGE_UINT ||
354 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLE_INT ||
355 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGT_INT ||
356 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGE_INT ||
357 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLNE_INT ||
358 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGT_UINT ||
359 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGE_UINT ||
360 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETE ||
361 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGT ||
362 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGE ||
363 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETNE ||
364 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SET_INV ||
365 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SET_POP ||
366 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SET_CLR ||
367 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SET_RESTORE ||
368 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETE_PUSH ||
369 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGT_PUSH ||
370 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGE_PUSH ||
371 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETNE_PUSH ||
372 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETE_INT ||
373 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGT_INT ||
374 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGE_INT ||
375 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETNE_INT ||
376 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETE_PUSH_INT ||
377 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGT_PUSH_INT ||
378 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGE_PUSH_INT ||
379 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETNE_PUSH_INT ||
380 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETLT_PUSH_INT ||
381 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETLE_PUSH_INT);
382 case EVERGREEN:
383 case CAYMAN:
384 default:
385 return !alu->is_op3 && (
386 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLE ||
387 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGT ||
388 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGE ||
389 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLNE ||
390 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGT_UINT ||
391 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGE_UINT ||
392 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLE_INT ||
393 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGT_INT ||
394 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGE_INT ||
395 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLNE_INT ||
396 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGT_UINT ||
397 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGE_UINT ||
398 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETE ||
399 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGT ||
400 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGE ||
401 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETNE ||
402 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SET_INV ||
403 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SET_POP ||
404 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SET_CLR ||
405 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SET_RESTORE ||
406 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETE_PUSH ||
407 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGT_PUSH ||
408 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGE_PUSH ||
409 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETNE_PUSH ||
410 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETE_INT ||
411 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGT_INT ||
412 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGE_INT ||
413 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETNE_INT ||
414 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETE_PUSH_INT ||
415 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGT_PUSH_INT ||
416 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGE_PUSH_INT ||
417 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETNE_PUSH_INT ||
418 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETLT_PUSH_INT ||
419 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETLE_PUSH_INT);
420 }
421 }
422
423 static int is_alu_reduction_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
424 {
425 switch (bc->chip_class) {
426 case R600:
427 case R700:
428 return !alu->is_op3 && (
429 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_CUBE ||
430 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_DOT4 ||
431 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_DOT4_IEEE ||
432 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MAX4);
433 case EVERGREEN:
434 case CAYMAN:
435 default:
436 return !alu->is_op3 && (
437 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_CUBE ||
438 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_DOT4 ||
439 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_DOT4_IEEE ||
440 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MAX4);
441 }
442 }
443
444 static int is_alu_cube_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
445 {
446 switch (bc->chip_class) {
447 case R600:
448 case R700:
449 return !alu->is_op3 &&
450 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_CUBE;
451 case EVERGREEN:
452 case CAYMAN:
453 default:
454 return !alu->is_op3 &&
455 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_CUBE;
456 }
457 }
458
459 static int is_alu_mova_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
460 {
461 switch (bc->chip_class) {
462 case R600:
463 case R700:
464 return !alu->is_op3 && (
465 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOVA ||
466 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOVA_FLOOR ||
467 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOVA_INT ||
468 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOVA_GPR_INT);
469 case EVERGREEN:
470 case CAYMAN:
471 default:
472 return !alu->is_op3 && (
473 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOVA_INT);
474 }
475 }
476
477 static int is_opcode_in_range(unsigned opcode, unsigned min, unsigned max)
478 {
479 return min <= opcode && opcode <= max;
480 }
481
482 /* ALU instructions that can only execute on the vector unit:
483 *
484 * opcode ranges:
485 * R6xx/R7xx:
486 * op3 : [0x08 - 0x0B]
487 * op2 : 0x07, [0x15 - 0x18], [0x1B - 0x1D], [0x50 - 0x53], [0x7A - 0x7E]
488 *
489 * EVERGREEN:
490 * op3: [0x04 - 0x11]
491 * op2: [0xA0 - 0xE2]
492 */
493 static int is_alu_vec_unit_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
494 {
495 switch (bc->chip_class) {
496 case R600:
497 case R700:
498 if (alu->is_op3)
499 return is_opcode_in_range(alu->inst,
500 V_SQ_ALU_WORD1_OP3_SQ_OP3_INST_MULADD_64,
501 V_SQ_ALU_WORD1_OP3_SQ_OP3_INST_MULADD_64_D2);
502 else
503 return (alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_FREXP_64) ||
504 is_opcode_in_range(alu->inst,
505 V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOVA,
506 V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOVA_INT) ||
507 is_opcode_in_range(alu->inst,
508 V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MUL_64,
509 V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_FLT32_TO_FLT64) ||
510 is_opcode_in_range(alu->inst,
511 V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_DOT4,
512 V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MAX4) ||
513 is_opcode_in_range(alu->inst,
514 V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_LDEXP_64,
515 V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGE_64);
516
517 case EVERGREEN:
518 if (alu->is_op3)
519 return is_opcode_in_range(alu->inst,
520 EG_V_SQ_ALU_WORD1_OP3_SQ_OP3_INST_BFE_UINT,
521 EG_V_SQ_ALU_WORD1_OP3_SQ_OP3_INST_LDS_IDX_OP);
522 else
523 return is_opcode_in_range(alu->inst,
524 EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_BFM_INT,
525 EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_INTERP_LOAD_P20);
526 case CAYMAN:
527 default:
528 assert(0);
529 return 0;
530 }
531 }
532
533 /* ALU instructions that can only execute on the trans unit:
534 *
535 * opcode ranges:
536 * R600:
537 * op3: 0x0C
538 * op2: [0x60 - 0x79]
539 *
540 * R700:
541 * op3: 0x0C
542 * op2: [0x60 - 0x6F], [0x73 - 0x79]
543 *
544 * EVERGREEN:
545 * op3: 0x1F
546 * op2: [0x81 - 0x9C]
547 */
548 static int is_alu_trans_unit_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
549 {
550
551 switch (bc->chip_class) {
552 case R600:
553 if (alu->is_op3)
554 return alu->inst == V_SQ_ALU_WORD1_OP3_SQ_OP3_INST_MUL_LIT;
555 else
556 return is_opcode_in_range(alu->inst,
557 V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOVA_GPR_INT,
558 V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_FLT_TO_UINT);
559 case R700:
560 if (alu->is_op3)
561 return alu->inst == V_SQ_ALU_WORD1_OP3_SQ_OP3_INST_MUL_LIT;
562 else
563 return is_opcode_in_range(alu->inst,
564 V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOVA_GPR_INT,
565 V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_COS) ||
566 is_opcode_in_range(alu->inst,
567 V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MULLO_INT,
568 V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_FLT_TO_UINT);
569 case EVERGREEN:
570 if (alu->is_op3)
571 return alu->inst == EG_V_SQ_ALU_WORD1_OP3_SQ_OP3_INST_MUL_LIT;
572 else
573 return is_opcode_in_range(alu->inst,
574 EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_EXP_IEEE,
575 EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_UINT_TO_FLT);
576 case CAYMAN:
577 default:
578 assert(0);
579 return 0;
580 }
581 }
582
583 /* alu instructions that can execute on any unit */
584 static int is_alu_any_unit_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
585 {
586 return !is_alu_vec_unit_inst(bc, alu) &&
587 !is_alu_trans_unit_inst(bc, alu);
588 }
589
590 static int is_nop_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
591 {
592 switch (bc->chip_class) {
593 case R600:
594 case R700:
595 return (!alu->is_op3 && alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_NOP);
596 case EVERGREEN:
597 case CAYMAN:
598 default:
599 return (!alu->is_op3 && alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_NOP);
600 }
601 }
602
603 static int assign_alu_units(struct r600_bytecode *bc, struct r600_bytecode_alu *alu_first,
604 struct r600_bytecode_alu *assignment[5])
605 {
606 struct r600_bytecode_alu *alu;
607 unsigned i, chan, trans;
608 int max_slots = bc->chip_class == CAYMAN ? 4 : 5;
609
610 for (i = 0; i < max_slots; i++)
611 assignment[i] = NULL;
612
613 for (alu = alu_first; alu; alu = LIST_ENTRY(struct r600_bytecode_alu, alu->list.next, list)) {
614 chan = alu->dst.chan;
615 if (max_slots == 4)
616 trans = 0;
617 else if (is_alu_trans_unit_inst(bc, alu))
618 trans = 1;
619 else if (is_alu_vec_unit_inst(bc, alu))
620 trans = 0;
621 else if (assignment[chan])
622 trans = 1; /* Assume ALU_INST_PREFER_VECTOR. */
623 else
624 trans = 0;
625
626 if (trans) {
627 if (assignment[4]) {
628 assert(0); /* ALU.Trans has already been allocated. */
629 return -1;
630 }
631 assignment[4] = alu;
632 } else {
633 if (assignment[chan]) {
634 assert(0); /* ALU.chan has already been allocated. */
635 return -1;
636 }
637 assignment[chan] = alu;
638 }
639
640 if (alu->last)
641 break;
642 }
643 return 0;
644 }
645
646 struct alu_bank_swizzle {
647 int hw_gpr[NUM_OF_CYCLES][NUM_OF_COMPONENTS];
648 int hw_cfile_addr[4];
649 int hw_cfile_elem[4];
650 };
651
652 static const unsigned cycle_for_bank_swizzle_vec[][3] = {
653 [SQ_ALU_VEC_012] = { 0, 1, 2 },
654 [SQ_ALU_VEC_021] = { 0, 2, 1 },
655 [SQ_ALU_VEC_120] = { 1, 2, 0 },
656 [SQ_ALU_VEC_102] = { 1, 0, 2 },
657 [SQ_ALU_VEC_201] = { 2, 0, 1 },
658 [SQ_ALU_VEC_210] = { 2, 1, 0 }
659 };
660
661 static const unsigned cycle_for_bank_swizzle_scl[][3] = {
662 [SQ_ALU_SCL_210] = { 2, 1, 0 },
663 [SQ_ALU_SCL_122] = { 1, 2, 2 },
664 [SQ_ALU_SCL_212] = { 2, 1, 2 },
665 [SQ_ALU_SCL_221] = { 2, 2, 1 }
666 };
667
668 static void init_bank_swizzle(struct alu_bank_swizzle *bs)
669 {
670 int i, cycle, component;
671 /* set up gpr use */
672 for (cycle = 0; cycle < NUM_OF_CYCLES; cycle++)
673 for (component = 0; component < NUM_OF_COMPONENTS; component++)
674 bs->hw_gpr[cycle][component] = -1;
675 for (i = 0; i < 4; i++)
676 bs->hw_cfile_addr[i] = -1;
677 for (i = 0; i < 4; i++)
678 bs->hw_cfile_elem[i] = -1;
679 }
680
681 static int reserve_gpr(struct alu_bank_swizzle *bs, unsigned sel, unsigned chan, unsigned cycle)
682 {
683 if (bs->hw_gpr[cycle][chan] == -1)
684 bs->hw_gpr[cycle][chan] = sel;
685 else if (bs->hw_gpr[cycle][chan] != (int)sel) {
686 /* Another scalar operation has already used the GPR read port for the channel. */
687 return -1;
688 }
689 return 0;
690 }
691
692 static int reserve_cfile(struct r600_bytecode *bc, struct alu_bank_swizzle *bs, unsigned sel, unsigned chan)
693 {
694 int res, num_res = 4;
695 if (bc->chip_class >= R700) {
696 num_res = 2;
697 chan /= 2;
698 }
699 for (res = 0; res < num_res; ++res) {
700 if (bs->hw_cfile_addr[res] == -1) {
701 bs->hw_cfile_addr[res] = sel;
702 bs->hw_cfile_elem[res] = chan;
703 return 0;
704 } else if (bs->hw_cfile_addr[res] == sel &&
705 bs->hw_cfile_elem[res] == chan)
706 return 0; /* Read for this scalar element already reserved, nothing to do here. */
707 }
708 /* All cfile read ports are used, cannot reference vector element. */
709 return -1;
710 }
711
712 static int is_gpr(unsigned sel)
713 {
714 return (sel >= 0 && sel <= 127);
715 }
716
717 /* CB constants start at 512, and get translated to a kcache index when ALU
718 * clauses are constructed. Note that we handle kcache constants the same way
719 * as (the now gone) cfile constants, is that really required? */
720 static int is_cfile(unsigned sel)
721 {
722 return (sel > 255 && sel < 512) ||
723 (sel > 511 && sel < 4607) || /* Kcache before translation. */
724 (sel > 127 && sel < 192); /* Kcache after translation. */
725 }
726
727 static int is_const(int sel)
728 {
729 return is_cfile(sel) ||
730 (sel >= V_SQ_ALU_SRC_0 &&
731 sel <= V_SQ_ALU_SRC_LITERAL);
732 }
733
734 static int check_vector(struct r600_bytecode *bc, struct r600_bytecode_alu *alu,
735 struct alu_bank_swizzle *bs, int bank_swizzle)
736 {
737 int r, src, num_src, sel, elem, cycle;
738
739 num_src = r600_bytecode_get_num_operands(bc, alu);
740 for (src = 0; src < num_src; src++) {
741 sel = alu->src[src].sel;
742 elem = alu->src[src].chan;
743 if (is_gpr(sel)) {
744 cycle = cycle_for_bank_swizzle_vec[bank_swizzle][src];
745 if (src == 1 && sel == alu->src[0].sel && elem == alu->src[0].chan)
746 /* Nothing to do; special-case optimization,
747 * second source uses first source’s reservation. */
748 continue;
749 else {
750 r = reserve_gpr(bs, sel, elem, cycle);
751 if (r)
752 return r;
753 }
754 } else if (is_cfile(sel)) {
755 r = reserve_cfile(bc, bs, (alu->src[src].kc_bank<<16) + sel, elem);
756 if (r)
757 return r;
758 }
759 /* No restrictions on PV, PS, literal or special constants. */
760 }
761 return 0;
762 }
763
764 static int check_scalar(struct r600_bytecode *bc, struct r600_bytecode_alu *alu,
765 struct alu_bank_swizzle *bs, int bank_swizzle)
766 {
767 int r, src, num_src, const_count, sel, elem, cycle;
768
769 num_src = r600_bytecode_get_num_operands(bc, alu);
770 for (const_count = 0, src = 0; src < num_src; ++src) {
771 sel = alu->src[src].sel;
772 elem = alu->src[src].chan;
773 if (is_const(sel)) { /* Any constant, including literal and inline constants. */
774 if (const_count >= 2)
775 /* More than two references to a constant in
776 * transcendental operation. */
777 return -1;
778 else
779 const_count++;
780 }
781 if (is_cfile(sel)) {
782 r = reserve_cfile(bc, bs, (alu->src[src].kc_bank<<16) + sel, elem);
783 if (r)
784 return r;
785 }
786 }
787 for (src = 0; src < num_src; ++src) {
788 sel = alu->src[src].sel;
789 elem = alu->src[src].chan;
790 if (is_gpr(sel)) {
791 cycle = cycle_for_bank_swizzle_scl[bank_swizzle][src];
792 if (cycle < const_count)
793 /* Cycle for GPR load conflicts with
794 * constant load in transcendental operation. */
795 return -1;
796 r = reserve_gpr(bs, sel, elem, cycle);
797 if (r)
798 return r;
799 }
800 /* PV PS restrictions */
801 if (const_count && (sel == 254 || sel == 255)) {
802 cycle = cycle_for_bank_swizzle_scl[bank_swizzle][src];
803 if (cycle < const_count)
804 return -1;
805 }
806 }
807 return 0;
808 }
809
810 static int check_and_set_bank_swizzle(struct r600_bytecode *bc,
811 struct r600_bytecode_alu *slots[5])
812 {
813 struct alu_bank_swizzle bs;
814 int bank_swizzle[5];
815 int i, r = 0, forced = 1;
816 boolean scalar_only = bc->chip_class == CAYMAN ? false : true;
817 int max_slots = bc->chip_class == CAYMAN ? 4 : 5;
818
819 for (i = 0; i < max_slots; i++) {
820 if (slots[i]) {
821 if (slots[i]->bank_swizzle_force) {
822 slots[i]->bank_swizzle = slots[i]->bank_swizzle_force;
823 } else {
824 forced = 0;
825 }
826 }
827
828 if (i < 4 && slots[i])
829 scalar_only = false;
830 }
831 if (forced)
832 return 0;
833
834 /* Just check every possible combination of bank swizzle.
835 * Not very efficent, but works on the first try in most of the cases. */
836 for (i = 0; i < 4; i++)
837 if (!slots[i] || !slots[i]->bank_swizzle_force)
838 bank_swizzle[i] = SQ_ALU_VEC_012;
839 else
840 bank_swizzle[i] = slots[i]->bank_swizzle;
841
842 bank_swizzle[4] = SQ_ALU_SCL_210;
843 while(bank_swizzle[4] <= SQ_ALU_SCL_221) {
844
845 if (max_slots == 4) {
846 for (i = 0; i < max_slots; i++) {
847 if (bank_swizzle[i] == SQ_ALU_VEC_210)
848 return -1;
849 }
850 }
851 init_bank_swizzle(&bs);
852 if (scalar_only == false) {
853 for (i = 0; i < 4; i++) {
854 if (slots[i]) {
855 r = check_vector(bc, slots[i], &bs, bank_swizzle[i]);
856 if (r)
857 break;
858 }
859 }
860 } else
861 r = 0;
862
863 if (!r && slots[4] && max_slots == 5) {
864 r = check_scalar(bc, slots[4], &bs, bank_swizzle[4]);
865 }
866 if (!r) {
867 for (i = 0; i < max_slots; i++) {
868 if (slots[i])
869 slots[i]->bank_swizzle = bank_swizzle[i];
870 }
871 return 0;
872 }
873
874 if (scalar_only) {
875 bank_swizzle[4]++;
876 } else {
877 for (i = 0; i < max_slots; i++) {
878 if (!slots[i] || !slots[i]->bank_swizzle_force) {
879 bank_swizzle[i]++;
880 if (bank_swizzle[i] <= SQ_ALU_VEC_210)
881 break;
882 else
883 bank_swizzle[i] = SQ_ALU_VEC_012;
884 }
885 }
886 }
887 }
888
889 /* Couldn't find a working swizzle. */
890 return -1;
891 }
892
893 static int replace_gpr_with_pv_ps(struct r600_bytecode *bc,
894 struct r600_bytecode_alu *slots[5], struct r600_bytecode_alu *alu_prev)
895 {
896 struct r600_bytecode_alu *prev[5];
897 int gpr[5], chan[5];
898 int i, j, r, src, num_src;
899 int max_slots = bc->chip_class == CAYMAN ? 4 : 5;
900
901 r = assign_alu_units(bc, alu_prev, prev);
902 if (r)
903 return r;
904
905 for (i = 0; i < max_slots; ++i) {
906 if (prev[i] && (prev[i]->dst.write || prev[i]->is_op3) && !prev[i]->dst.rel) {
907 gpr[i] = prev[i]->dst.sel;
908 /* cube writes more than PV.X */
909 if (!is_alu_cube_inst(bc, prev[i]) && is_alu_reduction_inst(bc, prev[i]))
910 chan[i] = 0;
911 else
912 chan[i] = prev[i]->dst.chan;
913 } else
914 gpr[i] = -1;
915 }
916
917 for (i = 0; i < max_slots; ++i) {
918 struct r600_bytecode_alu *alu = slots[i];
919 if(!alu)
920 continue;
921
922 num_src = r600_bytecode_get_num_operands(bc, alu);
923 for (src = 0; src < num_src; ++src) {
924 if (!is_gpr(alu->src[src].sel) || alu->src[src].rel)
925 continue;
926
927 if (bc->chip_class < CAYMAN) {
928 if (alu->src[src].sel == gpr[4] &&
929 alu->src[src].chan == chan[4] &&
930 alu_prev->pred_sel == alu->pred_sel) {
931 alu->src[src].sel = V_SQ_ALU_SRC_PS;
932 alu->src[src].chan = 0;
933 continue;
934 }
935 }
936
937 for (j = 0; j < 4; ++j) {
938 if (alu->src[src].sel == gpr[j] &&
939 alu->src[src].chan == j &&
940 alu_prev->pred_sel == alu->pred_sel) {
941 alu->src[src].sel = V_SQ_ALU_SRC_PV;
942 alu->src[src].chan = chan[j];
943 break;
944 }
945 }
946 }
947 }
948
949 return 0;
950 }
951
952 void r600_bytecode_special_constants(uint32_t value, unsigned *sel, unsigned *neg)
953 {
954 switch(value) {
955 case 0:
956 *sel = V_SQ_ALU_SRC_0;
957 break;
958 case 1:
959 *sel = V_SQ_ALU_SRC_1_INT;
960 break;
961 case -1:
962 *sel = V_SQ_ALU_SRC_M_1_INT;
963 break;
964 case 0x3F800000: /* 1.0f */
965 *sel = V_SQ_ALU_SRC_1;
966 break;
967 case 0x3F000000: /* 0.5f */
968 *sel = V_SQ_ALU_SRC_0_5;
969 break;
970 case 0xBF800000: /* -1.0f */
971 *sel = V_SQ_ALU_SRC_1;
972 *neg ^= 1;
973 break;
974 case 0xBF000000: /* -0.5f */
975 *sel = V_SQ_ALU_SRC_0_5;
976 *neg ^= 1;
977 break;
978 default:
979 *sel = V_SQ_ALU_SRC_LITERAL;
980 break;
981 }
982 }
983
984 /* compute how many literal are needed */
985 static int r600_bytecode_alu_nliterals(struct r600_bytecode *bc, struct r600_bytecode_alu *alu,
986 uint32_t literal[4], unsigned *nliteral)
987 {
988 unsigned num_src = r600_bytecode_get_num_operands(bc, alu);
989 unsigned i, j;
990
991 for (i = 0; i < num_src; ++i) {
992 if (alu->src[i].sel == V_SQ_ALU_SRC_LITERAL) {
993 uint32_t value = alu->src[i].value;
994 unsigned found = 0;
995 for (j = 0; j < *nliteral; ++j) {
996 if (literal[j] == value) {
997 found = 1;
998 break;
999 }
1000 }
1001 if (!found) {
1002 if (*nliteral >= 4)
1003 return -EINVAL;
1004 literal[(*nliteral)++] = value;
1005 }
1006 }
1007 }
1008 return 0;
1009 }
1010
1011 static void r600_bytecode_alu_adjust_literals(struct r600_bytecode *bc,
1012 struct r600_bytecode_alu *alu,
1013 uint32_t literal[4], unsigned nliteral)
1014 {
1015 unsigned num_src = r600_bytecode_get_num_operands(bc, alu);
1016 unsigned i, j;
1017
1018 for (i = 0; i < num_src; ++i) {
1019 if (alu->src[i].sel == V_SQ_ALU_SRC_LITERAL) {
1020 uint32_t value = alu->src[i].value;
1021 for (j = 0; j < nliteral; ++j) {
1022 if (literal[j] == value) {
1023 alu->src[i].chan = j;
1024 break;
1025 }
1026 }
1027 }
1028 }
1029 }
1030
1031 static int merge_inst_groups(struct r600_bytecode *bc, struct r600_bytecode_alu *slots[5],
1032 struct r600_bytecode_alu *alu_prev)
1033 {
1034 struct r600_bytecode_alu *prev[5];
1035 struct r600_bytecode_alu *result[5] = { NULL };
1036
1037 uint32_t literal[4], prev_literal[4];
1038 unsigned nliteral = 0, prev_nliteral = 0;
1039
1040 int i, j, r, src, num_src;
1041 int num_once_inst = 0;
1042 int have_mova = 0, have_rel = 0;
1043 int max_slots = bc->chip_class == CAYMAN ? 4 : 5;
1044
1045 r = assign_alu_units(bc, alu_prev, prev);
1046 if (r)
1047 return r;
1048
1049 for (i = 0; i < max_slots; ++i) {
1050 if (prev[i]) {
1051 if (prev[i]->pred_sel)
1052 return 0;
1053 if (is_alu_once_inst(bc, prev[i]))
1054 return 0;
1055 }
1056 if (slots[i]) {
1057 if (slots[i]->pred_sel)
1058 return 0;
1059 if (is_alu_once_inst(bc, slots[i]))
1060 return 0;
1061 }
1062 }
1063
1064 for (i = 0; i < max_slots; ++i) {
1065 struct r600_bytecode_alu *alu;
1066
1067 if (num_once_inst > 0)
1068 return 0;
1069
1070 /* check number of literals */
1071 if (prev[i]) {
1072 if (r600_bytecode_alu_nliterals(bc, prev[i], literal, &nliteral))
1073 return 0;
1074 if (r600_bytecode_alu_nliterals(bc, prev[i], prev_literal, &prev_nliteral))
1075 return 0;
1076 if (is_alu_mova_inst(bc, prev[i])) {
1077 if (have_rel)
1078 return 0;
1079 have_mova = 1;
1080 }
1081 num_once_inst += is_alu_once_inst(bc, prev[i]);
1082 }
1083 if (slots[i] && r600_bytecode_alu_nliterals(bc, slots[i], literal, &nliteral))
1084 return 0;
1085
1086 /* Let's check used slots. */
1087 if (prev[i] && !slots[i]) {
1088 result[i] = prev[i];
1089 continue;
1090 } else if (prev[i] && slots[i]) {
1091 if (max_slots == 5 && result[4] == NULL && prev[4] == NULL && slots[4] == NULL) {
1092 /* Trans unit is still free try to use it. */
1093 if (is_alu_any_unit_inst(bc, slots[i])) {
1094 result[i] = prev[i];
1095 result[4] = slots[i];
1096 } else if (is_alu_any_unit_inst(bc, prev[i])) {
1097 if (slots[i]->dst.sel == prev[i]->dst.sel &&
1098 (slots[i]->dst.write == 1 || slots[i]->is_op3) &&
1099 (prev[i]->dst.write == 1 || prev[i]->is_op3))
1100 return 0;
1101
1102 result[i] = slots[i];
1103 result[4] = prev[i];
1104 } else
1105 return 0;
1106 } else
1107 return 0;
1108 } else if(!slots[i]) {
1109 continue;
1110 } else {
1111 if (max_slots == 5 && slots[i] && prev[4] &&
1112 slots[i]->dst.sel == prev[4]->dst.sel &&
1113 slots[i]->dst.chan == prev[4]->dst.chan &&
1114 (slots[i]->dst.write == 1 || slots[i]->is_op3) &&
1115 (prev[4]->dst.write == 1 || prev[4]->is_op3))
1116 return 0;
1117
1118 result[i] = slots[i];
1119 }
1120
1121 alu = slots[i];
1122 num_once_inst += is_alu_once_inst(bc, alu);
1123
1124 /* don't reschedule NOPs */
1125 if (is_nop_inst(bc, alu))
1126 return 0;
1127
1128 /* Let's check dst gpr. */
1129 if (alu->dst.rel) {
1130 if (have_mova)
1131 return 0;
1132 have_rel = 1;
1133 }
1134
1135 /* Let's check source gprs */
1136 num_src = r600_bytecode_get_num_operands(bc, alu);
1137 for (src = 0; src < num_src; ++src) {
1138 if (alu->src[src].rel) {
1139 if (have_mova)
1140 return 0;
1141 have_rel = 1;
1142 }
1143
1144 /* Constants don't matter. */
1145 if (!is_gpr(alu->src[src].sel))
1146 continue;
1147
1148 for (j = 0; j < max_slots; ++j) {
1149 if (!prev[j] || !(prev[j]->dst.write || prev[j]->is_op3))
1150 continue;
1151
1152 /* If it's relative then we can't determin which gpr is really used. */
1153 if (prev[j]->dst.chan == alu->src[src].chan &&
1154 (prev[j]->dst.sel == alu->src[src].sel ||
1155 prev[j]->dst.rel || alu->src[src].rel))
1156 return 0;
1157 }
1158 }
1159 }
1160
1161 /* more than one PRED_ or KILL_ ? */
1162 if (num_once_inst > 1)
1163 return 0;
1164
1165 /* check if the result can still be swizzlet */
1166 r = check_and_set_bank_swizzle(bc, result);
1167 if (r)
1168 return 0;
1169
1170 /* looks like everything worked out right, apply the changes */
1171
1172 /* undo adding previus literals */
1173 bc->cf_last->ndw -= align(prev_nliteral, 2);
1174
1175 /* sort instructions */
1176 for (i = 0; i < max_slots; ++i) {
1177 slots[i] = result[i];
1178 if (result[i]) {
1179 LIST_DEL(&result[i]->list);
1180 result[i]->last = 0;
1181 LIST_ADDTAIL(&result[i]->list, &bc->cf_last->alu);
1182 }
1183 }
1184
1185 /* determine new last instruction */
1186 LIST_ENTRY(struct r600_bytecode_alu, bc->cf_last->alu.prev, list)->last = 1;
1187
1188 /* determine new first instruction */
1189 for (i = 0; i < max_slots; ++i) {
1190 if (result[i]) {
1191 bc->cf_last->curr_bs_head = result[i];
1192 break;
1193 }
1194 }
1195
1196 bc->cf_last->prev_bs_head = bc->cf_last->prev2_bs_head;
1197 bc->cf_last->prev2_bs_head = NULL;
1198
1199 return 0;
1200 }
1201
1202 /* we'll keep kcache sets sorted by bank & addr */
1203 static int r600_bytecode_alloc_kcache_line(struct r600_bytecode *bc,
1204 struct r600_bytecode_kcache *kcache,
1205 unsigned bank, unsigned line)
1206 {
1207 int i, kcache_banks = bc->chip_class >= EVERGREEN ? 4 : 2;
1208
1209 for (i = 0; i < kcache_banks; i++) {
1210 if (kcache[i].mode) {
1211 int d;
1212
1213 if (kcache[i].bank < bank)
1214 continue;
1215
1216 if ((kcache[i].bank == bank && kcache[i].addr > line+1) ||
1217 kcache[i].bank > bank) {
1218 /* try to insert new line */
1219 if (kcache[kcache_banks-1].mode) {
1220 /* all sets are in use */
1221 return -ENOMEM;
1222 }
1223
1224 memmove(&kcache[i+1],&kcache[i], (kcache_banks-i-1)*sizeof(struct r600_bytecode_kcache));
1225 kcache[i].mode = V_SQ_CF_KCACHE_LOCK_1;
1226 kcache[i].bank = bank;
1227 kcache[i].addr = line;
1228 return 0;
1229 }
1230
1231 d = line - kcache[i].addr;
1232
1233 if (d == -1) {
1234 kcache[i].addr--;
1235 if (kcache[i].mode == V_SQ_CF_KCACHE_LOCK_2) {
1236 /* we are prepending the line to the current set,
1237 * discarding the existing second line,
1238 * so we'll have to insert line+2 after it */
1239 line += 2;
1240 continue;
1241 } else if (kcache[i].mode == V_SQ_CF_KCACHE_LOCK_1) {
1242 kcache[i].mode = V_SQ_CF_KCACHE_LOCK_2;
1243 return 0;
1244 } else {
1245 /* V_SQ_CF_KCACHE_LOCK_LOOP_INDEX is not supported */
1246 return -ENOMEM;
1247 }
1248 } else if (d == 1) {
1249 kcache[i].mode = V_SQ_CF_KCACHE_LOCK_2;
1250 return 0;
1251 } else if (d == 0)
1252 return 0;
1253 } else { /* free kcache set - use it */
1254 kcache[i].mode = V_SQ_CF_KCACHE_LOCK_1;
1255 kcache[i].bank = bank;
1256 kcache[i].addr = line;
1257 return 0;
1258 }
1259 }
1260 return -ENOMEM;
1261 }
1262
1263 static int r600_bytecode_alloc_inst_kcache_lines(struct r600_bytecode *bc,
1264 struct r600_bytecode_kcache *kcache,
1265 struct r600_bytecode_alu *alu)
1266 {
1267 int i, r;
1268
1269 for (i = 0; i < 3; i++) {
1270 unsigned bank, line, sel = alu->src[i].sel;
1271
1272 if (sel < 512)
1273 continue;
1274
1275 bank = alu->src[i].kc_bank;
1276 line = (sel-512)>>4;
1277
1278 if ((r = r600_bytecode_alloc_kcache_line(bc, kcache, bank, line)))
1279 return r;
1280 }
1281 return 0;
1282 }
1283
1284 static int r600_bytecode_assign_kcache_banks(struct r600_bytecode *bc,
1285 struct r600_bytecode_alu *alu,
1286 struct r600_bytecode_kcache * kcache)
1287 {
1288 int i, j;
1289
1290 /* Alter the src operands to refer to the kcache. */
1291 for (i = 0; i < 3; ++i) {
1292 static const unsigned int base[] = {128, 160, 256, 288};
1293 unsigned int line, sel = alu->src[i].sel, found = 0;
1294
1295 if (sel < 512)
1296 continue;
1297
1298 sel -= 512;
1299 line = sel>>4;
1300
1301 for (j = 0; j < 4 && !found; ++j) {
1302 switch (kcache[j].mode) {
1303 case V_SQ_CF_KCACHE_NOP:
1304 case V_SQ_CF_KCACHE_LOCK_LOOP_INDEX:
1305 R600_ERR("unexpected kcache line mode\n");
1306 return -ENOMEM;
1307 default:
1308 if (kcache[j].bank == alu->src[i].kc_bank &&
1309 kcache[j].addr <= line &&
1310 line < kcache[j].addr + kcache[j].mode) {
1311 alu->src[i].sel = sel - (kcache[j].addr<<4);
1312 alu->src[i].sel += base[j];
1313 found=1;
1314 }
1315 }
1316 }
1317 }
1318 return 0;
1319 }
1320
1321 static int r600_bytecode_alloc_kcache_lines(struct r600_bytecode *bc, struct r600_bytecode_alu *alu, int type)
1322 {
1323 struct r600_bytecode_kcache kcache_sets[4];
1324 struct r600_bytecode_kcache *kcache = kcache_sets;
1325 int r;
1326
1327 memcpy(kcache, bc->cf_last->kcache, 4 * sizeof(struct r600_bytecode_kcache));
1328
1329 if ((r = r600_bytecode_alloc_inst_kcache_lines(bc, kcache, alu))) {
1330 /* can't alloc, need to start new clause */
1331 if ((r = r600_bytecode_add_cf(bc))) {
1332 return r;
1333 }
1334 bc->cf_last->inst = type;
1335
1336 /* retry with the new clause */
1337 kcache = bc->cf_last->kcache;
1338 if ((r = r600_bytecode_alloc_inst_kcache_lines(bc, kcache, alu))) {
1339 /* can't alloc again- should never happen */
1340 return r;
1341 }
1342 } else {
1343 /* update kcache sets */
1344 memcpy(bc->cf_last->kcache, kcache, 4 * sizeof(struct r600_bytecode_kcache));
1345 }
1346
1347 /* if we actually used more than 2 kcache sets - use ALU_EXTENDED on eg+ */
1348 if (kcache[2].mode != V_SQ_CF_KCACHE_NOP) {
1349 if (bc->chip_class < EVERGREEN)
1350 return -ENOMEM;
1351 bc->cf_last->eg_alu_extended = 1;
1352 }
1353
1354 return 0;
1355 }
1356
1357 static int insert_nop_r6xx(struct r600_bytecode *bc)
1358 {
1359 struct r600_bytecode_alu alu;
1360 int r, i;
1361
1362 for (i = 0; i < 4; i++) {
1363 memset(&alu, 0, sizeof(alu));
1364 alu.inst = V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_NOP;
1365 alu.src[0].chan = i;
1366 alu.dst.chan = i;
1367 alu.last = (i == 3);
1368 r = r600_bytecode_add_alu(bc, &alu);
1369 if (r)
1370 return r;
1371 }
1372 return 0;
1373 }
1374
1375 /* load AR register from gpr (bc->ar_reg) with MOVA_INT */
1376 static int load_ar_r6xx(struct r600_bytecode *bc)
1377 {
1378 struct r600_bytecode_alu alu;
1379 int r;
1380
1381 if (bc->ar_loaded)
1382 return 0;
1383
1384 /* hack to avoid making MOVA the last instruction in the clause */
1385 if ((bc->cf_last->ndw>>1) >= 110)
1386 bc->force_add_cf = 1;
1387
1388 memset(&alu, 0, sizeof(alu));
1389 alu.inst = V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOVA_GPR_INT;
1390 alu.src[0].sel = bc->ar_reg;
1391 alu.last = 1;
1392 alu.index_mode = INDEX_MODE_LOOP;
1393 r = r600_bytecode_add_alu(bc, &alu);
1394 if (r)
1395 return r;
1396
1397 /* no requirement to set uses waterfall on MOVA_GPR_INT */
1398 bc->ar_loaded = 1;
1399 return 0;
1400 }
1401
1402 /* load AR register from gpr (bc->ar_reg) with MOVA_INT */
1403 static int load_ar(struct r600_bytecode *bc)
1404 {
1405 struct r600_bytecode_alu alu;
1406 int r;
1407
1408 if (bc->ar_handling)
1409 return load_ar_r6xx(bc);
1410
1411 if (bc->ar_loaded)
1412 return 0;
1413
1414 /* hack to avoid making MOVA the last instruction in the clause */
1415 if ((bc->cf_last->ndw>>1) >= 110)
1416 bc->force_add_cf = 1;
1417
1418 memset(&alu, 0, sizeof(alu));
1419 alu.inst = BC_INST(bc, V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOVA_INT);
1420 alu.src[0].sel = bc->ar_reg;
1421 alu.last = 1;
1422 r = r600_bytecode_add_alu(bc, &alu);
1423 if (r)
1424 return r;
1425
1426 bc->cf_last->r6xx_uses_waterfall = 1;
1427 bc->ar_loaded = 1;
1428 return 0;
1429 }
1430
1431 int r600_bytecode_add_alu_type(struct r600_bytecode *bc, const struct r600_bytecode_alu *alu, int type)
1432 {
1433 struct r600_bytecode_alu *nalu = r600_bytecode_alu();
1434 struct r600_bytecode_alu *lalu;
1435 int i, r;
1436
1437 if (nalu == NULL)
1438 return -ENOMEM;
1439 memcpy(nalu, alu, sizeof(struct r600_bytecode_alu));
1440
1441 if (bc->cf_last != NULL && bc->cf_last->inst != type) {
1442 /* check if we could add it anyway */
1443 if (bc->cf_last->inst == BC_INST(bc, V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU) &&
1444 type == BC_INST(bc, V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_PUSH_BEFORE)) {
1445 LIST_FOR_EACH_ENTRY(lalu, &bc->cf_last->alu, list) {
1446 if (lalu->execute_mask) {
1447 bc->force_add_cf = 1;
1448 break;
1449 }
1450 }
1451 } else
1452 bc->force_add_cf = 1;
1453 }
1454
1455 /* cf can contains only alu or only vtx or only tex */
1456 if (bc->cf_last == NULL || bc->force_add_cf) {
1457 r = r600_bytecode_add_cf(bc);
1458 if (r) {
1459 free(nalu);
1460 return r;
1461 }
1462 }
1463 bc->cf_last->inst = type;
1464
1465 /* Check AR usage and load it if required */
1466 for (i = 0; i < 3; i++)
1467 if (nalu->src[i].rel && !bc->ar_loaded)
1468 load_ar(bc);
1469
1470 if (nalu->dst.rel && !bc->ar_loaded)
1471 load_ar(bc);
1472
1473 /* Setup the kcache for this ALU instruction. This will start a new
1474 * ALU clause if needed. */
1475 if ((r = r600_bytecode_alloc_kcache_lines(bc, nalu, type))) {
1476 free(nalu);
1477 return r;
1478 }
1479
1480 if (!bc->cf_last->curr_bs_head) {
1481 bc->cf_last->curr_bs_head = nalu;
1482 }
1483 /* number of gpr == the last gpr used in any alu */
1484 for (i = 0; i < 3; i++) {
1485 if (nalu->src[i].sel >= bc->ngpr && nalu->src[i].sel < 128) {
1486 bc->ngpr = nalu->src[i].sel + 1;
1487 }
1488 if (nalu->src[i].sel == V_SQ_ALU_SRC_LITERAL)
1489 r600_bytecode_special_constants(nalu->src[i].value,
1490 &nalu->src[i].sel, &nalu->src[i].neg);
1491 }
1492 if (nalu->dst.sel >= bc->ngpr) {
1493 bc->ngpr = nalu->dst.sel + 1;
1494 }
1495 LIST_ADDTAIL(&nalu->list, &bc->cf_last->alu);
1496 /* each alu use 2 dwords */
1497 bc->cf_last->ndw += 2;
1498 bc->ndw += 2;
1499
1500 /* process cur ALU instructions for bank swizzle */
1501 if (nalu->last) {
1502 uint32_t literal[4];
1503 unsigned nliteral;
1504 struct r600_bytecode_alu *slots[5];
1505 int max_slots = bc->chip_class == CAYMAN ? 4 : 5;
1506 r = assign_alu_units(bc, bc->cf_last->curr_bs_head, slots);
1507 if (r)
1508 return r;
1509
1510 if (bc->cf_last->prev_bs_head) {
1511 r = merge_inst_groups(bc, slots, bc->cf_last->prev_bs_head);
1512 if (r)
1513 return r;
1514 }
1515
1516 if (bc->cf_last->prev_bs_head) {
1517 r = replace_gpr_with_pv_ps(bc, slots, bc->cf_last->prev_bs_head);
1518 if (r)
1519 return r;
1520 }
1521
1522 r = check_and_set_bank_swizzle(bc, slots);
1523 if (r)
1524 return r;
1525
1526 for (i = 0, nliteral = 0; i < max_slots; i++) {
1527 if (slots[i]) {
1528 r = r600_bytecode_alu_nliterals(bc, slots[i], literal, &nliteral);
1529 if (r)
1530 return r;
1531 }
1532 }
1533 bc->cf_last->ndw += align(nliteral, 2);
1534
1535 /* at most 128 slots, one add alu can add 5 slots + 4 constants(2 slots)
1536 * worst case */
1537 if ((bc->cf_last->ndw >> 1) >= 120) {
1538 bc->force_add_cf = 1;
1539 }
1540
1541 bc->cf_last->prev2_bs_head = bc->cf_last->prev_bs_head;
1542 bc->cf_last->prev_bs_head = bc->cf_last->curr_bs_head;
1543 bc->cf_last->curr_bs_head = NULL;
1544 }
1545
1546 if (nalu->dst.rel && bc->r6xx_nop_after_rel_dst)
1547 insert_nop_r6xx(bc);
1548
1549 return 0;
1550 }
1551
1552 int r600_bytecode_add_alu(struct r600_bytecode *bc, const struct r600_bytecode_alu *alu)
1553 {
1554 return r600_bytecode_add_alu_type(bc, alu, BC_INST(bc, V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU));
1555 }
1556
1557 static unsigned r600_bytecode_num_tex_and_vtx_instructions(const struct r600_bytecode *bc)
1558 {
1559 switch (bc->chip_class) {
1560 case R600:
1561 return 8;
1562
1563 case R700:
1564 case EVERGREEN:
1565 case CAYMAN:
1566 return 16;
1567
1568 default:
1569 R600_ERR("Unknown chip class %d.\n", bc->chip_class);
1570 return 8;
1571 }
1572 }
1573
1574 static inline boolean last_inst_was_not_vtx_fetch(struct r600_bytecode *bc)
1575 {
1576 switch (bc->chip_class) {
1577 case R700:
1578 case R600:
1579 return bc->cf_last->inst != V_SQ_CF_WORD1_SQ_CF_INST_VTX &&
1580 bc->cf_last->inst != V_SQ_CF_WORD1_SQ_CF_INST_VTX_TC;
1581 case EVERGREEN:
1582 return bc->cf_last->inst != EG_V_SQ_CF_WORD1_SQ_CF_INST_VTX;
1583 case CAYMAN:
1584 return bc->cf_last->inst != CM_V_SQ_CF_WORD1_SQ_CF_INST_TC;
1585 default:
1586 R600_ERR("Unknown chip class %d.\n", bc->chip_class);
1587 return FALSE;
1588 }
1589 }
1590
1591 int r600_bytecode_add_vtx(struct r600_bytecode *bc, const struct r600_bytecode_vtx *vtx)
1592 {
1593 struct r600_bytecode_vtx *nvtx = r600_bytecode_vtx();
1594 int r;
1595
1596 if (nvtx == NULL)
1597 return -ENOMEM;
1598 memcpy(nvtx, vtx, sizeof(struct r600_bytecode_vtx));
1599
1600 /* cf can contains only alu or only vtx or only tex */
1601 if (bc->cf_last == NULL ||
1602 last_inst_was_not_vtx_fetch(bc) ||
1603 bc->force_add_cf) {
1604 r = r600_bytecode_add_cf(bc);
1605 if (r) {
1606 free(nvtx);
1607 return r;
1608 }
1609 switch (bc->chip_class) {
1610 case R600:
1611 case R700:
1612 bc->cf_last->inst = V_SQ_CF_WORD1_SQ_CF_INST_VTX;
1613 break;
1614 case EVERGREEN:
1615 bc->cf_last->inst = EG_V_SQ_CF_WORD1_SQ_CF_INST_VTX;
1616 break;
1617 case CAYMAN:
1618 bc->cf_last->inst = CM_V_SQ_CF_WORD1_SQ_CF_INST_TC;
1619 break;
1620 default:
1621 R600_ERR("Unknown chip class %d.\n", bc->chip_class);
1622 return -EINVAL;
1623 }
1624 }
1625 LIST_ADDTAIL(&nvtx->list, &bc->cf_last->vtx);
1626 /* each fetch use 4 dwords */
1627 bc->cf_last->ndw += 4;
1628 bc->ndw += 4;
1629 if ((bc->cf_last->ndw / 4) >= r600_bytecode_num_tex_and_vtx_instructions(bc))
1630 bc->force_add_cf = 1;
1631
1632 bc->ngpr = MAX2(bc->ngpr, vtx->src_gpr + 1);
1633 bc->ngpr = MAX2(bc->ngpr, vtx->dst_gpr + 1);
1634
1635 return 0;
1636 }
1637
1638 int r600_bytecode_add_tex(struct r600_bytecode *bc, const struct r600_bytecode_tex *tex)
1639 {
1640 struct r600_bytecode_tex *ntex = r600_bytecode_tex();
1641 int r;
1642
1643 if (ntex == NULL)
1644 return -ENOMEM;
1645 memcpy(ntex, tex, sizeof(struct r600_bytecode_tex));
1646
1647 /* we can't fetch data und use it as texture lookup address in the same TEX clause */
1648 if (bc->cf_last != NULL &&
1649 bc->cf_last->inst == BC_INST(bc, V_SQ_CF_WORD1_SQ_CF_INST_TEX)) {
1650 struct r600_bytecode_tex *ttex;
1651 LIST_FOR_EACH_ENTRY(ttex, &bc->cf_last->tex, list) {
1652 if (ttex->dst_gpr == ntex->src_gpr) {
1653 bc->force_add_cf = 1;
1654 break;
1655 }
1656 }
1657 /* slight hack to make gradients always go into same cf */
1658 if (ntex->inst == SQ_TEX_INST_SET_GRADIENTS_H)
1659 bc->force_add_cf = 1;
1660 }
1661
1662 /* cf can contains only alu or only vtx or only tex */
1663 if (bc->cf_last == NULL ||
1664 bc->cf_last->inst != BC_INST(bc, V_SQ_CF_WORD1_SQ_CF_INST_TEX) ||
1665 bc->force_add_cf) {
1666 r = r600_bytecode_add_cf(bc);
1667 if (r) {
1668 free(ntex);
1669 return r;
1670 }
1671 bc->cf_last->inst = BC_INST(bc, V_SQ_CF_WORD1_SQ_CF_INST_TEX);
1672 }
1673 if (ntex->src_gpr >= bc->ngpr) {
1674 bc->ngpr = ntex->src_gpr + 1;
1675 }
1676 if (ntex->dst_gpr >= bc->ngpr) {
1677 bc->ngpr = ntex->dst_gpr + 1;
1678 }
1679 LIST_ADDTAIL(&ntex->list, &bc->cf_last->tex);
1680 /* each texture fetch use 4 dwords */
1681 bc->cf_last->ndw += 4;
1682 bc->ndw += 4;
1683 if ((bc->cf_last->ndw / 4) >= r600_bytecode_num_tex_and_vtx_instructions(bc))
1684 bc->force_add_cf = 1;
1685 return 0;
1686 }
1687
1688 int r600_bytecode_add_cfinst(struct r600_bytecode *bc, int inst)
1689 {
1690 int r;
1691 r = r600_bytecode_add_cf(bc);
1692 if (r)
1693 return r;
1694
1695 bc->cf_last->cond = V_SQ_CF_COND_ACTIVE;
1696 bc->cf_last->inst = inst;
1697 return 0;
1698 }
1699
1700 int cm_bytecode_add_cf_end(struct r600_bytecode *bc)
1701 {
1702 return r600_bytecode_add_cfinst(bc, CM_V_SQ_CF_WORD1_SQ_CF_INST_END);
1703 }
1704
1705 /* common to all 3 families */
1706 static int r600_bytecode_vtx_build(struct r600_bytecode *bc, struct r600_bytecode_vtx *vtx, unsigned id)
1707 {
1708 bc->bytecode[id] = S_SQ_VTX_WORD0_BUFFER_ID(vtx->buffer_id) |
1709 S_SQ_VTX_WORD0_FETCH_TYPE(vtx->fetch_type) |
1710 S_SQ_VTX_WORD0_SRC_GPR(vtx->src_gpr) |
1711 S_SQ_VTX_WORD0_SRC_SEL_X(vtx->src_sel_x);
1712 if (bc->chip_class < CAYMAN)
1713 bc->bytecode[id] |= S_SQ_VTX_WORD0_MEGA_FETCH_COUNT(vtx->mega_fetch_count);
1714 id++;
1715 bc->bytecode[id++] = S_SQ_VTX_WORD1_DST_SEL_X(vtx->dst_sel_x) |
1716 S_SQ_VTX_WORD1_DST_SEL_Y(vtx->dst_sel_y) |
1717 S_SQ_VTX_WORD1_DST_SEL_Z(vtx->dst_sel_z) |
1718 S_SQ_VTX_WORD1_DST_SEL_W(vtx->dst_sel_w) |
1719 S_SQ_VTX_WORD1_USE_CONST_FIELDS(vtx->use_const_fields) |
1720 S_SQ_VTX_WORD1_DATA_FORMAT(vtx->data_format) |
1721 S_SQ_VTX_WORD1_NUM_FORMAT_ALL(vtx->num_format_all) |
1722 S_SQ_VTX_WORD1_FORMAT_COMP_ALL(vtx->format_comp_all) |
1723 S_SQ_VTX_WORD1_SRF_MODE_ALL(vtx->srf_mode_all) |
1724 S_SQ_VTX_WORD1_GPR_DST_GPR(vtx->dst_gpr);
1725 bc->bytecode[id] = S_SQ_VTX_WORD2_OFFSET(vtx->offset)|
1726 S_SQ_VTX_WORD2_ENDIAN_SWAP(vtx->endian);
1727 if (bc->chip_class < CAYMAN)
1728 bc->bytecode[id] |= S_SQ_VTX_WORD2_MEGA_FETCH(1);
1729 id++;
1730 bc->bytecode[id++] = 0;
1731 return 0;
1732 }
1733
1734 /* common to all 3 families */
1735 static int r600_bytecode_tex_build(struct r600_bytecode *bc, struct r600_bytecode_tex *tex, unsigned id)
1736 {
1737 bc->bytecode[id++] = S_SQ_TEX_WORD0_TEX_INST(tex->inst) |
1738 S_SQ_TEX_WORD0_RESOURCE_ID(tex->resource_id) |
1739 S_SQ_TEX_WORD0_SRC_GPR(tex->src_gpr) |
1740 S_SQ_TEX_WORD0_SRC_REL(tex->src_rel);
1741 bc->bytecode[id++] = S_SQ_TEX_WORD1_DST_GPR(tex->dst_gpr) |
1742 S_SQ_TEX_WORD1_DST_REL(tex->dst_rel) |
1743 S_SQ_TEX_WORD1_DST_SEL_X(tex->dst_sel_x) |
1744 S_SQ_TEX_WORD1_DST_SEL_Y(tex->dst_sel_y) |
1745 S_SQ_TEX_WORD1_DST_SEL_Z(tex->dst_sel_z) |
1746 S_SQ_TEX_WORD1_DST_SEL_W(tex->dst_sel_w) |
1747 S_SQ_TEX_WORD1_LOD_BIAS(tex->lod_bias) |
1748 S_SQ_TEX_WORD1_COORD_TYPE_X(tex->coord_type_x) |
1749 S_SQ_TEX_WORD1_COORD_TYPE_Y(tex->coord_type_y) |
1750 S_SQ_TEX_WORD1_COORD_TYPE_Z(tex->coord_type_z) |
1751 S_SQ_TEX_WORD1_COORD_TYPE_W(tex->coord_type_w);
1752 bc->bytecode[id++] = S_SQ_TEX_WORD2_OFFSET_X(tex->offset_x) |
1753 S_SQ_TEX_WORD2_OFFSET_Y(tex->offset_y) |
1754 S_SQ_TEX_WORD2_OFFSET_Z(tex->offset_z) |
1755 S_SQ_TEX_WORD2_SAMPLER_ID(tex->sampler_id) |
1756 S_SQ_TEX_WORD2_SRC_SEL_X(tex->src_sel_x) |
1757 S_SQ_TEX_WORD2_SRC_SEL_Y(tex->src_sel_y) |
1758 S_SQ_TEX_WORD2_SRC_SEL_Z(tex->src_sel_z) |
1759 S_SQ_TEX_WORD2_SRC_SEL_W(tex->src_sel_w);
1760 bc->bytecode[id++] = 0;
1761 return 0;
1762 }
1763
1764 /* r600 only, r700/eg bits in r700_asm.c */
1765 static int r600_bytecode_alu_build(struct r600_bytecode *bc, struct r600_bytecode_alu *alu, unsigned id)
1766 {
1767 /* don't replace gpr by pv or ps for destination register */
1768 bc->bytecode[id++] = S_SQ_ALU_WORD0_SRC0_SEL(alu->src[0].sel) |
1769 S_SQ_ALU_WORD0_SRC0_REL(alu->src[0].rel) |
1770 S_SQ_ALU_WORD0_SRC0_CHAN(alu->src[0].chan) |
1771 S_SQ_ALU_WORD0_SRC0_NEG(alu->src[0].neg) |
1772 S_SQ_ALU_WORD0_SRC1_SEL(alu->src[1].sel) |
1773 S_SQ_ALU_WORD0_SRC1_REL(alu->src[1].rel) |
1774 S_SQ_ALU_WORD0_SRC1_CHAN(alu->src[1].chan) |
1775 S_SQ_ALU_WORD0_SRC1_NEG(alu->src[1].neg) |
1776 S_SQ_ALU_WORD0_INDEX_MODE(alu->index_mode) |
1777 S_SQ_ALU_WORD0_PRED_SEL(alu->pred_sel) |
1778 S_SQ_ALU_WORD0_LAST(alu->last);
1779
1780 if (alu->is_op3) {
1781 bc->bytecode[id++] = S_SQ_ALU_WORD1_DST_GPR(alu->dst.sel) |
1782 S_SQ_ALU_WORD1_DST_CHAN(alu->dst.chan) |
1783 S_SQ_ALU_WORD1_DST_REL(alu->dst.rel) |
1784 S_SQ_ALU_WORD1_CLAMP(alu->dst.clamp) |
1785 S_SQ_ALU_WORD1_OP3_SRC2_SEL(alu->src[2].sel) |
1786 S_SQ_ALU_WORD1_OP3_SRC2_REL(alu->src[2].rel) |
1787 S_SQ_ALU_WORD1_OP3_SRC2_CHAN(alu->src[2].chan) |
1788 S_SQ_ALU_WORD1_OP3_SRC2_NEG(alu->src[2].neg) |
1789 S_SQ_ALU_WORD1_OP3_ALU_INST(alu->inst) |
1790 S_SQ_ALU_WORD1_BANK_SWIZZLE(alu->bank_swizzle);
1791 } else {
1792 bc->bytecode[id++] = S_SQ_ALU_WORD1_DST_GPR(alu->dst.sel) |
1793 S_SQ_ALU_WORD1_DST_CHAN(alu->dst.chan) |
1794 S_SQ_ALU_WORD1_DST_REL(alu->dst.rel) |
1795 S_SQ_ALU_WORD1_CLAMP(alu->dst.clamp) |
1796 S_SQ_ALU_WORD1_OP2_SRC0_ABS(alu->src[0].abs) |
1797 S_SQ_ALU_WORD1_OP2_SRC1_ABS(alu->src[1].abs) |
1798 S_SQ_ALU_WORD1_OP2_WRITE_MASK(alu->dst.write) |
1799 S_SQ_ALU_WORD1_OP2_OMOD(alu->omod) |
1800 S_SQ_ALU_WORD1_OP2_ALU_INST(alu->inst) |
1801 S_SQ_ALU_WORD1_BANK_SWIZZLE(alu->bank_swizzle) |
1802 S_SQ_ALU_WORD1_OP2_UPDATE_EXECUTE_MASK(alu->execute_mask) |
1803 S_SQ_ALU_WORD1_OP2_UPDATE_PRED(alu->update_pred);
1804 }
1805 return 0;
1806 }
1807
1808 static void r600_bytecode_cf_vtx_build(uint32_t *bytecode, const struct r600_bytecode_cf *cf)
1809 {
1810 *bytecode++ = S_SQ_CF_WORD0_ADDR(cf->addr >> 1);
1811 *bytecode++ = cf->inst |
1812 S_SQ_CF_WORD1_BARRIER(1) |
1813 S_SQ_CF_WORD1_COUNT((cf->ndw / 4) - 1);
1814 }
1815
1816 /* common for r600/r700 - eg in eg_asm.c */
1817 static int r600_bytecode_cf_build(struct r600_bytecode *bc, struct r600_bytecode_cf *cf)
1818 {
1819 unsigned id = cf->id;
1820
1821 switch (cf->inst) {
1822 case V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU:
1823 case V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_PUSH_BEFORE:
1824 case V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_POP_AFTER:
1825 case V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_POP2_AFTER:
1826 bc->bytecode[id++] = S_SQ_CF_ALU_WORD0_ADDR(cf->addr >> 1) |
1827 S_SQ_CF_ALU_WORD0_KCACHE_MODE0(cf->kcache[0].mode) |
1828 S_SQ_CF_ALU_WORD0_KCACHE_BANK0(cf->kcache[0].bank) |
1829 S_SQ_CF_ALU_WORD0_KCACHE_BANK1(cf->kcache[1].bank);
1830
1831 bc->bytecode[id++] = cf->inst |
1832 S_SQ_CF_ALU_WORD1_KCACHE_MODE1(cf->kcache[1].mode) |
1833 S_SQ_CF_ALU_WORD1_KCACHE_ADDR0(cf->kcache[0].addr) |
1834 S_SQ_CF_ALU_WORD1_KCACHE_ADDR1(cf->kcache[1].addr) |
1835 S_SQ_CF_ALU_WORD1_BARRIER(1) |
1836 S_SQ_CF_ALU_WORD1_USES_WATERFALL(bc->chip_class == R600 ? cf->r6xx_uses_waterfall : 0) |
1837 S_SQ_CF_ALU_WORD1_COUNT((cf->ndw / 2) - 1);
1838 break;
1839 case V_SQ_CF_WORD1_SQ_CF_INST_TEX:
1840 case V_SQ_CF_WORD1_SQ_CF_INST_VTX:
1841 case V_SQ_CF_WORD1_SQ_CF_INST_VTX_TC:
1842 if (bc->chip_class == R700)
1843 r700_bytecode_cf_vtx_build(&bc->bytecode[id], cf);
1844 else
1845 r600_bytecode_cf_vtx_build(&bc->bytecode[id], cf);
1846 break;
1847 case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT:
1848 case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT_DONE:
1849 bc->bytecode[id++] = S_SQ_CF_ALLOC_EXPORT_WORD0_RW_GPR(cf->output.gpr) |
1850 S_SQ_CF_ALLOC_EXPORT_WORD0_ELEM_SIZE(cf->output.elem_size) |
1851 S_SQ_CF_ALLOC_EXPORT_WORD0_ARRAY_BASE(cf->output.array_base) |
1852 S_SQ_CF_ALLOC_EXPORT_WORD0_TYPE(cf->output.type);
1853 bc->bytecode[id++] = S_SQ_CF_ALLOC_EXPORT_WORD1_BURST_COUNT(cf->output.burst_count - 1) |
1854 S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_X(cf->output.swizzle_x) |
1855 S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_Y(cf->output.swizzle_y) |
1856 S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_Z(cf->output.swizzle_z) |
1857 S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_W(cf->output.swizzle_w) |
1858 S_SQ_CF_ALLOC_EXPORT_WORD1_BARRIER(cf->output.barrier) |
1859 cf->output.inst |
1860 S_SQ_CF_ALLOC_EXPORT_WORD1_END_OF_PROGRAM(cf->output.end_of_program);
1861 break;
1862 case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0:
1863 case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM1:
1864 case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM2:
1865 case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM3:
1866 bc->bytecode[id++] = S_SQ_CF_ALLOC_EXPORT_WORD0_RW_GPR(cf->output.gpr) |
1867 S_SQ_CF_ALLOC_EXPORT_WORD0_ELEM_SIZE(cf->output.elem_size) |
1868 S_SQ_CF_ALLOC_EXPORT_WORD0_ARRAY_BASE(cf->output.array_base) |
1869 S_SQ_CF_ALLOC_EXPORT_WORD0_TYPE(cf->output.type);
1870 bc->bytecode[id++] = S_SQ_CF_ALLOC_EXPORT_WORD1_BURST_COUNT(cf->output.burst_count - 1) |
1871 S_SQ_CF_ALLOC_EXPORT_WORD1_BARRIER(cf->output.barrier) |
1872 cf->output.inst |
1873 S_SQ_CF_ALLOC_EXPORT_WORD1_END_OF_PROGRAM(cf->output.end_of_program) |
1874 S_SQ_CF_ALLOC_EXPORT_WORD1_BUF_ARRAY_SIZE(cf->output.array_size) |
1875 S_SQ_CF_ALLOC_EXPORT_WORD1_BUF_COMP_MASK(cf->output.comp_mask);
1876 break;
1877 case V_SQ_CF_WORD1_SQ_CF_INST_JUMP:
1878 case V_SQ_CF_WORD1_SQ_CF_INST_ELSE:
1879 case V_SQ_CF_WORD1_SQ_CF_INST_POP:
1880 case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_START_NO_AL:
1881 case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_START_DX10:
1882 case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_END:
1883 case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_CONTINUE:
1884 case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_BREAK:
1885 case V_SQ_CF_WORD1_SQ_CF_INST_CALL_FS:
1886 case V_SQ_CF_WORD1_SQ_CF_INST_RETURN:
1887 bc->bytecode[id++] = S_SQ_CF_WORD0_ADDR(cf->cf_addr >> 1);
1888 bc->bytecode[id++] = cf->inst |
1889 S_SQ_CF_WORD1_BARRIER(1) |
1890 S_SQ_CF_WORD1_COND(cf->cond) |
1891 S_SQ_CF_WORD1_POP_COUNT(cf->pop_count);
1892
1893 break;
1894 default:
1895 R600_ERR("unsupported CF instruction (0x%X)\n", cf->inst);
1896 return -EINVAL;
1897 }
1898 return 0;
1899 }
1900
1901 int r600_bytecode_build(struct r600_bytecode *bc)
1902 {
1903 struct r600_bytecode_cf *cf;
1904 struct r600_bytecode_alu *alu;
1905 struct r600_bytecode_vtx *vtx;
1906 struct r600_bytecode_tex *tex;
1907 uint32_t literal[4];
1908 unsigned nliteral;
1909 unsigned addr;
1910 int i, r;
1911
1912 if (bc->callstack[0].max > 0)
1913 bc->nstack = ((bc->callstack[0].max + 3) >> 2) + 2;
1914 if (bc->type == TGSI_PROCESSOR_VERTEX && !bc->nstack) {
1915 bc->nstack = 1;
1916 }
1917
1918 /* first path compute addr of each CF block */
1919 /* addr start after all the CF instructions */
1920 addr = bc->cf_last->id + 2;
1921 LIST_FOR_EACH_ENTRY(cf, &bc->cf, list) {
1922 if (bc->chip_class >= EVERGREEN) {
1923 switch (cf->inst) {
1924 case EG_V_SQ_CF_WORD1_SQ_CF_INST_TEX:
1925 case EG_V_SQ_CF_WORD1_SQ_CF_INST_VTX:
1926 /* fetch node need to be 16 bytes aligned*/
1927 addr += 3;
1928 addr &= 0xFFFFFFFCUL;
1929 break;
1930 case EG_V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU:
1931 case EG_V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_POP_AFTER:
1932 case EG_V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_POP2_AFTER:
1933 case EG_V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_PUSH_BEFORE:
1934 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT:
1935 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT_DONE:
1936 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0_BUF0:
1937 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0_BUF1:
1938 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0_BUF2:
1939 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0_BUF3:
1940 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM1_BUF0:
1941 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM1_BUF1:
1942 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM1_BUF2:
1943 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM1_BUF3:
1944 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM2_BUF0:
1945 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM2_BUF1:
1946 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM2_BUF2:
1947 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM2_BUF3:
1948 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM3_BUF0:
1949 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM3_BUF1:
1950 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM3_BUF2:
1951 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM3_BUF3:
1952 case EG_V_SQ_CF_WORD1_SQ_CF_INST_JUMP:
1953 case EG_V_SQ_CF_WORD1_SQ_CF_INST_ELSE:
1954 case EG_V_SQ_CF_WORD1_SQ_CF_INST_POP:
1955 case EG_V_SQ_CF_WORD1_SQ_CF_INST_LOOP_START_NO_AL:
1956 case EG_V_SQ_CF_WORD1_SQ_CF_INST_LOOP_START_DX10:
1957 case EG_V_SQ_CF_WORD1_SQ_CF_INST_LOOP_END:
1958 case EG_V_SQ_CF_WORD1_SQ_CF_INST_LOOP_CONTINUE:
1959 case EG_V_SQ_CF_WORD1_SQ_CF_INST_LOOP_BREAK:
1960 case EG_V_SQ_CF_WORD1_SQ_CF_INST_CALL_FS:
1961 case EG_V_SQ_CF_WORD1_SQ_CF_INST_RETURN:
1962 case CM_V_SQ_CF_WORD1_SQ_CF_INST_END:
1963 case CF_NATIVE:
1964 break;
1965 default:
1966 R600_ERR("unsupported CF instruction (0x%X)\n", cf->inst);
1967 return -EINVAL;
1968 }
1969 } else {
1970 switch (cf->inst) {
1971 case V_SQ_CF_WORD1_SQ_CF_INST_TEX:
1972 case V_SQ_CF_WORD1_SQ_CF_INST_VTX:
1973 case V_SQ_CF_WORD1_SQ_CF_INST_VTX_TC:
1974 /* fetch node need to be 16 bytes aligned*/
1975 addr += 3;
1976 addr &= 0xFFFFFFFCUL;
1977 break;
1978 case V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU:
1979 case V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_POP_AFTER:
1980 case V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_POP2_AFTER:
1981 case V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_PUSH_BEFORE:
1982 case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT:
1983 case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT_DONE:
1984 case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0:
1985 case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM1:
1986 case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM2:
1987 case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM3:
1988 case V_SQ_CF_WORD1_SQ_CF_INST_JUMP:
1989 case V_SQ_CF_WORD1_SQ_CF_INST_ELSE:
1990 case V_SQ_CF_WORD1_SQ_CF_INST_POP:
1991 case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_START_DX10:
1992 case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_END:
1993 case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_CONTINUE:
1994 case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_BREAK:
1995 case V_SQ_CF_WORD1_SQ_CF_INST_CALL_FS:
1996 case V_SQ_CF_WORD1_SQ_CF_INST_RETURN:
1997 break;
1998 default:
1999 R600_ERR("unsupported CF instruction (0x%X)\n", cf->inst);
2000 return -EINVAL;
2001 }
2002 }
2003 cf->addr = addr;
2004 addr += cf->ndw;
2005 bc->ndw = cf->addr + cf->ndw;
2006 }
2007 free(bc->bytecode);
2008 bc->bytecode = calloc(1, bc->ndw * 4);
2009 if (bc->bytecode == NULL)
2010 return -ENOMEM;
2011 LIST_FOR_EACH_ENTRY(cf, &bc->cf, list) {
2012 addr = cf->addr;
2013 if (bc->chip_class >= EVERGREEN) {
2014 r = eg_bytecode_cf_build(bc, cf);
2015 if (r)
2016 return r;
2017
2018 switch (cf->inst) {
2019 case EG_V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU:
2020 case EG_V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_POP_AFTER:
2021 case EG_V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_POP2_AFTER:
2022 case EG_V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_PUSH_BEFORE:
2023 nliteral = 0;
2024 memset(literal, 0, sizeof(literal));
2025 LIST_FOR_EACH_ENTRY(alu, &cf->alu, list) {
2026 r = r600_bytecode_alu_nliterals(bc, alu, literal, &nliteral);
2027 if (r)
2028 return r;
2029 r600_bytecode_alu_adjust_literals(bc, alu, literal, nliteral);
2030 r600_bytecode_assign_kcache_banks(bc, alu, cf->kcache);
2031
2032 switch(bc->chip_class) {
2033 case EVERGREEN: /* eg alu is same encoding as r700 */
2034 case CAYMAN:
2035 r = r700_bytecode_alu_build(bc, alu, addr);
2036 break;
2037 default:
2038 R600_ERR("unknown chip class %d.\n", bc->chip_class);
2039 return -EINVAL;
2040 }
2041 if (r)
2042 return r;
2043 addr += 2;
2044 if (alu->last) {
2045 for (i = 0; i < align(nliteral, 2); ++i) {
2046 bc->bytecode[addr++] = literal[i];
2047 }
2048 nliteral = 0;
2049 memset(literal, 0, sizeof(literal));
2050 }
2051 }
2052 break;
2053 case EG_V_SQ_CF_WORD1_SQ_CF_INST_VTX:
2054 LIST_FOR_EACH_ENTRY(vtx, &cf->vtx, list) {
2055 r = r600_bytecode_vtx_build(bc, vtx, addr);
2056 if (r)
2057 return r;
2058 addr += 4;
2059 }
2060 break;
2061 case EG_V_SQ_CF_WORD1_SQ_CF_INST_TEX:
2062 LIST_FOR_EACH_ENTRY(vtx, &cf->vtx, list) {
2063 assert(bc->chip_class >= EVERGREEN);
2064 r = r600_bytecode_vtx_build(bc, vtx, addr);
2065 if (r)
2066 return r;
2067 addr += 4;
2068 }
2069 LIST_FOR_EACH_ENTRY(tex, &cf->tex, list) {
2070 r = r600_bytecode_tex_build(bc, tex, addr);
2071 if (r)
2072 return r;
2073 addr += 4;
2074 }
2075 break;
2076 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT:
2077 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT_DONE:
2078 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0_BUF0:
2079 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0_BUF1:
2080 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0_BUF2:
2081 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0_BUF3:
2082 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM1_BUF0:
2083 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM1_BUF1:
2084 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM1_BUF2:
2085 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM1_BUF3:
2086 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM2_BUF0:
2087 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM2_BUF1:
2088 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM2_BUF2:
2089 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM2_BUF3:
2090 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM3_BUF0:
2091 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM3_BUF1:
2092 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM3_BUF2:
2093 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM3_BUF3:
2094 case EG_V_SQ_CF_WORD1_SQ_CF_INST_LOOP_START_DX10:
2095 case EG_V_SQ_CF_WORD1_SQ_CF_INST_LOOP_START_NO_AL:
2096 case EG_V_SQ_CF_WORD1_SQ_CF_INST_LOOP_END:
2097 case EG_V_SQ_CF_WORD1_SQ_CF_INST_LOOP_CONTINUE:
2098 case EG_V_SQ_CF_WORD1_SQ_CF_INST_LOOP_BREAK:
2099 case EG_V_SQ_CF_WORD1_SQ_CF_INST_JUMP:
2100 case EG_V_SQ_CF_WORD1_SQ_CF_INST_ELSE:
2101 case EG_V_SQ_CF_WORD1_SQ_CF_INST_POP:
2102 case EG_V_SQ_CF_WORD1_SQ_CF_INST_CALL_FS:
2103 case EG_V_SQ_CF_WORD1_SQ_CF_INST_RETURN:
2104 case CM_V_SQ_CF_WORD1_SQ_CF_INST_END:
2105 break;
2106 case CF_NATIVE:
2107 break;
2108 default:
2109 R600_ERR("unsupported CF instruction (0x%X)\n", cf->inst);
2110 return -EINVAL;
2111 }
2112 } else {
2113 r = r600_bytecode_cf_build(bc, cf);
2114 if (r)
2115 return r;
2116
2117 switch (cf->inst) {
2118 case V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU:
2119 case V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_POP_AFTER:
2120 case V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_POP2_AFTER:
2121 case V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_PUSH_BEFORE:
2122 nliteral = 0;
2123 memset(literal, 0, sizeof(literal));
2124 LIST_FOR_EACH_ENTRY(alu, &cf->alu, list) {
2125 r = r600_bytecode_alu_nliterals(bc, alu, literal, &nliteral);
2126 if (r)
2127 return r;
2128 r600_bytecode_alu_adjust_literals(bc, alu, literal, nliteral);
2129 r600_bytecode_assign_kcache_banks(bc, alu, cf->kcache);
2130
2131 switch(bc->chip_class) {
2132 case R600:
2133 r = r600_bytecode_alu_build(bc, alu, addr);
2134 break;
2135 case R700:
2136 r = r700_bytecode_alu_build(bc, alu, addr);
2137 break;
2138 default:
2139 R600_ERR("unknown chip class %d.\n", bc->chip_class);
2140 return -EINVAL;
2141 }
2142 if (r)
2143 return r;
2144 addr += 2;
2145 if (alu->last) {
2146 for (i = 0; i < align(nliteral, 2); ++i) {
2147 bc->bytecode[addr++] = literal[i];
2148 }
2149 nliteral = 0;
2150 memset(literal, 0, sizeof(literal));
2151 }
2152 }
2153 break;
2154 case V_SQ_CF_WORD1_SQ_CF_INST_VTX:
2155 case V_SQ_CF_WORD1_SQ_CF_INST_VTX_TC:
2156 LIST_FOR_EACH_ENTRY(vtx, &cf->vtx, list) {
2157 r = r600_bytecode_vtx_build(bc, vtx, addr);
2158 if (r)
2159 return r;
2160 addr += 4;
2161 }
2162 break;
2163 case V_SQ_CF_WORD1_SQ_CF_INST_TEX:
2164 LIST_FOR_EACH_ENTRY(tex, &cf->tex, list) {
2165 r = r600_bytecode_tex_build(bc, tex, addr);
2166 if (r)
2167 return r;
2168 addr += 4;
2169 }
2170 break;
2171 case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT:
2172 case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT_DONE:
2173 case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0:
2174 case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM1:
2175 case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM2:
2176 case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM3:
2177 case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_START_NO_AL:
2178 case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_START_DX10:
2179 case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_END:
2180 case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_CONTINUE:
2181 case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_BREAK:
2182 case V_SQ_CF_WORD1_SQ_CF_INST_JUMP:
2183 case V_SQ_CF_WORD1_SQ_CF_INST_ELSE:
2184 case V_SQ_CF_WORD1_SQ_CF_INST_POP:
2185 case V_SQ_CF_WORD1_SQ_CF_INST_CALL_FS:
2186 case V_SQ_CF_WORD1_SQ_CF_INST_RETURN:
2187 break;
2188 default:
2189 R600_ERR("unsupported CF instruction (0x%X)\n", cf->inst);
2190 return -EINVAL;
2191 }
2192 }
2193 }
2194 return 0;
2195 }
2196
2197 void r600_bytecode_clear(struct r600_bytecode *bc)
2198 {
2199 struct r600_bytecode_cf *cf = NULL, *next_cf;
2200
2201 free(bc->bytecode);
2202 bc->bytecode = NULL;
2203
2204 LIST_FOR_EACH_ENTRY_SAFE(cf, next_cf, &bc->cf, list) {
2205 struct r600_bytecode_alu *alu = NULL, *next_alu;
2206 struct r600_bytecode_tex *tex = NULL, *next_tex;
2207 struct r600_bytecode_tex *vtx = NULL, *next_vtx;
2208
2209 LIST_FOR_EACH_ENTRY_SAFE(alu, next_alu, &cf->alu, list) {
2210 free(alu);
2211 }
2212
2213 LIST_INITHEAD(&cf->alu);
2214
2215 LIST_FOR_EACH_ENTRY_SAFE(tex, next_tex, &cf->tex, list) {
2216 free(tex);
2217 }
2218
2219 LIST_INITHEAD(&cf->tex);
2220
2221 LIST_FOR_EACH_ENTRY_SAFE(vtx, next_vtx, &cf->vtx, list) {
2222 free(vtx);
2223 }
2224
2225 LIST_INITHEAD(&cf->vtx);
2226
2227 free(cf);
2228 }
2229
2230 LIST_INITHEAD(&cf->list);
2231 }
2232
2233 void r600_bytecode_dump(struct r600_bytecode *bc)
2234 {
2235 struct r600_bytecode_cf *cf = NULL;
2236 struct r600_bytecode_alu *alu = NULL;
2237 struct r600_bytecode_vtx *vtx = NULL;
2238 struct r600_bytecode_tex *tex = NULL;
2239
2240 unsigned i, id;
2241 uint32_t literal[4];
2242 unsigned nliteral;
2243 char chip = '6';
2244
2245 switch (bc->chip_class) {
2246 case R700:
2247 chip = '7';
2248 break;
2249 case EVERGREEN:
2250 chip = 'E';
2251 break;
2252 case CAYMAN:
2253 chip = 'C';
2254 break;
2255 case R600:
2256 default:
2257 chip = '6';
2258 break;
2259 }
2260 fprintf(stderr, "bytecode %d dw -- %d gprs ---------------------\n", bc->ndw, bc->ngpr);
2261 fprintf(stderr, " %c\n", chip);
2262
2263 LIST_FOR_EACH_ENTRY(cf, &bc->cf, list) {
2264 id = cf->id;
2265
2266 if (bc->chip_class >= EVERGREEN) {
2267 switch (cf->inst) {
2268 case EG_V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU:
2269 case EG_V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_POP_AFTER:
2270 case EG_V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_POP2_AFTER:
2271 case EG_V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_PUSH_BEFORE:
2272 if (cf->eg_alu_extended) {
2273 fprintf(stderr, "%04d %08X ALU_EXT0 ", id, bc->bytecode[id]);
2274 fprintf(stderr, "KCACHE_BANK2:%X ", cf->kcache[2].bank);
2275 fprintf(stderr, "KCACHE_BANK3:%X ", cf->kcache[3].bank);
2276 fprintf(stderr, "KCACHE_MODE2:%X\n", cf->kcache[2].mode);
2277 id++;
2278 fprintf(stderr, "%04d %08X ALU_EXT1 ", id, bc->bytecode[id]);
2279 fprintf(stderr, "KCACHE_MODE3:%X ", cf->kcache[3].mode);
2280 fprintf(stderr, "KCACHE_ADDR2:%X ", cf->kcache[2].addr);
2281 fprintf(stderr, "KCACHE_ADDR3:%X\n", cf->kcache[3].addr);
2282 id++;
2283 }
2284
2285 fprintf(stderr, "%04d %08X ALU ", id, bc->bytecode[id]);
2286 fprintf(stderr, "ADDR:%d ", cf->addr);
2287 fprintf(stderr, "KCACHE_MODE0:%X ", cf->kcache[0].mode);
2288 fprintf(stderr, "KCACHE_BANK0:%X ", cf->kcache[0].bank);
2289 fprintf(stderr, "KCACHE_BANK1:%X\n", cf->kcache[1].bank);
2290 id++;
2291 fprintf(stderr, "%04d %08X ALU ", id, bc->bytecode[id]);
2292 fprintf(stderr, "INST:0x%x ", EG_G_SQ_CF_ALU_WORD1_CF_INST(cf->inst));
2293 fprintf(stderr, "KCACHE_MODE1:%X ", cf->kcache[1].mode);
2294 fprintf(stderr, "KCACHE_ADDR0:%X ", cf->kcache[0].addr);
2295 fprintf(stderr, "KCACHE_ADDR1:%X ", cf->kcache[1].addr);
2296 fprintf(stderr, "COUNT:%d\n", cf->ndw / 2);
2297 break;
2298 case EG_V_SQ_CF_WORD1_SQ_CF_INST_TEX:
2299 case EG_V_SQ_CF_WORD1_SQ_CF_INST_VTX:
2300 fprintf(stderr, "%04d %08X TEX/VTX ", id, bc->bytecode[id]);
2301 fprintf(stderr, "ADDR:%d\n", cf->addr);
2302 id++;
2303 fprintf(stderr, "%04d %08X TEX/VTX ", id, bc->bytecode[id]);
2304 fprintf(stderr, "INST:0x%x ", EG_G_SQ_CF_WORD1_CF_INST(cf->inst));
2305 fprintf(stderr, "COUNT:%d\n", cf->ndw / 4);
2306 break;
2307 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT:
2308 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT_DONE:
2309 fprintf(stderr, "%04d %08X EXPORT ", id, bc->bytecode[id]);
2310 fprintf(stderr, "GPR:%X ", cf->output.gpr);
2311 fprintf(stderr, "ELEM_SIZE:%X ", cf->output.elem_size);
2312 fprintf(stderr, "ARRAY_BASE:%X ", cf->output.array_base);
2313 fprintf(stderr, "TYPE:%X\n", cf->output.type);
2314 id++;
2315 fprintf(stderr, "%04d %08X EXPORT ", id, bc->bytecode[id]);
2316 fprintf(stderr, "SWIZ_X:%X ", cf->output.swizzle_x);
2317 fprintf(stderr, "SWIZ_Y:%X ", cf->output.swizzle_y);
2318 fprintf(stderr, "SWIZ_Z:%X ", cf->output.swizzle_z);
2319 fprintf(stderr, "SWIZ_W:%X ", cf->output.swizzle_w);
2320 fprintf(stderr, "BARRIER:%X ", cf->output.barrier);
2321 fprintf(stderr, "INST:0x%x ", EG_G_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(cf->output.inst));
2322 fprintf(stderr, "BURST_COUNT:%d ", cf->output.burst_count);
2323 fprintf(stderr, "EOP:%X\n", cf->output.end_of_program);
2324 break;
2325 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0_BUF0:
2326 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0_BUF1:
2327 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0_BUF2:
2328 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0_BUF3:
2329 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM1_BUF0:
2330 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM1_BUF1:
2331 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM1_BUF2:
2332 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM1_BUF3:
2333 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM2_BUF0:
2334 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM2_BUF1:
2335 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM2_BUF2:
2336 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM2_BUF3:
2337 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM3_BUF0:
2338 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM3_BUF1:
2339 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM3_BUF2:
2340 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM3_BUF3:
2341 fprintf(stderr, "%04d %08X EXPORT MEM_STREAM%i_BUF%i ", id, bc->bytecode[id],
2342 (EG_G_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(cf->inst) -
2343 EG_G_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0_BUF0)) / 4,
2344 (EG_G_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(cf->inst) -
2345 EG_G_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0_BUF0)) % 4);
2346 fprintf(stderr, "GPR:%X ", cf->output.gpr);
2347 fprintf(stderr, "ELEM_SIZE:%i ", cf->output.elem_size);
2348 fprintf(stderr, "ARRAY_BASE:%i ", cf->output.array_base);
2349 fprintf(stderr, "TYPE:%X\n", cf->output.type);
2350 id++;
2351 fprintf(stderr, "%04d %08X EXPORT MEM_STREAM%i_BUF%i ", id, bc->bytecode[id],
2352 (EG_G_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(cf->inst) -
2353 EG_G_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0_BUF0)) / 4,
2354 (EG_G_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(cf->inst) -
2355 EG_G_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0_BUF0)) % 4);
2356 fprintf(stderr, "ARRAY_SIZE:%i ", cf->output.array_size);
2357 fprintf(stderr, "COMP_MASK:%X ", cf->output.comp_mask);
2358 fprintf(stderr, "BARRIER:%X ", cf->output.barrier);
2359 fprintf(stderr, "INST:%d ", cf->output.inst);
2360 fprintf(stderr, "BURST_COUNT:%d ", cf->output.burst_count);
2361 fprintf(stderr, "EOP:%X\n", cf->output.end_of_program);
2362 break;
2363 case EG_V_SQ_CF_WORD1_SQ_CF_INST_JUMP:
2364 case EG_V_SQ_CF_WORD1_SQ_CF_INST_ELSE:
2365 case EG_V_SQ_CF_WORD1_SQ_CF_INST_POP:
2366 case EG_V_SQ_CF_WORD1_SQ_CF_INST_LOOP_START_NO_AL:
2367 case EG_V_SQ_CF_WORD1_SQ_CF_INST_LOOP_START_DX10:
2368 case EG_V_SQ_CF_WORD1_SQ_CF_INST_LOOP_END:
2369 case EG_V_SQ_CF_WORD1_SQ_CF_INST_LOOP_CONTINUE:
2370 case EG_V_SQ_CF_WORD1_SQ_CF_INST_LOOP_BREAK:
2371 case EG_V_SQ_CF_WORD1_SQ_CF_INST_CALL_FS:
2372 case EG_V_SQ_CF_WORD1_SQ_CF_INST_RETURN:
2373 case CM_V_SQ_CF_WORD1_SQ_CF_INST_END:
2374 fprintf(stderr, "%04d %08X CF ", id, bc->bytecode[id]);
2375 fprintf(stderr, "ADDR:%d\n", cf->cf_addr);
2376 id++;
2377 fprintf(stderr, "%04d %08X CF ", id, bc->bytecode[id]);
2378 fprintf(stderr, "INST:0x%x ", EG_G_SQ_CF_WORD1_CF_INST(cf->inst));
2379 fprintf(stderr, "COND:%X ", cf->cond);
2380 fprintf(stderr, "POP_COUNT:%X\n", cf->pop_count);
2381 break;
2382 case CF_NATIVE:
2383 fprintf(stderr, "%04d %08X CF NATIVE\n", id, bc->bytecode[id]);
2384 fprintf(stderr, "%04d %08X CF NATIVE\n", id + 1, bc->bytecode[id + 1]);
2385 break;
2386 default:
2387 R600_ERR("Unknown instruction %0x\n", cf->inst);
2388 }
2389 } else {
2390 switch (cf->inst) {
2391 case V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU:
2392 case V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_POP_AFTER:
2393 case V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_POP2_AFTER:
2394 case V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_PUSH_BEFORE:
2395 fprintf(stderr, "%04d %08X ALU ", id, bc->bytecode[id]);
2396 fprintf(stderr, "ADDR:%d ", cf->addr);
2397 fprintf(stderr, "KCACHE_MODE0:%X ", cf->kcache[0].mode);
2398 fprintf(stderr, "KCACHE_BANK0:%X ", cf->kcache[0].bank);
2399 fprintf(stderr, "KCACHE_BANK1:%X\n", cf->kcache[1].bank);
2400 id++;
2401 fprintf(stderr, "%04d %08X ALU ", id, bc->bytecode[id]);
2402 fprintf(stderr, "INST:0x%x ", R600_G_SQ_CF_ALU_WORD1_CF_INST(cf->inst));
2403 fprintf(stderr, "KCACHE_MODE1:%X ", cf->kcache[1].mode);
2404 fprintf(stderr, "KCACHE_ADDR0:%X ", cf->kcache[0].addr);
2405 fprintf(stderr, "KCACHE_ADDR1:%X ", cf->kcache[1].addr);
2406 fprintf(stderr, "COUNT:%d\n", cf->ndw / 2);
2407 break;
2408 case V_SQ_CF_WORD1_SQ_CF_INST_TEX:
2409 case V_SQ_CF_WORD1_SQ_CF_INST_VTX:
2410 case V_SQ_CF_WORD1_SQ_CF_INST_VTX_TC:
2411 fprintf(stderr, "%04d %08X TEX/VTX ", id, bc->bytecode[id]);
2412 fprintf(stderr, "ADDR:%d\n", cf->addr);
2413 id++;
2414 fprintf(stderr, "%04d %08X TEX/VTX ", id, bc->bytecode[id]);
2415 fprintf(stderr, "INST:0x%x ", R600_G_SQ_CF_WORD1_CF_INST(cf->inst));
2416 fprintf(stderr, "COUNT:%d\n", cf->ndw / 4);
2417 break;
2418 case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT:
2419 case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT_DONE:
2420 fprintf(stderr, "%04d %08X EXPORT ", id, bc->bytecode[id]);
2421 fprintf(stderr, "GPR:%X ", cf->output.gpr);
2422 fprintf(stderr, "ELEM_SIZE:%X ", cf->output.elem_size);
2423 fprintf(stderr, "ARRAY_BASE:%X ", cf->output.array_base);
2424 fprintf(stderr, "TYPE:%X\n", cf->output.type);
2425 id++;
2426 fprintf(stderr, "%04d %08X EXPORT ", id, bc->bytecode[id]);
2427 fprintf(stderr, "SWIZ_X:%X ", cf->output.swizzle_x);
2428 fprintf(stderr, "SWIZ_Y:%X ", cf->output.swizzle_y);
2429 fprintf(stderr, "SWIZ_Z:%X ", cf->output.swizzle_z);
2430 fprintf(stderr, "SWIZ_W:%X ", cf->output.swizzle_w);
2431 fprintf(stderr, "BARRIER:%X ", cf->output.barrier);
2432 fprintf(stderr, "INST:0x%x ", R600_G_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(cf->output.inst));
2433 fprintf(stderr, "BURST_COUNT:%d ", cf->output.burst_count);
2434 fprintf(stderr, "EOP:%X\n", cf->output.end_of_program);
2435 break;
2436 case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0:
2437 case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM1:
2438 case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM2:
2439 case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM3:
2440 fprintf(stderr, "%04d %08X EXPORT MEM_STREAM%i ", id, bc->bytecode[id],
2441 R600_G_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(cf->inst) -
2442 R600_G_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0));
2443 fprintf(stderr, "GPR:%X ", cf->output.gpr);
2444 fprintf(stderr, "ELEM_SIZE:%i ", cf->output.elem_size);
2445 fprintf(stderr, "ARRAY_BASE:%i ", cf->output.array_base);
2446 fprintf(stderr, "TYPE:%X\n", cf->output.type);
2447 id++;
2448 fprintf(stderr, "%04d %08X EXPORT MEM_STREAM%i ", id, bc->bytecode[id],
2449 R600_G_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(cf->inst) -
2450 R600_G_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0));
2451 fprintf(stderr, "ARRAY_SIZE:%i ", cf->output.array_size);
2452 fprintf(stderr, "COMP_MASK:%X ", cf->output.comp_mask);
2453 fprintf(stderr, "BARRIER:%X ", cf->output.barrier);
2454 fprintf(stderr, "INST:%d ", cf->output.inst);
2455 fprintf(stderr, "BURST_COUNT:%d ", cf->output.burst_count);
2456 fprintf(stderr, "EOP:%X\n", cf->output.end_of_program);
2457 break;
2458 case V_SQ_CF_WORD1_SQ_CF_INST_JUMP:
2459 case V_SQ_CF_WORD1_SQ_CF_INST_ELSE:
2460 case V_SQ_CF_WORD1_SQ_CF_INST_POP:
2461 case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_START_NO_AL:
2462 case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_START_DX10:
2463 case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_END:
2464 case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_CONTINUE:
2465 case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_BREAK:
2466 case V_SQ_CF_WORD1_SQ_CF_INST_CALL_FS:
2467 case V_SQ_CF_WORD1_SQ_CF_INST_RETURN:
2468 fprintf(stderr, "%04d %08X CF ", id, bc->bytecode[id]);
2469 fprintf(stderr, "ADDR:%d\n", cf->cf_addr);
2470 id++;
2471 fprintf(stderr, "%04d %08X CF ", id, bc->bytecode[id]);
2472 fprintf(stderr, "INST:0x%x ", R600_G_SQ_CF_WORD1_CF_INST(cf->inst));
2473 fprintf(stderr, "COND:%X ", cf->cond);
2474 fprintf(stderr, "POP_COUNT:%X\n", cf->pop_count);
2475 break;
2476 default:
2477 R600_ERR("Unknown instruction %0x\n", cf->inst);
2478 }
2479 }
2480
2481 id = cf->addr;
2482 nliteral = 0;
2483 LIST_FOR_EACH_ENTRY(alu, &cf->alu, list) {
2484 r600_bytecode_alu_nliterals(bc, alu, literal, &nliteral);
2485
2486 fprintf(stderr, "%04d %08X ", id, bc->bytecode[id]);
2487 fprintf(stderr, "SRC0(SEL:%d ", alu->src[0].sel);
2488 fprintf(stderr, "REL:%d ", alu->src[0].rel);
2489 fprintf(stderr, "CHAN:%d ", alu->src[0].chan);
2490 fprintf(stderr, "NEG:%d) ", alu->src[0].neg);
2491 fprintf(stderr, "SRC1(SEL:%d ", alu->src[1].sel);
2492 fprintf(stderr, "REL:%d ", alu->src[1].rel);
2493 fprintf(stderr, "CHAN:%d ", alu->src[1].chan);
2494 fprintf(stderr, "NEG:%d ", alu->src[1].neg);
2495 fprintf(stderr, "IM:%d) ", alu->index_mode);
2496 fprintf(stderr, "PRED_SEL:%d ", alu->pred_sel);
2497 fprintf(stderr, "LAST:%d)\n", alu->last);
2498 id++;
2499 fprintf(stderr, "%04d %08X %c ", id, bc->bytecode[id], alu->last ? '*' : ' ');
2500 fprintf(stderr, "INST:0x%x ", alu->inst);
2501 fprintf(stderr, "DST(SEL:%d ", alu->dst.sel);
2502 fprintf(stderr, "CHAN:%d ", alu->dst.chan);
2503 fprintf(stderr, "REL:%d ", alu->dst.rel);
2504 fprintf(stderr, "CLAMP:%d) ", alu->dst.clamp);
2505 fprintf(stderr, "BANK_SWIZZLE:%d ", alu->bank_swizzle);
2506 if (alu->is_op3) {
2507 fprintf(stderr, "SRC2(SEL:%d ", alu->src[2].sel);
2508 fprintf(stderr, "REL:%d ", alu->src[2].rel);
2509 fprintf(stderr, "CHAN:%d ", alu->src[2].chan);
2510 fprintf(stderr, "NEG:%d)\n", alu->src[2].neg);
2511 } else {
2512 fprintf(stderr, "SRC0_ABS:%d ", alu->src[0].abs);
2513 fprintf(stderr, "SRC1_ABS:%d ", alu->src[1].abs);
2514 fprintf(stderr, "WRITE_MASK:%d ", alu->dst.write);
2515 fprintf(stderr, "OMOD:%d ", alu->omod);
2516 fprintf(stderr, "EXECUTE_MASK:%d ", alu->execute_mask);
2517 fprintf(stderr, "UPDATE_PRED:%d\n", alu->update_pred);
2518 }
2519
2520 id++;
2521 if (alu->last) {
2522 for (i = 0; i < nliteral; i++, id++) {
2523 float *f = (float*)(bc->bytecode + id);
2524 fprintf(stderr, "%04d %08X\t%f (%d)\n", id, bc->bytecode[id], *f,
2525 *(bc->bytecode + id));
2526 }
2527 id += nliteral & 1;
2528 nliteral = 0;
2529 }
2530 }
2531
2532 LIST_FOR_EACH_ENTRY(tex, &cf->tex, list) {
2533 fprintf(stderr, "%04d %08X ", id, bc->bytecode[id]);
2534 fprintf(stderr, "INST:0x%x ", tex->inst);
2535 fprintf(stderr, "RESOURCE_ID:%d ", tex->resource_id);
2536 fprintf(stderr, "SRC(GPR:%d ", tex->src_gpr);
2537 fprintf(stderr, "REL:%d)\n", tex->src_rel);
2538 id++;
2539 fprintf(stderr, "%04d %08X ", id, bc->bytecode[id]);
2540 fprintf(stderr, "DST(GPR:%d ", tex->dst_gpr);
2541 fprintf(stderr, "REL:%d ", tex->dst_rel);
2542 fprintf(stderr, "SEL_X:%d ", tex->dst_sel_x);
2543 fprintf(stderr, "SEL_Y:%d ", tex->dst_sel_y);
2544 fprintf(stderr, "SEL_Z:%d ", tex->dst_sel_z);
2545 fprintf(stderr, "SEL_W:%d) ", tex->dst_sel_w);
2546 fprintf(stderr, "LOD_BIAS:%d ", tex->lod_bias);
2547 fprintf(stderr, "COORD_TYPE_X:%d ", tex->coord_type_x);
2548 fprintf(stderr, "COORD_TYPE_Y:%d ", tex->coord_type_y);
2549 fprintf(stderr, "COORD_TYPE_Z:%d ", tex->coord_type_z);
2550 fprintf(stderr, "COORD_TYPE_W:%d\n", tex->coord_type_w);
2551 id++;
2552 fprintf(stderr, "%04d %08X ", id, bc->bytecode[id]);
2553 fprintf(stderr, "OFFSET_X:%d ", tex->offset_x);
2554 fprintf(stderr, "OFFSET_Y:%d ", tex->offset_y);
2555 fprintf(stderr, "OFFSET_Z:%d ", tex->offset_z);
2556 fprintf(stderr, "SAMPLER_ID:%d ", tex->sampler_id);
2557 fprintf(stderr, "SRC(SEL_X:%d ", tex->src_sel_x);
2558 fprintf(stderr, "SEL_Y:%d ", tex->src_sel_y);
2559 fprintf(stderr, "SEL_Z:%d ", tex->src_sel_z);
2560 fprintf(stderr, "SEL_W:%d)\n", tex->src_sel_w);
2561 id++;
2562 fprintf(stderr, "%04d %08X \n", id, bc->bytecode[id]);
2563 id++;
2564 }
2565
2566 LIST_FOR_EACH_ENTRY(vtx, &cf->vtx, list) {
2567 fprintf(stderr, "%04d %08X ", id, bc->bytecode[id]);
2568 fprintf(stderr, "INST:%d ", vtx->inst);
2569 fprintf(stderr, "FETCH_TYPE:%d ", vtx->fetch_type);
2570 fprintf(stderr, "BUFFER_ID:%d\n", vtx->buffer_id);
2571 id++;
2572 /* This assumes that no semantic fetches exist */
2573 fprintf(stderr, "%04d %08X ", id, bc->bytecode[id]);
2574 fprintf(stderr, "SRC(GPR:%d ", vtx->src_gpr);
2575 fprintf(stderr, "SEL_X:%d) ", vtx->src_sel_x);
2576 if (bc->chip_class < CAYMAN)
2577 fprintf(stderr, "MEGA_FETCH_COUNT:%d ", vtx->mega_fetch_count);
2578 else
2579 fprintf(stderr, "SEL_Y:%d) ", 0);
2580 fprintf(stderr, "DST(GPR:%d ", vtx->dst_gpr);
2581 fprintf(stderr, "SEL_X:%d ", vtx->dst_sel_x);
2582 fprintf(stderr, "SEL_Y:%d ", vtx->dst_sel_y);
2583 fprintf(stderr, "SEL_Z:%d ", vtx->dst_sel_z);
2584 fprintf(stderr, "SEL_W:%d) ", vtx->dst_sel_w);
2585 fprintf(stderr, "USE_CONST_FIELDS:%d ", vtx->use_const_fields);
2586 fprintf(stderr, "FORMAT(DATA:%d ", vtx->data_format);
2587 fprintf(stderr, "NUM:%d ", vtx->num_format_all);
2588 fprintf(stderr, "COMP:%d ", vtx->format_comp_all);
2589 fprintf(stderr, "MODE:%d)\n", vtx->srf_mode_all);
2590 id++;
2591 fprintf(stderr, "%04d %08X ", id, bc->bytecode[id]);
2592 fprintf(stderr, "ENDIAN:%d ", vtx->endian);
2593 fprintf(stderr, "OFFSET:%d\n", vtx->offset);
2594 /* XXX */
2595 id++;
2596 fprintf(stderr, "%04d %08X \n", id, bc->bytecode[id]);
2597 id++;
2598 }
2599 }
2600
2601 fprintf(stderr, "--------------------------------------\n");
2602 }
2603
2604 static void r600_vertex_data_type(enum pipe_format pformat,
2605 unsigned *format,
2606 unsigned *num_format, unsigned *format_comp, unsigned *endian)
2607 {
2608 const struct util_format_description *desc;
2609 unsigned i;
2610
2611 *format = 0;
2612 *num_format = 0;
2613 *format_comp = 0;
2614 *endian = ENDIAN_NONE;
2615
2616 desc = util_format_description(pformat);
2617 if (desc->layout != UTIL_FORMAT_LAYOUT_PLAIN) {
2618 goto out_unknown;
2619 }
2620
2621 /* Find the first non-VOID channel. */
2622 for (i = 0; i < 4; i++) {
2623 if (desc->channel[i].type != UTIL_FORMAT_TYPE_VOID) {
2624 break;
2625 }
2626 }
2627
2628 *endian = r600_endian_swap(desc->channel[i].size);
2629
2630 switch (desc->channel[i].type) {
2631 /* Half-floats, floats, ints */
2632 case UTIL_FORMAT_TYPE_FLOAT:
2633 switch (desc->channel[i].size) {
2634 case 16:
2635 switch (desc->nr_channels) {
2636 case 1:
2637 *format = FMT_16_FLOAT;
2638 break;
2639 case 2:
2640 *format = FMT_16_16_FLOAT;
2641 break;
2642 case 3:
2643 case 4:
2644 *format = FMT_16_16_16_16_FLOAT;
2645 break;
2646 }
2647 break;
2648 case 32:
2649 switch (desc->nr_channels) {
2650 case 1:
2651 *format = FMT_32_FLOAT;
2652 break;
2653 case 2:
2654 *format = FMT_32_32_FLOAT;
2655 break;
2656 case 3:
2657 *format = FMT_32_32_32_FLOAT;
2658 break;
2659 case 4:
2660 *format = FMT_32_32_32_32_FLOAT;
2661 break;
2662 }
2663 break;
2664 default:
2665 goto out_unknown;
2666 }
2667 break;
2668 /* Unsigned ints */
2669 case UTIL_FORMAT_TYPE_UNSIGNED:
2670 /* Signed ints */
2671 case UTIL_FORMAT_TYPE_SIGNED:
2672 switch (desc->channel[i].size) {
2673 case 8:
2674 switch (desc->nr_channels) {
2675 case 1:
2676 *format = FMT_8;
2677 break;
2678 case 2:
2679 *format = FMT_8_8;
2680 break;
2681 case 3:
2682 case 4:
2683 *format = FMT_8_8_8_8;
2684 break;
2685 }
2686 break;
2687 case 10:
2688 if (desc->nr_channels != 4)
2689 goto out_unknown;
2690
2691 *format = FMT_2_10_10_10;
2692 break;
2693 case 16:
2694 switch (desc->nr_channels) {
2695 case 1:
2696 *format = FMT_16;
2697 break;
2698 case 2:
2699 *format = FMT_16_16;
2700 break;
2701 case 3:
2702 case 4:
2703 *format = FMT_16_16_16_16;
2704 break;
2705 }
2706 break;
2707 case 32:
2708 switch (desc->nr_channels) {
2709 case 1:
2710 *format = FMT_32;
2711 break;
2712 case 2:
2713 *format = FMT_32_32;
2714 break;
2715 case 3:
2716 *format = FMT_32_32_32;
2717 break;
2718 case 4:
2719 *format = FMT_32_32_32_32;
2720 break;
2721 }
2722 break;
2723 default:
2724 goto out_unknown;
2725 }
2726 break;
2727 default:
2728 goto out_unknown;
2729 }
2730
2731 if (desc->channel[i].type == UTIL_FORMAT_TYPE_SIGNED) {
2732 *format_comp = 1;
2733 }
2734
2735 *num_format = 0;
2736 if (desc->channel[i].type == UTIL_FORMAT_TYPE_UNSIGNED ||
2737 desc->channel[i].type == UTIL_FORMAT_TYPE_SIGNED) {
2738 if (!desc->channel[i].normalized) {
2739 if (desc->channel[i].pure_integer)
2740 *num_format = 1;
2741 else
2742 *num_format = 2;
2743 }
2744 }
2745 return;
2746 out_unknown:
2747 R600_ERR("unsupported vertex format %s\n", util_format_name(pformat));
2748 }
2749
2750 int r600_vertex_elements_build_fetch_shader(struct r600_context *rctx, struct r600_vertex_element *ve)
2751 {
2752 static int dump_shaders = -1;
2753
2754 struct r600_bytecode bc;
2755 struct r600_bytecode_vtx vtx;
2756 struct pipe_vertex_element *elements = ve->elements;
2757 const struct util_format_description *desc;
2758 unsigned fetch_resource_start = rctx->chip_class >= EVERGREEN ? 0 : 160;
2759 unsigned format, num_format, format_comp, endian;
2760 uint32_t *bytecode;
2761 int i, j, r;
2762
2763 memset(&bc, 0, sizeof(bc));
2764 r600_bytecode_init(&bc, rctx->chip_class, rctx->family);
2765
2766 for (i = 0; i < ve->count; i++) {
2767 if (elements[i].instance_divisor > 1) {
2768 if (rctx->chip_class == CAYMAN) {
2769 for (j = 0; j < 4; j++) {
2770 struct r600_bytecode_alu alu;
2771 memset(&alu, 0, sizeof(alu));
2772 alu.inst = BC_INST(&bc, V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MULHI_UINT);
2773 alu.src[0].sel = 0;
2774 alu.src[0].chan = 3;
2775 alu.src[1].sel = V_SQ_ALU_SRC_LITERAL;
2776 alu.src[1].value = (1ll << 32) / elements[i].instance_divisor + 1;
2777 alu.dst.sel = i + 1;
2778 alu.dst.chan = j;
2779 alu.dst.write = j == 3;
2780 alu.last = j == 3;
2781 if ((r = r600_bytecode_add_alu(&bc, &alu))) {
2782 r600_bytecode_clear(&bc);
2783 return r;
2784 }
2785 }
2786 } else {
2787 struct r600_bytecode_alu alu;
2788 memset(&alu, 0, sizeof(alu));
2789 alu.inst = BC_INST(&bc, V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MULHI_UINT);
2790 alu.src[0].sel = 0;
2791 alu.src[0].chan = 3;
2792 alu.src[1].sel = V_SQ_ALU_SRC_LITERAL;
2793 alu.src[1].value = (1ll << 32) / elements[i].instance_divisor + 1;
2794 alu.dst.sel = i + 1;
2795 alu.dst.chan = 3;
2796 alu.dst.write = 1;
2797 alu.last = 1;
2798 if ((r = r600_bytecode_add_alu(&bc, &alu))) {
2799 r600_bytecode_clear(&bc);
2800 return r;
2801 }
2802 }
2803 }
2804 }
2805
2806 for (i = 0; i < ve->count; i++) {
2807 r600_vertex_data_type(ve->elements[i].src_format,
2808 &format, &num_format, &format_comp, &endian);
2809
2810 desc = util_format_description(ve->elements[i].src_format);
2811 if (desc == NULL) {
2812 r600_bytecode_clear(&bc);
2813 R600_ERR("unknown format %d\n", ve->elements[i].src_format);
2814 return -EINVAL;
2815 }
2816
2817 if (elements[i].src_offset > 65535) {
2818 r600_bytecode_clear(&bc);
2819 R600_ERR("too big src_offset: %u\n", elements[i].src_offset);
2820 return -EINVAL;
2821 }
2822
2823 memset(&vtx, 0, sizeof(vtx));
2824 vtx.buffer_id = elements[i].vertex_buffer_index + fetch_resource_start;
2825 vtx.fetch_type = elements[i].instance_divisor ? 1 : 0;
2826 vtx.src_gpr = elements[i].instance_divisor > 1 ? i + 1 : 0;
2827 vtx.src_sel_x = elements[i].instance_divisor ? 3 : 0;
2828 vtx.mega_fetch_count = 0x1F;
2829 vtx.dst_gpr = i + 1;
2830 vtx.dst_sel_x = desc->swizzle[0];
2831 vtx.dst_sel_y = desc->swizzle[1];
2832 vtx.dst_sel_z = desc->swizzle[2];
2833 vtx.dst_sel_w = desc->swizzle[3];
2834 vtx.data_format = format;
2835 vtx.num_format_all = num_format;
2836 vtx.format_comp_all = format_comp;
2837 vtx.srf_mode_all = 1;
2838 vtx.offset = elements[i].src_offset;
2839 vtx.endian = endian;
2840
2841 if ((r = r600_bytecode_add_vtx(&bc, &vtx))) {
2842 r600_bytecode_clear(&bc);
2843 return r;
2844 }
2845 }
2846
2847 r600_bytecode_add_cfinst(&bc, BC_INST(&bc, V_SQ_CF_WORD1_SQ_CF_INST_RETURN));
2848
2849 if ((r = r600_bytecode_build(&bc))) {
2850 r600_bytecode_clear(&bc);
2851 return r;
2852 }
2853
2854 if (dump_shaders == -1)
2855 dump_shaders = debug_get_bool_option("R600_DUMP_SHADERS", FALSE);
2856
2857 if (dump_shaders) {
2858 fprintf(stderr, "--------------------------------------------------------------\n");
2859 r600_bytecode_dump(&bc);
2860 fprintf(stderr, "______________________________________________________________\n");
2861 }
2862
2863 ve->fs_size = bc.ndw*4;
2864
2865 ve->fetch_shader = (struct r600_resource*)
2866 pipe_buffer_create(rctx->context.screen,
2867 PIPE_BIND_CUSTOM,
2868 PIPE_USAGE_IMMUTABLE, ve->fs_size);
2869 if (ve->fetch_shader == NULL) {
2870 r600_bytecode_clear(&bc);
2871 return -ENOMEM;
2872 }
2873
2874 bytecode = rctx->ws->buffer_map(ve->fetch_shader->cs_buf, rctx->cs, PIPE_TRANSFER_WRITE);
2875 if (bytecode == NULL) {
2876 r600_bytecode_clear(&bc);
2877 pipe_resource_reference((struct pipe_resource**)&ve->fetch_shader, NULL);
2878 return -ENOMEM;
2879 }
2880
2881 if (R600_BIG_ENDIAN) {
2882 for (i = 0; i < ve->fs_size / 4; ++i) {
2883 bytecode[i] = bswap_32(bc.bytecode[i]);
2884 }
2885 } else {
2886 memcpy(bytecode, bc.bytecode, ve->fs_size);
2887 }
2888
2889 rctx->ws->buffer_unmap(ve->fetch_shader->cs_buf);
2890 r600_bytecode_clear(&bc);
2891
2892 if (rctx->chip_class >= EVERGREEN)
2893 evergreen_fetch_shader(&rctx->context, ve);
2894 else
2895 r600_fetch_shader(&rctx->context, ve);
2896
2897 return 0;
2898 }
2899
2900 void r600_bytecode_alu_read(struct r600_bytecode_alu *alu, uint32_t word0, uint32_t word1)
2901 {
2902 /* WORD0 */
2903 alu->src[0].sel = G_SQ_ALU_WORD0_SRC0_SEL(word0);
2904 alu->src[0].rel = G_SQ_ALU_WORD0_SRC0_REL(word0);
2905 alu->src[0].chan = G_SQ_ALU_WORD0_SRC0_CHAN(word0);
2906 alu->src[0].neg = G_SQ_ALU_WORD0_SRC0_NEG(word0);
2907 alu->src[1].sel = G_SQ_ALU_WORD0_SRC1_SEL(word0);
2908 alu->src[1].rel = G_SQ_ALU_WORD0_SRC1_REL(word0);
2909 alu->src[1].chan = G_SQ_ALU_WORD0_SRC1_CHAN(word0);
2910 alu->src[1].neg = G_SQ_ALU_WORD0_SRC1_NEG(word0);
2911 alu->index_mode = G_SQ_ALU_WORD0_INDEX_MODE(word0);
2912 alu->pred_sel = G_SQ_ALU_WORD0_PRED_SEL(word0);
2913 alu->last = G_SQ_ALU_WORD0_LAST(word0);
2914
2915 /* WORD1 */
2916 alu->bank_swizzle = G_SQ_ALU_WORD1_BANK_SWIZZLE(word1);
2917 alu->dst.sel = G_SQ_ALU_WORD1_DST_GPR(word1);
2918 alu->dst.rel = G_SQ_ALU_WORD1_DST_REL(word1);
2919 alu->dst.chan = G_SQ_ALU_WORD1_DST_CHAN(word1);
2920 alu->dst.clamp = G_SQ_ALU_WORD1_CLAMP(word1);
2921 if (G_SQ_ALU_WORD1_ENCODING(word1)) /*ALU_DWORD1_OP3*/
2922 {
2923 alu->is_op3 = 1;
2924 alu->src[2].sel = G_SQ_ALU_WORD1_OP3_SRC2_SEL(word1);
2925 alu->src[2].rel = G_SQ_ALU_WORD1_OP3_SRC2_REL(word1);
2926 alu->src[2].chan = G_SQ_ALU_WORD1_OP3_SRC2_CHAN(word1);
2927 alu->src[2].neg = G_SQ_ALU_WORD1_OP3_SRC2_NEG(word1);
2928 alu->inst = G_SQ_ALU_WORD1_OP3_ALU_INST(word1);
2929 }
2930 else /*ALU_DWORD1_OP2*/
2931 {
2932 alu->src[0].abs = G_SQ_ALU_WORD1_OP2_SRC0_ABS(word1);
2933 alu->src[1].abs = G_SQ_ALU_WORD1_OP2_SRC1_ABS(word1);
2934 alu->inst = G_SQ_ALU_WORD1_OP2_ALU_INST(word1);
2935 alu->omod = G_SQ_ALU_WORD1_OP2_OMOD(word1);
2936 alu->dst.write = G_SQ_ALU_WORD1_OP2_WRITE_MASK(word1);
2937 alu->update_pred = G_SQ_ALU_WORD1_OP2_UPDATE_PRED(word1);
2938 alu->execute_mask =
2939 G_SQ_ALU_WORD1_OP2_UPDATE_EXECUTE_MASK(word1);
2940 }
2941 }