r600g: Add start_compute_cs atom to struct r600_context
[mesa.git] / src / gallium / drivers / r600 / r600_asm.c
1 /*
2 * Copyright 2010 Jerome Glisse <glisse@freedesktop.org>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * on the rights to use, copy, modify, merge, publish, distribute, sub
8 * license, and/or sell copies of the Software, and to permit persons to whom
9 * the Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 */
23 #include "r600_sq.h"
24 #include "r600_opcodes.h"
25 #include "r600_formats.h"
26 #include "r600d.h"
27
28 #include <errno.h>
29 #include <byteswap.h>
30 #include "util/u_memory.h"
31 #include "pipe/p_shader_tokens.h"
32
33 #define NUM_OF_CYCLES 3
34 #define NUM_OF_COMPONENTS 4
35
36 static inline unsigned int r600_bytecode_get_num_operands(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
37 {
38 if(alu->is_op3)
39 return 3;
40
41 switch (bc->chip_class) {
42 case R600:
43 case R700:
44 switch (alu->inst) {
45 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_NOP:
46 return 0;
47 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_ADD:
48 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_ADD_INT:
49 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SUB_INT:
50 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_AND_INT:
51 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_OR_INT:
52 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLE:
53 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGT:
54 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGE:
55 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLNE:
56 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MUL:
57 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MUL_IEEE:
58 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MULHI_INT:
59 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MULLO_INT:
60 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MULHI_UINT:
61 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MULLO_UINT:
62 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MAX:
63 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MIN:
64 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MAX_UINT:
65 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MIN_UINT:
66 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MAX_INT:
67 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MIN_INT:
68 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETE:
69 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETE_INT:
70 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETNE:
71 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETNE_INT:
72 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETGT:
73 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETGT_INT:
74 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETGT_UINT:
75 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETGE:
76 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETGE_INT:
77 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETGE_UINT:
78 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETE:
79 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGT:
80 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGE:
81 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETNE:
82 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETNE_INT:
83 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETE_INT:
84 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_DOT4:
85 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_DOT4_IEEE:
86 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_CUBE:
87 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_XOR_INT:
88 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_LSHL_INT:
89 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_LSHR_INT:
90 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_ASHR_INT:
91 return 2;
92
93 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOV:
94 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOVA:
95 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOVA_FLOOR:
96 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOVA_GPR_INT:
97 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOVA_INT:
98 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_FRACT:
99 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_CEIL:
100 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_FLOOR:
101 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_TRUNC:
102 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_EXP_IEEE:
103 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_LOG_CLAMPED:
104 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_LOG_IEEE:
105 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIP_CLAMPED:
106 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIP_IEEE:
107 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIP_INT:
108 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIP_UINT:
109 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIPSQRT_CLAMPED:
110 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIPSQRT_IEEE:
111 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_FLT_TO_INT:
112 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_INT_TO_FLT:
113 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_UINT_TO_FLT:
114 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_FLT_TO_UINT:
115 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SIN:
116 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_COS:
117 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RNDNE:
118 case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_NOT_INT:
119 return 1;
120 default: R600_ERR(
121 "Need instruction operand number for 0x%x.\n", alu->inst);
122 }
123 break;
124 case EVERGREEN:
125 case CAYMAN:
126 switch (alu->inst) {
127 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_NOP:
128 return 0;
129 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_ADD:
130 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_ADD_INT:
131 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SUB_INT:
132 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_AND_INT:
133 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_OR_INT:
134 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLE:
135 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGT:
136 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGE:
137 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLNE:
138 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MUL:
139 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MUL_IEEE:
140 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MULHI_INT:
141 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MULLO_INT:
142 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MULHI_UINT:
143 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MULLO_UINT:
144 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MAX:
145 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MIN:
146 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MAX_UINT:
147 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MIN_UINT:
148 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MAX_INT:
149 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MIN_INT:
150 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETE:
151 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETE_INT:
152 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETNE:
153 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETNE_INT:
154 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETGT:
155 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETGT_INT:
156 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETGT_UINT:
157 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETGE:
158 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETGE_INT:
159 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETGE_UINT:
160 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETE:
161 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETE_INT:
162 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGT:
163 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGE:
164 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETNE:
165 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETNE_INT:
166 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_DOT4:
167 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_DOT4_IEEE:
168 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_CUBE:
169 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_INTERP_XY:
170 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_INTERP_ZW:
171 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_XOR_INT:
172 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_LSHL_INT:
173 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_LSHR_INT:
174 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_ASHR_INT:
175 return 2;
176
177 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOV:
178 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOVA_INT:
179 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_FRACT:
180 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_CEIL:
181 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_FLOOR:
182 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_TRUNC:
183 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_EXP_IEEE:
184 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_LOG_CLAMPED:
185 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_LOG_IEEE:
186 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIP_CLAMPED:
187 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIP_IEEE:
188 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIPSQRT_CLAMPED:
189 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIPSQRT_IEEE:
190 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_FLT_TO_INT:
191 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_FLT_TO_INT_FLOOR:
192 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_INT_TO_FLT:
193 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_UINT_TO_FLT:
194 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_FLT_TO_UINT:
195 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SIN:
196 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_COS:
197 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RNDNE:
198 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_NOT_INT:
199 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_INTERP_LOAD_P0:
200 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIP_INT:
201 case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIP_UINT:
202 return 1;
203 default: R600_ERR(
204 "Need instruction operand number for 0x%x.\n", alu->inst);
205 }
206 break;
207 }
208
209 return 3;
210 }
211
212 int r700_bytecode_alu_build(struct r600_bytecode *bc, struct r600_bytecode_alu *alu, unsigned id);
213
214 static struct r600_bytecode_cf *r600_bytecode_cf(void)
215 {
216 struct r600_bytecode_cf *cf = CALLOC_STRUCT(r600_bytecode_cf);
217
218 if (cf == NULL)
219 return NULL;
220 LIST_INITHEAD(&cf->list);
221 LIST_INITHEAD(&cf->alu);
222 LIST_INITHEAD(&cf->vtx);
223 LIST_INITHEAD(&cf->tex);
224 return cf;
225 }
226
227 static struct r600_bytecode_alu *r600_bytecode_alu(void)
228 {
229 struct r600_bytecode_alu *alu = CALLOC_STRUCT(r600_bytecode_alu);
230
231 if (alu == NULL)
232 return NULL;
233 LIST_INITHEAD(&alu->list);
234 return alu;
235 }
236
237 static struct r600_bytecode_vtx *r600_bytecode_vtx(void)
238 {
239 struct r600_bytecode_vtx *vtx = CALLOC_STRUCT(r600_bytecode_vtx);
240
241 if (vtx == NULL)
242 return NULL;
243 LIST_INITHEAD(&vtx->list);
244 return vtx;
245 }
246
247 static struct r600_bytecode_tex *r600_bytecode_tex(void)
248 {
249 struct r600_bytecode_tex *tex = CALLOC_STRUCT(r600_bytecode_tex);
250
251 if (tex == NULL)
252 return NULL;
253 LIST_INITHEAD(&tex->list);
254 return tex;
255 }
256
257 void r600_bytecode_init(struct r600_bytecode *bc, enum chip_class chip_class, enum radeon_family family)
258 {
259 if ((chip_class == R600) && (family != CHIP_RV670))
260 bc->ar_handling = AR_HANDLE_RV6XX;
261 else
262 bc->ar_handling = AR_HANDLE_NORMAL;
263
264 if ((chip_class == R600) && (family != CHIP_RV670 && family != CHIP_RS780 &&
265 family != CHIP_RS880))
266 bc->r6xx_nop_after_rel_dst = 1;
267 else
268 bc->r6xx_nop_after_rel_dst = 0;
269 LIST_INITHEAD(&bc->cf);
270 bc->chip_class = chip_class;
271 }
272
273 static int r600_bytecode_add_cf(struct r600_bytecode *bc)
274 {
275 struct r600_bytecode_cf *cf = r600_bytecode_cf();
276
277 if (cf == NULL)
278 return -ENOMEM;
279 LIST_ADDTAIL(&cf->list, &bc->cf);
280 if (bc->cf_last) {
281 cf->id = bc->cf_last->id + 2;
282 if (bc->cf_last->eg_alu_extended) {
283 /* take into account extended alu size */
284 cf->id += 2;
285 bc->ndw += 2;
286 }
287 }
288 bc->cf_last = cf;
289 bc->ncf++;
290 bc->ndw += 2;
291 bc->force_add_cf = 0;
292 bc->ar_loaded = 0;
293 return 0;
294 }
295
296 int r600_bytecode_add_output(struct r600_bytecode *bc, const struct r600_bytecode_output *output)
297 {
298 int r;
299
300 if (output->gpr >= bc->ngpr)
301 bc->ngpr = output->gpr + 1;
302
303 if (bc->cf_last && (bc->cf_last->inst == output->inst ||
304 (bc->cf_last->inst == BC_INST(bc, V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT) &&
305 output->inst == BC_INST(bc, V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT_DONE))) &&
306 output->type == bc->cf_last->output.type &&
307 output->elem_size == bc->cf_last->output.elem_size &&
308 output->swizzle_x == bc->cf_last->output.swizzle_x &&
309 output->swizzle_y == bc->cf_last->output.swizzle_y &&
310 output->swizzle_z == bc->cf_last->output.swizzle_z &&
311 output->swizzle_w == bc->cf_last->output.swizzle_w &&
312 (output->burst_count + bc->cf_last->output.burst_count) <= 16) {
313
314 if ((output->gpr + output->burst_count) == bc->cf_last->output.gpr &&
315 (output->array_base + output->burst_count) == bc->cf_last->output.array_base) {
316
317 bc->cf_last->output.end_of_program |= output->end_of_program;
318 bc->cf_last->output.inst = output->inst;
319 bc->cf_last->output.gpr = output->gpr;
320 bc->cf_last->output.array_base = output->array_base;
321 bc->cf_last->output.burst_count += output->burst_count;
322 return 0;
323
324 } else if (output->gpr == (bc->cf_last->output.gpr + bc->cf_last->output.burst_count) &&
325 output->array_base == (bc->cf_last->output.array_base + bc->cf_last->output.burst_count)) {
326
327 bc->cf_last->output.end_of_program |= output->end_of_program;
328 bc->cf_last->output.inst = output->inst;
329 bc->cf_last->output.burst_count += output->burst_count;
330 return 0;
331 }
332 }
333
334 r = r600_bytecode_add_cf(bc);
335 if (r)
336 return r;
337 bc->cf_last->inst = output->inst;
338 memcpy(&bc->cf_last->output, output, sizeof(struct r600_bytecode_output));
339 return 0;
340 }
341
342 /* alu instructions that can ony exits once per group */
343 static int is_alu_once_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
344 {
345 switch (bc->chip_class) {
346 case R600:
347 case R700:
348 return !alu->is_op3 && (
349 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLE ||
350 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGT ||
351 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGE ||
352 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLNE ||
353 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGT_UINT ||
354 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGE_UINT ||
355 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLE_INT ||
356 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGT_INT ||
357 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGE_INT ||
358 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLNE_INT ||
359 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGT_UINT ||
360 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGE_UINT ||
361 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETE ||
362 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGT ||
363 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGE ||
364 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETNE ||
365 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SET_INV ||
366 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SET_POP ||
367 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SET_CLR ||
368 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SET_RESTORE ||
369 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETE_PUSH ||
370 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGT_PUSH ||
371 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGE_PUSH ||
372 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETNE_PUSH ||
373 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETE_INT ||
374 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGT_INT ||
375 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGE_INT ||
376 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETNE_INT ||
377 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETE_PUSH_INT ||
378 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGT_PUSH_INT ||
379 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGE_PUSH_INT ||
380 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETNE_PUSH_INT ||
381 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETLT_PUSH_INT ||
382 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETLE_PUSH_INT);
383 case EVERGREEN:
384 case CAYMAN:
385 default:
386 return !alu->is_op3 && (
387 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLE ||
388 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGT ||
389 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGE ||
390 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLNE ||
391 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGT_UINT ||
392 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGE_UINT ||
393 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLE_INT ||
394 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGT_INT ||
395 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGE_INT ||
396 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLNE_INT ||
397 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGT_UINT ||
398 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGE_UINT ||
399 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETE ||
400 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGT ||
401 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGE ||
402 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETNE ||
403 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SET_INV ||
404 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SET_POP ||
405 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SET_CLR ||
406 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SET_RESTORE ||
407 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETE_PUSH ||
408 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGT_PUSH ||
409 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGE_PUSH ||
410 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETNE_PUSH ||
411 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETE_INT ||
412 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGT_INT ||
413 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGE_INT ||
414 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETNE_INT ||
415 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETE_PUSH_INT ||
416 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGT_PUSH_INT ||
417 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGE_PUSH_INT ||
418 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETNE_PUSH_INT ||
419 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETLT_PUSH_INT ||
420 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETLE_PUSH_INT);
421 }
422 }
423
424 static int is_alu_reduction_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
425 {
426 switch (bc->chip_class) {
427 case R600:
428 case R700:
429 return !alu->is_op3 && (
430 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_CUBE ||
431 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_DOT4 ||
432 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_DOT4_IEEE ||
433 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MAX4);
434 case EVERGREEN:
435 case CAYMAN:
436 default:
437 return !alu->is_op3 && (
438 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_CUBE ||
439 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_DOT4 ||
440 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_DOT4_IEEE ||
441 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MAX4);
442 }
443 }
444
445 static int is_alu_cube_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
446 {
447 switch (bc->chip_class) {
448 case R600:
449 case R700:
450 return !alu->is_op3 &&
451 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_CUBE;
452 case EVERGREEN:
453 case CAYMAN:
454 default:
455 return !alu->is_op3 &&
456 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_CUBE;
457 }
458 }
459
460 static int is_alu_mova_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
461 {
462 switch (bc->chip_class) {
463 case R600:
464 case R700:
465 return !alu->is_op3 && (
466 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOVA ||
467 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOVA_FLOOR ||
468 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOVA_INT ||
469 alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOVA_GPR_INT);
470 case EVERGREEN:
471 case CAYMAN:
472 default:
473 return !alu->is_op3 && (
474 alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOVA_INT);
475 }
476 }
477
478 static int is_opcode_in_range(unsigned opcode, unsigned min, unsigned max)
479 {
480 return min <= opcode && opcode <= max;
481 }
482
483 /* ALU instructions that can only execute on the vector unit:
484 *
485 * opcode ranges:
486 * R6xx/R7xx:
487 * op3 : [0x08 - 0x0B]
488 * op2 : 0x07, [0x15 - 0x18], [0x1B - 0x1D], [0x50 - 0x53], [0x7A - 0x7E]
489 *
490 * EVERGREEN:
491 * op3: [0x04 - 0x11]
492 * op2: [0xA0 - 0xE2]
493 */
494 static int is_alu_vec_unit_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
495 {
496 switch (bc->chip_class) {
497 case R600:
498 case R700:
499 if (alu->is_op3)
500 return is_opcode_in_range(alu->inst,
501 V_SQ_ALU_WORD1_OP3_SQ_OP3_INST_MULADD_64,
502 V_SQ_ALU_WORD1_OP3_SQ_OP3_INST_MULADD_64_D2);
503 else
504 return (alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_FREXP_64) ||
505 is_opcode_in_range(alu->inst,
506 V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOVA,
507 V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOVA_INT) ||
508 is_opcode_in_range(alu->inst,
509 V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MUL_64,
510 V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_FLT32_TO_FLT64) ||
511 is_opcode_in_range(alu->inst,
512 V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_DOT4,
513 V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MAX4) ||
514 is_opcode_in_range(alu->inst,
515 V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_LDEXP_64,
516 V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGE_64);
517
518 case EVERGREEN:
519 if (alu->is_op3)
520 return is_opcode_in_range(alu->inst,
521 EG_V_SQ_ALU_WORD1_OP3_SQ_OP3_INST_BFE_UINT,
522 EG_V_SQ_ALU_WORD1_OP3_SQ_OP3_INST_LDS_IDX_OP);
523 else
524 return is_opcode_in_range(alu->inst,
525 EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_BFM_INT,
526 EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_INTERP_LOAD_P20);
527 case CAYMAN:
528 default:
529 assert(0);
530 return 0;
531 }
532 }
533
534 /* ALU instructions that can only execute on the trans unit:
535 *
536 * opcode ranges:
537 * R600:
538 * op3: 0x0C
539 * op2: [0x60 - 0x79]
540 *
541 * R700:
542 * op3: 0x0C
543 * op2: [0x60 - 0x6F], [0x73 - 0x79]
544 *
545 * EVERGREEN:
546 * op3: 0x1F
547 * op2: [0x81 - 0x9C]
548 */
549 static int is_alu_trans_unit_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
550 {
551
552 switch (bc->chip_class) {
553 case R600:
554 if (alu->is_op3)
555 return alu->inst == V_SQ_ALU_WORD1_OP3_SQ_OP3_INST_MUL_LIT;
556 else
557 return is_opcode_in_range(alu->inst,
558 V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOVA_GPR_INT,
559 V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_FLT_TO_UINT);
560 case R700:
561 if (alu->is_op3)
562 return alu->inst == V_SQ_ALU_WORD1_OP3_SQ_OP3_INST_MUL_LIT;
563 else
564 return is_opcode_in_range(alu->inst,
565 V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOVA_GPR_INT,
566 V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_COS) ||
567 is_opcode_in_range(alu->inst,
568 V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MULLO_INT,
569 V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_FLT_TO_UINT);
570 case EVERGREEN:
571 if (alu->is_op3)
572 return alu->inst == EG_V_SQ_ALU_WORD1_OP3_SQ_OP3_INST_MUL_LIT;
573 else
574 return is_opcode_in_range(alu->inst,
575 EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_EXP_IEEE,
576 EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_UINT_TO_FLT);
577 case CAYMAN:
578 default:
579 assert(0);
580 return 0;
581 }
582 }
583
584 /* alu instructions that can execute on any unit */
585 static int is_alu_any_unit_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
586 {
587 return !is_alu_vec_unit_inst(bc, alu) &&
588 !is_alu_trans_unit_inst(bc, alu);
589 }
590
591 static int is_nop_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
592 {
593 switch (bc->chip_class) {
594 case R600:
595 case R700:
596 return (!alu->is_op3 && alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_NOP);
597 case EVERGREEN:
598 case CAYMAN:
599 default:
600 return (!alu->is_op3 && alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_NOP);
601 }
602 }
603
604 static int assign_alu_units(struct r600_bytecode *bc, struct r600_bytecode_alu *alu_first,
605 struct r600_bytecode_alu *assignment[5])
606 {
607 struct r600_bytecode_alu *alu;
608 unsigned i, chan, trans;
609 int max_slots = bc->chip_class == CAYMAN ? 4 : 5;
610
611 for (i = 0; i < max_slots; i++)
612 assignment[i] = NULL;
613
614 for (alu = alu_first; alu; alu = LIST_ENTRY(struct r600_bytecode_alu, alu->list.next, list)) {
615 chan = alu->dst.chan;
616 if (max_slots == 4)
617 trans = 0;
618 else if (is_alu_trans_unit_inst(bc, alu))
619 trans = 1;
620 else if (is_alu_vec_unit_inst(bc, alu))
621 trans = 0;
622 else if (assignment[chan])
623 trans = 1; /* Assume ALU_INST_PREFER_VECTOR. */
624 else
625 trans = 0;
626
627 if (trans) {
628 if (assignment[4]) {
629 assert(0); /* ALU.Trans has already been allocated. */
630 return -1;
631 }
632 assignment[4] = alu;
633 } else {
634 if (assignment[chan]) {
635 assert(0); /* ALU.chan has already been allocated. */
636 return -1;
637 }
638 assignment[chan] = alu;
639 }
640
641 if (alu->last)
642 break;
643 }
644 return 0;
645 }
646
647 struct alu_bank_swizzle {
648 int hw_gpr[NUM_OF_CYCLES][NUM_OF_COMPONENTS];
649 int hw_cfile_addr[4];
650 int hw_cfile_elem[4];
651 };
652
653 static const unsigned cycle_for_bank_swizzle_vec[][3] = {
654 [SQ_ALU_VEC_012] = { 0, 1, 2 },
655 [SQ_ALU_VEC_021] = { 0, 2, 1 },
656 [SQ_ALU_VEC_120] = { 1, 2, 0 },
657 [SQ_ALU_VEC_102] = { 1, 0, 2 },
658 [SQ_ALU_VEC_201] = { 2, 0, 1 },
659 [SQ_ALU_VEC_210] = { 2, 1, 0 }
660 };
661
662 static const unsigned cycle_for_bank_swizzle_scl[][3] = {
663 [SQ_ALU_SCL_210] = { 2, 1, 0 },
664 [SQ_ALU_SCL_122] = { 1, 2, 2 },
665 [SQ_ALU_SCL_212] = { 2, 1, 2 },
666 [SQ_ALU_SCL_221] = { 2, 2, 1 }
667 };
668
669 static void init_bank_swizzle(struct alu_bank_swizzle *bs)
670 {
671 int i, cycle, component;
672 /* set up gpr use */
673 for (cycle = 0; cycle < NUM_OF_CYCLES; cycle++)
674 for (component = 0; component < NUM_OF_COMPONENTS; component++)
675 bs->hw_gpr[cycle][component] = -1;
676 for (i = 0; i < 4; i++)
677 bs->hw_cfile_addr[i] = -1;
678 for (i = 0; i < 4; i++)
679 bs->hw_cfile_elem[i] = -1;
680 }
681
682 static int reserve_gpr(struct alu_bank_swizzle *bs, unsigned sel, unsigned chan, unsigned cycle)
683 {
684 if (bs->hw_gpr[cycle][chan] == -1)
685 bs->hw_gpr[cycle][chan] = sel;
686 else if (bs->hw_gpr[cycle][chan] != (int)sel) {
687 /* Another scalar operation has already used the GPR read port for the channel. */
688 return -1;
689 }
690 return 0;
691 }
692
693 static int reserve_cfile(struct r600_bytecode *bc, struct alu_bank_swizzle *bs, unsigned sel, unsigned chan)
694 {
695 int res, num_res = 4;
696 if (bc->chip_class >= R700) {
697 num_res = 2;
698 chan /= 2;
699 }
700 for (res = 0; res < num_res; ++res) {
701 if (bs->hw_cfile_addr[res] == -1) {
702 bs->hw_cfile_addr[res] = sel;
703 bs->hw_cfile_elem[res] = chan;
704 return 0;
705 } else if (bs->hw_cfile_addr[res] == sel &&
706 bs->hw_cfile_elem[res] == chan)
707 return 0; /* Read for this scalar element already reserved, nothing to do here. */
708 }
709 /* All cfile read ports are used, cannot reference vector element. */
710 return -1;
711 }
712
713 static int is_gpr(unsigned sel)
714 {
715 return (sel >= 0 && sel <= 127);
716 }
717
718 /* CB constants start at 512, and get translated to a kcache index when ALU
719 * clauses are constructed. Note that we handle kcache constants the same way
720 * as (the now gone) cfile constants, is that really required? */
721 static int is_cfile(unsigned sel)
722 {
723 return (sel > 255 && sel < 512) ||
724 (sel > 511 && sel < 4607) || /* Kcache before translation. */
725 (sel > 127 && sel < 192); /* Kcache after translation. */
726 }
727
728 static int is_const(int sel)
729 {
730 return is_cfile(sel) ||
731 (sel >= V_SQ_ALU_SRC_0 &&
732 sel <= V_SQ_ALU_SRC_LITERAL);
733 }
734
735 static int check_vector(struct r600_bytecode *bc, struct r600_bytecode_alu *alu,
736 struct alu_bank_swizzle *bs, int bank_swizzle)
737 {
738 int r, src, num_src, sel, elem, cycle;
739
740 num_src = r600_bytecode_get_num_operands(bc, alu);
741 for (src = 0; src < num_src; src++) {
742 sel = alu->src[src].sel;
743 elem = alu->src[src].chan;
744 if (is_gpr(sel)) {
745 cycle = cycle_for_bank_swizzle_vec[bank_swizzle][src];
746 if (src == 1 && sel == alu->src[0].sel && elem == alu->src[0].chan)
747 /* Nothing to do; special-case optimization,
748 * second source uses first source’s reservation. */
749 continue;
750 else {
751 r = reserve_gpr(bs, sel, elem, cycle);
752 if (r)
753 return r;
754 }
755 } else if (is_cfile(sel)) {
756 r = reserve_cfile(bc, bs, (alu->src[src].kc_bank<<16) + sel, elem);
757 if (r)
758 return r;
759 }
760 /* No restrictions on PV, PS, literal or special constants. */
761 }
762 return 0;
763 }
764
765 static int check_scalar(struct r600_bytecode *bc, struct r600_bytecode_alu *alu,
766 struct alu_bank_swizzle *bs, int bank_swizzle)
767 {
768 int r, src, num_src, const_count, sel, elem, cycle;
769
770 num_src = r600_bytecode_get_num_operands(bc, alu);
771 for (const_count = 0, src = 0; src < num_src; ++src) {
772 sel = alu->src[src].sel;
773 elem = alu->src[src].chan;
774 if (is_const(sel)) { /* Any constant, including literal and inline constants. */
775 if (const_count >= 2)
776 /* More than two references to a constant in
777 * transcendental operation. */
778 return -1;
779 else
780 const_count++;
781 }
782 if (is_cfile(sel)) {
783 r = reserve_cfile(bc, bs, (alu->src[src].kc_bank<<16) + sel, elem);
784 if (r)
785 return r;
786 }
787 }
788 for (src = 0; src < num_src; ++src) {
789 sel = alu->src[src].sel;
790 elem = alu->src[src].chan;
791 if (is_gpr(sel)) {
792 cycle = cycle_for_bank_swizzle_scl[bank_swizzle][src];
793 if (cycle < const_count)
794 /* Cycle for GPR load conflicts with
795 * constant load in transcendental operation. */
796 return -1;
797 r = reserve_gpr(bs, sel, elem, cycle);
798 if (r)
799 return r;
800 }
801 /* PV PS restrictions */
802 if (const_count && (sel == 254 || sel == 255)) {
803 cycle = cycle_for_bank_swizzle_scl[bank_swizzle][src];
804 if (cycle < const_count)
805 return -1;
806 }
807 }
808 return 0;
809 }
810
811 static int check_and_set_bank_swizzle(struct r600_bytecode *bc,
812 struct r600_bytecode_alu *slots[5])
813 {
814 struct alu_bank_swizzle bs;
815 int bank_swizzle[5];
816 int i, r = 0, forced = 1;
817 boolean scalar_only = bc->chip_class == CAYMAN ? false : true;
818 int max_slots = bc->chip_class == CAYMAN ? 4 : 5;
819
820 for (i = 0; i < max_slots; i++) {
821 if (slots[i]) {
822 if (slots[i]->bank_swizzle_force) {
823 slots[i]->bank_swizzle = slots[i]->bank_swizzle_force;
824 } else {
825 forced = 0;
826 }
827 }
828
829 if (i < 4 && slots[i])
830 scalar_only = false;
831 }
832 if (forced)
833 return 0;
834
835 /* Just check every possible combination of bank swizzle.
836 * Not very efficent, but works on the first try in most of the cases. */
837 for (i = 0; i < 4; i++)
838 if (!slots[i] || !slots[i]->bank_swizzle_force)
839 bank_swizzle[i] = SQ_ALU_VEC_012;
840 else
841 bank_swizzle[i] = slots[i]->bank_swizzle;
842
843 bank_swizzle[4] = SQ_ALU_SCL_210;
844 while(bank_swizzle[4] <= SQ_ALU_SCL_221) {
845
846 if (max_slots == 4) {
847 for (i = 0; i < max_slots; i++) {
848 if (bank_swizzle[i] == SQ_ALU_VEC_210)
849 return -1;
850 }
851 }
852 init_bank_swizzle(&bs);
853 if (scalar_only == false) {
854 for (i = 0; i < 4; i++) {
855 if (slots[i]) {
856 r = check_vector(bc, slots[i], &bs, bank_swizzle[i]);
857 if (r)
858 break;
859 }
860 }
861 } else
862 r = 0;
863
864 if (!r && slots[4] && max_slots == 5) {
865 r = check_scalar(bc, slots[4], &bs, bank_swizzle[4]);
866 }
867 if (!r) {
868 for (i = 0; i < max_slots; i++) {
869 if (slots[i])
870 slots[i]->bank_swizzle = bank_swizzle[i];
871 }
872 return 0;
873 }
874
875 if (scalar_only) {
876 bank_swizzle[4]++;
877 } else {
878 for (i = 0; i < max_slots; i++) {
879 if (!slots[i] || !slots[i]->bank_swizzle_force) {
880 bank_swizzle[i]++;
881 if (bank_swizzle[i] <= SQ_ALU_VEC_210)
882 break;
883 else
884 bank_swizzle[i] = SQ_ALU_VEC_012;
885 }
886 }
887 }
888 }
889
890 /* Couldn't find a working swizzle. */
891 return -1;
892 }
893
894 static int replace_gpr_with_pv_ps(struct r600_bytecode *bc,
895 struct r600_bytecode_alu *slots[5], struct r600_bytecode_alu *alu_prev)
896 {
897 struct r600_bytecode_alu *prev[5];
898 int gpr[5], chan[5];
899 int i, j, r, src, num_src;
900 int max_slots = bc->chip_class == CAYMAN ? 4 : 5;
901
902 r = assign_alu_units(bc, alu_prev, prev);
903 if (r)
904 return r;
905
906 for (i = 0; i < max_slots; ++i) {
907 if (prev[i] && (prev[i]->dst.write || prev[i]->is_op3) && !prev[i]->dst.rel) {
908 gpr[i] = prev[i]->dst.sel;
909 /* cube writes more than PV.X */
910 if (!is_alu_cube_inst(bc, prev[i]) && is_alu_reduction_inst(bc, prev[i]))
911 chan[i] = 0;
912 else
913 chan[i] = prev[i]->dst.chan;
914 } else
915 gpr[i] = -1;
916 }
917
918 for (i = 0; i < max_slots; ++i) {
919 struct r600_bytecode_alu *alu = slots[i];
920 if(!alu)
921 continue;
922
923 num_src = r600_bytecode_get_num_operands(bc, alu);
924 for (src = 0; src < num_src; ++src) {
925 if (!is_gpr(alu->src[src].sel) || alu->src[src].rel)
926 continue;
927
928 if (bc->chip_class < CAYMAN) {
929 if (alu->src[src].sel == gpr[4] &&
930 alu->src[src].chan == chan[4]) {
931 alu->src[src].sel = V_SQ_ALU_SRC_PS;
932 alu->src[src].chan = 0;
933 continue;
934 }
935 }
936
937 for (j = 0; j < 4; ++j) {
938 if (alu->src[src].sel == gpr[j] &&
939 alu->src[src].chan == j) {
940 alu->src[src].sel = V_SQ_ALU_SRC_PV;
941 alu->src[src].chan = chan[j];
942 break;
943 }
944 }
945 }
946 }
947
948 return 0;
949 }
950
951 void r600_bytecode_special_constants(uint32_t value, unsigned *sel, unsigned *neg)
952 {
953 switch(value) {
954 case 0:
955 *sel = V_SQ_ALU_SRC_0;
956 break;
957 case 1:
958 *sel = V_SQ_ALU_SRC_1_INT;
959 break;
960 case -1:
961 *sel = V_SQ_ALU_SRC_M_1_INT;
962 break;
963 case 0x3F800000: /* 1.0f */
964 *sel = V_SQ_ALU_SRC_1;
965 break;
966 case 0x3F000000: /* 0.5f */
967 *sel = V_SQ_ALU_SRC_0_5;
968 break;
969 case 0xBF800000: /* -1.0f */
970 *sel = V_SQ_ALU_SRC_1;
971 *neg ^= 1;
972 break;
973 case 0xBF000000: /* -0.5f */
974 *sel = V_SQ_ALU_SRC_0_5;
975 *neg ^= 1;
976 break;
977 default:
978 *sel = V_SQ_ALU_SRC_LITERAL;
979 break;
980 }
981 }
982
983 /* compute how many literal are needed */
984 static int r600_bytecode_alu_nliterals(struct r600_bytecode *bc, struct r600_bytecode_alu *alu,
985 uint32_t literal[4], unsigned *nliteral)
986 {
987 unsigned num_src = r600_bytecode_get_num_operands(bc, alu);
988 unsigned i, j;
989
990 for (i = 0; i < num_src; ++i) {
991 if (alu->src[i].sel == V_SQ_ALU_SRC_LITERAL) {
992 uint32_t value = alu->src[i].value;
993 unsigned found = 0;
994 for (j = 0; j < *nliteral; ++j) {
995 if (literal[j] == value) {
996 found = 1;
997 break;
998 }
999 }
1000 if (!found) {
1001 if (*nliteral >= 4)
1002 return -EINVAL;
1003 literal[(*nliteral)++] = value;
1004 }
1005 }
1006 }
1007 return 0;
1008 }
1009
1010 static void r600_bytecode_alu_adjust_literals(struct r600_bytecode *bc,
1011 struct r600_bytecode_alu *alu,
1012 uint32_t literal[4], unsigned nliteral)
1013 {
1014 unsigned num_src = r600_bytecode_get_num_operands(bc, alu);
1015 unsigned i, j;
1016
1017 for (i = 0; i < num_src; ++i) {
1018 if (alu->src[i].sel == V_SQ_ALU_SRC_LITERAL) {
1019 uint32_t value = alu->src[i].value;
1020 for (j = 0; j < nliteral; ++j) {
1021 if (literal[j] == value) {
1022 alu->src[i].chan = j;
1023 break;
1024 }
1025 }
1026 }
1027 }
1028 }
1029
1030 static int merge_inst_groups(struct r600_bytecode *bc, struct r600_bytecode_alu *slots[5],
1031 struct r600_bytecode_alu *alu_prev)
1032 {
1033 struct r600_bytecode_alu *prev[5];
1034 struct r600_bytecode_alu *result[5] = { NULL };
1035
1036 uint32_t literal[4], prev_literal[4];
1037 unsigned nliteral = 0, prev_nliteral = 0;
1038
1039 int i, j, r, src, num_src;
1040 int num_once_inst = 0;
1041 int have_mova = 0, have_rel = 0;
1042 int max_slots = bc->chip_class == CAYMAN ? 4 : 5;
1043
1044 r = assign_alu_units(bc, alu_prev, prev);
1045 if (r)
1046 return r;
1047
1048 for (i = 0; i < max_slots; ++i) {
1049 struct r600_bytecode_alu *alu;
1050
1051 /* check number of literals */
1052 if (prev[i]) {
1053 if (r600_bytecode_alu_nliterals(bc, prev[i], literal, &nliteral))
1054 return 0;
1055 if (r600_bytecode_alu_nliterals(bc, prev[i], prev_literal, &prev_nliteral))
1056 return 0;
1057 if (is_alu_mova_inst(bc, prev[i])) {
1058 if (have_rel)
1059 return 0;
1060 have_mova = 1;
1061 }
1062 num_once_inst += is_alu_once_inst(bc, prev[i]);
1063 }
1064 if (slots[i] && r600_bytecode_alu_nliterals(bc, slots[i], literal, &nliteral))
1065 return 0;
1066
1067 /* Let's check used slots. */
1068 if (prev[i] && !slots[i]) {
1069 result[i] = prev[i];
1070 continue;
1071 } else if (prev[i] && slots[i]) {
1072 if (max_slots == 5 && result[4] == NULL && prev[4] == NULL && slots[4] == NULL) {
1073 /* Trans unit is still free try to use it. */
1074 if (is_alu_any_unit_inst(bc, slots[i])) {
1075 result[i] = prev[i];
1076 result[4] = slots[i];
1077 } else if (is_alu_any_unit_inst(bc, prev[i])) {
1078 if (slots[i]->dst.sel == prev[i]->dst.sel &&
1079 (slots[i]->dst.write == 1 || slots[i]->is_op3) &&
1080 (prev[i]->dst.write == 1 || prev[i]->is_op3))
1081 return 0;
1082
1083 result[i] = slots[i];
1084 result[4] = prev[i];
1085 } else
1086 return 0;
1087 } else
1088 return 0;
1089 } else if(!slots[i]) {
1090 continue;
1091 } else {
1092 if (max_slots == 5 && slots[i] && prev[4] &&
1093 slots[i]->dst.sel == prev[4]->dst.sel &&
1094 slots[i]->dst.chan == prev[4]->dst.chan &&
1095 (slots[i]->dst.write == 1 || slots[i]->is_op3) &&
1096 (prev[4]->dst.write == 1 || prev[4]->is_op3))
1097 return 0;
1098
1099 result[i] = slots[i];
1100 }
1101
1102 alu = slots[i];
1103 num_once_inst += is_alu_once_inst(bc, alu);
1104
1105 /* don't reschedule NOPs */
1106 if (is_nop_inst(bc, alu))
1107 return 0;
1108
1109 /* Let's check dst gpr. */
1110 if (alu->dst.rel) {
1111 if (have_mova)
1112 return 0;
1113 have_rel = 1;
1114 }
1115
1116 /* Let's check source gprs */
1117 num_src = r600_bytecode_get_num_operands(bc, alu);
1118 for (src = 0; src < num_src; ++src) {
1119 if (alu->src[src].rel) {
1120 if (have_mova)
1121 return 0;
1122 have_rel = 1;
1123 }
1124
1125 /* Constants don't matter. */
1126 if (!is_gpr(alu->src[src].sel))
1127 continue;
1128
1129 for (j = 0; j < max_slots; ++j) {
1130 if (!prev[j] || !(prev[j]->dst.write || prev[j]->is_op3))
1131 continue;
1132
1133 /* If it's relative then we can't determin which gpr is really used. */
1134 if (prev[j]->dst.chan == alu->src[src].chan &&
1135 (prev[j]->dst.sel == alu->src[src].sel ||
1136 prev[j]->dst.rel || alu->src[src].rel))
1137 return 0;
1138 }
1139 }
1140 }
1141
1142 /* more than one PRED_ or KILL_ ? */
1143 if (num_once_inst > 1)
1144 return 0;
1145
1146 /* check if the result can still be swizzlet */
1147 r = check_and_set_bank_swizzle(bc, result);
1148 if (r)
1149 return 0;
1150
1151 /* looks like everything worked out right, apply the changes */
1152
1153 /* undo adding previus literals */
1154 bc->cf_last->ndw -= align(prev_nliteral, 2);
1155
1156 /* sort instructions */
1157 for (i = 0; i < max_slots; ++i) {
1158 slots[i] = result[i];
1159 if (result[i]) {
1160 LIST_DEL(&result[i]->list);
1161 result[i]->last = 0;
1162 LIST_ADDTAIL(&result[i]->list, &bc->cf_last->alu);
1163 }
1164 }
1165
1166 /* determine new last instruction */
1167 LIST_ENTRY(struct r600_bytecode_alu, bc->cf_last->alu.prev, list)->last = 1;
1168
1169 /* determine new first instruction */
1170 for (i = 0; i < max_slots; ++i) {
1171 if (result[i]) {
1172 bc->cf_last->curr_bs_head = result[i];
1173 break;
1174 }
1175 }
1176
1177 bc->cf_last->prev_bs_head = bc->cf_last->prev2_bs_head;
1178 bc->cf_last->prev2_bs_head = NULL;
1179
1180 return 0;
1181 }
1182
1183 /* we'll keep kcache sets sorted by bank & addr */
1184 static int r600_bytecode_alloc_kcache_line(struct r600_bytecode *bc,
1185 struct r600_bytecode_kcache *kcache,
1186 unsigned bank, unsigned line)
1187 {
1188 int i, kcache_banks = bc->chip_class >= EVERGREEN ? 4 : 2;
1189
1190 for (i = 0; i < kcache_banks; i++) {
1191 if (kcache[i].mode) {
1192 int d;
1193
1194 if (kcache[i].bank < bank)
1195 continue;
1196
1197 if ((kcache[i].bank == bank && kcache[i].addr > line+1) ||
1198 kcache[i].bank > bank) {
1199 /* try to insert new line */
1200 if (kcache[kcache_banks-1].mode) {
1201 /* all sets are in use */
1202 return -ENOMEM;
1203 }
1204
1205 memmove(&kcache[i+1],&kcache[i], (kcache_banks-i-1)*sizeof(struct r600_bytecode_kcache));
1206 kcache[i].mode = V_SQ_CF_KCACHE_LOCK_1;
1207 kcache[i].bank = bank;
1208 kcache[i].addr = line;
1209 return 0;
1210 }
1211
1212 d = line - kcache[i].addr;
1213
1214 if (d == -1) {
1215 kcache[i].addr--;
1216 if (kcache[i].mode == V_SQ_CF_KCACHE_LOCK_2) {
1217 /* we are prepending the line to the current set,
1218 * discarding the existing second line,
1219 * so we'll have to insert line+2 after it */
1220 line += 2;
1221 continue;
1222 } else if (kcache[i].mode == V_SQ_CF_KCACHE_LOCK_1) {
1223 kcache[i].mode = V_SQ_CF_KCACHE_LOCK_2;
1224 return 0;
1225 } else {
1226 /* V_SQ_CF_KCACHE_LOCK_LOOP_INDEX is not supported */
1227 return -ENOMEM;
1228 }
1229 } else if (d == 1) {
1230 kcache[i].mode = V_SQ_CF_KCACHE_LOCK_2;
1231 return 0;
1232 } else if (d == 0)
1233 return 0;
1234 } else { /* free kcache set - use it */
1235 kcache[i].mode = V_SQ_CF_KCACHE_LOCK_1;
1236 kcache[i].bank = bank;
1237 kcache[i].addr = line;
1238 return 0;
1239 }
1240 }
1241 return -ENOMEM;
1242 }
1243
1244 static int r600_bytecode_alloc_inst_kcache_lines(struct r600_bytecode *bc,
1245 struct r600_bytecode_kcache *kcache,
1246 struct r600_bytecode_alu *alu)
1247 {
1248 int i, r;
1249
1250 for (i = 0; i < 3; i++) {
1251 unsigned bank, line, sel = alu->src[i].sel;
1252
1253 if (sel < 512)
1254 continue;
1255
1256 bank = alu->src[i].kc_bank;
1257 line = (sel-512)>>4;
1258
1259 if ((r = r600_bytecode_alloc_kcache_line(bc, kcache, bank, line)))
1260 return r;
1261 }
1262 return 0;
1263 }
1264
1265 static int r600_bytecode_assign_kcache_banks(struct r600_bytecode *bc,
1266 struct r600_bytecode_alu *alu,
1267 struct r600_bytecode_kcache * kcache)
1268 {
1269 int i, j;
1270
1271 /* Alter the src operands to refer to the kcache. */
1272 for (i = 0; i < 3; ++i) {
1273 static const unsigned int base[] = {128, 160, 256, 288};
1274 unsigned int line, sel = alu->src[i].sel, found = 0;
1275
1276 if (sel < 512)
1277 continue;
1278
1279 sel -= 512;
1280 line = sel>>4;
1281
1282 for (j = 0; j < 4 && !found; ++j) {
1283 switch (kcache[j].mode) {
1284 case V_SQ_CF_KCACHE_NOP:
1285 case V_SQ_CF_KCACHE_LOCK_LOOP_INDEX:
1286 R600_ERR("unexpected kcache line mode\n");
1287 return -ENOMEM;
1288 default:
1289 if (kcache[j].bank == alu->src[i].kc_bank &&
1290 kcache[j].addr <= line &&
1291 line < kcache[j].addr + kcache[j].mode) {
1292 alu->src[i].sel = sel - (kcache[j].addr<<4);
1293 alu->src[i].sel += base[j];
1294 found=1;
1295 }
1296 }
1297 }
1298 }
1299 return 0;
1300 }
1301
1302 static int r600_bytecode_alloc_kcache_lines(struct r600_bytecode *bc, struct r600_bytecode_alu *alu, int type)
1303 {
1304 struct r600_bytecode_kcache kcache_sets[4];
1305 struct r600_bytecode_kcache *kcache = kcache_sets;
1306 int r;
1307
1308 memcpy(kcache, bc->cf_last->kcache, 4 * sizeof(struct r600_bytecode_kcache));
1309
1310 if ((r = r600_bytecode_alloc_inst_kcache_lines(bc, kcache, alu))) {
1311 /* can't alloc, need to start new clause */
1312 if ((r = r600_bytecode_add_cf(bc))) {
1313 return r;
1314 }
1315 bc->cf_last->inst = type;
1316
1317 /* retry with the new clause */
1318 kcache = bc->cf_last->kcache;
1319 if ((r = r600_bytecode_alloc_inst_kcache_lines(bc, kcache, alu))) {
1320 /* can't alloc again- should never happen */
1321 return r;
1322 }
1323 } else {
1324 /* update kcache sets */
1325 memcpy(bc->cf_last->kcache, kcache, 4 * sizeof(struct r600_bytecode_kcache));
1326 }
1327
1328 /* if we actually used more than 2 kcache sets - use ALU_EXTENDED on eg+ */
1329 if (kcache[2].mode != V_SQ_CF_KCACHE_NOP) {
1330 if (bc->chip_class < EVERGREEN)
1331 return -ENOMEM;
1332 bc->cf_last->eg_alu_extended = 1;
1333 }
1334
1335 return 0;
1336 }
1337
1338 static int insert_nop_r6xx(struct r600_bytecode *bc)
1339 {
1340 struct r600_bytecode_alu alu;
1341 int r, i;
1342
1343 for (i = 0; i < 4; i++) {
1344 memset(&alu, 0, sizeof(alu));
1345 alu.inst = V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_NOP;
1346 alu.src[0].chan = i;
1347 alu.dst.chan = i;
1348 alu.last = (i == 3);
1349 r = r600_bytecode_add_alu(bc, &alu);
1350 if (r)
1351 return r;
1352 }
1353 return 0;
1354 }
1355
1356 /* load AR register from gpr (bc->ar_reg) with MOVA_INT */
1357 static int load_ar_r6xx(struct r600_bytecode *bc)
1358 {
1359 struct r600_bytecode_alu alu;
1360 int r;
1361
1362 if (bc->ar_loaded)
1363 return 0;
1364
1365 /* hack to avoid making MOVA the last instruction in the clause */
1366 if ((bc->cf_last->ndw>>1) >= 110)
1367 bc->force_add_cf = 1;
1368
1369 memset(&alu, 0, sizeof(alu));
1370 alu.inst = V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOVA_GPR_INT;
1371 alu.src[0].sel = bc->ar_reg;
1372 alu.last = 1;
1373 alu.index_mode = INDEX_MODE_LOOP;
1374 r = r600_bytecode_add_alu(bc, &alu);
1375 if (r)
1376 return r;
1377
1378 /* no requirement to set uses waterfall on MOVA_GPR_INT */
1379 bc->ar_loaded = 1;
1380 return 0;
1381 }
1382
1383 /* load AR register from gpr (bc->ar_reg) with MOVA_INT */
1384 static int load_ar(struct r600_bytecode *bc)
1385 {
1386 struct r600_bytecode_alu alu;
1387 int r;
1388
1389 if (bc->ar_handling)
1390 return load_ar_r6xx(bc);
1391
1392 if (bc->ar_loaded)
1393 return 0;
1394
1395 /* hack to avoid making MOVA the last instruction in the clause */
1396 if ((bc->cf_last->ndw>>1) >= 110)
1397 bc->force_add_cf = 1;
1398
1399 memset(&alu, 0, sizeof(alu));
1400 alu.inst = BC_INST(bc, V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOVA_INT);
1401 alu.src[0].sel = bc->ar_reg;
1402 alu.last = 1;
1403 r = r600_bytecode_add_alu(bc, &alu);
1404 if (r)
1405 return r;
1406
1407 bc->cf_last->r6xx_uses_waterfall = 1;
1408 bc->ar_loaded = 1;
1409 return 0;
1410 }
1411
1412 int r600_bytecode_add_alu_type(struct r600_bytecode *bc, const struct r600_bytecode_alu *alu, int type)
1413 {
1414 struct r600_bytecode_alu *nalu = r600_bytecode_alu();
1415 struct r600_bytecode_alu *lalu;
1416 int i, r;
1417
1418 if (nalu == NULL)
1419 return -ENOMEM;
1420 memcpy(nalu, alu, sizeof(struct r600_bytecode_alu));
1421
1422 if (bc->cf_last != NULL && bc->cf_last->inst != type) {
1423 /* check if we could add it anyway */
1424 if (bc->cf_last->inst == BC_INST(bc, V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU) &&
1425 type == BC_INST(bc, V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_PUSH_BEFORE)) {
1426 LIST_FOR_EACH_ENTRY(lalu, &bc->cf_last->alu, list) {
1427 if (lalu->predicate) {
1428 bc->force_add_cf = 1;
1429 break;
1430 }
1431 }
1432 } else
1433 bc->force_add_cf = 1;
1434 }
1435
1436 /* cf can contains only alu or only vtx or only tex */
1437 if (bc->cf_last == NULL || bc->force_add_cf) {
1438 r = r600_bytecode_add_cf(bc);
1439 if (r) {
1440 free(nalu);
1441 return r;
1442 }
1443 }
1444 bc->cf_last->inst = type;
1445
1446 /* Check AR usage and load it if required */
1447 for (i = 0; i < 3; i++)
1448 if (nalu->src[i].rel && !bc->ar_loaded)
1449 load_ar(bc);
1450
1451 if (nalu->dst.rel && !bc->ar_loaded)
1452 load_ar(bc);
1453
1454 /* Setup the kcache for this ALU instruction. This will start a new
1455 * ALU clause if needed. */
1456 if ((r = r600_bytecode_alloc_kcache_lines(bc, nalu, type))) {
1457 free(nalu);
1458 return r;
1459 }
1460
1461 if (!bc->cf_last->curr_bs_head) {
1462 bc->cf_last->curr_bs_head = nalu;
1463 }
1464 /* number of gpr == the last gpr used in any alu */
1465 for (i = 0; i < 3; i++) {
1466 if (nalu->src[i].sel >= bc->ngpr && nalu->src[i].sel < 128) {
1467 bc->ngpr = nalu->src[i].sel + 1;
1468 }
1469 if (nalu->src[i].sel == V_SQ_ALU_SRC_LITERAL)
1470 r600_bytecode_special_constants(nalu->src[i].value,
1471 &nalu->src[i].sel, &nalu->src[i].neg);
1472 }
1473 if (nalu->dst.sel >= bc->ngpr) {
1474 bc->ngpr = nalu->dst.sel + 1;
1475 }
1476 LIST_ADDTAIL(&nalu->list, &bc->cf_last->alu);
1477 /* each alu use 2 dwords */
1478 bc->cf_last->ndw += 2;
1479 bc->ndw += 2;
1480
1481 /* process cur ALU instructions for bank swizzle */
1482 if (nalu->last) {
1483 uint32_t literal[4];
1484 unsigned nliteral;
1485 struct r600_bytecode_alu *slots[5];
1486 int max_slots = bc->chip_class == CAYMAN ? 4 : 5;
1487 r = assign_alu_units(bc, bc->cf_last->curr_bs_head, slots);
1488 if (r)
1489 return r;
1490
1491 if (bc->cf_last->prev_bs_head) {
1492 r = merge_inst_groups(bc, slots, bc->cf_last->prev_bs_head);
1493 if (r)
1494 return r;
1495 }
1496
1497 if (bc->cf_last->prev_bs_head) {
1498 r = replace_gpr_with_pv_ps(bc, slots, bc->cf_last->prev_bs_head);
1499 if (r)
1500 return r;
1501 }
1502
1503 r = check_and_set_bank_swizzle(bc, slots);
1504 if (r)
1505 return r;
1506
1507 for (i = 0, nliteral = 0; i < max_slots; i++) {
1508 if (slots[i]) {
1509 r = r600_bytecode_alu_nliterals(bc, slots[i], literal, &nliteral);
1510 if (r)
1511 return r;
1512 }
1513 }
1514 bc->cf_last->ndw += align(nliteral, 2);
1515
1516 /* at most 128 slots, one add alu can add 5 slots + 4 constants(2 slots)
1517 * worst case */
1518 if ((bc->cf_last->ndw >> 1) >= 120) {
1519 bc->force_add_cf = 1;
1520 }
1521
1522 bc->cf_last->prev2_bs_head = bc->cf_last->prev_bs_head;
1523 bc->cf_last->prev_bs_head = bc->cf_last->curr_bs_head;
1524 bc->cf_last->curr_bs_head = NULL;
1525 }
1526
1527 if (nalu->dst.rel && bc->r6xx_nop_after_rel_dst)
1528 insert_nop_r6xx(bc);
1529
1530 return 0;
1531 }
1532
1533 int r600_bytecode_add_alu(struct r600_bytecode *bc, const struct r600_bytecode_alu *alu)
1534 {
1535 return r600_bytecode_add_alu_type(bc, alu, BC_INST(bc, V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU));
1536 }
1537
1538 static unsigned r600_bytecode_num_tex_and_vtx_instructions(const struct r600_bytecode *bc)
1539 {
1540 switch (bc->chip_class) {
1541 case R600:
1542 return 8;
1543
1544 case R700:
1545 case EVERGREEN:
1546 case CAYMAN:
1547 return 16;
1548
1549 default:
1550 R600_ERR("Unknown chip class %d.\n", bc->chip_class);
1551 return 8;
1552 }
1553 }
1554
1555 static inline boolean last_inst_was_not_vtx_fetch(struct r600_bytecode *bc)
1556 {
1557 switch (bc->chip_class) {
1558 case R700:
1559 case R600:
1560 return bc->cf_last->inst != V_SQ_CF_WORD1_SQ_CF_INST_VTX &&
1561 bc->cf_last->inst != V_SQ_CF_WORD1_SQ_CF_INST_VTX_TC;
1562 case EVERGREEN:
1563 return bc->cf_last->inst != EG_V_SQ_CF_WORD1_SQ_CF_INST_VTX;
1564 case CAYMAN:
1565 return bc->cf_last->inst != CM_V_SQ_CF_WORD1_SQ_CF_INST_TC;
1566 default:
1567 R600_ERR("Unknown chip class %d.\n", bc->chip_class);
1568 return FALSE;
1569 }
1570 }
1571
1572 int r600_bytecode_add_vtx(struct r600_bytecode *bc, const struct r600_bytecode_vtx *vtx)
1573 {
1574 struct r600_bytecode_vtx *nvtx = r600_bytecode_vtx();
1575 int r;
1576
1577 if (nvtx == NULL)
1578 return -ENOMEM;
1579 memcpy(nvtx, vtx, sizeof(struct r600_bytecode_vtx));
1580
1581 /* cf can contains only alu or only vtx or only tex */
1582 if (bc->cf_last == NULL ||
1583 last_inst_was_not_vtx_fetch(bc) ||
1584 bc->force_add_cf) {
1585 r = r600_bytecode_add_cf(bc);
1586 if (r) {
1587 free(nvtx);
1588 return r;
1589 }
1590 switch (bc->chip_class) {
1591 case R600:
1592 case R700:
1593 bc->cf_last->inst = V_SQ_CF_WORD1_SQ_CF_INST_VTX;
1594 break;
1595 case EVERGREEN:
1596 bc->cf_last->inst = EG_V_SQ_CF_WORD1_SQ_CF_INST_VTX;
1597 break;
1598 case CAYMAN:
1599 bc->cf_last->inst = CM_V_SQ_CF_WORD1_SQ_CF_INST_TC;
1600 break;
1601 default:
1602 R600_ERR("Unknown chip class %d.\n", bc->chip_class);
1603 return -EINVAL;
1604 }
1605 }
1606 LIST_ADDTAIL(&nvtx->list, &bc->cf_last->vtx);
1607 /* each fetch use 4 dwords */
1608 bc->cf_last->ndw += 4;
1609 bc->ndw += 4;
1610 if ((bc->cf_last->ndw / 4) >= r600_bytecode_num_tex_and_vtx_instructions(bc))
1611 bc->force_add_cf = 1;
1612 return 0;
1613 }
1614
1615 int r600_bytecode_add_tex(struct r600_bytecode *bc, const struct r600_bytecode_tex *tex)
1616 {
1617 struct r600_bytecode_tex *ntex = r600_bytecode_tex();
1618 int r;
1619
1620 if (ntex == NULL)
1621 return -ENOMEM;
1622 memcpy(ntex, tex, sizeof(struct r600_bytecode_tex));
1623
1624 /* we can't fetch data und use it as texture lookup address in the same TEX clause */
1625 if (bc->cf_last != NULL &&
1626 bc->cf_last->inst == BC_INST(bc, V_SQ_CF_WORD1_SQ_CF_INST_TEX)) {
1627 struct r600_bytecode_tex *ttex;
1628 LIST_FOR_EACH_ENTRY(ttex, &bc->cf_last->tex, list) {
1629 if (ttex->dst_gpr == ntex->src_gpr) {
1630 bc->force_add_cf = 1;
1631 break;
1632 }
1633 }
1634 /* slight hack to make gradients always go into same cf */
1635 if (ntex->inst == SQ_TEX_INST_SET_GRADIENTS_H)
1636 bc->force_add_cf = 1;
1637 }
1638
1639 /* cf can contains only alu or only vtx or only tex */
1640 if (bc->cf_last == NULL ||
1641 bc->cf_last->inst != BC_INST(bc, V_SQ_CF_WORD1_SQ_CF_INST_TEX) ||
1642 bc->force_add_cf) {
1643 r = r600_bytecode_add_cf(bc);
1644 if (r) {
1645 free(ntex);
1646 return r;
1647 }
1648 bc->cf_last->inst = BC_INST(bc, V_SQ_CF_WORD1_SQ_CF_INST_TEX);
1649 }
1650 if (ntex->src_gpr >= bc->ngpr) {
1651 bc->ngpr = ntex->src_gpr + 1;
1652 }
1653 if (ntex->dst_gpr >= bc->ngpr) {
1654 bc->ngpr = ntex->dst_gpr + 1;
1655 }
1656 LIST_ADDTAIL(&ntex->list, &bc->cf_last->tex);
1657 /* each texture fetch use 4 dwords */
1658 bc->cf_last->ndw += 4;
1659 bc->ndw += 4;
1660 if ((bc->cf_last->ndw / 4) >= r600_bytecode_num_tex_and_vtx_instructions(bc))
1661 bc->force_add_cf = 1;
1662 return 0;
1663 }
1664
1665 int r600_bytecode_add_cfinst(struct r600_bytecode *bc, int inst)
1666 {
1667 int r;
1668 r = r600_bytecode_add_cf(bc);
1669 if (r)
1670 return r;
1671
1672 bc->cf_last->cond = V_SQ_CF_COND_ACTIVE;
1673 bc->cf_last->inst = inst;
1674 return 0;
1675 }
1676
1677 int cm_bytecode_add_cf_end(struct r600_bytecode *bc)
1678 {
1679 return r600_bytecode_add_cfinst(bc, CM_V_SQ_CF_WORD1_SQ_CF_INST_END);
1680 }
1681
1682 /* common to all 3 families */
1683 static int r600_bytecode_vtx_build(struct r600_bytecode *bc, struct r600_bytecode_vtx *vtx, unsigned id)
1684 {
1685 bc->bytecode[id] = S_SQ_VTX_WORD0_BUFFER_ID(vtx->buffer_id) |
1686 S_SQ_VTX_WORD0_FETCH_TYPE(vtx->fetch_type) |
1687 S_SQ_VTX_WORD0_SRC_GPR(vtx->src_gpr) |
1688 S_SQ_VTX_WORD0_SRC_SEL_X(vtx->src_sel_x);
1689 if (bc->chip_class < CAYMAN)
1690 bc->bytecode[id] |= S_SQ_VTX_WORD0_MEGA_FETCH_COUNT(vtx->mega_fetch_count);
1691 id++;
1692 bc->bytecode[id++] = S_SQ_VTX_WORD1_DST_SEL_X(vtx->dst_sel_x) |
1693 S_SQ_VTX_WORD1_DST_SEL_Y(vtx->dst_sel_y) |
1694 S_SQ_VTX_WORD1_DST_SEL_Z(vtx->dst_sel_z) |
1695 S_SQ_VTX_WORD1_DST_SEL_W(vtx->dst_sel_w) |
1696 S_SQ_VTX_WORD1_USE_CONST_FIELDS(vtx->use_const_fields) |
1697 S_SQ_VTX_WORD1_DATA_FORMAT(vtx->data_format) |
1698 S_SQ_VTX_WORD1_NUM_FORMAT_ALL(vtx->num_format_all) |
1699 S_SQ_VTX_WORD1_FORMAT_COMP_ALL(vtx->format_comp_all) |
1700 S_SQ_VTX_WORD1_SRF_MODE_ALL(vtx->srf_mode_all) |
1701 S_SQ_VTX_WORD1_GPR_DST_GPR(vtx->dst_gpr);
1702 bc->bytecode[id] = S_SQ_VTX_WORD2_OFFSET(vtx->offset)|
1703 S_SQ_VTX_WORD2_ENDIAN_SWAP(vtx->endian);
1704 if (bc->chip_class < CAYMAN)
1705 bc->bytecode[id] |= S_SQ_VTX_WORD2_MEGA_FETCH(1);
1706 id++;
1707 bc->bytecode[id++] = 0;
1708 return 0;
1709 }
1710
1711 /* common to all 3 families */
1712 static int r600_bytecode_tex_build(struct r600_bytecode *bc, struct r600_bytecode_tex *tex, unsigned id)
1713 {
1714 bc->bytecode[id++] = S_SQ_TEX_WORD0_TEX_INST(tex->inst) |
1715 S_SQ_TEX_WORD0_RESOURCE_ID(tex->resource_id) |
1716 S_SQ_TEX_WORD0_SRC_GPR(tex->src_gpr) |
1717 S_SQ_TEX_WORD0_SRC_REL(tex->src_rel);
1718 bc->bytecode[id++] = S_SQ_TEX_WORD1_DST_GPR(tex->dst_gpr) |
1719 S_SQ_TEX_WORD1_DST_REL(tex->dst_rel) |
1720 S_SQ_TEX_WORD1_DST_SEL_X(tex->dst_sel_x) |
1721 S_SQ_TEX_WORD1_DST_SEL_Y(tex->dst_sel_y) |
1722 S_SQ_TEX_WORD1_DST_SEL_Z(tex->dst_sel_z) |
1723 S_SQ_TEX_WORD1_DST_SEL_W(tex->dst_sel_w) |
1724 S_SQ_TEX_WORD1_LOD_BIAS(tex->lod_bias) |
1725 S_SQ_TEX_WORD1_COORD_TYPE_X(tex->coord_type_x) |
1726 S_SQ_TEX_WORD1_COORD_TYPE_Y(tex->coord_type_y) |
1727 S_SQ_TEX_WORD1_COORD_TYPE_Z(tex->coord_type_z) |
1728 S_SQ_TEX_WORD1_COORD_TYPE_W(tex->coord_type_w);
1729 bc->bytecode[id++] = S_SQ_TEX_WORD2_OFFSET_X(tex->offset_x) |
1730 S_SQ_TEX_WORD2_OFFSET_Y(tex->offset_y) |
1731 S_SQ_TEX_WORD2_OFFSET_Z(tex->offset_z) |
1732 S_SQ_TEX_WORD2_SAMPLER_ID(tex->sampler_id) |
1733 S_SQ_TEX_WORD2_SRC_SEL_X(tex->src_sel_x) |
1734 S_SQ_TEX_WORD2_SRC_SEL_Y(tex->src_sel_y) |
1735 S_SQ_TEX_WORD2_SRC_SEL_Z(tex->src_sel_z) |
1736 S_SQ_TEX_WORD2_SRC_SEL_W(tex->src_sel_w);
1737 bc->bytecode[id++] = 0;
1738 return 0;
1739 }
1740
1741 /* r600 only, r700/eg bits in r700_asm.c */
1742 static int r600_bytecode_alu_build(struct r600_bytecode *bc, struct r600_bytecode_alu *alu, unsigned id)
1743 {
1744 /* don't replace gpr by pv or ps for destination register */
1745 bc->bytecode[id++] = S_SQ_ALU_WORD0_SRC0_SEL(alu->src[0].sel) |
1746 S_SQ_ALU_WORD0_SRC0_REL(alu->src[0].rel) |
1747 S_SQ_ALU_WORD0_SRC0_CHAN(alu->src[0].chan) |
1748 S_SQ_ALU_WORD0_SRC0_NEG(alu->src[0].neg) |
1749 S_SQ_ALU_WORD0_SRC1_SEL(alu->src[1].sel) |
1750 S_SQ_ALU_WORD0_SRC1_REL(alu->src[1].rel) |
1751 S_SQ_ALU_WORD0_SRC1_CHAN(alu->src[1].chan) |
1752 S_SQ_ALU_WORD0_SRC1_NEG(alu->src[1].neg) |
1753 S_SQ_ALU_WORD0_INDEX_MODE(alu->index_mode) |
1754 S_SQ_ALU_WORD0_LAST(alu->last);
1755
1756 if (alu->is_op3) {
1757 bc->bytecode[id++] = S_SQ_ALU_WORD1_DST_GPR(alu->dst.sel) |
1758 S_SQ_ALU_WORD1_DST_CHAN(alu->dst.chan) |
1759 S_SQ_ALU_WORD1_DST_REL(alu->dst.rel) |
1760 S_SQ_ALU_WORD1_CLAMP(alu->dst.clamp) |
1761 S_SQ_ALU_WORD1_OP3_SRC2_SEL(alu->src[2].sel) |
1762 S_SQ_ALU_WORD1_OP3_SRC2_REL(alu->src[2].rel) |
1763 S_SQ_ALU_WORD1_OP3_SRC2_CHAN(alu->src[2].chan) |
1764 S_SQ_ALU_WORD1_OP3_SRC2_NEG(alu->src[2].neg) |
1765 S_SQ_ALU_WORD1_OP3_ALU_INST(alu->inst) |
1766 S_SQ_ALU_WORD1_BANK_SWIZZLE(alu->bank_swizzle);
1767 } else {
1768 bc->bytecode[id++] = S_SQ_ALU_WORD1_DST_GPR(alu->dst.sel) |
1769 S_SQ_ALU_WORD1_DST_CHAN(alu->dst.chan) |
1770 S_SQ_ALU_WORD1_DST_REL(alu->dst.rel) |
1771 S_SQ_ALU_WORD1_CLAMP(alu->dst.clamp) |
1772 S_SQ_ALU_WORD1_OP2_SRC0_ABS(alu->src[0].abs) |
1773 S_SQ_ALU_WORD1_OP2_SRC1_ABS(alu->src[1].abs) |
1774 S_SQ_ALU_WORD1_OP2_WRITE_MASK(alu->dst.write) |
1775 S_SQ_ALU_WORD1_OP2_OMOD(alu->omod) |
1776 S_SQ_ALU_WORD1_OP2_ALU_INST(alu->inst) |
1777 S_SQ_ALU_WORD1_BANK_SWIZZLE(alu->bank_swizzle) |
1778 S_SQ_ALU_WORD1_OP2_UPDATE_EXECUTE_MASK(alu->predicate) |
1779 S_SQ_ALU_WORD1_OP2_UPDATE_PRED(alu->predicate);
1780 }
1781 return 0;
1782 }
1783
1784 static void r600_bytecode_cf_vtx_build(uint32_t *bytecode, const struct r600_bytecode_cf *cf)
1785 {
1786 *bytecode++ = S_SQ_CF_WORD0_ADDR(cf->addr >> 1);
1787 *bytecode++ = cf->inst |
1788 S_SQ_CF_WORD1_BARRIER(1) |
1789 S_SQ_CF_WORD1_COUNT((cf->ndw / 4) - 1);
1790 }
1791
1792 /* common for r600/r700 - eg in eg_asm.c */
1793 static int r600_bytecode_cf_build(struct r600_bytecode *bc, struct r600_bytecode_cf *cf)
1794 {
1795 unsigned id = cf->id;
1796
1797 switch (cf->inst) {
1798 case V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU:
1799 case V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_PUSH_BEFORE:
1800 case V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_POP_AFTER:
1801 case V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_POP2_AFTER:
1802 bc->bytecode[id++] = S_SQ_CF_ALU_WORD0_ADDR(cf->addr >> 1) |
1803 S_SQ_CF_ALU_WORD0_KCACHE_MODE0(cf->kcache[0].mode) |
1804 S_SQ_CF_ALU_WORD0_KCACHE_BANK0(cf->kcache[0].bank) |
1805 S_SQ_CF_ALU_WORD0_KCACHE_BANK1(cf->kcache[1].bank);
1806
1807 bc->bytecode[id++] = cf->inst |
1808 S_SQ_CF_ALU_WORD1_KCACHE_MODE1(cf->kcache[1].mode) |
1809 S_SQ_CF_ALU_WORD1_KCACHE_ADDR0(cf->kcache[0].addr) |
1810 S_SQ_CF_ALU_WORD1_KCACHE_ADDR1(cf->kcache[1].addr) |
1811 S_SQ_CF_ALU_WORD1_BARRIER(1) |
1812 S_SQ_CF_ALU_WORD1_USES_WATERFALL(bc->chip_class == R600 ? cf->r6xx_uses_waterfall : 0) |
1813 S_SQ_CF_ALU_WORD1_COUNT((cf->ndw / 2) - 1);
1814 break;
1815 case V_SQ_CF_WORD1_SQ_CF_INST_TEX:
1816 case V_SQ_CF_WORD1_SQ_CF_INST_VTX:
1817 case V_SQ_CF_WORD1_SQ_CF_INST_VTX_TC:
1818 if (bc->chip_class == R700)
1819 r700_bytecode_cf_vtx_build(&bc->bytecode[id], cf);
1820 else
1821 r600_bytecode_cf_vtx_build(&bc->bytecode[id], cf);
1822 break;
1823 case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT:
1824 case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT_DONE:
1825 bc->bytecode[id++] = S_SQ_CF_ALLOC_EXPORT_WORD0_RW_GPR(cf->output.gpr) |
1826 S_SQ_CF_ALLOC_EXPORT_WORD0_ELEM_SIZE(cf->output.elem_size) |
1827 S_SQ_CF_ALLOC_EXPORT_WORD0_ARRAY_BASE(cf->output.array_base) |
1828 S_SQ_CF_ALLOC_EXPORT_WORD0_TYPE(cf->output.type);
1829 bc->bytecode[id++] = S_SQ_CF_ALLOC_EXPORT_WORD1_BURST_COUNT(cf->output.burst_count - 1) |
1830 S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_X(cf->output.swizzle_x) |
1831 S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_Y(cf->output.swizzle_y) |
1832 S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_Z(cf->output.swizzle_z) |
1833 S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_W(cf->output.swizzle_w) |
1834 S_SQ_CF_ALLOC_EXPORT_WORD1_BARRIER(cf->output.barrier) |
1835 cf->output.inst |
1836 S_SQ_CF_ALLOC_EXPORT_WORD1_END_OF_PROGRAM(cf->output.end_of_program);
1837 break;
1838 case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0:
1839 case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM1:
1840 case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM2:
1841 case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM3:
1842 bc->bytecode[id++] = S_SQ_CF_ALLOC_EXPORT_WORD0_RW_GPR(cf->output.gpr) |
1843 S_SQ_CF_ALLOC_EXPORT_WORD0_ELEM_SIZE(cf->output.elem_size) |
1844 S_SQ_CF_ALLOC_EXPORT_WORD0_ARRAY_BASE(cf->output.array_base) |
1845 S_SQ_CF_ALLOC_EXPORT_WORD0_TYPE(cf->output.type);
1846 bc->bytecode[id++] = S_SQ_CF_ALLOC_EXPORT_WORD1_BURST_COUNT(cf->output.burst_count - 1) |
1847 S_SQ_CF_ALLOC_EXPORT_WORD1_BARRIER(cf->output.barrier) |
1848 cf->output.inst |
1849 S_SQ_CF_ALLOC_EXPORT_WORD1_END_OF_PROGRAM(cf->output.end_of_program) |
1850 S_SQ_CF_ALLOC_EXPORT_WORD1_BUF_ARRAY_SIZE(cf->output.array_size) |
1851 S_SQ_CF_ALLOC_EXPORT_WORD1_BUF_COMP_MASK(cf->output.comp_mask);
1852 break;
1853 case V_SQ_CF_WORD1_SQ_CF_INST_JUMP:
1854 case V_SQ_CF_WORD1_SQ_CF_INST_ELSE:
1855 case V_SQ_CF_WORD1_SQ_CF_INST_POP:
1856 case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_START_NO_AL:
1857 case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_END:
1858 case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_CONTINUE:
1859 case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_BREAK:
1860 case V_SQ_CF_WORD1_SQ_CF_INST_CALL_FS:
1861 case V_SQ_CF_WORD1_SQ_CF_INST_RETURN:
1862 bc->bytecode[id++] = S_SQ_CF_WORD0_ADDR(cf->cf_addr >> 1);
1863 bc->bytecode[id++] = cf->inst |
1864 S_SQ_CF_WORD1_BARRIER(1) |
1865 S_SQ_CF_WORD1_COND(cf->cond) |
1866 S_SQ_CF_WORD1_POP_COUNT(cf->pop_count);
1867
1868 break;
1869 default:
1870 R600_ERR("unsupported CF instruction (0x%X)\n", cf->inst);
1871 return -EINVAL;
1872 }
1873 return 0;
1874 }
1875
1876 int r600_bytecode_build(struct r600_bytecode *bc)
1877 {
1878 struct r600_bytecode_cf *cf;
1879 struct r600_bytecode_alu *alu;
1880 struct r600_bytecode_vtx *vtx;
1881 struct r600_bytecode_tex *tex;
1882 uint32_t literal[4];
1883 unsigned nliteral;
1884 unsigned addr;
1885 int i, r;
1886
1887 if (bc->callstack[0].max > 0)
1888 bc->nstack = ((bc->callstack[0].max + 3) >> 2) + 2;
1889 if (bc->type == TGSI_PROCESSOR_VERTEX && !bc->nstack) {
1890 bc->nstack = 1;
1891 }
1892
1893 /* first path compute addr of each CF block */
1894 /* addr start after all the CF instructions */
1895 addr = bc->cf_last->id + 2;
1896 LIST_FOR_EACH_ENTRY(cf, &bc->cf, list) {
1897 if (bc->chip_class >= EVERGREEN) {
1898 switch (cf->inst) {
1899 case EG_V_SQ_CF_WORD1_SQ_CF_INST_TEX:
1900 case EG_V_SQ_CF_WORD1_SQ_CF_INST_VTX:
1901 /* fetch node need to be 16 bytes aligned*/
1902 addr += 3;
1903 addr &= 0xFFFFFFFCUL;
1904 break;
1905 case EG_V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU:
1906 case EG_V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_POP_AFTER:
1907 case EG_V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_POP2_AFTER:
1908 case EG_V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_PUSH_BEFORE:
1909 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT:
1910 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT_DONE:
1911 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0_BUF0:
1912 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0_BUF1:
1913 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0_BUF2:
1914 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0_BUF3:
1915 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM1_BUF0:
1916 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM1_BUF1:
1917 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM1_BUF2:
1918 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM1_BUF3:
1919 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM2_BUF0:
1920 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM2_BUF1:
1921 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM2_BUF2:
1922 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM2_BUF3:
1923 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM3_BUF0:
1924 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM3_BUF1:
1925 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM3_BUF2:
1926 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM3_BUF3:
1927 case EG_V_SQ_CF_WORD1_SQ_CF_INST_JUMP:
1928 case EG_V_SQ_CF_WORD1_SQ_CF_INST_ELSE:
1929 case EG_V_SQ_CF_WORD1_SQ_CF_INST_POP:
1930 case EG_V_SQ_CF_WORD1_SQ_CF_INST_LOOP_START_NO_AL:
1931 case EG_V_SQ_CF_WORD1_SQ_CF_INST_LOOP_END:
1932 case EG_V_SQ_CF_WORD1_SQ_CF_INST_LOOP_CONTINUE:
1933 case EG_V_SQ_CF_WORD1_SQ_CF_INST_LOOP_BREAK:
1934 case EG_V_SQ_CF_WORD1_SQ_CF_INST_CALL_FS:
1935 case EG_V_SQ_CF_WORD1_SQ_CF_INST_RETURN:
1936 case CM_V_SQ_CF_WORD1_SQ_CF_INST_END:
1937 case CF_NATIVE:
1938 break;
1939 default:
1940 R600_ERR("unsupported CF instruction (0x%X)\n", cf->inst);
1941 return -EINVAL;
1942 }
1943 } else {
1944 switch (cf->inst) {
1945 case V_SQ_CF_WORD1_SQ_CF_INST_TEX:
1946 case V_SQ_CF_WORD1_SQ_CF_INST_VTX:
1947 case V_SQ_CF_WORD1_SQ_CF_INST_VTX_TC:
1948 /* fetch node need to be 16 bytes aligned*/
1949 addr += 3;
1950 addr &= 0xFFFFFFFCUL;
1951 break;
1952 case V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU:
1953 case V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_POP_AFTER:
1954 case V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_POP2_AFTER:
1955 case V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_PUSH_BEFORE:
1956 case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT:
1957 case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT_DONE:
1958 case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0:
1959 case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM1:
1960 case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM2:
1961 case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM3:
1962 case V_SQ_CF_WORD1_SQ_CF_INST_JUMP:
1963 case V_SQ_CF_WORD1_SQ_CF_INST_ELSE:
1964 case V_SQ_CF_WORD1_SQ_CF_INST_POP:
1965 case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_START_NO_AL:
1966 case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_END:
1967 case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_CONTINUE:
1968 case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_BREAK:
1969 case V_SQ_CF_WORD1_SQ_CF_INST_CALL_FS:
1970 case V_SQ_CF_WORD1_SQ_CF_INST_RETURN:
1971 break;
1972 default:
1973 R600_ERR("unsupported CF instruction (0x%X)\n", cf->inst);
1974 return -EINVAL;
1975 }
1976 }
1977 cf->addr = addr;
1978 addr += cf->ndw;
1979 bc->ndw = cf->addr + cf->ndw;
1980 }
1981 free(bc->bytecode);
1982 bc->bytecode = calloc(1, bc->ndw * 4);
1983 if (bc->bytecode == NULL)
1984 return -ENOMEM;
1985 LIST_FOR_EACH_ENTRY(cf, &bc->cf, list) {
1986 addr = cf->addr;
1987 if (bc->chip_class >= EVERGREEN) {
1988 r = eg_bytecode_cf_build(bc, cf);
1989 if (r)
1990 return r;
1991
1992 switch (cf->inst) {
1993 case EG_V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU:
1994 case EG_V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_POP_AFTER:
1995 case EG_V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_POP2_AFTER:
1996 case EG_V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_PUSH_BEFORE:
1997 nliteral = 0;
1998 memset(literal, 0, sizeof(literal));
1999 LIST_FOR_EACH_ENTRY(alu, &cf->alu, list) {
2000 r = r600_bytecode_alu_nliterals(bc, alu, literal, &nliteral);
2001 if (r)
2002 return r;
2003 r600_bytecode_alu_adjust_literals(bc, alu, literal, nliteral);
2004 r600_bytecode_assign_kcache_banks(bc, alu, cf->kcache);
2005
2006 switch(bc->chip_class) {
2007 case EVERGREEN: /* eg alu is same encoding as r700 */
2008 case CAYMAN:
2009 r = r700_bytecode_alu_build(bc, alu, addr);
2010 break;
2011 default:
2012 R600_ERR("unknown chip class %d.\n", bc->chip_class);
2013 return -EINVAL;
2014 }
2015 if (r)
2016 return r;
2017 addr += 2;
2018 if (alu->last) {
2019 for (i = 0; i < align(nliteral, 2); ++i) {
2020 bc->bytecode[addr++] = literal[i];
2021 }
2022 nliteral = 0;
2023 memset(literal, 0, sizeof(literal));
2024 }
2025 }
2026 break;
2027 case EG_V_SQ_CF_WORD1_SQ_CF_INST_VTX:
2028 LIST_FOR_EACH_ENTRY(vtx, &cf->vtx, list) {
2029 r = r600_bytecode_vtx_build(bc, vtx, addr);
2030 if (r)
2031 return r;
2032 addr += 4;
2033 }
2034 break;
2035 case EG_V_SQ_CF_WORD1_SQ_CF_INST_TEX:
2036 LIST_FOR_EACH_ENTRY(vtx, &cf->vtx, list) {
2037 assert(bc->chip_class >= EVERGREEN);
2038 r = r600_bytecode_vtx_build(bc, vtx, addr);
2039 if (r)
2040 return r;
2041 addr += 4;
2042 }
2043 LIST_FOR_EACH_ENTRY(tex, &cf->tex, list) {
2044 r = r600_bytecode_tex_build(bc, tex, addr);
2045 if (r)
2046 return r;
2047 addr += 4;
2048 }
2049 break;
2050 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT:
2051 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT_DONE:
2052 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0_BUF0:
2053 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0_BUF1:
2054 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0_BUF2:
2055 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0_BUF3:
2056 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM1_BUF0:
2057 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM1_BUF1:
2058 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM1_BUF2:
2059 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM1_BUF3:
2060 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM2_BUF0:
2061 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM2_BUF1:
2062 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM2_BUF2:
2063 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM2_BUF3:
2064 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM3_BUF0:
2065 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM3_BUF1:
2066 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM3_BUF2:
2067 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM3_BUF3:
2068 case EG_V_SQ_CF_WORD1_SQ_CF_INST_LOOP_START_NO_AL:
2069 case EG_V_SQ_CF_WORD1_SQ_CF_INST_LOOP_END:
2070 case EG_V_SQ_CF_WORD1_SQ_CF_INST_LOOP_CONTINUE:
2071 case EG_V_SQ_CF_WORD1_SQ_CF_INST_LOOP_BREAK:
2072 case EG_V_SQ_CF_WORD1_SQ_CF_INST_JUMP:
2073 case EG_V_SQ_CF_WORD1_SQ_CF_INST_ELSE:
2074 case EG_V_SQ_CF_WORD1_SQ_CF_INST_POP:
2075 case EG_V_SQ_CF_WORD1_SQ_CF_INST_CALL_FS:
2076 case EG_V_SQ_CF_WORD1_SQ_CF_INST_RETURN:
2077 case CM_V_SQ_CF_WORD1_SQ_CF_INST_END:
2078 break;
2079 case CF_NATIVE:
2080 break;
2081 default:
2082 R600_ERR("unsupported CF instruction (0x%X)\n", cf->inst);
2083 return -EINVAL;
2084 }
2085 } else {
2086 r = r600_bytecode_cf_build(bc, cf);
2087 if (r)
2088 return r;
2089
2090 switch (cf->inst) {
2091 case V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU:
2092 case V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_POP_AFTER:
2093 case V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_POP2_AFTER:
2094 case V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_PUSH_BEFORE:
2095 nliteral = 0;
2096 memset(literal, 0, sizeof(literal));
2097 LIST_FOR_EACH_ENTRY(alu, &cf->alu, list) {
2098 r = r600_bytecode_alu_nliterals(bc, alu, literal, &nliteral);
2099 if (r)
2100 return r;
2101 r600_bytecode_alu_adjust_literals(bc, alu, literal, nliteral);
2102 r600_bytecode_assign_kcache_banks(bc, alu, cf->kcache);
2103
2104 switch(bc->chip_class) {
2105 case R600:
2106 r = r600_bytecode_alu_build(bc, alu, addr);
2107 break;
2108 case R700:
2109 r = r700_bytecode_alu_build(bc, alu, addr);
2110 break;
2111 default:
2112 R600_ERR("unknown chip class %d.\n", bc->chip_class);
2113 return -EINVAL;
2114 }
2115 if (r)
2116 return r;
2117 addr += 2;
2118 if (alu->last) {
2119 for (i = 0; i < align(nliteral, 2); ++i) {
2120 bc->bytecode[addr++] = literal[i];
2121 }
2122 nliteral = 0;
2123 memset(literal, 0, sizeof(literal));
2124 }
2125 }
2126 break;
2127 case V_SQ_CF_WORD1_SQ_CF_INST_VTX:
2128 case V_SQ_CF_WORD1_SQ_CF_INST_VTX_TC:
2129 LIST_FOR_EACH_ENTRY(vtx, &cf->vtx, list) {
2130 r = r600_bytecode_vtx_build(bc, vtx, addr);
2131 if (r)
2132 return r;
2133 addr += 4;
2134 }
2135 break;
2136 case V_SQ_CF_WORD1_SQ_CF_INST_TEX:
2137 LIST_FOR_EACH_ENTRY(tex, &cf->tex, list) {
2138 r = r600_bytecode_tex_build(bc, tex, addr);
2139 if (r)
2140 return r;
2141 addr += 4;
2142 }
2143 break;
2144 case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT:
2145 case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT_DONE:
2146 case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0:
2147 case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM1:
2148 case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM2:
2149 case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM3:
2150 case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_START_NO_AL:
2151 case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_END:
2152 case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_CONTINUE:
2153 case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_BREAK:
2154 case V_SQ_CF_WORD1_SQ_CF_INST_JUMP:
2155 case V_SQ_CF_WORD1_SQ_CF_INST_ELSE:
2156 case V_SQ_CF_WORD1_SQ_CF_INST_POP:
2157 case V_SQ_CF_WORD1_SQ_CF_INST_CALL_FS:
2158 case V_SQ_CF_WORD1_SQ_CF_INST_RETURN:
2159 break;
2160 default:
2161 R600_ERR("unsupported CF instruction (0x%X)\n", cf->inst);
2162 return -EINVAL;
2163 }
2164 }
2165 }
2166 return 0;
2167 }
2168
2169 void r600_bytecode_clear(struct r600_bytecode *bc)
2170 {
2171 struct r600_bytecode_cf *cf = NULL, *next_cf;
2172
2173 free(bc->bytecode);
2174 bc->bytecode = NULL;
2175
2176 LIST_FOR_EACH_ENTRY_SAFE(cf, next_cf, &bc->cf, list) {
2177 struct r600_bytecode_alu *alu = NULL, *next_alu;
2178 struct r600_bytecode_tex *tex = NULL, *next_tex;
2179 struct r600_bytecode_tex *vtx = NULL, *next_vtx;
2180
2181 LIST_FOR_EACH_ENTRY_SAFE(alu, next_alu, &cf->alu, list) {
2182 free(alu);
2183 }
2184
2185 LIST_INITHEAD(&cf->alu);
2186
2187 LIST_FOR_EACH_ENTRY_SAFE(tex, next_tex, &cf->tex, list) {
2188 free(tex);
2189 }
2190
2191 LIST_INITHEAD(&cf->tex);
2192
2193 LIST_FOR_EACH_ENTRY_SAFE(vtx, next_vtx, &cf->vtx, list) {
2194 free(vtx);
2195 }
2196
2197 LIST_INITHEAD(&cf->vtx);
2198
2199 free(cf);
2200 }
2201
2202 LIST_INITHEAD(&cf->list);
2203 }
2204
2205 void r600_bytecode_dump(struct r600_bytecode *bc)
2206 {
2207 struct r600_bytecode_cf *cf = NULL;
2208 struct r600_bytecode_alu *alu = NULL;
2209 struct r600_bytecode_vtx *vtx = NULL;
2210 struct r600_bytecode_tex *tex = NULL;
2211
2212 unsigned i, id;
2213 uint32_t literal[4];
2214 unsigned nliteral;
2215 char chip = '6';
2216
2217 switch (bc->chip_class) {
2218 case R700:
2219 chip = '7';
2220 break;
2221 case EVERGREEN:
2222 chip = 'E';
2223 break;
2224 case CAYMAN:
2225 chip = 'C';
2226 break;
2227 case R600:
2228 default:
2229 chip = '6';
2230 break;
2231 }
2232 fprintf(stderr, "bytecode %d dw -- %d gprs ---------------------\n", bc->ndw, bc->ngpr);
2233 fprintf(stderr, " %c\n", chip);
2234
2235 LIST_FOR_EACH_ENTRY(cf, &bc->cf, list) {
2236 id = cf->id;
2237
2238 if (bc->chip_class >= EVERGREEN) {
2239 switch (cf->inst) {
2240 case EG_V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU:
2241 case EG_V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_POP_AFTER:
2242 case EG_V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_POP2_AFTER:
2243 case EG_V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_PUSH_BEFORE:
2244 if (cf->eg_alu_extended) {
2245 fprintf(stderr, "%04d %08X ALU_EXT0 ", id, bc->bytecode[id]);
2246 fprintf(stderr, "KCACHE_BANK2:%X ", cf->kcache[2].bank);
2247 fprintf(stderr, "KCACHE_BANK3:%X ", cf->kcache[3].bank);
2248 fprintf(stderr, "KCACHE_MODE2:%X\n", cf->kcache[2].mode);
2249 id++;
2250 fprintf(stderr, "%04d %08X ALU_EXT1 ", id, bc->bytecode[id]);
2251 fprintf(stderr, "KCACHE_MODE3:%X ", cf->kcache[3].mode);
2252 fprintf(stderr, "KCACHE_ADDR2:%X ", cf->kcache[2].addr);
2253 fprintf(stderr, "KCACHE_ADDR3:%X\n", cf->kcache[3].addr);
2254 id++;
2255 }
2256
2257 fprintf(stderr, "%04d %08X ALU ", id, bc->bytecode[id]);
2258 fprintf(stderr, "ADDR:%d ", cf->addr);
2259 fprintf(stderr, "KCACHE_MODE0:%X ", cf->kcache[0].mode);
2260 fprintf(stderr, "KCACHE_BANK0:%X ", cf->kcache[0].bank);
2261 fprintf(stderr, "KCACHE_BANK1:%X\n", cf->kcache[1].bank);
2262 id++;
2263 fprintf(stderr, "%04d %08X ALU ", id, bc->bytecode[id]);
2264 fprintf(stderr, "INST:0x%x ", EG_G_SQ_CF_ALU_WORD1_CF_INST(cf->inst));
2265 fprintf(stderr, "KCACHE_MODE1:%X ", cf->kcache[1].mode);
2266 fprintf(stderr, "KCACHE_ADDR0:%X ", cf->kcache[0].addr);
2267 fprintf(stderr, "KCACHE_ADDR1:%X ", cf->kcache[1].addr);
2268 fprintf(stderr, "COUNT:%d\n", cf->ndw / 2);
2269 break;
2270 case EG_V_SQ_CF_WORD1_SQ_CF_INST_TEX:
2271 case EG_V_SQ_CF_WORD1_SQ_CF_INST_VTX:
2272 fprintf(stderr, "%04d %08X TEX/VTX ", id, bc->bytecode[id]);
2273 fprintf(stderr, "ADDR:%d\n", cf->addr);
2274 id++;
2275 fprintf(stderr, "%04d %08X TEX/VTX ", id, bc->bytecode[id]);
2276 fprintf(stderr, "INST:0x%x ", EG_G_SQ_CF_WORD1_CF_INST(cf->inst));
2277 fprintf(stderr, "COUNT:%d\n", cf->ndw / 4);
2278 break;
2279 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT:
2280 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT_DONE:
2281 fprintf(stderr, "%04d %08X EXPORT ", id, bc->bytecode[id]);
2282 fprintf(stderr, "GPR:%X ", cf->output.gpr);
2283 fprintf(stderr, "ELEM_SIZE:%X ", cf->output.elem_size);
2284 fprintf(stderr, "ARRAY_BASE:%X ", cf->output.array_base);
2285 fprintf(stderr, "TYPE:%X\n", cf->output.type);
2286 id++;
2287 fprintf(stderr, "%04d %08X EXPORT ", id, bc->bytecode[id]);
2288 fprintf(stderr, "SWIZ_X:%X ", cf->output.swizzle_x);
2289 fprintf(stderr, "SWIZ_Y:%X ", cf->output.swizzle_y);
2290 fprintf(stderr, "SWIZ_Z:%X ", cf->output.swizzle_z);
2291 fprintf(stderr, "SWIZ_W:%X ", cf->output.swizzle_w);
2292 fprintf(stderr, "BARRIER:%X ", cf->output.barrier);
2293 fprintf(stderr, "INST:0x%x ", EG_G_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(cf->output.inst));
2294 fprintf(stderr, "BURST_COUNT:%d ", cf->output.burst_count);
2295 fprintf(stderr, "EOP:%X\n", cf->output.end_of_program);
2296 break;
2297 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0_BUF0:
2298 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0_BUF1:
2299 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0_BUF2:
2300 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0_BUF3:
2301 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM1_BUF0:
2302 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM1_BUF1:
2303 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM1_BUF2:
2304 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM1_BUF3:
2305 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM2_BUF0:
2306 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM2_BUF1:
2307 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM2_BUF2:
2308 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM2_BUF3:
2309 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM3_BUF0:
2310 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM3_BUF1:
2311 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM3_BUF2:
2312 case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM3_BUF3:
2313 fprintf(stderr, "%04d %08X EXPORT MEM_STREAM%i_BUF%i ", id, bc->bytecode[id],
2314 (EG_G_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(cf->inst) -
2315 EG_G_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0_BUF0)) / 4,
2316 (EG_G_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(cf->inst) -
2317 EG_G_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0_BUF0)) % 4);
2318 fprintf(stderr, "GPR:%X ", cf->output.gpr);
2319 fprintf(stderr, "ELEM_SIZE:%i ", cf->output.elem_size);
2320 fprintf(stderr, "ARRAY_BASE:%i ", cf->output.array_base);
2321 fprintf(stderr, "TYPE:%X\n", cf->output.type);
2322 id++;
2323 fprintf(stderr, "%04d %08X EXPORT MEM_STREAM%i_BUF%i ", id, bc->bytecode[id],
2324 (EG_G_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(cf->inst) -
2325 EG_G_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0_BUF0)) / 4,
2326 (EG_G_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(cf->inst) -
2327 EG_G_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0_BUF0)) % 4);
2328 fprintf(stderr, "ARRAY_SIZE:%i ", cf->output.array_size);
2329 fprintf(stderr, "COMP_MASK:%X ", cf->output.comp_mask);
2330 fprintf(stderr, "BARRIER:%X ", cf->output.barrier);
2331 fprintf(stderr, "INST:%d ", cf->output.inst);
2332 fprintf(stderr, "BURST_COUNT:%d ", cf->output.burst_count);
2333 fprintf(stderr, "EOP:%X\n", cf->output.end_of_program);
2334 break;
2335 case EG_V_SQ_CF_WORD1_SQ_CF_INST_JUMP:
2336 case EG_V_SQ_CF_WORD1_SQ_CF_INST_ELSE:
2337 case EG_V_SQ_CF_WORD1_SQ_CF_INST_POP:
2338 case EG_V_SQ_CF_WORD1_SQ_CF_INST_LOOP_START_NO_AL:
2339 case EG_V_SQ_CF_WORD1_SQ_CF_INST_LOOP_END:
2340 case EG_V_SQ_CF_WORD1_SQ_CF_INST_LOOP_CONTINUE:
2341 case EG_V_SQ_CF_WORD1_SQ_CF_INST_LOOP_BREAK:
2342 case EG_V_SQ_CF_WORD1_SQ_CF_INST_CALL_FS:
2343 case EG_V_SQ_CF_WORD1_SQ_CF_INST_RETURN:
2344 case CM_V_SQ_CF_WORD1_SQ_CF_INST_END:
2345 fprintf(stderr, "%04d %08X CF ", id, bc->bytecode[id]);
2346 fprintf(stderr, "ADDR:%d\n", cf->cf_addr);
2347 id++;
2348 fprintf(stderr, "%04d %08X CF ", id, bc->bytecode[id]);
2349 fprintf(stderr, "INST:0x%x ", EG_G_SQ_CF_WORD1_CF_INST(cf->inst));
2350 fprintf(stderr, "COND:%X ", cf->cond);
2351 fprintf(stderr, "POP_COUNT:%X\n", cf->pop_count);
2352 break;
2353 case CF_NATIVE:
2354 fprintf(stderr, "%04d %08X CF NATIVE\n", id, bc->bytecode[id]);
2355 fprintf(stderr, "%04d %08X CF NATIVE\n", id + 1, bc->bytecode[id + 1]);
2356 break;
2357 default:
2358 R600_ERR("Unknown instruction %0x\n", cf->inst);
2359 }
2360 } else {
2361 switch (cf->inst) {
2362 case V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU:
2363 case V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_POP_AFTER:
2364 case V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_POP2_AFTER:
2365 case V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_PUSH_BEFORE:
2366 fprintf(stderr, "%04d %08X ALU ", id, bc->bytecode[id]);
2367 fprintf(stderr, "ADDR:%d ", cf->addr);
2368 fprintf(stderr, "KCACHE_MODE0:%X ", cf->kcache[0].mode);
2369 fprintf(stderr, "KCACHE_BANK0:%X ", cf->kcache[0].bank);
2370 fprintf(stderr, "KCACHE_BANK1:%X\n", cf->kcache[1].bank);
2371 id++;
2372 fprintf(stderr, "%04d %08X ALU ", id, bc->bytecode[id]);
2373 fprintf(stderr, "INST:0x%x ", R600_G_SQ_CF_ALU_WORD1_CF_INST(cf->inst));
2374 fprintf(stderr, "KCACHE_MODE1:%X ", cf->kcache[1].mode);
2375 fprintf(stderr, "KCACHE_ADDR0:%X ", cf->kcache[0].addr);
2376 fprintf(stderr, "KCACHE_ADDR1:%X ", cf->kcache[1].addr);
2377 fprintf(stderr, "COUNT:%d\n", cf->ndw / 2);
2378 break;
2379 case V_SQ_CF_WORD1_SQ_CF_INST_TEX:
2380 case V_SQ_CF_WORD1_SQ_CF_INST_VTX:
2381 case V_SQ_CF_WORD1_SQ_CF_INST_VTX_TC:
2382 fprintf(stderr, "%04d %08X TEX/VTX ", id, bc->bytecode[id]);
2383 fprintf(stderr, "ADDR:%d\n", cf->addr);
2384 id++;
2385 fprintf(stderr, "%04d %08X TEX/VTX ", id, bc->bytecode[id]);
2386 fprintf(stderr, "INST:0x%x ", R600_G_SQ_CF_WORD1_CF_INST(cf->inst));
2387 fprintf(stderr, "COUNT:%d\n", cf->ndw / 4);
2388 break;
2389 case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT:
2390 case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT_DONE:
2391 fprintf(stderr, "%04d %08X EXPORT ", id, bc->bytecode[id]);
2392 fprintf(stderr, "GPR:%X ", cf->output.gpr);
2393 fprintf(stderr, "ELEM_SIZE:%X ", cf->output.elem_size);
2394 fprintf(stderr, "ARRAY_BASE:%X ", cf->output.array_base);
2395 fprintf(stderr, "TYPE:%X\n", cf->output.type);
2396 id++;
2397 fprintf(stderr, "%04d %08X EXPORT ", id, bc->bytecode[id]);
2398 fprintf(stderr, "SWIZ_X:%X ", cf->output.swizzle_x);
2399 fprintf(stderr, "SWIZ_Y:%X ", cf->output.swizzle_y);
2400 fprintf(stderr, "SWIZ_Z:%X ", cf->output.swizzle_z);
2401 fprintf(stderr, "SWIZ_W:%X ", cf->output.swizzle_w);
2402 fprintf(stderr, "BARRIER:%X ", cf->output.barrier);
2403 fprintf(stderr, "INST:0x%x ", R600_G_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(cf->output.inst));
2404 fprintf(stderr, "BURST_COUNT:%d ", cf->output.burst_count);
2405 fprintf(stderr, "EOP:%X\n", cf->output.end_of_program);
2406 break;
2407 case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0:
2408 case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM1:
2409 case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM2:
2410 case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM3:
2411 fprintf(stderr, "%04d %08X EXPORT MEM_STREAM%i ", id, bc->bytecode[id],
2412 R600_G_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(cf->inst) -
2413 R600_G_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0));
2414 fprintf(stderr, "GPR:%X ", cf->output.gpr);
2415 fprintf(stderr, "ELEM_SIZE:%i ", cf->output.elem_size);
2416 fprintf(stderr, "ARRAY_BASE:%i ", cf->output.array_base);
2417 fprintf(stderr, "TYPE:%X\n", cf->output.type);
2418 id++;
2419 fprintf(stderr, "%04d %08X EXPORT MEM_STREAM%i ", id, bc->bytecode[id],
2420 R600_G_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(cf->inst) -
2421 R600_G_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0));
2422 fprintf(stderr, "ARRAY_SIZE:%i ", cf->output.array_size);
2423 fprintf(stderr, "COMP_MASK:%X ", cf->output.comp_mask);
2424 fprintf(stderr, "BARRIER:%X ", cf->output.barrier);
2425 fprintf(stderr, "INST:%d ", cf->output.inst);
2426 fprintf(stderr, "BURST_COUNT:%d ", cf->output.burst_count);
2427 fprintf(stderr, "EOP:%X\n", cf->output.end_of_program);
2428 break;
2429 case V_SQ_CF_WORD1_SQ_CF_INST_JUMP:
2430 case V_SQ_CF_WORD1_SQ_CF_INST_ELSE:
2431 case V_SQ_CF_WORD1_SQ_CF_INST_POP:
2432 case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_START_NO_AL:
2433 case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_END:
2434 case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_CONTINUE:
2435 case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_BREAK:
2436 case V_SQ_CF_WORD1_SQ_CF_INST_CALL_FS:
2437 case V_SQ_CF_WORD1_SQ_CF_INST_RETURN:
2438 fprintf(stderr, "%04d %08X CF ", id, bc->bytecode[id]);
2439 fprintf(stderr, "ADDR:%d\n", cf->cf_addr);
2440 id++;
2441 fprintf(stderr, "%04d %08X CF ", id, bc->bytecode[id]);
2442 fprintf(stderr, "INST:0x%x ", R600_G_SQ_CF_WORD1_CF_INST(cf->inst));
2443 fprintf(stderr, "COND:%X ", cf->cond);
2444 fprintf(stderr, "POP_COUNT:%X\n", cf->pop_count);
2445 break;
2446 default:
2447 R600_ERR("Unknown instruction %0x\n", cf->inst);
2448 }
2449 }
2450
2451 id = cf->addr;
2452 nliteral = 0;
2453 LIST_FOR_EACH_ENTRY(alu, &cf->alu, list) {
2454 r600_bytecode_alu_nliterals(bc, alu, literal, &nliteral);
2455
2456 fprintf(stderr, "%04d %08X ", id, bc->bytecode[id]);
2457 fprintf(stderr, "SRC0(SEL:%d ", alu->src[0].sel);
2458 fprintf(stderr, "REL:%d ", alu->src[0].rel);
2459 fprintf(stderr, "CHAN:%d ", alu->src[0].chan);
2460 fprintf(stderr, "NEG:%d) ", alu->src[0].neg);
2461 fprintf(stderr, "SRC1(SEL:%d ", alu->src[1].sel);
2462 fprintf(stderr, "REL:%d ", alu->src[1].rel);
2463 fprintf(stderr, "CHAN:%d ", alu->src[1].chan);
2464 fprintf(stderr, "NEG:%d ", alu->src[1].neg);
2465 fprintf(stderr, "IM:%d) ", alu->index_mode);
2466 fprintf(stderr, "LAST:%d)\n", alu->last);
2467 id++;
2468 fprintf(stderr, "%04d %08X %c ", id, bc->bytecode[id], alu->last ? '*' : ' ');
2469 fprintf(stderr, "INST:0x%x ", alu->inst);
2470 fprintf(stderr, "DST(SEL:%d ", alu->dst.sel);
2471 fprintf(stderr, "CHAN:%d ", alu->dst.chan);
2472 fprintf(stderr, "REL:%d ", alu->dst.rel);
2473 fprintf(stderr, "CLAMP:%d) ", alu->dst.clamp);
2474 fprintf(stderr, "BANK_SWIZZLE:%d ", alu->bank_swizzle);
2475 if (alu->is_op3) {
2476 fprintf(stderr, "SRC2(SEL:%d ", alu->src[2].sel);
2477 fprintf(stderr, "REL:%d ", alu->src[2].rel);
2478 fprintf(stderr, "CHAN:%d ", alu->src[2].chan);
2479 fprintf(stderr, "NEG:%d)\n", alu->src[2].neg);
2480 } else {
2481 fprintf(stderr, "SRC0_ABS:%d ", alu->src[0].abs);
2482 fprintf(stderr, "SRC1_ABS:%d ", alu->src[1].abs);
2483 fprintf(stderr, "WRITE_MASK:%d ", alu->dst.write);
2484 fprintf(stderr, "OMOD:%d ", alu->omod);
2485 fprintf(stderr, "EXECUTE_MASK:%d ", alu->predicate);
2486 fprintf(stderr, "UPDATE_PRED:%d\n", alu->predicate);
2487 }
2488
2489 id++;
2490 if (alu->last) {
2491 for (i = 0; i < nliteral; i++, id++) {
2492 float *f = (float*)(bc->bytecode + id);
2493 fprintf(stderr, "%04d %08X\t%f (%d)\n", id, bc->bytecode[id], *f,
2494 *(bc->bytecode + id));
2495 }
2496 id += nliteral & 1;
2497 nliteral = 0;
2498 }
2499 }
2500
2501 LIST_FOR_EACH_ENTRY(tex, &cf->tex, list) {
2502 fprintf(stderr, "%04d %08X ", id, bc->bytecode[id]);
2503 fprintf(stderr, "INST:0x%x ", tex->inst);
2504 fprintf(stderr, "RESOURCE_ID:%d ", tex->resource_id);
2505 fprintf(stderr, "SRC(GPR:%d ", tex->src_gpr);
2506 fprintf(stderr, "REL:%d)\n", tex->src_rel);
2507 id++;
2508 fprintf(stderr, "%04d %08X ", id, bc->bytecode[id]);
2509 fprintf(stderr, "DST(GPR:%d ", tex->dst_gpr);
2510 fprintf(stderr, "REL:%d ", tex->dst_rel);
2511 fprintf(stderr, "SEL_X:%d ", tex->dst_sel_x);
2512 fprintf(stderr, "SEL_Y:%d ", tex->dst_sel_y);
2513 fprintf(stderr, "SEL_Z:%d ", tex->dst_sel_z);
2514 fprintf(stderr, "SEL_W:%d) ", tex->dst_sel_w);
2515 fprintf(stderr, "LOD_BIAS:%d ", tex->lod_bias);
2516 fprintf(stderr, "COORD_TYPE_X:%d ", tex->coord_type_x);
2517 fprintf(stderr, "COORD_TYPE_Y:%d ", tex->coord_type_y);
2518 fprintf(stderr, "COORD_TYPE_Z:%d ", tex->coord_type_z);
2519 fprintf(stderr, "COORD_TYPE_W:%d\n", tex->coord_type_w);
2520 id++;
2521 fprintf(stderr, "%04d %08X ", id, bc->bytecode[id]);
2522 fprintf(stderr, "OFFSET_X:%d ", tex->offset_x);
2523 fprintf(stderr, "OFFSET_Y:%d ", tex->offset_y);
2524 fprintf(stderr, "OFFSET_Z:%d ", tex->offset_z);
2525 fprintf(stderr, "SAMPLER_ID:%d ", tex->sampler_id);
2526 fprintf(stderr, "SRC(SEL_X:%d ", tex->src_sel_x);
2527 fprintf(stderr, "SEL_Y:%d ", tex->src_sel_y);
2528 fprintf(stderr, "SEL_Z:%d ", tex->src_sel_z);
2529 fprintf(stderr, "SEL_W:%d)\n", tex->src_sel_w);
2530 id++;
2531 fprintf(stderr, "%04d %08X \n", id, bc->bytecode[id]);
2532 id++;
2533 }
2534
2535 LIST_FOR_EACH_ENTRY(vtx, &cf->vtx, list) {
2536 fprintf(stderr, "%04d %08X ", id, bc->bytecode[id]);
2537 fprintf(stderr, "INST:%d ", vtx->inst);
2538 fprintf(stderr, "FETCH_TYPE:%d ", vtx->fetch_type);
2539 fprintf(stderr, "BUFFER_ID:%d\n", vtx->buffer_id);
2540 id++;
2541 /* This assumes that no semantic fetches exist */
2542 fprintf(stderr, "%04d %08X ", id, bc->bytecode[id]);
2543 fprintf(stderr, "SRC(GPR:%d ", vtx->src_gpr);
2544 fprintf(stderr, "SEL_X:%d) ", vtx->src_sel_x);
2545 if (bc->chip_class < CAYMAN)
2546 fprintf(stderr, "MEGA_FETCH_COUNT:%d ", vtx->mega_fetch_count);
2547 else
2548 fprintf(stderr, "SEL_Y:%d) ", 0);
2549 fprintf(stderr, "DST(GPR:%d ", vtx->dst_gpr);
2550 fprintf(stderr, "SEL_X:%d ", vtx->dst_sel_x);
2551 fprintf(stderr, "SEL_Y:%d ", vtx->dst_sel_y);
2552 fprintf(stderr, "SEL_Z:%d ", vtx->dst_sel_z);
2553 fprintf(stderr, "SEL_W:%d) ", vtx->dst_sel_w);
2554 fprintf(stderr, "USE_CONST_FIELDS:%d ", vtx->use_const_fields);
2555 fprintf(stderr, "FORMAT(DATA:%d ", vtx->data_format);
2556 fprintf(stderr, "NUM:%d ", vtx->num_format_all);
2557 fprintf(stderr, "COMP:%d ", vtx->format_comp_all);
2558 fprintf(stderr, "MODE:%d)\n", vtx->srf_mode_all);
2559 id++;
2560 fprintf(stderr, "%04d %08X ", id, bc->bytecode[id]);
2561 fprintf(stderr, "ENDIAN:%d ", vtx->endian);
2562 fprintf(stderr, "OFFSET:%d\n", vtx->offset);
2563 /* XXX */
2564 id++;
2565 fprintf(stderr, "%04d %08X \n", id, bc->bytecode[id]);
2566 id++;
2567 }
2568 }
2569
2570 fprintf(stderr, "--------------------------------------\n");
2571 }
2572
2573 static void r600_vertex_data_type(enum pipe_format pformat,
2574 unsigned *format,
2575 unsigned *num_format, unsigned *format_comp, unsigned *endian)
2576 {
2577 const struct util_format_description *desc;
2578 unsigned i;
2579
2580 *format = 0;
2581 *num_format = 0;
2582 *format_comp = 0;
2583 *endian = ENDIAN_NONE;
2584
2585 desc = util_format_description(pformat);
2586 if (desc->layout != UTIL_FORMAT_LAYOUT_PLAIN) {
2587 goto out_unknown;
2588 }
2589
2590 /* Find the first non-VOID channel. */
2591 for (i = 0; i < 4; i++) {
2592 if (desc->channel[i].type != UTIL_FORMAT_TYPE_VOID) {
2593 break;
2594 }
2595 }
2596
2597 *endian = r600_endian_swap(desc->channel[i].size);
2598
2599 switch (desc->channel[i].type) {
2600 /* Half-floats, floats, ints */
2601 case UTIL_FORMAT_TYPE_FLOAT:
2602 switch (desc->channel[i].size) {
2603 case 16:
2604 switch (desc->nr_channels) {
2605 case 1:
2606 *format = FMT_16_FLOAT;
2607 break;
2608 case 2:
2609 *format = FMT_16_16_FLOAT;
2610 break;
2611 case 3:
2612 case 4:
2613 *format = FMT_16_16_16_16_FLOAT;
2614 break;
2615 }
2616 break;
2617 case 32:
2618 switch (desc->nr_channels) {
2619 case 1:
2620 *format = FMT_32_FLOAT;
2621 break;
2622 case 2:
2623 *format = FMT_32_32_FLOAT;
2624 break;
2625 case 3:
2626 *format = FMT_32_32_32_FLOAT;
2627 break;
2628 case 4:
2629 *format = FMT_32_32_32_32_FLOAT;
2630 break;
2631 }
2632 break;
2633 default:
2634 goto out_unknown;
2635 }
2636 break;
2637 /* Unsigned ints */
2638 case UTIL_FORMAT_TYPE_UNSIGNED:
2639 /* Signed ints */
2640 case UTIL_FORMAT_TYPE_SIGNED:
2641 switch (desc->channel[i].size) {
2642 case 8:
2643 switch (desc->nr_channels) {
2644 case 1:
2645 *format = FMT_8;
2646 break;
2647 case 2:
2648 *format = FMT_8_8;
2649 break;
2650 case 3:
2651 case 4:
2652 *format = FMT_8_8_8_8;
2653 break;
2654 }
2655 break;
2656 case 10:
2657 if (desc->nr_channels != 4)
2658 goto out_unknown;
2659
2660 *format = FMT_2_10_10_10;
2661 break;
2662 case 16:
2663 switch (desc->nr_channels) {
2664 case 1:
2665 *format = FMT_16;
2666 break;
2667 case 2:
2668 *format = FMT_16_16;
2669 break;
2670 case 3:
2671 case 4:
2672 *format = FMT_16_16_16_16;
2673 break;
2674 }
2675 break;
2676 case 32:
2677 switch (desc->nr_channels) {
2678 case 1:
2679 *format = FMT_32;
2680 break;
2681 case 2:
2682 *format = FMT_32_32;
2683 break;
2684 case 3:
2685 *format = FMT_32_32_32;
2686 break;
2687 case 4:
2688 *format = FMT_32_32_32_32;
2689 break;
2690 }
2691 break;
2692 default:
2693 goto out_unknown;
2694 }
2695 break;
2696 default:
2697 goto out_unknown;
2698 }
2699
2700 if (desc->channel[i].type == UTIL_FORMAT_TYPE_SIGNED) {
2701 *format_comp = 1;
2702 }
2703
2704 *num_format = 0;
2705 if (desc->channel[i].type == UTIL_FORMAT_TYPE_UNSIGNED ||
2706 desc->channel[i].type == UTIL_FORMAT_TYPE_SIGNED) {
2707 if (!desc->channel[i].normalized) {
2708 if (desc->channel[i].pure_integer)
2709 *num_format = 1;
2710 else
2711 *num_format = 2;
2712 }
2713 }
2714 return;
2715 out_unknown:
2716 R600_ERR("unsupported vertex format %s\n", util_format_name(pformat));
2717 }
2718
2719 int r600_vertex_elements_build_fetch_shader(struct r600_context *rctx, struct r600_vertex_element *ve)
2720 {
2721 static int dump_shaders = -1;
2722
2723 struct r600_bytecode bc;
2724 struct r600_bytecode_vtx vtx;
2725 struct pipe_vertex_element *elements = ve->elements;
2726 const struct util_format_description *desc;
2727 unsigned fetch_resource_start = rctx->chip_class >= EVERGREEN ? 0 : 160;
2728 unsigned format, num_format, format_comp, endian;
2729 uint32_t *bytecode;
2730 int i, r;
2731
2732 memset(&bc, 0, sizeof(bc));
2733 r600_bytecode_init(&bc, rctx->chip_class, rctx->family);
2734
2735 for (i = 0; i < ve->count; i++) {
2736 if (elements[i].instance_divisor > 1) {
2737 struct r600_bytecode_alu alu;
2738
2739 memset(&alu, 0, sizeof(alu));
2740 alu.inst = BC_INST(&bc, V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MULHI_UINT);
2741 alu.src[0].sel = 0;
2742 alu.src[0].chan = 3;
2743
2744 alu.src[1].sel = V_SQ_ALU_SRC_LITERAL;
2745 alu.src[1].value = (1ll << 32) / elements[i].instance_divisor + 1;
2746
2747 alu.dst.sel = i + 1;
2748 alu.dst.chan = 3;
2749 alu.dst.write = 1;
2750 alu.last = 1;
2751
2752 if ((r = r600_bytecode_add_alu(&bc, &alu))) {
2753 r600_bytecode_clear(&bc);
2754 return r;
2755 }
2756 }
2757 }
2758
2759 for (i = 0; i < ve->count; i++) {
2760 r600_vertex_data_type(ve->elements[i].src_format,
2761 &format, &num_format, &format_comp, &endian);
2762
2763 desc = util_format_description(ve->elements[i].src_format);
2764 if (desc == NULL) {
2765 r600_bytecode_clear(&bc);
2766 R600_ERR("unknown format %d\n", ve->elements[i].src_format);
2767 return -EINVAL;
2768 }
2769
2770 if (elements[i].src_offset > 65535) {
2771 r600_bytecode_clear(&bc);
2772 R600_ERR("too big src_offset: %u\n", elements[i].src_offset);
2773 return -EINVAL;
2774 }
2775
2776 memset(&vtx, 0, sizeof(vtx));
2777 vtx.buffer_id = elements[i].vertex_buffer_index + fetch_resource_start;
2778 vtx.fetch_type = elements[i].instance_divisor ? 1 : 0;
2779 vtx.src_gpr = elements[i].instance_divisor > 1 ? i + 1 : 0;
2780 vtx.src_sel_x = elements[i].instance_divisor ? 3 : 0;
2781 vtx.mega_fetch_count = 0x1F;
2782 vtx.dst_gpr = i + 1;
2783 vtx.dst_sel_x = desc->swizzle[0];
2784 vtx.dst_sel_y = desc->swizzle[1];
2785 vtx.dst_sel_z = desc->swizzle[2];
2786 vtx.dst_sel_w = desc->swizzle[3];
2787 vtx.data_format = format;
2788 vtx.num_format_all = num_format;
2789 vtx.format_comp_all = format_comp;
2790 vtx.srf_mode_all = 1;
2791 vtx.offset = elements[i].src_offset;
2792 vtx.endian = endian;
2793
2794 if ((r = r600_bytecode_add_vtx(&bc, &vtx))) {
2795 r600_bytecode_clear(&bc);
2796 return r;
2797 }
2798 }
2799
2800 r600_bytecode_add_cfinst(&bc, BC_INST(&bc, V_SQ_CF_WORD1_SQ_CF_INST_RETURN));
2801
2802 if ((r = r600_bytecode_build(&bc))) {
2803 r600_bytecode_clear(&bc);
2804 return r;
2805 }
2806
2807 if (dump_shaders == -1)
2808 dump_shaders = debug_get_bool_option("R600_DUMP_SHADERS", FALSE);
2809
2810 if (dump_shaders) {
2811 fprintf(stderr, "--------------------------------------------------------------\n");
2812 r600_bytecode_dump(&bc);
2813 fprintf(stderr, "______________________________________________________________\n");
2814 }
2815
2816 ve->fs_size = bc.ndw*4;
2817
2818 ve->fetch_shader = (struct r600_resource*)
2819 pipe_buffer_create(rctx->context.screen,
2820 PIPE_BIND_CUSTOM,
2821 PIPE_USAGE_IMMUTABLE, ve->fs_size);
2822 if (ve->fetch_shader == NULL) {
2823 r600_bytecode_clear(&bc);
2824 return -ENOMEM;
2825 }
2826
2827 bytecode = rctx->ws->buffer_map(ve->fetch_shader->cs_buf, rctx->cs, PIPE_TRANSFER_WRITE);
2828 if (bytecode == NULL) {
2829 r600_bytecode_clear(&bc);
2830 pipe_resource_reference((struct pipe_resource**)&ve->fetch_shader, NULL);
2831 return -ENOMEM;
2832 }
2833
2834 if (R600_BIG_ENDIAN) {
2835 for (i = 0; i < ve->fs_size / 4; ++i) {
2836 bytecode[i] = bswap_32(bc.bytecode[i]);
2837 }
2838 } else {
2839 memcpy(bytecode, bc.bytecode, ve->fs_size);
2840 }
2841
2842 rctx->ws->buffer_unmap(ve->fetch_shader->cs_buf);
2843 r600_bytecode_clear(&bc);
2844
2845 if (rctx->chip_class >= EVERGREEN)
2846 evergreen_fetch_shader(&rctx->context, ve);
2847 else
2848 r600_fetch_shader(&rctx->context, ve);
2849
2850 return 0;
2851 }