r600g: make condition clearer
[mesa.git] / src / gallium / drivers / r600 / r600_asm.c
1 /*
2 * Copyright 2010 Jerome Glisse <glisse@freedesktop.org>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * on the rights to use, copy, modify, merge, publish, distribute, sub
8 * license, and/or sell copies of the Software, and to permit persons to whom
9 * the Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 */
23 #include "r600_sq.h"
24 #include "r600_opcodes.h"
25 #include "r600_formats.h"
26 #include "r600_shader.h"
27 #include "r600d.h"
28
29 #include <errno.h>
30 #include "util/u_bitcast.h"
31 #include "util/u_dump.h"
32 #include "util/u_memory.h"
33 #include "util/u_math.h"
34 #include "pipe/p_shader_tokens.h"
35
36 #include "sb/sb_public.h"
37
38 #define NUM_OF_CYCLES 3
39 #define NUM_OF_COMPONENTS 4
40
41 static inline bool alu_writes(struct r600_bytecode_alu *alu)
42 {
43 return alu->dst.write || alu->is_op3;
44 }
45
46 static inline unsigned int r600_bytecode_get_num_operands(
47 struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
48 {
49 return r600_isa_alu(alu->op)->src_count;
50 }
51
52 int r700_bytecode_alu_build(struct r600_bytecode *bc,
53 struct r600_bytecode_alu *alu, unsigned id);
54
55 static struct r600_bytecode_cf *r600_bytecode_cf(void)
56 {
57 struct r600_bytecode_cf *cf = CALLOC_STRUCT(r600_bytecode_cf);
58
59 if (!cf)
60 return NULL;
61 LIST_INITHEAD(&cf->list);
62 LIST_INITHEAD(&cf->alu);
63 LIST_INITHEAD(&cf->vtx);
64 LIST_INITHEAD(&cf->tex);
65 LIST_INITHEAD(&cf->gds);
66 return cf;
67 }
68
69 static struct r600_bytecode_alu *r600_bytecode_alu(void)
70 {
71 struct r600_bytecode_alu *alu = CALLOC_STRUCT(r600_bytecode_alu);
72
73 if (!alu)
74 return NULL;
75 LIST_INITHEAD(&alu->list);
76 return alu;
77 }
78
79 static struct r600_bytecode_vtx *r600_bytecode_vtx(void)
80 {
81 struct r600_bytecode_vtx *vtx = CALLOC_STRUCT(r600_bytecode_vtx);
82
83 if (!vtx)
84 return NULL;
85 LIST_INITHEAD(&vtx->list);
86 return vtx;
87 }
88
89 static struct r600_bytecode_tex *r600_bytecode_tex(void)
90 {
91 struct r600_bytecode_tex *tex = CALLOC_STRUCT(r600_bytecode_tex);
92
93 if (!tex)
94 return NULL;
95 LIST_INITHEAD(&tex->list);
96 return tex;
97 }
98
99 static struct r600_bytecode_gds *r600_bytecode_gds(void)
100 {
101 struct r600_bytecode_gds *gds = CALLOC_STRUCT(r600_bytecode_gds);
102
103 if (gds == NULL)
104 return NULL;
105 LIST_INITHEAD(&gds->list);
106 return gds;
107 }
108
109 static unsigned stack_entry_size(enum radeon_family chip) {
110 /* Wavefront size:
111 * 64: R600/RV670/RV770/Cypress/R740/Barts/Turks/Caicos/
112 * Aruba/Sumo/Sumo2/redwood/juniper
113 * 32: R630/R730/R710/Palm/Cedar
114 * 16: R610/Rs780
115 *
116 * Stack row size:
117 * Wavefront Size 16 32 48 64
118 * Columns per Row (R6xx/R7xx/R8xx only) 8 8 4 4
119 * Columns per Row (R9xx+) 8 4 4 4 */
120
121 switch (chip) {
122 /* FIXME: are some chips missing here? */
123 /* wavefront size 16 */
124 case CHIP_RV610:
125 case CHIP_RS780:
126 case CHIP_RV620:
127 case CHIP_RS880:
128 /* wavefront size 32 */
129 case CHIP_RV630:
130 case CHIP_RV635:
131 case CHIP_RV730:
132 case CHIP_RV710:
133 case CHIP_PALM:
134 case CHIP_CEDAR:
135 return 8;
136
137 /* wavefront size 64 */
138 default:
139 return 4;
140 }
141 }
142
143 void r600_bytecode_init(struct r600_bytecode *bc,
144 enum chip_class chip_class,
145 enum radeon_family family,
146 bool has_compressed_msaa_texturing)
147 {
148 static unsigned next_shader_id = 0;
149
150 bc->debug_id = ++next_shader_id;
151
152 if ((chip_class == R600) &&
153 (family != CHIP_RV670 && family != CHIP_RS780 && family != CHIP_RS880)) {
154 bc->ar_handling = AR_HANDLE_RV6XX;
155 bc->r6xx_nop_after_rel_dst = 1;
156 } else {
157 bc->ar_handling = AR_HANDLE_NORMAL;
158 bc->r6xx_nop_after_rel_dst = 0;
159 }
160
161 LIST_INITHEAD(&bc->cf);
162 bc->chip_class = chip_class;
163 bc->family = family;
164 bc->has_compressed_msaa_texturing = has_compressed_msaa_texturing;
165 bc->stack.entry_size = stack_entry_size(family);
166 }
167
168 int r600_bytecode_add_cf(struct r600_bytecode *bc)
169 {
170 struct r600_bytecode_cf *cf = r600_bytecode_cf();
171
172 if (!cf)
173 return -ENOMEM;
174 LIST_ADDTAIL(&cf->list, &bc->cf);
175 if (bc->cf_last) {
176 cf->id = bc->cf_last->id + 2;
177 if (bc->cf_last->eg_alu_extended) {
178 /* take into account extended alu size */
179 cf->id += 2;
180 bc->ndw += 2;
181 }
182 }
183 bc->cf_last = cf;
184 bc->ncf++;
185 bc->ndw += 2;
186 bc->force_add_cf = 0;
187 bc->ar_loaded = 0;
188 return 0;
189 }
190
191 int r600_bytecode_add_output(struct r600_bytecode *bc,
192 const struct r600_bytecode_output *output)
193 {
194 int r;
195
196 if (output->gpr >= bc->ngpr)
197 bc->ngpr = output->gpr + 1;
198
199 if (bc->cf_last && (bc->cf_last->op == output->op ||
200 (bc->cf_last->op == CF_OP_EXPORT &&
201 output->op == CF_OP_EXPORT_DONE)) &&
202 output->type == bc->cf_last->output.type &&
203 output->elem_size == bc->cf_last->output.elem_size &&
204 output->swizzle_x == bc->cf_last->output.swizzle_x &&
205 output->swizzle_y == bc->cf_last->output.swizzle_y &&
206 output->swizzle_z == bc->cf_last->output.swizzle_z &&
207 output->swizzle_w == bc->cf_last->output.swizzle_w &&
208 output->comp_mask == bc->cf_last->output.comp_mask &&
209 (output->burst_count + bc->cf_last->output.burst_count) <= 16) {
210
211 if ((output->gpr + output->burst_count) == bc->cf_last->output.gpr &&
212 (output->array_base + output->burst_count) == bc->cf_last->output.array_base) {
213
214 bc->cf_last->op = bc->cf_last->output.op = output->op;
215 bc->cf_last->output.gpr = output->gpr;
216 bc->cf_last->output.array_base = output->array_base;
217 bc->cf_last->output.burst_count += output->burst_count;
218 return 0;
219
220 } else if (output->gpr == (bc->cf_last->output.gpr + bc->cf_last->output.burst_count) &&
221 output->array_base == (bc->cf_last->output.array_base + bc->cf_last->output.burst_count)) {
222
223 bc->cf_last->op = bc->cf_last->output.op = output->op;
224 bc->cf_last->output.burst_count += output->burst_count;
225 return 0;
226 }
227 }
228
229 r = r600_bytecode_add_cf(bc);
230 if (r)
231 return r;
232 bc->cf_last->op = output->op;
233 memcpy(&bc->cf_last->output, output, sizeof(struct r600_bytecode_output));
234 bc->cf_last->barrier = 1;
235 return 0;
236 }
237
238 /* alu instructions that can ony exits once per group */
239 static int is_alu_once_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
240 {
241 return r600_isa_alu(alu->op)->flags & (AF_KILL | AF_PRED) || alu->is_lds_idx_op || alu->op == ALU_OP0_GROUP_BARRIER;
242 }
243
244 static int is_alu_reduction_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
245 {
246 return (r600_isa_alu(alu->op)->flags & AF_REPL) &&
247 (r600_isa_alu_slots(bc->isa->hw_class, alu->op) == AF_4V);
248 }
249
250 static int is_alu_mova_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
251 {
252 return r600_isa_alu(alu->op)->flags & AF_MOVA;
253 }
254
255 static int alu_uses_rel(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
256 {
257 unsigned num_src = r600_bytecode_get_num_operands(bc, alu);
258 unsigned src;
259
260 if (alu->dst.rel) {
261 return 1;
262 }
263
264 for (src = 0; src < num_src; ++src) {
265 if (alu->src[src].rel) {
266 return 1;
267 }
268 }
269 return 0;
270 }
271
272 static int is_lds_read(int sel)
273 {
274 return sel == EG_V_SQ_ALU_SRC_LDS_OQ_A_POP || sel == EG_V_SQ_ALU_SRC_LDS_OQ_B_POP;
275 }
276
277 static int alu_uses_lds(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
278 {
279 unsigned num_src = r600_bytecode_get_num_operands(bc, alu);
280 unsigned src;
281
282 for (src = 0; src < num_src; ++src) {
283 if (is_lds_read(alu->src[src].sel)) {
284 return 1;
285 }
286 }
287 return 0;
288 }
289
290 static int is_alu_64bit_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
291 {
292 const struct alu_op_info *op = r600_isa_alu(alu->op);
293 return (op->flags & AF_64);
294 }
295
296 static int is_alu_vec_unit_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
297 {
298 unsigned slots = r600_isa_alu_slots(bc->isa->hw_class, alu->op);
299 return !(slots & AF_S);
300 }
301
302 static int is_alu_trans_unit_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
303 {
304 unsigned slots = r600_isa_alu_slots(bc->isa->hw_class, alu->op);
305 return !(slots & AF_V);
306 }
307
308 /* alu instructions that can execute on any unit */
309 static int is_alu_any_unit_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
310 {
311 unsigned slots = r600_isa_alu_slots(bc->isa->hw_class, alu->op);
312 return slots == AF_VS;
313 }
314
315 static int is_nop_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
316 {
317 return alu->op == ALU_OP0_NOP;
318 }
319
320 static int assign_alu_units(struct r600_bytecode *bc, struct r600_bytecode_alu *alu_first,
321 struct r600_bytecode_alu *assignment[5])
322 {
323 struct r600_bytecode_alu *alu;
324 unsigned i, chan, trans;
325 int max_slots = bc->chip_class == CAYMAN ? 4 : 5;
326
327 for (i = 0; i < max_slots; i++)
328 assignment[i] = NULL;
329
330 for (alu = alu_first; alu; alu = LIST_ENTRY(struct r600_bytecode_alu, alu->list.next, list)) {
331 chan = alu->dst.chan;
332 if (max_slots == 4)
333 trans = 0;
334 else if (is_alu_trans_unit_inst(bc, alu))
335 trans = 1;
336 else if (is_alu_vec_unit_inst(bc, alu))
337 trans = 0;
338 else if (assignment[chan])
339 trans = 1; /* Assume ALU_INST_PREFER_VECTOR. */
340 else
341 trans = 0;
342
343 if (trans) {
344 if (assignment[4]) {
345 assert(0); /* ALU.Trans has already been allocated. */
346 return -1;
347 }
348 assignment[4] = alu;
349 } else {
350 if (assignment[chan]) {
351 assert(0); /* ALU.chan has already been allocated. */
352 return -1;
353 }
354 assignment[chan] = alu;
355 }
356
357 if (alu->last)
358 break;
359 }
360 return 0;
361 }
362
363 struct alu_bank_swizzle {
364 int hw_gpr[NUM_OF_CYCLES][NUM_OF_COMPONENTS];
365 int hw_cfile_addr[4];
366 int hw_cfile_elem[4];
367 };
368
369 static const unsigned cycle_for_bank_swizzle_vec[][3] = {
370 [SQ_ALU_VEC_012] = { 0, 1, 2 },
371 [SQ_ALU_VEC_021] = { 0, 2, 1 },
372 [SQ_ALU_VEC_120] = { 1, 2, 0 },
373 [SQ_ALU_VEC_102] = { 1, 0, 2 },
374 [SQ_ALU_VEC_201] = { 2, 0, 1 },
375 [SQ_ALU_VEC_210] = { 2, 1, 0 }
376 };
377
378 static const unsigned cycle_for_bank_swizzle_scl[][3] = {
379 [SQ_ALU_SCL_210] = { 2, 1, 0 },
380 [SQ_ALU_SCL_122] = { 1, 2, 2 },
381 [SQ_ALU_SCL_212] = { 2, 1, 2 },
382 [SQ_ALU_SCL_221] = { 2, 2, 1 }
383 };
384
385 static void init_bank_swizzle(struct alu_bank_swizzle *bs)
386 {
387 int i, cycle, component;
388 /* set up gpr use */
389 for (cycle = 0; cycle < NUM_OF_CYCLES; cycle++)
390 for (component = 0; component < NUM_OF_COMPONENTS; component++)
391 bs->hw_gpr[cycle][component] = -1;
392 for (i = 0; i < 4; i++)
393 bs->hw_cfile_addr[i] = -1;
394 for (i = 0; i < 4; i++)
395 bs->hw_cfile_elem[i] = -1;
396 }
397
398 static int reserve_gpr(struct alu_bank_swizzle *bs, unsigned sel, unsigned chan, unsigned cycle)
399 {
400 if (bs->hw_gpr[cycle][chan] == -1)
401 bs->hw_gpr[cycle][chan] = sel;
402 else if (bs->hw_gpr[cycle][chan] != (int)sel) {
403 /* Another scalar operation has already used the GPR read port for the channel. */
404 return -1;
405 }
406 return 0;
407 }
408
409 static int reserve_cfile(struct r600_bytecode *bc, struct alu_bank_swizzle *bs, unsigned sel, unsigned chan)
410 {
411 int res, num_res = 4;
412 if (bc->chip_class >= R700) {
413 num_res = 2;
414 chan /= 2;
415 }
416 for (res = 0; res < num_res; ++res) {
417 if (bs->hw_cfile_addr[res] == -1) {
418 bs->hw_cfile_addr[res] = sel;
419 bs->hw_cfile_elem[res] = chan;
420 return 0;
421 } else if (bs->hw_cfile_addr[res] == sel &&
422 bs->hw_cfile_elem[res] == chan)
423 return 0; /* Read for this scalar element already reserved, nothing to do here. */
424 }
425 /* All cfile read ports are used, cannot reference vector element. */
426 return -1;
427 }
428
429 static int is_gpr(unsigned sel)
430 {
431 return (sel <= 127);
432 }
433
434 /* CB constants start at 512, and get translated to a kcache index when ALU
435 * clauses are constructed. Note that we handle kcache constants the same way
436 * as (the now gone) cfile constants, is that really required? */
437 static int is_cfile(unsigned sel)
438 {
439 return (sel > 255 && sel < 512) ||
440 (sel > 511 && sel < 4607) || /* Kcache before translation. */
441 (sel > 127 && sel < 192); /* Kcache after translation. */
442 }
443
444 static int is_const(int sel)
445 {
446 return is_cfile(sel) ||
447 (sel >= V_SQ_ALU_SRC_0 &&
448 sel <= V_SQ_ALU_SRC_LITERAL);
449 }
450
451 static int check_vector(struct r600_bytecode *bc, struct r600_bytecode_alu *alu,
452 struct alu_bank_swizzle *bs, int bank_swizzle)
453 {
454 int r, src, num_src, sel, elem, cycle;
455
456 num_src = r600_bytecode_get_num_operands(bc, alu);
457 for (src = 0; src < num_src; src++) {
458 sel = alu->src[src].sel;
459 elem = alu->src[src].chan;
460 if (is_gpr(sel)) {
461 cycle = cycle_for_bank_swizzle_vec[bank_swizzle][src];
462 if (src == 1 && sel == alu->src[0].sel && elem == alu->src[0].chan)
463 /* Nothing to do; special-case optimization,
464 * second source uses first source’s reservation. */
465 continue;
466 else {
467 r = reserve_gpr(bs, sel, elem, cycle);
468 if (r)
469 return r;
470 }
471 } else if (is_cfile(sel)) {
472 r = reserve_cfile(bc, bs, (alu->src[src].kc_bank<<16) + sel, elem);
473 if (r)
474 return r;
475 }
476 /* No restrictions on PV, PS, literal or special constants. */
477 }
478 return 0;
479 }
480
481 static int check_scalar(struct r600_bytecode *bc, struct r600_bytecode_alu *alu,
482 struct alu_bank_swizzle *bs, int bank_swizzle)
483 {
484 int r, src, num_src, const_count, sel, elem, cycle;
485
486 num_src = r600_bytecode_get_num_operands(bc, alu);
487 for (const_count = 0, src = 0; src < num_src; ++src) {
488 sel = alu->src[src].sel;
489 elem = alu->src[src].chan;
490 if (is_const(sel)) { /* Any constant, including literal and inline constants. */
491 if (const_count >= 2)
492 /* More than two references to a constant in
493 * transcendental operation. */
494 return -1;
495 else
496 const_count++;
497 }
498 if (is_cfile(sel)) {
499 r = reserve_cfile(bc, bs, (alu->src[src].kc_bank<<16) + sel, elem);
500 if (r)
501 return r;
502 }
503 }
504 for (src = 0; src < num_src; ++src) {
505 sel = alu->src[src].sel;
506 elem = alu->src[src].chan;
507 if (is_gpr(sel)) {
508 cycle = cycle_for_bank_swizzle_scl[bank_swizzle][src];
509 if (cycle < const_count)
510 /* Cycle for GPR load conflicts with
511 * constant load in transcendental operation. */
512 return -1;
513 r = reserve_gpr(bs, sel, elem, cycle);
514 if (r)
515 return r;
516 }
517 /* PV PS restrictions */
518 if (const_count && (sel == 254 || sel == 255)) {
519 cycle = cycle_for_bank_swizzle_scl[bank_swizzle][src];
520 if (cycle < const_count)
521 return -1;
522 }
523 }
524 return 0;
525 }
526
527 static int check_and_set_bank_swizzle(struct r600_bytecode *bc,
528 struct r600_bytecode_alu *slots[5])
529 {
530 struct alu_bank_swizzle bs;
531 int bank_swizzle[5];
532 int i, r = 0, forced = 1;
533 boolean scalar_only = bc->chip_class == CAYMAN ? false : true;
534 int max_slots = bc->chip_class == CAYMAN ? 4 : 5;
535
536 for (i = 0; i < max_slots; i++) {
537 if (slots[i]) {
538 if (slots[i]->bank_swizzle_force) {
539 slots[i]->bank_swizzle = slots[i]->bank_swizzle_force;
540 } else {
541 forced = 0;
542 }
543 }
544
545 if (i < 4 && slots[i])
546 scalar_only = false;
547 }
548 if (forced)
549 return 0;
550
551 /* Just check every possible combination of bank swizzle.
552 * Not very efficent, but works on the first try in most of the cases. */
553 for (i = 0; i < 4; i++)
554 if (!slots[i] || !slots[i]->bank_swizzle_force)
555 bank_swizzle[i] = SQ_ALU_VEC_012;
556 else
557 bank_swizzle[i] = slots[i]->bank_swizzle;
558
559 bank_swizzle[4] = SQ_ALU_SCL_210;
560 while(bank_swizzle[4] <= SQ_ALU_SCL_221) {
561
562 init_bank_swizzle(&bs);
563 if (scalar_only == false) {
564 for (i = 0; i < 4; i++) {
565 if (slots[i]) {
566 r = check_vector(bc, slots[i], &bs, bank_swizzle[i]);
567 if (r)
568 break;
569 }
570 }
571 } else
572 r = 0;
573
574 if (!r && max_slots == 5 && slots[4]) {
575 r = check_scalar(bc, slots[4], &bs, bank_swizzle[4]);
576 }
577 if (!r) {
578 for (i = 0; i < max_slots; i++) {
579 if (slots[i])
580 slots[i]->bank_swizzle = bank_swizzle[i];
581 }
582 return 0;
583 }
584
585 if (scalar_only) {
586 bank_swizzle[4]++;
587 } else {
588 for (i = 0; i < max_slots; i++) {
589 if (!slots[i] || !slots[i]->bank_swizzle_force) {
590 bank_swizzle[i]++;
591 if (bank_swizzle[i] <= SQ_ALU_VEC_210)
592 break;
593 else if (i < max_slots - 1)
594 bank_swizzle[i] = SQ_ALU_VEC_012;
595 else
596 return -1;
597 }
598 }
599 }
600 }
601
602 /* Couldn't find a working swizzle. */
603 return -1;
604 }
605
606 static int replace_gpr_with_pv_ps(struct r600_bytecode *bc,
607 struct r600_bytecode_alu *slots[5], struct r600_bytecode_alu *alu_prev)
608 {
609 struct r600_bytecode_alu *prev[5];
610 int gpr[5], chan[5];
611 int i, j, r, src, num_src;
612 int max_slots = bc->chip_class == CAYMAN ? 4 : 5;
613
614 r = assign_alu_units(bc, alu_prev, prev);
615 if (r)
616 return r;
617
618 for (i = 0; i < max_slots; ++i) {
619 if (prev[i] && alu_writes(prev[i]) && !prev[i]->dst.rel) {
620
621 if (is_alu_64bit_inst(bc, prev[i])) {
622 gpr[i] = -1;
623 continue;
624 }
625
626 gpr[i] = prev[i]->dst.sel;
627 /* cube writes more than PV.X */
628 if (is_alu_reduction_inst(bc, prev[i]))
629 chan[i] = 0;
630 else
631 chan[i] = prev[i]->dst.chan;
632 } else
633 gpr[i] = -1;
634 }
635
636 for (i = 0; i < max_slots; ++i) {
637 struct r600_bytecode_alu *alu = slots[i];
638 if (!alu)
639 continue;
640
641 if (is_alu_64bit_inst(bc, alu))
642 continue;
643 num_src = r600_bytecode_get_num_operands(bc, alu);
644 for (src = 0; src < num_src; ++src) {
645 if (!is_gpr(alu->src[src].sel) || alu->src[src].rel)
646 continue;
647
648 if (bc->chip_class < CAYMAN) {
649 if (alu->src[src].sel == gpr[4] &&
650 alu->src[src].chan == chan[4] &&
651 alu_prev->pred_sel == alu->pred_sel) {
652 alu->src[src].sel = V_SQ_ALU_SRC_PS;
653 alu->src[src].chan = 0;
654 continue;
655 }
656 }
657
658 for (j = 0; j < 4; ++j) {
659 if (alu->src[src].sel == gpr[j] &&
660 alu->src[src].chan == j &&
661 alu_prev->pred_sel == alu->pred_sel) {
662 alu->src[src].sel = V_SQ_ALU_SRC_PV;
663 alu->src[src].chan = chan[j];
664 break;
665 }
666 }
667 }
668 }
669
670 return 0;
671 }
672
673 void r600_bytecode_special_constants(uint32_t value, unsigned *sel, unsigned *neg, unsigned abs)
674 {
675 switch(value) {
676 case 0:
677 *sel = V_SQ_ALU_SRC_0;
678 break;
679 case 1:
680 *sel = V_SQ_ALU_SRC_1_INT;
681 break;
682 case -1:
683 *sel = V_SQ_ALU_SRC_M_1_INT;
684 break;
685 case 0x3F800000: /* 1.0f */
686 *sel = V_SQ_ALU_SRC_1;
687 break;
688 case 0x3F000000: /* 0.5f */
689 *sel = V_SQ_ALU_SRC_0_5;
690 break;
691 case 0xBF800000: /* -1.0f */
692 *sel = V_SQ_ALU_SRC_1;
693 *neg ^= !abs;
694 break;
695 case 0xBF000000: /* -0.5f */
696 *sel = V_SQ_ALU_SRC_0_5;
697 *neg ^= !abs;
698 break;
699 default:
700 *sel = V_SQ_ALU_SRC_LITERAL;
701 break;
702 }
703 }
704
705 /* compute how many literal are needed */
706 static int r600_bytecode_alu_nliterals(struct r600_bytecode *bc, struct r600_bytecode_alu *alu,
707 uint32_t literal[4], unsigned *nliteral)
708 {
709 unsigned num_src = r600_bytecode_get_num_operands(bc, alu);
710 unsigned i, j;
711
712 for (i = 0; i < num_src; ++i) {
713 if (alu->src[i].sel == V_SQ_ALU_SRC_LITERAL) {
714 uint32_t value = alu->src[i].value;
715 unsigned found = 0;
716 for (j = 0; j < *nliteral; ++j) {
717 if (literal[j] == value) {
718 found = 1;
719 break;
720 }
721 }
722 if (!found) {
723 if (*nliteral >= 4)
724 return -EINVAL;
725 literal[(*nliteral)++] = value;
726 }
727 }
728 }
729 return 0;
730 }
731
732 static void r600_bytecode_alu_adjust_literals(struct r600_bytecode *bc,
733 struct r600_bytecode_alu *alu,
734 uint32_t literal[4], unsigned nliteral)
735 {
736 unsigned num_src = r600_bytecode_get_num_operands(bc, alu);
737 unsigned i, j;
738
739 for (i = 0; i < num_src; ++i) {
740 if (alu->src[i].sel == V_SQ_ALU_SRC_LITERAL) {
741 uint32_t value = alu->src[i].value;
742 for (j = 0; j < nliteral; ++j) {
743 if (literal[j] == value) {
744 alu->src[i].chan = j;
745 break;
746 }
747 }
748 }
749 }
750 }
751
752 static int merge_inst_groups(struct r600_bytecode *bc, struct r600_bytecode_alu *slots[5],
753 struct r600_bytecode_alu *alu_prev)
754 {
755 struct r600_bytecode_alu *prev[5];
756 struct r600_bytecode_alu *result[5] = { NULL };
757
758 uint32_t literal[4], prev_literal[4];
759 unsigned nliteral = 0, prev_nliteral = 0;
760
761 int i, j, r, src, num_src;
762 int num_once_inst = 0;
763 int have_mova = 0, have_rel = 0;
764 int max_slots = bc->chip_class == CAYMAN ? 4 : 5;
765
766 r = assign_alu_units(bc, alu_prev, prev);
767 if (r)
768 return r;
769
770 for (i = 0; i < max_slots; ++i) {
771 if (prev[i]) {
772 if (prev[i]->pred_sel)
773 return 0;
774 if (is_alu_once_inst(bc, prev[i]))
775 return 0;
776 }
777 if (slots[i]) {
778 if (slots[i]->pred_sel)
779 return 0;
780 if (is_alu_once_inst(bc, slots[i]))
781 return 0;
782 }
783 }
784
785 for (i = 0; i < max_slots; ++i) {
786 struct r600_bytecode_alu *alu;
787
788 if (num_once_inst > 0)
789 return 0;
790
791 /* check number of literals */
792 if (prev[i]) {
793 if (r600_bytecode_alu_nliterals(bc, prev[i], literal, &nliteral))
794 return 0;
795 if (r600_bytecode_alu_nliterals(bc, prev[i], prev_literal, &prev_nliteral))
796 return 0;
797 if (is_alu_mova_inst(bc, prev[i])) {
798 if (have_rel)
799 return 0;
800 have_mova = 1;
801 }
802
803 if (alu_uses_rel(bc, prev[i])) {
804 if (have_mova) {
805 return 0;
806 }
807 have_rel = 1;
808 }
809 if (alu_uses_lds(bc, prev[i]))
810 return 0;
811
812 num_once_inst += is_alu_once_inst(bc, prev[i]);
813 }
814 if (slots[i] && r600_bytecode_alu_nliterals(bc, slots[i], literal, &nliteral))
815 return 0;
816
817 /* Let's check used slots. */
818 if (prev[i] && !slots[i]) {
819 result[i] = prev[i];
820 continue;
821 } else if (prev[i] && slots[i]) {
822 if (max_slots == 5 && result[4] == NULL && prev[4] == NULL && slots[4] == NULL) {
823 /* Trans unit is still free try to use it. */
824 if (is_alu_any_unit_inst(bc, slots[i]) && !alu_uses_lds(bc, slots[i])) {
825 result[i] = prev[i];
826 result[4] = slots[i];
827 } else if (is_alu_any_unit_inst(bc, prev[i])) {
828 if (slots[i]->dst.sel == prev[i]->dst.sel &&
829 alu_writes(slots[i]) &&
830 alu_writes(prev[i]))
831 return 0;
832
833 result[i] = slots[i];
834 result[4] = prev[i];
835 } else
836 return 0;
837 } else
838 return 0;
839 } else if(!slots[i]) {
840 continue;
841 } else {
842 if (max_slots == 5 && slots[i] && prev[4] &&
843 slots[i]->dst.sel == prev[4]->dst.sel &&
844 slots[i]->dst.chan == prev[4]->dst.chan &&
845 alu_writes(slots[i]) &&
846 alu_writes(prev[4]))
847 return 0;
848
849 result[i] = slots[i];
850 }
851
852 alu = slots[i];
853 num_once_inst += is_alu_once_inst(bc, alu);
854
855 /* don't reschedule NOPs */
856 if (is_nop_inst(bc, alu))
857 return 0;
858
859 if (is_alu_mova_inst(bc, alu)) {
860 if (have_rel) {
861 return 0;
862 }
863 have_mova = 1;
864 }
865
866 if (alu_uses_rel(bc, alu)) {
867 if (have_mova) {
868 return 0;
869 }
870 have_rel = 1;
871 }
872
873 if (alu->op == ALU_OP0_SET_CF_IDX0 ||
874 alu->op == ALU_OP0_SET_CF_IDX1)
875 return 0; /* data hazard with MOVA */
876
877 /* Let's check source gprs */
878 num_src = r600_bytecode_get_num_operands(bc, alu);
879 for (src = 0; src < num_src; ++src) {
880
881 /* Constants don't matter. */
882 if (!is_gpr(alu->src[src].sel))
883 continue;
884
885 for (j = 0; j < max_slots; ++j) {
886 if (!prev[j] || !alu_writes(prev[j]))
887 continue;
888
889 /* If it's relative then we can't determin which gpr is really used. */
890 if (prev[j]->dst.chan == alu->src[src].chan &&
891 (prev[j]->dst.sel == alu->src[src].sel ||
892 prev[j]->dst.rel || alu->src[src].rel))
893 return 0;
894 }
895 }
896 }
897
898 /* more than one PRED_ or KILL_ ? */
899 if (num_once_inst > 1)
900 return 0;
901
902 /* check if the result can still be swizzlet */
903 r = check_and_set_bank_swizzle(bc, result);
904 if (r)
905 return 0;
906
907 /* looks like everything worked out right, apply the changes */
908
909 /* undo adding previus literals */
910 bc->cf_last->ndw -= align(prev_nliteral, 2);
911
912 /* sort instructions */
913 for (i = 0; i < max_slots; ++i) {
914 slots[i] = result[i];
915 if (result[i]) {
916 LIST_DEL(&result[i]->list);
917 result[i]->last = 0;
918 LIST_ADDTAIL(&result[i]->list, &bc->cf_last->alu);
919 }
920 }
921
922 /* determine new last instruction */
923 LIST_ENTRY(struct r600_bytecode_alu, bc->cf_last->alu.prev, list)->last = 1;
924
925 /* determine new first instruction */
926 for (i = 0; i < max_slots; ++i) {
927 if (result[i]) {
928 bc->cf_last->curr_bs_head = result[i];
929 break;
930 }
931 }
932
933 bc->cf_last->prev_bs_head = bc->cf_last->prev2_bs_head;
934 bc->cf_last->prev2_bs_head = NULL;
935
936 return 0;
937 }
938
939 /* we'll keep kcache sets sorted by bank & addr */
940 static int r600_bytecode_alloc_kcache_line(struct r600_bytecode *bc,
941 struct r600_bytecode_kcache *kcache,
942 unsigned bank, unsigned line, unsigned index_mode)
943 {
944 int i, kcache_banks = bc->chip_class >= EVERGREEN ? 4 : 2;
945
946 for (i = 0; i < kcache_banks; i++) {
947 if (kcache[i].mode) {
948 int d;
949
950 if (kcache[i].bank < bank)
951 continue;
952
953 if ((kcache[i].bank == bank && kcache[i].addr > line+1) ||
954 kcache[i].bank > bank) {
955 /* try to insert new line */
956 if (kcache[kcache_banks-1].mode) {
957 /* all sets are in use */
958 return -ENOMEM;
959 }
960
961 memmove(&kcache[i+1],&kcache[i], (kcache_banks-i-1)*sizeof(struct r600_bytecode_kcache));
962 kcache[i].mode = V_SQ_CF_KCACHE_LOCK_1;
963 kcache[i].bank = bank;
964 kcache[i].addr = line;
965 kcache[i].index_mode = index_mode;
966 return 0;
967 }
968
969 d = line - kcache[i].addr;
970
971 if (d == -1) {
972 kcache[i].addr--;
973 if (kcache[i].mode == V_SQ_CF_KCACHE_LOCK_2) {
974 /* we are prepending the line to the current set,
975 * discarding the existing second line,
976 * so we'll have to insert line+2 after it */
977 line += 2;
978 continue;
979 } else if (kcache[i].mode == V_SQ_CF_KCACHE_LOCK_1) {
980 kcache[i].mode = V_SQ_CF_KCACHE_LOCK_2;
981 return 0;
982 } else {
983 /* V_SQ_CF_KCACHE_LOCK_LOOP_INDEX is not supported */
984 return -ENOMEM;
985 }
986 } else if (d == 1) {
987 kcache[i].mode = V_SQ_CF_KCACHE_LOCK_2;
988 return 0;
989 } else if (d == 0)
990 return 0;
991 } else { /* free kcache set - use it */
992 kcache[i].mode = V_SQ_CF_KCACHE_LOCK_1;
993 kcache[i].bank = bank;
994 kcache[i].addr = line;
995 kcache[i].index_mode = index_mode;
996 return 0;
997 }
998 }
999 return -ENOMEM;
1000 }
1001
1002 static int r600_bytecode_alloc_inst_kcache_lines(struct r600_bytecode *bc,
1003 struct r600_bytecode_kcache *kcache,
1004 struct r600_bytecode_alu *alu)
1005 {
1006 int i, r;
1007
1008 for (i = 0; i < 3; i++) {
1009 unsigned bank, line, sel = alu->src[i].sel, index_mode;
1010
1011 if (sel < 512)
1012 continue;
1013
1014 bank = alu->src[i].kc_bank;
1015 line = (sel-512)>>4;
1016 index_mode = alu->src[i].kc_rel ? 1 : 0; // V_SQ_CF_INDEX_0 / V_SQ_CF_INDEX_NONE
1017
1018 if ((r = r600_bytecode_alloc_kcache_line(bc, kcache, bank, line, index_mode)))
1019 return r;
1020 }
1021 return 0;
1022 }
1023
1024 static int r600_bytecode_assign_kcache_banks(struct r600_bytecode *bc,
1025 struct r600_bytecode_alu *alu,
1026 struct r600_bytecode_kcache * kcache)
1027 {
1028 int i, j;
1029
1030 /* Alter the src operands to refer to the kcache. */
1031 for (i = 0; i < 3; ++i) {
1032 static const unsigned int base[] = {128, 160, 256, 288};
1033 unsigned int line, sel = alu->src[i].sel, found = 0;
1034
1035 if (sel < 512)
1036 continue;
1037
1038 sel -= 512;
1039 line = sel>>4;
1040
1041 for (j = 0; j < 4 && !found; ++j) {
1042 switch (kcache[j].mode) {
1043 case V_SQ_CF_KCACHE_NOP:
1044 case V_SQ_CF_KCACHE_LOCK_LOOP_INDEX:
1045 R600_ERR("unexpected kcache line mode\n");
1046 return -ENOMEM;
1047 default:
1048 if (kcache[j].bank == alu->src[i].kc_bank &&
1049 kcache[j].addr <= line &&
1050 line < kcache[j].addr + kcache[j].mode) {
1051 alu->src[i].sel = sel - (kcache[j].addr<<4);
1052 alu->src[i].sel += base[j];
1053 found=1;
1054 }
1055 }
1056 }
1057 }
1058 return 0;
1059 }
1060
1061 static int r600_bytecode_alloc_kcache_lines(struct r600_bytecode *bc,
1062 struct r600_bytecode_alu *alu,
1063 unsigned type)
1064 {
1065 struct r600_bytecode_kcache kcache_sets[4];
1066 struct r600_bytecode_kcache *kcache = kcache_sets;
1067 int r;
1068
1069 memcpy(kcache, bc->cf_last->kcache, 4 * sizeof(struct r600_bytecode_kcache));
1070
1071 if ((r = r600_bytecode_alloc_inst_kcache_lines(bc, kcache, alu))) {
1072 /* can't alloc, need to start new clause */
1073 if ((r = r600_bytecode_add_cf(bc))) {
1074 return r;
1075 }
1076 bc->cf_last->op = type;
1077
1078 /* retry with the new clause */
1079 kcache = bc->cf_last->kcache;
1080 if ((r = r600_bytecode_alloc_inst_kcache_lines(bc, kcache, alu))) {
1081 /* can't alloc again- should never happen */
1082 return r;
1083 }
1084 } else {
1085 /* update kcache sets */
1086 memcpy(bc->cf_last->kcache, kcache, 4 * sizeof(struct r600_bytecode_kcache));
1087 }
1088
1089 /* if we actually used more than 2 kcache sets, or have relative indexing - use ALU_EXTENDED on eg+ */
1090 if (kcache[2].mode != V_SQ_CF_KCACHE_NOP ||
1091 kcache[0].index_mode || kcache[1].index_mode || kcache[2].index_mode || kcache[3].index_mode) {
1092 if (bc->chip_class < EVERGREEN)
1093 return -ENOMEM;
1094 bc->cf_last->eg_alu_extended = 1;
1095 }
1096
1097 return 0;
1098 }
1099
1100 static int insert_nop_r6xx(struct r600_bytecode *bc)
1101 {
1102 struct r600_bytecode_alu alu;
1103 int r, i;
1104
1105 for (i = 0; i < 4; i++) {
1106 memset(&alu, 0, sizeof(alu));
1107 alu.op = ALU_OP0_NOP;
1108 alu.src[0].chan = i;
1109 alu.dst.chan = i;
1110 alu.last = (i == 3);
1111 r = r600_bytecode_add_alu(bc, &alu);
1112 if (r)
1113 return r;
1114 }
1115 return 0;
1116 }
1117
1118 /* load AR register from gpr (bc->ar_reg) with MOVA_INT */
1119 static int load_ar_r6xx(struct r600_bytecode *bc)
1120 {
1121 struct r600_bytecode_alu alu;
1122 int r;
1123
1124 if (bc->ar_loaded)
1125 return 0;
1126
1127 /* hack to avoid making MOVA the last instruction in the clause */
1128 if ((bc->cf_last->ndw>>1) >= 110)
1129 bc->force_add_cf = 1;
1130
1131 memset(&alu, 0, sizeof(alu));
1132 alu.op = ALU_OP1_MOVA_GPR_INT;
1133 alu.src[0].sel = bc->ar_reg;
1134 alu.src[0].chan = bc->ar_chan;
1135 alu.last = 1;
1136 alu.index_mode = INDEX_MODE_LOOP;
1137 r = r600_bytecode_add_alu(bc, &alu);
1138 if (r)
1139 return r;
1140
1141 /* no requirement to set uses waterfall on MOVA_GPR_INT */
1142 bc->ar_loaded = 1;
1143 return 0;
1144 }
1145
1146 /* load AR register from gpr (bc->ar_reg) with MOVA_INT */
1147 static int load_ar(struct r600_bytecode *bc)
1148 {
1149 struct r600_bytecode_alu alu;
1150 int r;
1151
1152 if (bc->ar_handling)
1153 return load_ar_r6xx(bc);
1154
1155 if (bc->ar_loaded)
1156 return 0;
1157
1158 /* hack to avoid making MOVA the last instruction in the clause */
1159 if ((bc->cf_last->ndw>>1) >= 110)
1160 bc->force_add_cf = 1;
1161
1162 memset(&alu, 0, sizeof(alu));
1163 alu.op = ALU_OP1_MOVA_INT;
1164 alu.src[0].sel = bc->ar_reg;
1165 alu.src[0].chan = bc->ar_chan;
1166 alu.last = 1;
1167 r = r600_bytecode_add_alu(bc, &alu);
1168 if (r)
1169 return r;
1170
1171 bc->cf_last->r6xx_uses_waterfall = 1;
1172 bc->ar_loaded = 1;
1173 return 0;
1174 }
1175
1176 int r600_bytecode_add_alu_type(struct r600_bytecode *bc,
1177 const struct r600_bytecode_alu *alu, unsigned type)
1178 {
1179 struct r600_bytecode_alu *nalu = r600_bytecode_alu();
1180 struct r600_bytecode_alu *lalu;
1181 int i, r;
1182
1183 if (!nalu)
1184 return -ENOMEM;
1185 memcpy(nalu, alu, sizeof(struct r600_bytecode_alu));
1186
1187 if (alu->is_op3) {
1188 /* will fail later since alu does not support it. */
1189 assert(!alu->src[0].abs && !alu->src[1].abs && !alu->src[2].abs);
1190 }
1191
1192 if (bc->cf_last != NULL && bc->cf_last->op != type) {
1193 /* check if we could add it anyway */
1194 if (bc->cf_last->op == CF_OP_ALU &&
1195 type == CF_OP_ALU_PUSH_BEFORE) {
1196 LIST_FOR_EACH_ENTRY(lalu, &bc->cf_last->alu, list) {
1197 if (lalu->execute_mask) {
1198 bc->force_add_cf = 1;
1199 break;
1200 }
1201 }
1202 } else
1203 bc->force_add_cf = 1;
1204 }
1205
1206 /* cf can contains only alu or only vtx or only tex */
1207 if (bc->cf_last == NULL || bc->force_add_cf) {
1208 r = r600_bytecode_add_cf(bc);
1209 if (r) {
1210 free(nalu);
1211 return r;
1212 }
1213 }
1214 bc->cf_last->op = type;
1215
1216 /* Load index register if required */
1217 if (bc->chip_class >= EVERGREEN) {
1218 for (i = 0; i < 3; i++)
1219 if (nalu->src[i].kc_bank && nalu->src[i].kc_rel)
1220 egcm_load_index_reg(bc, 0, true);
1221 }
1222
1223 /* Check AR usage and load it if required */
1224 for (i = 0; i < 3; i++)
1225 if (nalu->src[i].rel && !bc->ar_loaded)
1226 load_ar(bc);
1227
1228 if (nalu->dst.rel && !bc->ar_loaded)
1229 load_ar(bc);
1230
1231 /* Setup the kcache for this ALU instruction. This will start a new
1232 * ALU clause if needed. */
1233 if ((r = r600_bytecode_alloc_kcache_lines(bc, nalu, type))) {
1234 free(nalu);
1235 return r;
1236 }
1237
1238 if (!bc->cf_last->curr_bs_head) {
1239 bc->cf_last->curr_bs_head = nalu;
1240 }
1241 /* number of gpr == the last gpr used in any alu */
1242 for (i = 0; i < 3; i++) {
1243 if (nalu->src[i].sel >= bc->ngpr && nalu->src[i].sel < 128) {
1244 bc->ngpr = nalu->src[i].sel + 1;
1245 }
1246 if (nalu->src[i].sel == V_SQ_ALU_SRC_LITERAL)
1247 r600_bytecode_special_constants(nalu->src[i].value,
1248 &nalu->src[i].sel, &nalu->src[i].neg, nalu->src[i].abs);
1249 }
1250 if (nalu->dst.sel >= bc->ngpr) {
1251 bc->ngpr = nalu->dst.sel + 1;
1252 }
1253 LIST_ADDTAIL(&nalu->list, &bc->cf_last->alu);
1254 /* each alu use 2 dwords */
1255 bc->cf_last->ndw += 2;
1256 bc->ndw += 2;
1257
1258 /* process cur ALU instructions for bank swizzle */
1259 if (nalu->last) {
1260 uint32_t literal[4];
1261 unsigned nliteral;
1262 struct r600_bytecode_alu *slots[5];
1263 int max_slots = bc->chip_class == CAYMAN ? 4 : 5;
1264 r = assign_alu_units(bc, bc->cf_last->curr_bs_head, slots);
1265 if (r)
1266 return r;
1267
1268 if (bc->cf_last->prev_bs_head) {
1269 r = merge_inst_groups(bc, slots, bc->cf_last->prev_bs_head);
1270 if (r)
1271 return r;
1272 }
1273
1274 if (bc->cf_last->prev_bs_head) {
1275 r = replace_gpr_with_pv_ps(bc, slots, bc->cf_last->prev_bs_head);
1276 if (r)
1277 return r;
1278 }
1279
1280 r = check_and_set_bank_swizzle(bc, slots);
1281 if (r)
1282 return r;
1283
1284 for (i = 0, nliteral = 0; i < max_slots; i++) {
1285 if (slots[i]) {
1286 r = r600_bytecode_alu_nliterals(bc, slots[i], literal, &nliteral);
1287 if (r)
1288 return r;
1289 }
1290 }
1291 bc->cf_last->ndw += align(nliteral, 2);
1292
1293 /* at most 128 slots, one add alu can add 5 slots + 4 constants(2 slots)
1294 * worst case */
1295 if ((bc->cf_last->ndw >> 1) >= 120) {
1296 bc->force_add_cf = 1;
1297 }
1298
1299 bc->cf_last->prev2_bs_head = bc->cf_last->prev_bs_head;
1300 bc->cf_last->prev_bs_head = bc->cf_last->curr_bs_head;
1301 bc->cf_last->curr_bs_head = NULL;
1302 }
1303
1304 if (nalu->dst.rel && bc->r6xx_nop_after_rel_dst)
1305 insert_nop_r6xx(bc);
1306
1307 return 0;
1308 }
1309
1310 int r600_bytecode_add_alu(struct r600_bytecode *bc, const struct r600_bytecode_alu *alu)
1311 {
1312 return r600_bytecode_add_alu_type(bc, alu, CF_OP_ALU);
1313 }
1314
1315 static unsigned r600_bytecode_num_tex_and_vtx_instructions(const struct r600_bytecode *bc)
1316 {
1317 switch (bc->chip_class) {
1318 case R600:
1319 return 8;
1320
1321 case R700:
1322 case EVERGREEN:
1323 case CAYMAN:
1324 return 16;
1325
1326 default:
1327 R600_ERR("Unknown chip class %d.\n", bc->chip_class);
1328 return 8;
1329 }
1330 }
1331
1332 static inline boolean last_inst_was_not_vtx_fetch(struct r600_bytecode *bc)
1333 {
1334 return !((r600_isa_cf(bc->cf_last->op)->flags & CF_FETCH) &&
1335 (bc->chip_class == CAYMAN ||
1336 bc->cf_last->op != CF_OP_TEX));
1337 }
1338
1339 int r600_bytecode_add_vtx(struct r600_bytecode *bc, const struct r600_bytecode_vtx *vtx)
1340 {
1341 struct r600_bytecode_vtx *nvtx = r600_bytecode_vtx();
1342 int r;
1343
1344 if (!nvtx)
1345 return -ENOMEM;
1346 memcpy(nvtx, vtx, sizeof(struct r600_bytecode_vtx));
1347
1348 /* Load index register if required */
1349 if (bc->chip_class >= EVERGREEN) {
1350 if (vtx->buffer_index_mode)
1351 egcm_load_index_reg(bc, 0, false);
1352 }
1353
1354 /* cf can contains only alu or only vtx or only tex */
1355 if (bc->cf_last == NULL ||
1356 last_inst_was_not_vtx_fetch(bc) ||
1357 bc->force_add_cf) {
1358 r = r600_bytecode_add_cf(bc);
1359 if (r) {
1360 free(nvtx);
1361 return r;
1362 }
1363 switch (bc->chip_class) {
1364 case R600:
1365 case R700:
1366 case EVERGREEN:
1367 bc->cf_last->op = CF_OP_VTX;
1368 break;
1369 case CAYMAN:
1370 bc->cf_last->op = CF_OP_TEX;
1371 break;
1372 default:
1373 R600_ERR("Unknown chip class %d.\n", bc->chip_class);
1374 free(nvtx);
1375 return -EINVAL;
1376 }
1377 }
1378 LIST_ADDTAIL(&nvtx->list, &bc->cf_last->vtx);
1379 /* each fetch use 4 dwords */
1380 bc->cf_last->ndw += 4;
1381 bc->ndw += 4;
1382 if ((bc->cf_last->ndw / 4) >= r600_bytecode_num_tex_and_vtx_instructions(bc))
1383 bc->force_add_cf = 1;
1384
1385 bc->ngpr = MAX2(bc->ngpr, vtx->src_gpr + 1);
1386 bc->ngpr = MAX2(bc->ngpr, vtx->dst_gpr + 1);
1387
1388 return 0;
1389 }
1390
1391 int r600_bytecode_add_tex(struct r600_bytecode *bc, const struct r600_bytecode_tex *tex)
1392 {
1393 struct r600_bytecode_tex *ntex = r600_bytecode_tex();
1394 int r;
1395
1396 if (!ntex)
1397 return -ENOMEM;
1398 memcpy(ntex, tex, sizeof(struct r600_bytecode_tex));
1399
1400 /* Load index register if required */
1401 if (bc->chip_class >= EVERGREEN) {
1402 if (tex->sampler_index_mode || tex->resource_index_mode)
1403 egcm_load_index_reg(bc, 1, false);
1404 }
1405
1406 /* we can't fetch data und use it as texture lookup address in the same TEX clause */
1407 if (bc->cf_last != NULL &&
1408 bc->cf_last->op == CF_OP_TEX) {
1409 struct r600_bytecode_tex *ttex;
1410 LIST_FOR_EACH_ENTRY(ttex, &bc->cf_last->tex, list) {
1411 if (ttex->dst_gpr == ntex->src_gpr) {
1412 bc->force_add_cf = 1;
1413 break;
1414 }
1415 }
1416 /* slight hack to make gradients always go into same cf */
1417 if (ntex->op == FETCH_OP_SET_GRADIENTS_H)
1418 bc->force_add_cf = 1;
1419 }
1420
1421 /* cf can contains only alu or only vtx or only tex */
1422 if (bc->cf_last == NULL ||
1423 bc->cf_last->op != CF_OP_TEX ||
1424 bc->force_add_cf) {
1425 r = r600_bytecode_add_cf(bc);
1426 if (r) {
1427 free(ntex);
1428 return r;
1429 }
1430 bc->cf_last->op = CF_OP_TEX;
1431 }
1432 if (ntex->src_gpr >= bc->ngpr) {
1433 bc->ngpr = ntex->src_gpr + 1;
1434 }
1435 if (ntex->dst_gpr >= bc->ngpr) {
1436 bc->ngpr = ntex->dst_gpr + 1;
1437 }
1438 LIST_ADDTAIL(&ntex->list, &bc->cf_last->tex);
1439 /* each texture fetch use 4 dwords */
1440 bc->cf_last->ndw += 4;
1441 bc->ndw += 4;
1442 if ((bc->cf_last->ndw / 4) >= r600_bytecode_num_tex_and_vtx_instructions(bc))
1443 bc->force_add_cf = 1;
1444 return 0;
1445 }
1446
1447 int r600_bytecode_add_gds(struct r600_bytecode *bc, const struct r600_bytecode_gds *gds)
1448 {
1449 struct r600_bytecode_gds *ngds = r600_bytecode_gds();
1450 int r;
1451
1452 if (ngds == NULL)
1453 return -ENOMEM;
1454 memcpy(ngds, gds, sizeof(struct r600_bytecode_gds));
1455
1456 if (bc->cf_last == NULL ||
1457 bc->cf_last->op != CF_OP_GDS ||
1458 bc->force_add_cf) {
1459 r = r600_bytecode_add_cf(bc);
1460 if (r) {
1461 free(ngds);
1462 return r;
1463 }
1464 bc->cf_last->op = CF_OP_GDS;
1465 }
1466
1467 LIST_ADDTAIL(&ngds->list, &bc->cf_last->gds);
1468 bc->cf_last->ndw += 4; /* each GDS uses 4 dwords */
1469 if ((bc->cf_last->ndw / 4) >= r600_bytecode_num_tex_and_vtx_instructions(bc))
1470 bc->force_add_cf = 1;
1471 return 0;
1472 }
1473
1474 int r600_bytecode_add_cfinst(struct r600_bytecode *bc, unsigned op)
1475 {
1476 int r;
1477 r = r600_bytecode_add_cf(bc);
1478 if (r)
1479 return r;
1480
1481 bc->cf_last->cond = V_SQ_CF_COND_ACTIVE;
1482 bc->cf_last->op = op;
1483 return 0;
1484 }
1485
1486 int cm_bytecode_add_cf_end(struct r600_bytecode *bc)
1487 {
1488 return r600_bytecode_add_cfinst(bc, CF_OP_CF_END);
1489 }
1490
1491 /* common to all 3 families */
1492 static int r600_bytecode_vtx_build(struct r600_bytecode *bc, struct r600_bytecode_vtx *vtx, unsigned id)
1493 {
1494 bc->bytecode[id] = S_SQ_VTX_WORD0_BUFFER_ID(vtx->buffer_id) |
1495 S_SQ_VTX_WORD0_FETCH_TYPE(vtx->fetch_type) |
1496 S_SQ_VTX_WORD0_SRC_GPR(vtx->src_gpr) |
1497 S_SQ_VTX_WORD0_SRC_SEL_X(vtx->src_sel_x);
1498 if (bc->chip_class < CAYMAN)
1499 bc->bytecode[id] |= S_SQ_VTX_WORD0_MEGA_FETCH_COUNT(vtx->mega_fetch_count);
1500 id++;
1501 bc->bytecode[id++] = S_SQ_VTX_WORD1_DST_SEL_X(vtx->dst_sel_x) |
1502 S_SQ_VTX_WORD1_DST_SEL_Y(vtx->dst_sel_y) |
1503 S_SQ_VTX_WORD1_DST_SEL_Z(vtx->dst_sel_z) |
1504 S_SQ_VTX_WORD1_DST_SEL_W(vtx->dst_sel_w) |
1505 S_SQ_VTX_WORD1_USE_CONST_FIELDS(vtx->use_const_fields) |
1506 S_SQ_VTX_WORD1_DATA_FORMAT(vtx->data_format) |
1507 S_SQ_VTX_WORD1_NUM_FORMAT_ALL(vtx->num_format_all) |
1508 S_SQ_VTX_WORD1_FORMAT_COMP_ALL(vtx->format_comp_all) |
1509 S_SQ_VTX_WORD1_SRF_MODE_ALL(vtx->srf_mode_all) |
1510 S_SQ_VTX_WORD1_GPR_DST_GPR(vtx->dst_gpr);
1511 bc->bytecode[id] = S_SQ_VTX_WORD2_OFFSET(vtx->offset)|
1512 S_SQ_VTX_WORD2_ENDIAN_SWAP(vtx->endian);
1513 if (bc->chip_class >= EVERGREEN)
1514 bc->bytecode[id] |= ((vtx->buffer_index_mode & 0x3) << 21); // S_SQ_VTX_WORD2_BIM(vtx->buffer_index_mode);
1515 if (bc->chip_class < CAYMAN)
1516 bc->bytecode[id] |= S_SQ_VTX_WORD2_MEGA_FETCH(1);
1517 id++;
1518 bc->bytecode[id++] = 0;
1519 return 0;
1520 }
1521
1522 /* common to all 3 families */
1523 static int r600_bytecode_tex_build(struct r600_bytecode *bc, struct r600_bytecode_tex *tex, unsigned id)
1524 {
1525 bc->bytecode[id] = S_SQ_TEX_WORD0_TEX_INST(
1526 r600_isa_fetch_opcode(bc->isa->hw_class, tex->op)) |
1527 EG_S_SQ_TEX_WORD0_INST_MOD(tex->inst_mod) |
1528 S_SQ_TEX_WORD0_RESOURCE_ID(tex->resource_id) |
1529 S_SQ_TEX_WORD0_SRC_GPR(tex->src_gpr) |
1530 S_SQ_TEX_WORD0_SRC_REL(tex->src_rel);
1531 if (bc->chip_class >= EVERGREEN)
1532 bc->bytecode[id] |= ((tex->sampler_index_mode & 0x3) << 27) | // S_SQ_TEX_WORD0_SIM(tex->sampler_index_mode);
1533 ((tex->resource_index_mode & 0x3) << 25); // S_SQ_TEX_WORD0_RIM(tex->resource_index_mode)
1534 id++;
1535 bc->bytecode[id++] = S_SQ_TEX_WORD1_DST_GPR(tex->dst_gpr) |
1536 S_SQ_TEX_WORD1_DST_REL(tex->dst_rel) |
1537 S_SQ_TEX_WORD1_DST_SEL_X(tex->dst_sel_x) |
1538 S_SQ_TEX_WORD1_DST_SEL_Y(tex->dst_sel_y) |
1539 S_SQ_TEX_WORD1_DST_SEL_Z(tex->dst_sel_z) |
1540 S_SQ_TEX_WORD1_DST_SEL_W(tex->dst_sel_w) |
1541 S_SQ_TEX_WORD1_LOD_BIAS(tex->lod_bias) |
1542 S_SQ_TEX_WORD1_COORD_TYPE_X(tex->coord_type_x) |
1543 S_SQ_TEX_WORD1_COORD_TYPE_Y(tex->coord_type_y) |
1544 S_SQ_TEX_WORD1_COORD_TYPE_Z(tex->coord_type_z) |
1545 S_SQ_TEX_WORD1_COORD_TYPE_W(tex->coord_type_w);
1546 bc->bytecode[id++] = S_SQ_TEX_WORD2_OFFSET_X(tex->offset_x) |
1547 S_SQ_TEX_WORD2_OFFSET_Y(tex->offset_y) |
1548 S_SQ_TEX_WORD2_OFFSET_Z(tex->offset_z) |
1549 S_SQ_TEX_WORD2_SAMPLER_ID(tex->sampler_id) |
1550 S_SQ_TEX_WORD2_SRC_SEL_X(tex->src_sel_x) |
1551 S_SQ_TEX_WORD2_SRC_SEL_Y(tex->src_sel_y) |
1552 S_SQ_TEX_WORD2_SRC_SEL_Z(tex->src_sel_z) |
1553 S_SQ_TEX_WORD2_SRC_SEL_W(tex->src_sel_w);
1554 bc->bytecode[id++] = 0;
1555 return 0;
1556 }
1557
1558 /* r600 only, r700/eg bits in r700_asm.c */
1559 static int r600_bytecode_alu_build(struct r600_bytecode *bc, struct r600_bytecode_alu *alu, unsigned id)
1560 {
1561 unsigned opcode = r600_isa_alu_opcode(bc->isa->hw_class, alu->op);
1562
1563 /* don't replace gpr by pv or ps for destination register */
1564 bc->bytecode[id++] = S_SQ_ALU_WORD0_SRC0_SEL(alu->src[0].sel) |
1565 S_SQ_ALU_WORD0_SRC0_REL(alu->src[0].rel) |
1566 S_SQ_ALU_WORD0_SRC0_CHAN(alu->src[0].chan) |
1567 S_SQ_ALU_WORD0_SRC0_NEG(alu->src[0].neg) |
1568 S_SQ_ALU_WORD0_SRC1_SEL(alu->src[1].sel) |
1569 S_SQ_ALU_WORD0_SRC1_REL(alu->src[1].rel) |
1570 S_SQ_ALU_WORD0_SRC1_CHAN(alu->src[1].chan) |
1571 S_SQ_ALU_WORD0_SRC1_NEG(alu->src[1].neg) |
1572 S_SQ_ALU_WORD0_INDEX_MODE(alu->index_mode) |
1573 S_SQ_ALU_WORD0_PRED_SEL(alu->pred_sel) |
1574 S_SQ_ALU_WORD0_LAST(alu->last);
1575
1576 if (alu->is_op3) {
1577 assert(!alu->src[0].abs && !alu->src[1].abs && !alu->src[2].abs);
1578 bc->bytecode[id++] = S_SQ_ALU_WORD1_DST_GPR(alu->dst.sel) |
1579 S_SQ_ALU_WORD1_DST_CHAN(alu->dst.chan) |
1580 S_SQ_ALU_WORD1_DST_REL(alu->dst.rel) |
1581 S_SQ_ALU_WORD1_CLAMP(alu->dst.clamp) |
1582 S_SQ_ALU_WORD1_OP3_SRC2_SEL(alu->src[2].sel) |
1583 S_SQ_ALU_WORD1_OP3_SRC2_REL(alu->src[2].rel) |
1584 S_SQ_ALU_WORD1_OP3_SRC2_CHAN(alu->src[2].chan) |
1585 S_SQ_ALU_WORD1_OP3_SRC2_NEG(alu->src[2].neg) |
1586 S_SQ_ALU_WORD1_OP3_ALU_INST(opcode) |
1587 S_SQ_ALU_WORD1_BANK_SWIZZLE(alu->bank_swizzle);
1588 } else {
1589 bc->bytecode[id++] = S_SQ_ALU_WORD1_DST_GPR(alu->dst.sel) |
1590 S_SQ_ALU_WORD1_DST_CHAN(alu->dst.chan) |
1591 S_SQ_ALU_WORD1_DST_REL(alu->dst.rel) |
1592 S_SQ_ALU_WORD1_CLAMP(alu->dst.clamp) |
1593 S_SQ_ALU_WORD1_OP2_SRC0_ABS(alu->src[0].abs) |
1594 S_SQ_ALU_WORD1_OP2_SRC1_ABS(alu->src[1].abs) |
1595 S_SQ_ALU_WORD1_OP2_WRITE_MASK(alu->dst.write) |
1596 S_SQ_ALU_WORD1_OP2_OMOD(alu->omod) |
1597 S_SQ_ALU_WORD1_OP2_ALU_INST(opcode) |
1598 S_SQ_ALU_WORD1_BANK_SWIZZLE(alu->bank_swizzle) |
1599 S_SQ_ALU_WORD1_OP2_UPDATE_EXECUTE_MASK(alu->execute_mask) |
1600 S_SQ_ALU_WORD1_OP2_UPDATE_PRED(alu->update_pred);
1601 }
1602 return 0;
1603 }
1604
1605 static void r600_bytecode_cf_vtx_build(uint32_t *bytecode, const struct r600_bytecode_cf *cf)
1606 {
1607 *bytecode++ = S_SQ_CF_WORD0_ADDR(cf->addr >> 1);
1608 *bytecode++ = S_SQ_CF_WORD1_CF_INST(r600_isa_cf_opcode(ISA_CC_R600, cf->op)) |
1609 S_SQ_CF_WORD1_BARRIER(1) |
1610 S_SQ_CF_WORD1_COUNT((cf->ndw / 4) - 1);
1611 }
1612
1613 /* common for r600/r700 - eg in eg_asm.c */
1614 static int r600_bytecode_cf_build(struct r600_bytecode *bc, struct r600_bytecode_cf *cf)
1615 {
1616 unsigned id = cf->id;
1617 const struct cf_op_info *cfop = r600_isa_cf(cf->op);
1618 unsigned opcode = r600_isa_cf_opcode(bc->isa->hw_class, cf->op);
1619
1620
1621 if (cf->op == CF_NATIVE) {
1622 bc->bytecode[id++] = cf->isa[0];
1623 bc->bytecode[id++] = cf->isa[1];
1624 } else if (cfop->flags & CF_ALU) {
1625 bc->bytecode[id++] = S_SQ_CF_ALU_WORD0_ADDR(cf->addr >> 1) |
1626 S_SQ_CF_ALU_WORD0_KCACHE_MODE0(cf->kcache[0].mode) |
1627 S_SQ_CF_ALU_WORD0_KCACHE_BANK0(cf->kcache[0].bank) |
1628 S_SQ_CF_ALU_WORD0_KCACHE_BANK1(cf->kcache[1].bank);
1629
1630 bc->bytecode[id++] = S_SQ_CF_ALU_WORD1_CF_INST(opcode) |
1631 S_SQ_CF_ALU_WORD1_KCACHE_MODE1(cf->kcache[1].mode) |
1632 S_SQ_CF_ALU_WORD1_KCACHE_ADDR0(cf->kcache[0].addr) |
1633 S_SQ_CF_ALU_WORD1_KCACHE_ADDR1(cf->kcache[1].addr) |
1634 S_SQ_CF_ALU_WORD1_BARRIER(1) |
1635 S_SQ_CF_ALU_WORD1_USES_WATERFALL(bc->chip_class == R600 ? cf->r6xx_uses_waterfall : 0) |
1636 S_SQ_CF_ALU_WORD1_COUNT((cf->ndw / 2) - 1);
1637 } else if (cfop->flags & CF_FETCH) {
1638 if (bc->chip_class == R700)
1639 r700_bytecode_cf_vtx_build(&bc->bytecode[id], cf);
1640 else
1641 r600_bytecode_cf_vtx_build(&bc->bytecode[id], cf);
1642 } else if (cfop->flags & CF_EXP) {
1643 bc->bytecode[id++] = S_SQ_CF_ALLOC_EXPORT_WORD0_RW_GPR(cf->output.gpr) |
1644 S_SQ_CF_ALLOC_EXPORT_WORD0_ELEM_SIZE(cf->output.elem_size) |
1645 S_SQ_CF_ALLOC_EXPORT_WORD0_ARRAY_BASE(cf->output.array_base) |
1646 S_SQ_CF_ALLOC_EXPORT_WORD0_TYPE(cf->output.type) |
1647 S_SQ_CF_ALLOC_EXPORT_WORD0_INDEX_GPR(cf->output.index_gpr);
1648 bc->bytecode[id++] = S_SQ_CF_ALLOC_EXPORT_WORD1_BURST_COUNT(cf->output.burst_count - 1) |
1649 S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_X(cf->output.swizzle_x) |
1650 S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_Y(cf->output.swizzle_y) |
1651 S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_Z(cf->output.swizzle_z) |
1652 S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_W(cf->output.swizzle_w) |
1653 S_SQ_CF_ALLOC_EXPORT_WORD1_BARRIER(cf->barrier) |
1654 S_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(opcode) |
1655 S_SQ_CF_ALLOC_EXPORT_WORD1_END_OF_PROGRAM(cf->end_of_program);
1656 } else if (cfop->flags & CF_MEM) {
1657 bc->bytecode[id++] = S_SQ_CF_ALLOC_EXPORT_WORD0_RW_GPR(cf->output.gpr) |
1658 S_SQ_CF_ALLOC_EXPORT_WORD0_ELEM_SIZE(cf->output.elem_size) |
1659 S_SQ_CF_ALLOC_EXPORT_WORD0_ARRAY_BASE(cf->output.array_base) |
1660 S_SQ_CF_ALLOC_EXPORT_WORD0_TYPE(cf->output.type) |
1661 S_SQ_CF_ALLOC_EXPORT_WORD0_INDEX_GPR(cf->output.index_gpr);
1662 bc->bytecode[id++] = S_SQ_CF_ALLOC_EXPORT_WORD1_BURST_COUNT(cf->output.burst_count - 1) |
1663 S_SQ_CF_ALLOC_EXPORT_WORD1_BARRIER(cf->barrier) |
1664 S_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(opcode) |
1665 S_SQ_CF_ALLOC_EXPORT_WORD1_END_OF_PROGRAM(cf->end_of_program) |
1666 S_SQ_CF_ALLOC_EXPORT_WORD1_BUF_ARRAY_SIZE(cf->output.array_size) |
1667 S_SQ_CF_ALLOC_EXPORT_WORD1_BUF_COMP_MASK(cf->output.comp_mask);
1668 } else {
1669 bc->bytecode[id++] = S_SQ_CF_WORD0_ADDR(cf->cf_addr >> 1);
1670 bc->bytecode[id++] = S_SQ_CF_WORD1_CF_INST(opcode) |
1671 S_SQ_CF_WORD1_BARRIER(1) |
1672 S_SQ_CF_WORD1_COND(cf->cond) |
1673 S_SQ_CF_WORD1_POP_COUNT(cf->pop_count) |
1674 S_SQ_CF_WORD1_END_OF_PROGRAM(cf->end_of_program);
1675 }
1676 return 0;
1677 }
1678
1679 int r600_bytecode_build(struct r600_bytecode *bc)
1680 {
1681 struct r600_bytecode_cf *cf;
1682 struct r600_bytecode_alu *alu;
1683 struct r600_bytecode_vtx *vtx;
1684 struct r600_bytecode_tex *tex;
1685 struct r600_bytecode_gds *gds;
1686 uint32_t literal[4];
1687 unsigned nliteral;
1688 unsigned addr;
1689 int i, r;
1690
1691 if (!bc->nstack) { // If not 0, Stack_size already provided by llvm
1692 if (bc->stack.max_entries)
1693 bc->nstack = bc->stack.max_entries;
1694 else if (bc->type == PIPE_SHADER_VERTEX ||
1695 bc->type == PIPE_SHADER_TESS_EVAL ||
1696 bc->type == PIPE_SHADER_TESS_CTRL)
1697 bc->nstack = 1;
1698 }
1699
1700 /* first path compute addr of each CF block */
1701 /* addr start after all the CF instructions */
1702 addr = bc->cf_last->id + 2;
1703 LIST_FOR_EACH_ENTRY(cf, &bc->cf, list) {
1704 if (r600_isa_cf(cf->op)->flags & CF_FETCH) {
1705 addr += 3;
1706 addr &= 0xFFFFFFFCUL;
1707 }
1708 cf->addr = addr;
1709 addr += cf->ndw;
1710 bc->ndw = cf->addr + cf->ndw;
1711 }
1712 free(bc->bytecode);
1713 bc->bytecode = calloc(4, bc->ndw);
1714 if (bc->bytecode == NULL)
1715 return -ENOMEM;
1716 LIST_FOR_EACH_ENTRY(cf, &bc->cf, list) {
1717 const struct cf_op_info *cfop = r600_isa_cf(cf->op);
1718 addr = cf->addr;
1719 if (bc->chip_class >= EVERGREEN)
1720 r = eg_bytecode_cf_build(bc, cf);
1721 else
1722 r = r600_bytecode_cf_build(bc, cf);
1723 if (r)
1724 return r;
1725 if (cfop->flags & CF_ALU) {
1726 nliteral = 0;
1727 memset(literal, 0, sizeof(literal));
1728 LIST_FOR_EACH_ENTRY(alu, &cf->alu, list) {
1729 r = r600_bytecode_alu_nliterals(bc, alu, literal, &nliteral);
1730 if (r)
1731 return r;
1732 r600_bytecode_alu_adjust_literals(bc, alu, literal, nliteral);
1733 r600_bytecode_assign_kcache_banks(bc, alu, cf->kcache);
1734
1735 switch(bc->chip_class) {
1736 case R600:
1737 r = r600_bytecode_alu_build(bc, alu, addr);
1738 break;
1739 case R700:
1740 r = r700_bytecode_alu_build(bc, alu, addr);
1741 break;
1742 case EVERGREEN:
1743 case CAYMAN:
1744 r = eg_bytecode_alu_build(bc, alu, addr);
1745 break;
1746 default:
1747 R600_ERR("unknown chip class %d.\n", bc->chip_class);
1748 return -EINVAL;
1749 }
1750 if (r)
1751 return r;
1752 addr += 2;
1753 if (alu->last) {
1754 for (i = 0; i < align(nliteral, 2); ++i) {
1755 bc->bytecode[addr++] = literal[i];
1756 }
1757 nliteral = 0;
1758 memset(literal, 0, sizeof(literal));
1759 }
1760 }
1761 } else if (cf->op == CF_OP_VTX) {
1762 LIST_FOR_EACH_ENTRY(vtx, &cf->vtx, list) {
1763 r = r600_bytecode_vtx_build(bc, vtx, addr);
1764 if (r)
1765 return r;
1766 addr += 4;
1767 }
1768 } else if (cf->op == CF_OP_GDS) {
1769 assert(bc->chip_class >= EVERGREEN);
1770 LIST_FOR_EACH_ENTRY(gds, &cf->gds, list) {
1771 r = eg_bytecode_gds_build(bc, gds, addr);
1772 if (r)
1773 return r;
1774 addr += 4;
1775 }
1776 } else if (cf->op == CF_OP_TEX) {
1777 LIST_FOR_EACH_ENTRY(vtx, &cf->vtx, list) {
1778 assert(bc->chip_class >= EVERGREEN);
1779 r = r600_bytecode_vtx_build(bc, vtx, addr);
1780 if (r)
1781 return r;
1782 addr += 4;
1783 }
1784 LIST_FOR_EACH_ENTRY(tex, &cf->tex, list) {
1785 r = r600_bytecode_tex_build(bc, tex, addr);
1786 if (r)
1787 return r;
1788 addr += 4;
1789 }
1790 }
1791 }
1792 return 0;
1793 }
1794
1795 void r600_bytecode_clear(struct r600_bytecode *bc)
1796 {
1797 struct r600_bytecode_cf *cf = NULL, *next_cf;
1798
1799 free(bc->bytecode);
1800 bc->bytecode = NULL;
1801
1802 LIST_FOR_EACH_ENTRY_SAFE(cf, next_cf, &bc->cf, list) {
1803 struct r600_bytecode_alu *alu = NULL, *next_alu;
1804 struct r600_bytecode_tex *tex = NULL, *next_tex;
1805 struct r600_bytecode_tex *vtx = NULL, *next_vtx;
1806 struct r600_bytecode_gds *gds = NULL, *next_gds;
1807
1808 LIST_FOR_EACH_ENTRY_SAFE(alu, next_alu, &cf->alu, list) {
1809 free(alu);
1810 }
1811
1812 LIST_INITHEAD(&cf->alu);
1813
1814 LIST_FOR_EACH_ENTRY_SAFE(tex, next_tex, &cf->tex, list) {
1815 free(tex);
1816 }
1817
1818 LIST_INITHEAD(&cf->tex);
1819
1820 LIST_FOR_EACH_ENTRY_SAFE(vtx, next_vtx, &cf->vtx, list) {
1821 free(vtx);
1822 }
1823
1824 LIST_INITHEAD(&cf->vtx);
1825
1826 LIST_FOR_EACH_ENTRY_SAFE(gds, next_gds, &cf->gds, list) {
1827 free(gds);
1828 }
1829
1830 LIST_INITHEAD(&cf->gds);
1831
1832 free(cf);
1833 }
1834
1835 LIST_INITHEAD(&cf->list);
1836 }
1837
1838 static int print_swizzle(unsigned swz)
1839 {
1840 const char * swzchars = "xyzw01?_";
1841 assert(swz<8 && swz != 6);
1842 return fprintf(stderr, "%c", swzchars[swz]);
1843 }
1844
1845 static int print_sel(unsigned sel, unsigned rel, unsigned index_mode,
1846 unsigned need_brackets)
1847 {
1848 int o = 0;
1849 if (rel && index_mode >= 5 && sel < 128)
1850 o += fprintf(stderr, "G");
1851 if (rel || need_brackets) {
1852 o += fprintf(stderr, "[");
1853 }
1854 o += fprintf(stderr, "%d", sel);
1855 if (rel) {
1856 if (index_mode == 0 || index_mode == 6)
1857 o += fprintf(stderr, "+AR");
1858 else if (index_mode == 4)
1859 o += fprintf(stderr, "+AL");
1860 }
1861 if (rel || need_brackets) {
1862 o += fprintf(stderr, "]");
1863 }
1864 return o;
1865 }
1866
1867 static int print_dst(struct r600_bytecode_alu *alu)
1868 {
1869 int o = 0;
1870 unsigned sel = alu->dst.sel;
1871 char reg_char = 'R';
1872 if (sel > 128 - 4) { /* clause temporary gpr */
1873 sel -= 128 - 4;
1874 reg_char = 'T';
1875 }
1876
1877 if (alu_writes(alu)) {
1878 o += fprintf(stderr, "%c", reg_char);
1879 o += print_sel(alu->dst.sel, alu->dst.rel, alu->index_mode, 0);
1880 } else {
1881 o += fprintf(stderr, "__");
1882 }
1883 o += fprintf(stderr, ".");
1884 o += print_swizzle(alu->dst.chan);
1885 return o;
1886 }
1887
1888 static int print_src(struct r600_bytecode_alu *alu, unsigned idx)
1889 {
1890 int o = 0;
1891 struct r600_bytecode_alu_src *src = &alu->src[idx];
1892 unsigned sel = src->sel, need_sel = 1, need_chan = 1, need_brackets = 0;
1893
1894 if (src->neg)
1895 o += fprintf(stderr,"-");
1896 if (src->abs)
1897 o += fprintf(stderr,"|");
1898
1899 if (sel < 128 - 4) {
1900 o += fprintf(stderr, "R");
1901 } else if (sel < 128) {
1902 o += fprintf(stderr, "T");
1903 sel -= 128 - 4;
1904 } else if (sel < 160) {
1905 o += fprintf(stderr, "KC0");
1906 need_brackets = 1;
1907 sel -= 128;
1908 } else if (sel < 192) {
1909 o += fprintf(stderr, "KC1");
1910 need_brackets = 1;
1911 sel -= 160;
1912 } else if (sel >= 512) {
1913 o += fprintf(stderr, "C%d", src->kc_bank);
1914 need_brackets = 1;
1915 sel -= 512;
1916 } else if (sel >= 448) {
1917 o += fprintf(stderr, "Param");
1918 sel -= 448;
1919 need_chan = 0;
1920 } else if (sel >= 288) {
1921 o += fprintf(stderr, "KC3");
1922 need_brackets = 1;
1923 sel -= 288;
1924 } else if (sel >= 256) {
1925 o += fprintf(stderr, "KC2");
1926 need_brackets = 1;
1927 sel -= 256;
1928 } else {
1929 need_sel = 0;
1930 need_chan = 0;
1931 switch (sel) {
1932 case EG_V_SQ_ALU_SRC_LDS_DIRECT_A:
1933 o += fprintf(stderr, "LDS_A[0x%08X]", src->value);
1934 break;
1935 case EG_V_SQ_ALU_SRC_LDS_DIRECT_B:
1936 o += fprintf(stderr, "LDS_B[0x%08X]", src->value);
1937 break;
1938 case EG_V_SQ_ALU_SRC_LDS_OQ_A:
1939 o += fprintf(stderr, "LDS_OQ_A");
1940 need_chan = 1;
1941 break;
1942 case EG_V_SQ_ALU_SRC_LDS_OQ_B:
1943 o += fprintf(stderr, "LDS_OQ_B");
1944 need_chan = 1;
1945 break;
1946 case EG_V_SQ_ALU_SRC_LDS_OQ_A_POP:
1947 o += fprintf(stderr, "LDS_OQ_A_POP");
1948 need_chan = 1;
1949 break;
1950 case EG_V_SQ_ALU_SRC_LDS_OQ_B_POP:
1951 o += fprintf(stderr, "LDS_OQ_B_POP");
1952 need_chan = 1;
1953 break;
1954 case V_SQ_ALU_SRC_PS:
1955 o += fprintf(stderr, "PS");
1956 break;
1957 case V_SQ_ALU_SRC_PV:
1958 o += fprintf(stderr, "PV");
1959 need_chan = 1;
1960 break;
1961 case V_SQ_ALU_SRC_LITERAL:
1962 o += fprintf(stderr, "[0x%08X %f]", src->value, u_bitcast_u2f(src->value));
1963 break;
1964 case V_SQ_ALU_SRC_0_5:
1965 o += fprintf(stderr, "0.5");
1966 break;
1967 case V_SQ_ALU_SRC_M_1_INT:
1968 o += fprintf(stderr, "-1");
1969 break;
1970 case V_SQ_ALU_SRC_1_INT:
1971 o += fprintf(stderr, "1");
1972 break;
1973 case V_SQ_ALU_SRC_1:
1974 o += fprintf(stderr, "1.0");
1975 break;
1976 case V_SQ_ALU_SRC_0:
1977 o += fprintf(stderr, "0");
1978 break;
1979 default:
1980 o += fprintf(stderr, "??IMM_%d", sel);
1981 break;
1982 }
1983 }
1984
1985 if (need_sel)
1986 o += print_sel(sel, src->rel, alu->index_mode, need_brackets);
1987
1988 if (need_chan) {
1989 o += fprintf(stderr, ".");
1990 o += print_swizzle(src->chan);
1991 }
1992
1993 if (src->abs)
1994 o += fprintf(stderr,"|");
1995
1996 return o;
1997 }
1998
1999 static int print_indent(int p, int c)
2000 {
2001 int o = 0;
2002 while (p++ < c)
2003 o += fprintf(stderr, " ");
2004 return o;
2005 }
2006
2007 void r600_bytecode_disasm(struct r600_bytecode *bc)
2008 {
2009 const char *index_mode[] = {"CF_INDEX_NONE", "CF_INDEX_0", "CF_INDEX_1"};
2010 static int index = 0;
2011 struct r600_bytecode_cf *cf = NULL;
2012 struct r600_bytecode_alu *alu = NULL;
2013 struct r600_bytecode_vtx *vtx = NULL;
2014 struct r600_bytecode_tex *tex = NULL;
2015 struct r600_bytecode_gds *gds = NULL;
2016
2017 unsigned i, id, ngr = 0, last;
2018 uint32_t literal[4];
2019 unsigned nliteral;
2020 char chip = '6';
2021
2022 switch (bc->chip_class) {
2023 case R700:
2024 chip = '7';
2025 break;
2026 case EVERGREEN:
2027 chip = 'E';
2028 break;
2029 case CAYMAN:
2030 chip = 'C';
2031 break;
2032 case R600:
2033 default:
2034 chip = '6';
2035 break;
2036 }
2037 fprintf(stderr, "bytecode %d dw -- %d gprs -- %d nstack -------------\n",
2038 bc->ndw, bc->ngpr, bc->nstack);
2039 fprintf(stderr, "shader %d -- %c\n", index++, chip);
2040
2041 LIST_FOR_EACH_ENTRY(cf, &bc->cf, list) {
2042 id = cf->id;
2043 if (cf->op == CF_NATIVE) {
2044 fprintf(stderr, "%04d %08X %08X CF_NATIVE\n", id, bc->bytecode[id],
2045 bc->bytecode[id + 1]);
2046 } else {
2047 const struct cf_op_info *cfop = r600_isa_cf(cf->op);
2048 if (cfop->flags & CF_ALU) {
2049 if (cf->eg_alu_extended) {
2050 fprintf(stderr, "%04d %08X %08X %s\n", id, bc->bytecode[id],
2051 bc->bytecode[id + 1], "ALU_EXT");
2052 id += 2;
2053 }
2054 fprintf(stderr, "%04d %08X %08X %s ", id, bc->bytecode[id],
2055 bc->bytecode[id + 1], cfop->name);
2056 fprintf(stderr, "%d @%d ", cf->ndw / 2, cf->addr);
2057 for (i = 0; i < 4; ++i) {
2058 if (cf->kcache[i].mode) {
2059 int c_start = (cf->kcache[i].addr << 4);
2060 int c_end = c_start + (cf->kcache[i].mode << 4);
2061 fprintf(stderr, "KC%d[CB%d:%d-%d%s%s] ",
2062 i, cf->kcache[i].bank, c_start, c_end,
2063 cf->kcache[i].index_mode ? " " : "",
2064 cf->kcache[i].index_mode ? index_mode[cf->kcache[i].index_mode] : "");
2065 }
2066 }
2067 fprintf(stderr, "\n");
2068 } else if (cfop->flags & CF_FETCH) {
2069 fprintf(stderr, "%04d %08X %08X %s ", id, bc->bytecode[id],
2070 bc->bytecode[id + 1], cfop->name);
2071 fprintf(stderr, "%d @%d ", cf->ndw / 4, cf->addr);
2072 fprintf(stderr, "\n");
2073 } else if (cfop->flags & CF_EXP) {
2074 int o = 0;
2075 const char *exp_type[] = {"PIXEL", "POS ", "PARAM"};
2076 o += fprintf(stderr, "%04d %08X %08X %s ", id, bc->bytecode[id],
2077 bc->bytecode[id + 1], cfop->name);
2078 o += print_indent(o, 43);
2079 o += fprintf(stderr, "%s ", exp_type[cf->output.type]);
2080 if (cf->output.burst_count > 1) {
2081 o += fprintf(stderr, "%d-%d ", cf->output.array_base,
2082 cf->output.array_base + cf->output.burst_count - 1);
2083
2084 o += print_indent(o, 55);
2085 o += fprintf(stderr, "R%d-%d.", cf->output.gpr,
2086 cf->output.gpr + cf->output.burst_count - 1);
2087 } else {
2088 o += fprintf(stderr, "%d ", cf->output.array_base);
2089 o += print_indent(o, 55);
2090 o += fprintf(stderr, "R%d.", cf->output.gpr);
2091 }
2092
2093 o += print_swizzle(cf->output.swizzle_x);
2094 o += print_swizzle(cf->output.swizzle_y);
2095 o += print_swizzle(cf->output.swizzle_z);
2096 o += print_swizzle(cf->output.swizzle_w);
2097
2098 print_indent(o, 67);
2099
2100 fprintf(stderr, " ES:%X ", cf->output.elem_size);
2101 if (!cf->barrier)
2102 fprintf(stderr, "NO_BARRIER ");
2103 if (cf->end_of_program)
2104 fprintf(stderr, "EOP ");
2105 fprintf(stderr, "\n");
2106 } else if (r600_isa_cf(cf->op)->flags & CF_MEM) {
2107 int o = 0;
2108 const char *exp_type[] = {"WRITE", "WRITE_IND", "WRITE_ACK",
2109 "WRITE_IND_ACK"};
2110 o += fprintf(stderr, "%04d %08X %08X %s ", id,
2111 bc->bytecode[id], bc->bytecode[id + 1], cfop->name);
2112 o += print_indent(o, 43);
2113 o += fprintf(stderr, "%s ", exp_type[cf->output.type]);
2114 if (cf->output.burst_count > 1) {
2115 o += fprintf(stderr, "%d-%d ", cf->output.array_base,
2116 cf->output.array_base + cf->output.burst_count - 1);
2117 o += print_indent(o, 55);
2118 o += fprintf(stderr, "R%d-%d.", cf->output.gpr,
2119 cf->output.gpr + cf->output.burst_count - 1);
2120 } else {
2121 o += fprintf(stderr, "%d ", cf->output.array_base);
2122 o += print_indent(o, 55);
2123 o += fprintf(stderr, "R%d.", cf->output.gpr);
2124 }
2125 for (i = 0; i < 4; ++i) {
2126 if (cf->output.comp_mask & (1 << i))
2127 o += print_swizzle(i);
2128 else
2129 o += print_swizzle(7);
2130 }
2131
2132 if (cf->output.type == V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_WRITE_IND)
2133 o += fprintf(stderr, " R%d", cf->output.index_gpr);
2134
2135 o += print_indent(o, 67);
2136
2137 fprintf(stderr, " ES:%i ", cf->output.elem_size);
2138 if (cf->output.array_size != 0xFFF)
2139 fprintf(stderr, "AS:%i ", cf->output.array_size);
2140 if (!cf->barrier)
2141 fprintf(stderr, "NO_BARRIER ");
2142 if (cf->end_of_program)
2143 fprintf(stderr, "EOP ");
2144 fprintf(stderr, "\n");
2145 } else {
2146 fprintf(stderr, "%04d %08X %08X %s ", id, bc->bytecode[id],
2147 bc->bytecode[id + 1], cfop->name);
2148 fprintf(stderr, "@%d ", cf->cf_addr);
2149 if (cf->cond)
2150 fprintf(stderr, "CND:%X ", cf->cond);
2151 if (cf->pop_count)
2152 fprintf(stderr, "POP:%X ", cf->pop_count);
2153 if (cf->count && (cfop->flags & CF_EMIT))
2154 fprintf(stderr, "STREAM%d ", cf->count);
2155 if (cf->end_of_program)
2156 fprintf(stderr, "EOP ");
2157 fprintf(stderr, "\n");
2158 }
2159 }
2160
2161 id = cf->addr;
2162 nliteral = 0;
2163 last = 1;
2164 LIST_FOR_EACH_ENTRY(alu, &cf->alu, list) {
2165 const char *omod_str[] = {"","*2","*4","/2"};
2166 const struct alu_op_info *aop = r600_isa_alu(alu->op);
2167 int o = 0;
2168
2169 r600_bytecode_alu_nliterals(bc, alu, literal, &nliteral);
2170 o += fprintf(stderr, " %04d %08X %08X ", id, bc->bytecode[id], bc->bytecode[id+1]);
2171 if (last)
2172 o += fprintf(stderr, "%4d ", ++ngr);
2173 else
2174 o += fprintf(stderr, " ");
2175 o += fprintf(stderr, "%c%c %c ", alu->execute_mask ? 'M':' ',
2176 alu->update_pred ? 'P':' ',
2177 alu->pred_sel ? alu->pred_sel==2 ? '0':'1':' ');
2178
2179 o += fprintf(stderr, "%s%s%s ", aop->name,
2180 omod_str[alu->omod], alu->dst.clamp ? "_sat":"");
2181
2182 o += print_indent(o,60);
2183 o += print_dst(alu);
2184 for (i = 0; i < aop->src_count; ++i) {
2185 o += fprintf(stderr, i == 0 ? ", ": ", ");
2186 o += print_src(alu, i);
2187 }
2188
2189 if (alu->bank_swizzle) {
2190 o += print_indent(o,75);
2191 o += fprintf(stderr, " BS:%d", alu->bank_swizzle);
2192 }
2193
2194 fprintf(stderr, "\n");
2195 id += 2;
2196
2197 if (alu->last) {
2198 for (i = 0; i < nliteral; i++, id++) {
2199 float *f = (float*)(bc->bytecode + id);
2200 o = fprintf(stderr, " %04d %08X", id, bc->bytecode[id]);
2201 print_indent(o, 60);
2202 fprintf(stderr, " %f (%d)\n", *f, *(bc->bytecode + id));
2203 }
2204 id += nliteral & 1;
2205 nliteral = 0;
2206 }
2207 last = alu->last;
2208 }
2209
2210 LIST_FOR_EACH_ENTRY(tex, &cf->tex, list) {
2211 int o = 0;
2212 o += fprintf(stderr, " %04d %08X %08X %08X ", id, bc->bytecode[id],
2213 bc->bytecode[id + 1], bc->bytecode[id + 2]);
2214
2215 o += fprintf(stderr, "%s ", r600_isa_fetch(tex->op)->name);
2216
2217 o += print_indent(o, 50);
2218
2219 o += fprintf(stderr, "R%d.", tex->dst_gpr);
2220 o += print_swizzle(tex->dst_sel_x);
2221 o += print_swizzle(tex->dst_sel_y);
2222 o += print_swizzle(tex->dst_sel_z);
2223 o += print_swizzle(tex->dst_sel_w);
2224
2225 o += fprintf(stderr, ", R%d.", tex->src_gpr);
2226 o += print_swizzle(tex->src_sel_x);
2227 o += print_swizzle(tex->src_sel_y);
2228 o += print_swizzle(tex->src_sel_z);
2229 o += print_swizzle(tex->src_sel_w);
2230
2231 o += fprintf(stderr, ", RID:%d", tex->resource_id);
2232 o += fprintf(stderr, ", SID:%d ", tex->sampler_id);
2233
2234 if (tex->sampler_index_mode)
2235 fprintf(stderr, "SQ_%s ", index_mode[tex->sampler_index_mode]);
2236
2237 if (tex->lod_bias)
2238 fprintf(stderr, "LB:%d ", tex->lod_bias);
2239
2240 fprintf(stderr, "CT:%c%c%c%c ",
2241 tex->coord_type_x ? 'N' : 'U',
2242 tex->coord_type_y ? 'N' : 'U',
2243 tex->coord_type_z ? 'N' : 'U',
2244 tex->coord_type_w ? 'N' : 'U');
2245
2246 if (tex->offset_x)
2247 fprintf(stderr, "OX:%d ", tex->offset_x);
2248 if (tex->offset_y)
2249 fprintf(stderr, "OY:%d ", tex->offset_y);
2250 if (tex->offset_z)
2251 fprintf(stderr, "OZ:%d ", tex->offset_z);
2252
2253 id += 4;
2254 fprintf(stderr, "\n");
2255 }
2256
2257 LIST_FOR_EACH_ENTRY(vtx, &cf->vtx, list) {
2258 int o = 0;
2259 const char * fetch_type[] = {"VERTEX", "INSTANCE", ""};
2260 o += fprintf(stderr, " %04d %08X %08X %08X ", id, bc->bytecode[id],
2261 bc->bytecode[id + 1], bc->bytecode[id + 2]);
2262
2263 o += fprintf(stderr, "%s ", r600_isa_fetch(vtx->op)->name);
2264
2265 o += print_indent(o, 50);
2266
2267 o += fprintf(stderr, "R%d.", vtx->dst_gpr);
2268 o += print_swizzle(vtx->dst_sel_x);
2269 o += print_swizzle(vtx->dst_sel_y);
2270 o += print_swizzle(vtx->dst_sel_z);
2271 o += print_swizzle(vtx->dst_sel_w);
2272
2273 o += fprintf(stderr, ", R%d.", vtx->src_gpr);
2274 o += print_swizzle(vtx->src_sel_x);
2275
2276 if (vtx->offset)
2277 fprintf(stderr, " +%db", vtx->offset);
2278
2279 o += print_indent(o, 55);
2280
2281 fprintf(stderr, ", RID:%d ", vtx->buffer_id);
2282
2283 fprintf(stderr, "%s ", fetch_type[vtx->fetch_type]);
2284
2285 if (bc->chip_class < CAYMAN && vtx->mega_fetch_count)
2286 fprintf(stderr, "MFC:%d ", vtx->mega_fetch_count);
2287
2288 if (bc->chip_class >= EVERGREEN && vtx->buffer_index_mode)
2289 fprintf(stderr, "SQ_%s ", index_mode[vtx->buffer_index_mode]);
2290
2291 fprintf(stderr, "UCF:%d ", vtx->use_const_fields);
2292 fprintf(stderr, "FMT(DTA:%d ", vtx->data_format);
2293 fprintf(stderr, "NUM:%d ", vtx->num_format_all);
2294 fprintf(stderr, "COMP:%d ", vtx->format_comp_all);
2295 fprintf(stderr, "MODE:%d)\n", vtx->srf_mode_all);
2296
2297 id += 4;
2298 }
2299
2300 LIST_FOR_EACH_ENTRY(gds, &cf->gds, list) {
2301 int o = 0;
2302 o += fprintf(stderr, " %04d %08X %08X %08X ", id, bc->bytecode[id],
2303 bc->bytecode[id + 1], bc->bytecode[id + 2]);
2304
2305 o += fprintf(stderr, "%s ", r600_isa_fetch(gds->op)->name);
2306
2307 if (gds->op != FETCH_OP_TF_WRITE) {
2308 o += fprintf(stderr, "R%d.", gds->dst_gpr);
2309 o += print_swizzle(gds->dst_sel_x);
2310 o += print_swizzle(gds->dst_sel_y);
2311 o += print_swizzle(gds->dst_sel_z);
2312 o += print_swizzle(gds->dst_sel_w);
2313 }
2314
2315 o += fprintf(stderr, ", R%d.", gds->src_gpr);
2316 o += print_swizzle(gds->src_sel_x);
2317 o += print_swizzle(gds->src_sel_y);
2318 o += print_swizzle(gds->src_sel_z);
2319
2320 if (gds->op != FETCH_OP_TF_WRITE) {
2321 o += fprintf(stderr, ", R%d.", gds->src_gpr2);
2322 }
2323 fprintf(stderr, "\n");
2324 id += 4;
2325 }
2326 }
2327
2328 fprintf(stderr, "--------------------------------------\n");
2329 }
2330
2331 void r600_vertex_data_type(enum pipe_format pformat,
2332 unsigned *format,
2333 unsigned *num_format, unsigned *format_comp, unsigned *endian)
2334 {
2335 const struct util_format_description *desc;
2336 unsigned i;
2337
2338 *format = 0;
2339 *num_format = 0;
2340 *format_comp = 0;
2341 *endian = ENDIAN_NONE;
2342
2343 if (pformat == PIPE_FORMAT_R11G11B10_FLOAT) {
2344 *format = FMT_10_11_11_FLOAT;
2345 *endian = r600_endian_swap(32);
2346 return;
2347 }
2348
2349 if (pformat == PIPE_FORMAT_B5G6R5_UNORM) {
2350 *format = FMT_5_6_5;
2351 *endian = r600_endian_swap(16);
2352 return;
2353 }
2354
2355 desc = util_format_description(pformat);
2356 if (desc->layout != UTIL_FORMAT_LAYOUT_PLAIN) {
2357 goto out_unknown;
2358 }
2359
2360 /* Find the first non-VOID channel. */
2361 for (i = 0; i < 4; i++) {
2362 if (desc->channel[i].type != UTIL_FORMAT_TYPE_VOID) {
2363 break;
2364 }
2365 }
2366
2367 *endian = r600_endian_swap(desc->channel[i].size);
2368
2369 switch (desc->channel[i].type) {
2370 /* Half-floats, floats, ints */
2371 case UTIL_FORMAT_TYPE_FLOAT:
2372 switch (desc->channel[i].size) {
2373 case 16:
2374 switch (desc->nr_channels) {
2375 case 1:
2376 *format = FMT_16_FLOAT;
2377 break;
2378 case 2:
2379 *format = FMT_16_16_FLOAT;
2380 break;
2381 case 3:
2382 case 4:
2383 *format = FMT_16_16_16_16_FLOAT;
2384 break;
2385 }
2386 break;
2387 case 32:
2388 switch (desc->nr_channels) {
2389 case 1:
2390 *format = FMT_32_FLOAT;
2391 break;
2392 case 2:
2393 *format = FMT_32_32_FLOAT;
2394 break;
2395 case 3:
2396 *format = FMT_32_32_32_FLOAT;
2397 break;
2398 case 4:
2399 *format = FMT_32_32_32_32_FLOAT;
2400 break;
2401 }
2402 break;
2403 default:
2404 goto out_unknown;
2405 }
2406 break;
2407 /* Unsigned ints */
2408 case UTIL_FORMAT_TYPE_UNSIGNED:
2409 /* Signed ints */
2410 case UTIL_FORMAT_TYPE_SIGNED:
2411 switch (desc->channel[i].size) {
2412 case 8:
2413 switch (desc->nr_channels) {
2414 case 1:
2415 *format = FMT_8;
2416 break;
2417 case 2:
2418 *format = FMT_8_8;
2419 break;
2420 case 3:
2421 case 4:
2422 *format = FMT_8_8_8_8;
2423 break;
2424 }
2425 break;
2426 case 10:
2427 if (desc->nr_channels != 4)
2428 goto out_unknown;
2429
2430 *format = FMT_2_10_10_10;
2431 break;
2432 case 16:
2433 switch (desc->nr_channels) {
2434 case 1:
2435 *format = FMT_16;
2436 break;
2437 case 2:
2438 *format = FMT_16_16;
2439 break;
2440 case 3:
2441 case 4:
2442 *format = FMT_16_16_16_16;
2443 break;
2444 }
2445 break;
2446 case 32:
2447 switch (desc->nr_channels) {
2448 case 1:
2449 *format = FMT_32;
2450 break;
2451 case 2:
2452 *format = FMT_32_32;
2453 break;
2454 case 3:
2455 *format = FMT_32_32_32;
2456 break;
2457 case 4:
2458 *format = FMT_32_32_32_32;
2459 break;
2460 }
2461 break;
2462 default:
2463 goto out_unknown;
2464 }
2465 break;
2466 default:
2467 goto out_unknown;
2468 }
2469
2470 if (desc->channel[i].type == UTIL_FORMAT_TYPE_SIGNED) {
2471 *format_comp = 1;
2472 }
2473
2474 *num_format = 0;
2475 if (desc->channel[i].type == UTIL_FORMAT_TYPE_UNSIGNED ||
2476 desc->channel[i].type == UTIL_FORMAT_TYPE_SIGNED) {
2477 if (!desc->channel[i].normalized) {
2478 if (desc->channel[i].pure_integer)
2479 *num_format = 1;
2480 else
2481 *num_format = 2;
2482 }
2483 }
2484 return;
2485 out_unknown:
2486 R600_ERR("unsupported vertex format %s\n", util_format_name(pformat));
2487 }
2488
2489 void *r600_create_vertex_fetch_shader(struct pipe_context *ctx,
2490 unsigned count,
2491 const struct pipe_vertex_element *elements)
2492 {
2493 struct r600_context *rctx = (struct r600_context *)ctx;
2494 struct r600_bytecode bc;
2495 struct r600_bytecode_vtx vtx;
2496 const struct util_format_description *desc;
2497 unsigned fetch_resource_start = rctx->b.chip_class >= EVERGREEN ? 0 : 160;
2498 unsigned format, num_format, format_comp, endian;
2499 uint32_t *bytecode;
2500 int i, j, r, fs_size;
2501 struct r600_fetch_shader *shader;
2502 unsigned no_sb = rctx->screen->b.debug_flags & DBG_NO_SB;
2503 unsigned sb_disasm = !no_sb || (rctx->screen->b.debug_flags & DBG_SB_DISASM);
2504
2505 assert(count < 32);
2506
2507 memset(&bc, 0, sizeof(bc));
2508 r600_bytecode_init(&bc, rctx->b.chip_class, rctx->b.family,
2509 rctx->screen->has_compressed_msaa_texturing);
2510
2511 bc.isa = rctx->isa;
2512
2513 for (i = 0; i < count; i++) {
2514 if (elements[i].instance_divisor > 1) {
2515 if (rctx->b.chip_class == CAYMAN) {
2516 for (j = 0; j < 4; j++) {
2517 struct r600_bytecode_alu alu;
2518 memset(&alu, 0, sizeof(alu));
2519 alu.op = ALU_OP2_MULHI_UINT;
2520 alu.src[0].sel = 0;
2521 alu.src[0].chan = 3;
2522 alu.src[1].sel = V_SQ_ALU_SRC_LITERAL;
2523 alu.src[1].value = (1ll << 32) / elements[i].instance_divisor + 1;
2524 alu.dst.sel = i + 1;
2525 alu.dst.chan = j;
2526 alu.dst.write = j == 3;
2527 alu.last = j == 3;
2528 if ((r = r600_bytecode_add_alu(&bc, &alu))) {
2529 r600_bytecode_clear(&bc);
2530 return NULL;
2531 }
2532 }
2533 } else {
2534 struct r600_bytecode_alu alu;
2535 memset(&alu, 0, sizeof(alu));
2536 alu.op = ALU_OP2_MULHI_UINT;
2537 alu.src[0].sel = 0;
2538 alu.src[0].chan = 3;
2539 alu.src[1].sel = V_SQ_ALU_SRC_LITERAL;
2540 alu.src[1].value = (1ll << 32) / elements[i].instance_divisor + 1;
2541 alu.dst.sel = i + 1;
2542 alu.dst.chan = 3;
2543 alu.dst.write = 1;
2544 alu.last = 1;
2545 if ((r = r600_bytecode_add_alu(&bc, &alu))) {
2546 r600_bytecode_clear(&bc);
2547 return NULL;
2548 }
2549 }
2550 }
2551 }
2552
2553 for (i = 0; i < count; i++) {
2554 r600_vertex_data_type(elements[i].src_format,
2555 &format, &num_format, &format_comp, &endian);
2556
2557 desc = util_format_description(elements[i].src_format);
2558 if (!desc) {
2559 r600_bytecode_clear(&bc);
2560 R600_ERR("unknown format %d\n", elements[i].src_format);
2561 return NULL;
2562 }
2563
2564 if (elements[i].src_offset > 65535) {
2565 r600_bytecode_clear(&bc);
2566 R600_ERR("too big src_offset: %u\n", elements[i].src_offset);
2567 return NULL;
2568 }
2569
2570 memset(&vtx, 0, sizeof(vtx));
2571 vtx.buffer_id = elements[i].vertex_buffer_index + fetch_resource_start;
2572 vtx.fetch_type = elements[i].instance_divisor ? SQ_VTX_FETCH_INSTANCE_DATA : SQ_VTX_FETCH_VERTEX_DATA;
2573 vtx.src_gpr = elements[i].instance_divisor > 1 ? i + 1 : 0;
2574 vtx.src_sel_x = elements[i].instance_divisor ? 3 : 0;
2575 vtx.mega_fetch_count = 0x1F;
2576 vtx.dst_gpr = i + 1;
2577 vtx.dst_sel_x = desc->swizzle[0];
2578 vtx.dst_sel_y = desc->swizzle[1];
2579 vtx.dst_sel_z = desc->swizzle[2];
2580 vtx.dst_sel_w = desc->swizzle[3];
2581 vtx.data_format = format;
2582 vtx.num_format_all = num_format;
2583 vtx.format_comp_all = format_comp;
2584 vtx.offset = elements[i].src_offset;
2585 vtx.endian = endian;
2586
2587 if ((r = r600_bytecode_add_vtx(&bc, &vtx))) {
2588 r600_bytecode_clear(&bc);
2589 return NULL;
2590 }
2591 }
2592
2593 r600_bytecode_add_cfinst(&bc, CF_OP_RET);
2594
2595 if ((r = r600_bytecode_build(&bc))) {
2596 r600_bytecode_clear(&bc);
2597 return NULL;
2598 }
2599
2600 if (rctx->screen->b.debug_flags & DBG_FS) {
2601 fprintf(stderr, "--------------------------------------------------------------\n");
2602 fprintf(stderr, "Vertex elements state:\n");
2603 for (i = 0; i < count; i++) {
2604 fprintf(stderr, " ");
2605 util_dump_vertex_element(stderr, elements+i);
2606 fprintf(stderr, "\n");
2607 }
2608
2609 if (!sb_disasm) {
2610 r600_bytecode_disasm(&bc);
2611
2612 fprintf(stderr, "______________________________________________________________\n");
2613 } else {
2614 r600_sb_bytecode_process(rctx, &bc, NULL, 1 /*dump*/, 0 /*optimize*/);
2615 }
2616 }
2617
2618 fs_size = bc.ndw*4;
2619
2620 /* Allocate the CSO. */
2621 shader = CALLOC_STRUCT(r600_fetch_shader);
2622 if (!shader) {
2623 r600_bytecode_clear(&bc);
2624 return NULL;
2625 }
2626
2627 u_suballocator_alloc(rctx->allocator_fetch_shader, fs_size, 256,
2628 &shader->offset,
2629 (struct pipe_resource**)&shader->buffer);
2630 if (!shader->buffer) {
2631 r600_bytecode_clear(&bc);
2632 FREE(shader);
2633 return NULL;
2634 }
2635
2636 bytecode = r600_buffer_map_sync_with_rings(&rctx->b, shader->buffer, PIPE_TRANSFER_WRITE | PIPE_TRANSFER_UNSYNCHRONIZED);
2637 bytecode += shader->offset / 4;
2638
2639 if (R600_BIG_ENDIAN) {
2640 for (i = 0; i < fs_size / 4; ++i) {
2641 bytecode[i] = util_cpu_to_le32(bc.bytecode[i]);
2642 }
2643 } else {
2644 memcpy(bytecode, bc.bytecode, fs_size);
2645 }
2646 rctx->b.ws->buffer_unmap(shader->buffer->buf);
2647
2648 r600_bytecode_clear(&bc);
2649 return shader;
2650 }
2651
2652 void r600_bytecode_alu_read(struct r600_bytecode *bc,
2653 struct r600_bytecode_alu *alu, uint32_t word0, uint32_t word1)
2654 {
2655 /* WORD0 */
2656 alu->src[0].sel = G_SQ_ALU_WORD0_SRC0_SEL(word0);
2657 alu->src[0].rel = G_SQ_ALU_WORD0_SRC0_REL(word0);
2658 alu->src[0].chan = G_SQ_ALU_WORD0_SRC0_CHAN(word0);
2659 alu->src[0].neg = G_SQ_ALU_WORD0_SRC0_NEG(word0);
2660 alu->src[1].sel = G_SQ_ALU_WORD0_SRC1_SEL(word0);
2661 alu->src[1].rel = G_SQ_ALU_WORD0_SRC1_REL(word0);
2662 alu->src[1].chan = G_SQ_ALU_WORD0_SRC1_CHAN(word0);
2663 alu->src[1].neg = G_SQ_ALU_WORD0_SRC1_NEG(word0);
2664 alu->index_mode = G_SQ_ALU_WORD0_INDEX_MODE(word0);
2665 alu->pred_sel = G_SQ_ALU_WORD0_PRED_SEL(word0);
2666 alu->last = G_SQ_ALU_WORD0_LAST(word0);
2667
2668 /* WORD1 */
2669 alu->bank_swizzle = G_SQ_ALU_WORD1_BANK_SWIZZLE(word1);
2670 if (alu->bank_swizzle)
2671 alu->bank_swizzle_force = alu->bank_swizzle;
2672 alu->dst.sel = G_SQ_ALU_WORD1_DST_GPR(word1);
2673 alu->dst.rel = G_SQ_ALU_WORD1_DST_REL(word1);
2674 alu->dst.chan = G_SQ_ALU_WORD1_DST_CHAN(word1);
2675 alu->dst.clamp = G_SQ_ALU_WORD1_CLAMP(word1);
2676 if (G_SQ_ALU_WORD1_ENCODING(word1)) /*ALU_DWORD1_OP3*/
2677 {
2678 alu->is_op3 = 1;
2679 alu->src[2].sel = G_SQ_ALU_WORD1_OP3_SRC2_SEL(word1);
2680 alu->src[2].rel = G_SQ_ALU_WORD1_OP3_SRC2_REL(word1);
2681 alu->src[2].chan = G_SQ_ALU_WORD1_OP3_SRC2_CHAN(word1);
2682 alu->src[2].neg = G_SQ_ALU_WORD1_OP3_SRC2_NEG(word1);
2683 alu->op = r600_isa_alu_by_opcode(bc->isa,
2684 G_SQ_ALU_WORD1_OP3_ALU_INST(word1), /* is_op3 = */ 1);
2685
2686 }
2687 else /*ALU_DWORD1_OP2*/
2688 {
2689 alu->src[0].abs = G_SQ_ALU_WORD1_OP2_SRC0_ABS(word1);
2690 alu->src[1].abs = G_SQ_ALU_WORD1_OP2_SRC1_ABS(word1);
2691 alu->op = r600_isa_alu_by_opcode(bc->isa,
2692 G_SQ_ALU_WORD1_OP2_ALU_INST(word1), /* is_op3 = */ 0);
2693 alu->omod = G_SQ_ALU_WORD1_OP2_OMOD(word1);
2694 alu->dst.write = G_SQ_ALU_WORD1_OP2_WRITE_MASK(word1);
2695 alu->update_pred = G_SQ_ALU_WORD1_OP2_UPDATE_PRED(word1);
2696 alu->execute_mask =
2697 G_SQ_ALU_WORD1_OP2_UPDATE_EXECUTE_MASK(word1);
2698 }
2699 }
2700
2701 #if 0
2702 void r600_bytecode_export_read(struct r600_bytecode *bc,
2703 struct r600_bytecode_output *output, uint32_t word0, uint32_t word1)
2704 {
2705 output->array_base = G_SQ_CF_ALLOC_EXPORT_WORD0_ARRAY_BASE(word0);
2706 output->type = G_SQ_CF_ALLOC_EXPORT_WORD0_TYPE(word0);
2707 output->gpr = G_SQ_CF_ALLOC_EXPORT_WORD0_RW_GPR(word0);
2708 output->elem_size = G_SQ_CF_ALLOC_EXPORT_WORD0_ELEM_SIZE(word0);
2709
2710 output->swizzle_x = G_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_X(word1);
2711 output->swizzle_y = G_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_Y(word1);
2712 output->swizzle_z = G_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_Z(word1);
2713 output->swizzle_w = G_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_W(word1);
2714 output->burst_count = G_SQ_CF_ALLOC_EXPORT_WORD1_BURST_COUNT(word1);
2715 output->end_of_program = G_SQ_CF_ALLOC_EXPORT_WORD1_END_OF_PROGRAM(word1);
2716 output->op = r600_isa_cf_by_opcode(bc->isa,
2717 G_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(word1), 0);
2718 output->barrier = G_SQ_CF_ALLOC_EXPORT_WORD1_BARRIER(word1);
2719 output->array_size = G_SQ_CF_ALLOC_EXPORT_WORD1_BUF_ARRAY_SIZE(word1);
2720 output->comp_mask = G_SQ_CF_ALLOC_EXPORT_WORD1_BUF_COMP_MASK(word1);
2721 }
2722 #endif