radeonsi: Fix sampler views for depth textures.
[mesa.git] / src / gallium / drivers / radeon / R600Instructions.td
1 //===-- R600Instructions.td - R600 Instruction defs -------*- tablegen -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // R600 Tablegen instruction definitions
11 //
12 //===----------------------------------------------------------------------===//
13
14 include "R600Intrinsics.td"
15
16 class InstR600 <bits<11> inst, dag outs, dag ins, string asm, list<dag> pattern,
17 InstrItinClass itin>
18 : AMDGPUInst <outs, ins, asm, pattern> {
19
20 field bits<64> Inst;
21 bit Trig = 0;
22 bit Op3 = 0;
23 bit isVector = 0;
24 bits<2> FlagOperandIdx = 0;
25
26 bits<11> op_code = inst;
27 //let Inst = inst;
28 let Namespace = "AMDGPU";
29 let OutOperandList = outs;
30 let InOperandList = ins;
31 let AsmString = asm;
32 let Pattern = pattern;
33 let Itinerary = itin;
34
35 let TSFlags{4} = Trig;
36 let TSFlags{5} = Op3;
37
38 // Vector instructions are instructions that must fill all slots in an
39 // instruction group
40 let TSFlags{6} = isVector;
41 let TSFlags{8-7} = FlagOperandIdx;
42 }
43
44 class InstR600ISA <dag outs, dag ins, string asm, list<dag> pattern> :
45 AMDGPUInst <outs, ins, asm, pattern>
46 {
47 field bits<64> Inst;
48
49 let Namespace = "AMDGPU";
50 }
51
52 def MEMxi : Operand<iPTR> {
53 let MIOperandInfo = (ops R600_TReg32_X:$ptr, i32imm:$index);
54 }
55
56 def MEMrr : Operand<iPTR> {
57 let MIOperandInfo = (ops R600_Reg32:$ptr, R600_Reg32:$index);
58 }
59
60 def ADDRParam : ComplexPattern<i32, 2, "SelectADDRParam", [], []>;
61 def ADDRDWord : ComplexPattern<i32, 1, "SelectADDRDWord", [], []>;
62 def ADDRVTX_READ : ComplexPattern<i32, 2, "SelectADDRVTX_READ", [], []>;
63
64 class R600_ALU {
65
66 bits<7> DST_GPR = 0;
67 bits<9> SRC0_SEL = 0;
68 bits<1> SRC0_NEG = 0;
69 bits<9> SRC1_SEL = 0;
70 bits<1> SRC1_NEG = 0;
71 bits<1> CLAMP = 0;
72
73 }
74
75 def R600_Pred : PredicateOperand<i32, (ops R600_Predicate),
76 (ops PRED_SEL_OFF)>;
77
78
79 class R600_1OP <bits<11> inst, string opName, list<dag> pattern,
80 InstrItinClass itin = AnyALU> :
81 InstR600 <inst,
82 (outs R600_Reg32:$dst),
83 (ins R600_Reg32:$src, R600_Pred:$p, variable_ops),
84 !strconcat(opName, " $dst, $src ($p)"),
85 pattern,
86 itin>{
87 bits<7> dst;
88 bits<9> src;
89 let Inst{8-0} = src;
90 let Inst{49-39} = inst;
91 let Inst{59-53} = dst;
92 }
93
94 class R600_2OP <bits<11> inst, string opName, list<dag> pattern,
95 InstrItinClass itin = AnyALU> :
96 InstR600 <inst,
97 (outs R600_Reg32:$dst),
98 (ins R600_Reg32:$src0, R600_Reg32:$src1,R600_Pred:$p, variable_ops),
99 !strconcat(opName, " $dst, $src0, $src1"),
100 pattern,
101 itin>{
102 bits<7> dst;
103 bits<9> src0;
104 bits<9> src1;
105 let Inst{8-0} = src0;
106 let Inst{21-13} = src1;
107 let Inst{49-39} = inst;
108 let Inst{59-53} = dst;
109 }
110
111 class R600_3OP <bits<11> inst, string opName, list<dag> pattern,
112 InstrItinClass itin = AnyALU> :
113 InstR600 <inst,
114 (outs R600_Reg32:$dst),
115 (ins R600_Reg32:$src0, R600_Reg32:$src1, R600_Reg32:$src2,R600_Pred:$p, variable_ops),
116 !strconcat(opName, " $dst, $src0, $src1, $src2"),
117 pattern,
118 itin>{
119 bits<7> dst;
120 bits<9> src0;
121 bits<9> src1;
122 bits<9> src2;
123 let Inst{8-0} = src0;
124 let Inst{21-13} = src1;
125 let Inst{40-32} = src2;
126 let Inst{49-45} = inst{4-0};
127 let Inst{59-53} = dst;
128 let Op3 = 1;
129 }
130
131
132
133 def PRED_X : InstR600 <0, (outs R600_Predicate_Bit:$dst),
134 (ins R600_Reg32:$src0, i32imm:$src1, i32imm:$flags),
135 "PRED $dst, $src0, $src1",
136 [], NullALU>
137 {
138 bits<7> dst;
139 bits<9> src0;
140 bits<11> src1;
141 let Inst{8-0} = src0;
142 let Inst{49-39} = src1;
143 let Inst{59-53} = dst;
144 let FlagOperandIdx = 3;
145 }
146
147 let isTerminator = 1, isBranch = 1, isPseudo = 1 in {
148 def JUMP : InstR600 <0x10,
149 (outs),
150 (ins brtarget:$target, R600_Pred:$p),
151 "JUMP $target ($p)",
152 [], AnyALU
153 >;
154 }
155
156 class R600_REDUCTION <bits<11> inst, dag ins, string asm, list<dag> pattern,
157 InstrItinClass itin = VecALU> :
158 InstR600 <inst,
159 (outs R600_Reg32:$dst),
160 ins,
161 asm,
162 pattern,
163 itin>{
164 bits<7> dst;
165 let Inst{49-39} = inst;
166 let Inst{59-53} = dst;
167 }
168
169 class R600_TEX <bits<11> inst, string opName, list<dag> pattern,
170 InstrItinClass itin = AnyALU> :
171 InstR600 <inst,
172 (outs R600_Reg128:$dst),
173 (ins R600_Reg128:$src0, i32imm:$src1, i32imm:$src2),
174 !strconcat(opName, "$dst, $src0, $src1, $src2"),
175 pattern,
176 itin>{
177 let Inst {10-0} = inst;
178 }
179
180 def TEX_SHADOW : PatLeaf<
181 (imm),
182 [{uint32_t TType = (uint32_t)N->getZExtValue();
183 return (TType >= 6 && TType <= 8) || TType == 11 || TType == 12;
184 }]
185 >;
186
187 class EG_CF_RAT <bits <8> cf_inst, bits <6> rat_inst, bits<4> rat_id, dag outs,
188 dag ins, string asm, list<dag> pattern> :
189 InstR600ISA <outs, ins, asm, pattern>
190 {
191 bits<7> RW_GPR;
192 bits<7> INDEX_GPR;
193
194 bits<2> RIM;
195 bits<2> TYPE;
196 bits<1> RW_REL;
197 bits<2> ELEM_SIZE;
198
199 bits<12> ARRAY_SIZE;
200 bits<4> COMP_MASK;
201 bits<4> BURST_COUNT;
202 bits<1> VPM;
203 bits<1> eop;
204 bits<1> MARK;
205 bits<1> BARRIER;
206
207 // CF_ALLOC_EXPORT_WORD0_RAT
208 let Inst{3-0} = rat_id;
209 let Inst{9-4} = rat_inst;
210 let Inst{10} = 0; // Reserved
211 let Inst{12-11} = RIM;
212 let Inst{14-13} = TYPE;
213 let Inst{21-15} = RW_GPR;
214 let Inst{22} = RW_REL;
215 let Inst{29-23} = INDEX_GPR;
216 let Inst{31-30} = ELEM_SIZE;
217
218 // CF_ALLOC_EXPORT_WORD1_BUF
219 let Inst{43-32} = ARRAY_SIZE;
220 let Inst{47-44} = COMP_MASK;
221 let Inst{51-48} = BURST_COUNT;
222 let Inst{52} = VPM;
223 let Inst{53} = eop;
224 let Inst{61-54} = cf_inst;
225 let Inst{62} = MARK;
226 let Inst{63} = BARRIER;
227 }
228
229 def load_param : PatFrag<(ops node:$ptr),
230 (load node:$ptr),
231 [{
232 const Value *Src = cast<LoadSDNode>(N)->getSrcValue();
233 if (Src) {
234 PointerType * PT = dyn_cast<PointerType>(Src->getType());
235 return PT && PT->getAddressSpace() == AMDGPUAS::PARAM_I_ADDRESS;
236 }
237 return false;
238 }]>;
239
240 def isR600 : Predicate<"Subtarget.device()"
241 "->getGeneration() == AMDGPUDeviceInfo::HD4XXX">;
242 def isR700 : Predicate<"Subtarget.device()"
243 "->getGeneration() == AMDGPUDeviceInfo::HD4XXX &&"
244 "Subtarget.device()->getDeviceFlag()"
245 ">= OCL_DEVICE_RV710">;
246 def isEG : Predicate<
247 "Subtarget.device()->getGeneration() >= AMDGPUDeviceInfo::HD5XXX && "
248 "Subtarget.device()->getGeneration() < AMDGPUDeviceInfo::HD7XXX && "
249 "Subtarget.device()->getDeviceFlag() != OCL_DEVICE_CAYMAN">;
250
251 def isCayman : Predicate<"Subtarget.device()"
252 "->getDeviceFlag() == OCL_DEVICE_CAYMAN">;
253 def isEGorCayman : Predicate<"Subtarget.device()"
254 "->getGeneration() == AMDGPUDeviceInfo::HD5XXX"
255 "|| Subtarget.device()->getGeneration() =="
256 "AMDGPUDeviceInfo::HD6XXX">;
257
258 def isR600toCayman : Predicate<
259 "Subtarget.device()->getGeneration() <= AMDGPUDeviceInfo::HD6XXX">;
260
261 //===----------------------------------------------------------------------===//
262 // Interpolation Instructions
263 //===----------------------------------------------------------------------===//
264
265 def INTERP: SDNode<"AMDGPUISD::INTERP",
266 SDTypeProfile<1, 2, [SDTCisFP<0>, SDTCisInt<1>, SDTCisInt<2>]>
267 >;
268
269 def INTERP_P0: SDNode<"AMDGPUISD::INTERP_P0",
270 SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisInt<1>]>
271 >;
272
273 let usesCustomInserter = 1 in {
274 def input_perspective : AMDGPUShaderInst <
275 (outs R600_Reg128:$dst),
276 (ins i32imm:$src0, i32imm:$src1),
277 "input_perspective $src0 $src1 : dst",
278 [(set R600_Reg128:$dst, (INTERP (i32 imm:$src0), (i32 imm:$src1)))]>;
279 } // End usesCustomInserter = 1
280
281 def input_constant : AMDGPUShaderInst <
282 (outs R600_Reg128:$dst),
283 (ins i32imm:$src),
284 "input_perspective $src : dst",
285 [(set R600_Reg128:$dst, (INTERP_P0 (i32 imm:$src)))]>;
286
287
288
289 def INTERP_XY : InstR600 <0xD6,
290 (outs R600_Reg32:$dst),
291 (ins R600_Reg32:$src0, R600_Reg32:$src1, i32imm:$flags),
292 "INTERP_XY dst",
293 [], AnyALU>
294 {
295 let FlagOperandIdx = 3;
296 }
297
298 def INTERP_ZW : InstR600 <0xD7,
299 (outs R600_Reg32:$dst),
300 (ins R600_Reg32:$src0, R600_Reg32:$src1, i32imm:$flags),
301 "INTERP_ZW dst",
302 [], AnyALU>
303 {
304 let FlagOperandIdx = 3;
305 }
306
307 def INTERP_LOAD_P0 : InstR600 <0xE0,
308 (outs R600_Reg32:$dst),
309 (ins R600_Reg32:$src, i32imm:$flags),
310 "INTERP_LOAD_P0 dst",
311 [], AnyALU>
312 {
313 let FlagOperandIdx = 2;
314 }
315
316 let Predicates = [isR600toCayman] in {
317
318 //===----------------------------------------------------------------------===//
319 // Common Instructions R600, R700, Evergreen, Cayman
320 //===----------------------------------------------------------------------===//
321
322 def ADD : R600_2OP <
323 0x0, "ADD",
324 [(set R600_Reg32:$dst, (fadd R600_Reg32:$src0, R600_Reg32:$src1))]
325 >;
326
327 // Non-IEEE MUL: 0 * anything = 0
328 def MUL : R600_2OP <
329 0x1, "MUL NON-IEEE",
330 [(set R600_Reg32:$dst, (int_AMDGPU_mul R600_Reg32:$src0, R600_Reg32:$src1))]
331 >;
332
333 def MUL_IEEE : R600_2OP <
334 0x2, "MUL_IEEE",
335 [(set R600_Reg32:$dst, (fmul R600_Reg32:$src0, R600_Reg32:$src1))]
336 >;
337
338 def MAX : R600_2OP <
339 0x3, "MAX",
340 [(set R600_Reg32:$dst, (AMDGPUfmax R600_Reg32:$src0, R600_Reg32:$src1))]
341 >;
342
343 def MIN : R600_2OP <
344 0x4, "MIN",
345 [(set R600_Reg32:$dst, (AMDGPUfmin R600_Reg32:$src0, R600_Reg32:$src1))]
346 >;
347
348 // For the SET* instructions there is a naming conflict in TargetSelectionDAG.td,
349 // so some of the instruction names don't match the asm string.
350 // XXX: Use the defs in TargetSelectionDAG.td instead of intrinsics.
351
352 def SETE : R600_2OP <
353 0x08, "SETE",
354 [(set R600_Reg32:$dst,
355 (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO,
356 COND_EQ))]
357 >;
358
359 def SGT : R600_2OP <
360 0x09, "SETGT",
361 [(set R600_Reg32:$dst,
362 (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO,
363 COND_GT))]
364 >;
365
366 def SGE : R600_2OP <
367 0xA, "SETGE",
368 [(set R600_Reg32:$dst,
369 (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO,
370 COND_GE))]
371 >;
372
373 def SNE : R600_2OP <
374 0xB, "SETNE",
375 [(set R600_Reg32:$dst,
376 (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO,
377 COND_NE))]
378 >;
379
380 def FRACT : R600_1OP <
381 0x10, "FRACT",
382 [(set R600_Reg32:$dst, (AMDGPUfract R600_Reg32:$src))]
383 >;
384
385 def TRUNC : R600_1OP <
386 0x11, "TRUNC",
387 [(set R600_Reg32:$dst, (int_AMDGPU_trunc R600_Reg32:$src))]
388 >;
389
390 def CEIL : R600_1OP <
391 0x12, "CEIL",
392 [(set R600_Reg32:$dst, (fceil R600_Reg32:$src))]
393 >;
394
395 def RNDNE : R600_1OP <
396 0x13, "RNDNE",
397 [(set R600_Reg32:$dst, (frint R600_Reg32:$src))]
398 >;
399
400 def FLOOR : R600_1OP <
401 0x14, "FLOOR",
402 [(set R600_Reg32:$dst, (ffloor R600_Reg32:$src))]
403 >;
404
405 def MOV : InstR600 <0x19, (outs R600_Reg32:$dst),
406 (ins R600_Reg32:$src0, i32imm:$flags,
407 R600_Pred:$p),
408 "MOV $dst, $src0", [], AnyALU> {
409 let FlagOperandIdx = 2;
410 bits<7> dst;
411 bits<9> src0;
412 let Inst{8-0} = src0;
413 let Inst{49-39} = op_code;
414 let Inst{59-53} = dst;
415 }
416
417 class MOV_IMM <ValueType vt, Operand immType> : InstR600 <0x19,
418 (outs R600_Reg32:$dst),
419 (ins R600_Reg32:$alu_literal, R600_Pred:$p, immType:$imm),
420 "MOV_IMM $dst, $imm",
421 [], AnyALU
422 >{
423 bits<7> dst;
424 bits<9> alu_literal;
425 bits<9> p;
426 let Inst{8-0} = alu_literal;
427 let Inst{21-13} = p;
428 let Inst{49-39} = op_code;
429 let Inst{59-53} = dst;
430 }
431
432 def MOV_IMM_I32 : MOV_IMM<i32, i32imm>;
433 def : Pat <
434 (imm:$val),
435 (MOV_IMM_I32 (i32 ALU_LITERAL_X), imm:$val)
436 >;
437
438 def MOV_IMM_F32 : MOV_IMM<f32, f32imm>;
439 def : Pat <
440 (fpimm:$val),
441 (MOV_IMM_F32 (i32 ALU_LITERAL_X), fpimm:$val)
442 >;
443
444 def KILLGT : InstR600 <0x2D,
445 (outs R600_Reg32:$dst),
446 (ins R600_Reg32:$src0, R600_Reg32:$src1, i32imm:$flags, R600_Pred:$p,
447 variable_ops),
448 "KILLGT $dst, $src0, $src1, $flags ($p)",
449 [],
450 NullALU>{
451 let FlagOperandIdx = 3;
452 bits<7> dst;
453 bits<9> src0;
454 bits<9> src1;
455 let Inst{8-0} = src0;
456 let Inst{21-13} = src1;
457 let Inst{49-39} = op_code;
458 let Inst{59-53} = dst;
459 }
460
461 def AND_INT : R600_2OP <
462 0x30, "AND_INT",
463 [(set R600_Reg32:$dst, (and R600_Reg32:$src0, R600_Reg32:$src1))]
464 >;
465
466 def OR_INT : R600_2OP <
467 0x31, "OR_INT",
468 [(set R600_Reg32:$dst, (or R600_Reg32:$src0, R600_Reg32:$src1))]
469 >;
470
471 def XOR_INT : R600_2OP <
472 0x32, "XOR_INT",
473 [(set R600_Reg32:$dst, (xor R600_Reg32:$src0, R600_Reg32:$src1))]
474 >;
475
476 def NOT_INT : R600_1OP <
477 0x33, "NOT_INT",
478 [(set R600_Reg32:$dst, (not R600_Reg32:$src))]
479 >;
480
481 def ADD_INT : R600_2OP <
482 0x34, "ADD_INT",
483 [(set R600_Reg32:$dst, (add R600_Reg32:$src0, R600_Reg32:$src1))]
484 >;
485
486 def SUB_INT : R600_2OP <
487 0x35, "SUB_INT",
488 [(set R600_Reg32:$dst, (sub R600_Reg32:$src0, R600_Reg32:$src1))]
489 >;
490
491 def MAX_INT : R600_2OP <
492 0x36, "MAX_INT",
493 [(set R600_Reg32:$dst, (AMDGPUsmax R600_Reg32:$src0, R600_Reg32:$src1))]>;
494
495 def MIN_INT : R600_2OP <
496 0x37, "MIN_INT",
497 [(set R600_Reg32:$dst, (AMDGPUsmin R600_Reg32:$src0, R600_Reg32:$src1))]>;
498
499 def MAX_UINT : R600_2OP <
500 0x38, "MAX_UINT",
501 [(set R600_Reg32:$dst, (AMDGPUsmax R600_Reg32:$src0, R600_Reg32:$src1))]
502 >;
503
504 def MIN_UINT : R600_2OP <
505 0x39, "MIN_UINT",
506 [(set R600_Reg32:$dst, (AMDGPUumin R600_Reg32:$src0, R600_Reg32:$src1))]
507 >;
508
509 def SETE_INT : R600_2OP <
510 0x3A, "SETE_INT",
511 [(set (i32 R600_Reg32:$dst),
512 (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETEQ))]
513 >;
514
515 def SETGT_INT : R600_2OP <
516 0x3B, "SGT_INT",
517 [(set (i32 R600_Reg32:$dst),
518 (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETGT))]
519 >;
520
521 def SETGE_INT : R600_2OP <
522 0x3C, "SETGE_INT",
523 [(set (i32 R600_Reg32:$dst),
524 (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETGE))]
525 >;
526
527 def SETNE_INT : R600_2OP <
528 0x3D, "SETNE_INT",
529 [(set (i32 R600_Reg32:$dst),
530 (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETNE))]
531 >;
532
533 def SETGT_UINT : R600_2OP <
534 0x3E, "SETGT_UINT",
535 [(set (i32 R600_Reg32:$dst),
536 (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETUGT))]
537 >;
538
539 def SETGE_UINT : R600_2OP <
540 0x3F, "SETGE_UINT",
541 [(set (i32 R600_Reg32:$dst),
542 (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETUGE))]
543 >;
544
545 def CNDE_INT : R600_3OP <
546 0x1C, "CNDE_INT",
547 [(set (i32 R600_Reg32:$dst),
548 (selectcc (i32 R600_Reg32:$src0), 0,
549 (i32 R600_Reg32:$src1), (i32 R600_Reg32:$src2),
550 COND_EQ))]
551 >;
552
553 def CNDGE_INT : R600_3OP <
554 0x1E, "CNDGE_INT",
555 [(set (i32 R600_Reg32:$dst),
556 (selectcc (i32 R600_Reg32:$src0), 0,
557 (i32 R600_Reg32:$src1), (i32 R600_Reg32:$src2),
558 COND_GE))]
559 >;
560
561 def CNDGT_INT : R600_3OP <
562 0x1D, "CNDGT_INT",
563 [(set (i32 R600_Reg32:$dst),
564 (selectcc (i32 R600_Reg32:$src0), 0,
565 (i32 R600_Reg32:$src1), (i32 R600_Reg32:$src2),
566 COND_GT))]
567 >;
568
569 //===----------------------------------------------------------------------===//
570 // Texture instructions
571 //===----------------------------------------------------------------------===//
572
573 def TEX_LD : R600_TEX <
574 0x03, "TEX_LD",
575 [(set R600_Reg128:$dst, (int_AMDGPU_txf R600_Reg128:$src0, imm:$src1, imm:$src2, imm:$src3, imm:$src4, imm:$src5))]
576 > {
577 let AsmString = "TEX_LD $dst, $src0, $src1, $src2, $src3, $src4, $src5";
578 let InOperandList = (ins R600_Reg128:$src0, i32imm:$src1, i32imm:$src2, i32imm:$src3, i32imm:$src4, i32imm:$src5);
579 }
580
581 def TEX_GET_TEXTURE_RESINFO : R600_TEX <
582 0x04, "TEX_GET_TEXTURE_RESINFO",
583 [(set R600_Reg128:$dst, (int_AMDGPU_txq R600_Reg128:$src0, imm:$src1, imm:$src2))]
584 >;
585
586 def TEX_GET_GRADIENTS_H : R600_TEX <
587 0x07, "TEX_GET_GRADIENTS_H",
588 [(set R600_Reg128:$dst, (int_AMDGPU_ddx R600_Reg128:$src0, imm:$src1, imm:$src2))]
589 >;
590
591 def TEX_GET_GRADIENTS_V : R600_TEX <
592 0x08, "TEX_GET_GRADIENTS_V",
593 [(set R600_Reg128:$dst, (int_AMDGPU_ddy R600_Reg128:$src0, imm:$src1, imm:$src2))]
594 >;
595
596 def TEX_SET_GRADIENTS_H : R600_TEX <
597 0x0B, "TEX_SET_GRADIENTS_H",
598 []
599 >;
600
601 def TEX_SET_GRADIENTS_V : R600_TEX <
602 0x0C, "TEX_SET_GRADIENTS_V",
603 []
604 >;
605
606 def TEX_SAMPLE : R600_TEX <
607 0x10, "TEX_SAMPLE",
608 [(set R600_Reg128:$dst, (int_AMDGPU_tex R600_Reg128:$src0, imm:$src1, imm:$src2))]
609 >;
610
611 def TEX_SAMPLE_C : R600_TEX <
612 0x18, "TEX_SAMPLE_C",
613 [(set R600_Reg128:$dst, (int_AMDGPU_tex R600_Reg128:$src0, imm:$src1, TEX_SHADOW:$src2))]
614 >;
615
616 def TEX_SAMPLE_L : R600_TEX <
617 0x11, "TEX_SAMPLE_L",
618 [(set R600_Reg128:$dst, (int_AMDGPU_txl R600_Reg128:$src0, imm:$src1, imm:$src2))]
619 >;
620
621 def TEX_SAMPLE_C_L : R600_TEX <
622 0x19, "TEX_SAMPLE_C_L",
623 [(set R600_Reg128:$dst, (int_AMDGPU_txl R600_Reg128:$src0, imm:$src1, TEX_SHADOW:$src2))]
624 >;
625
626 def TEX_SAMPLE_LB : R600_TEX <
627 0x12, "TEX_SAMPLE_LB",
628 [(set R600_Reg128:$dst, (int_AMDGPU_txb R600_Reg128:$src0, imm:$src1, imm:$src2))]
629 >;
630
631 def TEX_SAMPLE_C_LB : R600_TEX <
632 0x1A, "TEX_SAMPLE_C_LB",
633 [(set R600_Reg128:$dst, (int_AMDGPU_txb R600_Reg128:$src0, imm:$src1, TEX_SHADOW:$src2))]
634 >;
635
636 def TEX_SAMPLE_G : R600_TEX <
637 0x14, "TEX_SAMPLE_G",
638 []
639 >;
640
641 def TEX_SAMPLE_C_G : R600_TEX <
642 0x1C, "TEX_SAMPLE_C_G",
643 []
644 >;
645
646 //===----------------------------------------------------------------------===//
647 // Helper classes for common instructions
648 //===----------------------------------------------------------------------===//
649
650 class MUL_LIT_Common <bits<11> inst> : R600_3OP <
651 inst, "MUL_LIT",
652 []
653 >;
654
655 class MULADD_Common <bits<11> inst> : R600_3OP <
656 inst, "MULADD",
657 [(set (f32 R600_Reg32:$dst),
658 (IL_mad R600_Reg32:$src0, R600_Reg32:$src1, R600_Reg32:$src2))]
659 >;
660
661 class CNDE_Common <bits<11> inst> : R600_3OP <
662 inst, "CNDE",
663 [(set R600_Reg32:$dst,
664 (selectcc (f32 R600_Reg32:$src0), FP_ZERO,
665 (f32 R600_Reg32:$src1), (f32 R600_Reg32:$src2),
666 COND_EQ))]
667 >;
668
669 class CNDGT_Common <bits<11> inst> : R600_3OP <
670 inst, "CNDGT",
671 [(set R600_Reg32:$dst,
672 (selectcc (f32 R600_Reg32:$src0), FP_ZERO,
673 (f32 R600_Reg32:$src1), (f32 R600_Reg32:$src2),
674 COND_GT))]
675 >;
676
677 class CNDGE_Common <bits<11> inst> : R600_3OP <
678 inst, "CNDGE",
679 [(set R600_Reg32:$dst,
680 (selectcc (f32 R600_Reg32:$src0), FP_ZERO,
681 (f32 R600_Reg32:$src1), (f32 R600_Reg32:$src2),
682 COND_GE))]
683 >;
684
685 class DOT4_Common <bits<11> inst> : R600_REDUCTION <
686 inst,
687 (ins R600_Reg128:$src0, R600_Reg128:$src1, i32imm:$flags),
688 "DOT4 $dst $src0, $src1",
689 []
690 > {
691 bits<9> src0;
692 bits<9> src1;
693 let Inst{8-0} = src0;
694 let Inst{21-13} = src1;
695 let FlagOperandIdx = 3;
696 }
697
698 class DOT4_Pat <Instruction dot4> : Pat <
699 (int_AMDGPU_dp4 R600_Reg128:$src0, R600_Reg128:$src1),
700 (dot4 R600_Reg128:$src0, R600_Reg128:$src1, 0)
701 >;
702
703 multiclass CUBE_Common <bits<11> inst> {
704
705 def _pseudo : InstR600 <
706 inst,
707 (outs R600_Reg128:$dst),
708 (ins R600_Reg128:$src),
709 "CUBE $dst $src",
710 [(set R600_Reg128:$dst, (int_AMDGPU_cube R600_Reg128:$src))],
711 VecALU
712 >;
713
714 def _real : InstR600 <
715 inst,
716 (outs R600_Reg32:$dst),
717 (ins R600_Reg32:$src0, R600_Reg32:$src1, i32imm:$flags),
718 "CUBE $dst, $src0, $src1",
719 [], VecALU
720 >{
721 let FlagOperandIdx = 3;
722 bits<7> dst;
723 bits<9> src0;
724 bits<9> src1;
725 let Inst{8-0} = src0;
726 let Inst{21-13} = src1;
727 let Inst{49-39} = inst;
728 let Inst{59-53} = dst;
729 }
730 }
731
732 class EXP_IEEE_Common <bits<11> inst> : R600_1OP <
733 inst, "EXP_IEEE",
734 [(set R600_Reg32:$dst, (fexp2 R600_Reg32:$src))]
735 >;
736
737 class FLT_TO_INT_Common <bits<11> inst> : R600_1OP <
738 inst, "FLT_TO_INT",
739 [(set R600_Reg32:$dst, (fp_to_sint R600_Reg32:$src))]
740 >;
741
742 class INT_TO_FLT_Common <bits<11> inst> : R600_1OP <
743 inst, "INT_TO_FLT",
744 [(set R600_Reg32:$dst, (sint_to_fp R600_Reg32:$src))]
745 >;
746
747 class FLT_TO_UINT_Common <bits<11> inst> : R600_1OP <
748 inst, "FLT_TO_UINT",
749 [(set R600_Reg32:$dst, (fp_to_uint R600_Reg32:$src))]
750 >;
751
752 class UINT_TO_FLT_Common <bits<11> inst> : R600_1OP <
753 inst, "UINT_TO_FLT",
754 [(set R600_Reg32:$dst, (uint_to_fp R600_Reg32:$src))]
755 >;
756
757 class LOG_CLAMPED_Common <bits<11> inst> : R600_1OP <
758 inst, "LOG_CLAMPED",
759 []
760 >;
761
762 class LOG_IEEE_Common <bits<11> inst> : R600_1OP <
763 inst, "LOG_IEEE",
764 [(set R600_Reg32:$dst, (flog2 R600_Reg32:$src))]
765 >;
766
767 class LSHL_Common <bits<11> inst> : R600_2OP <
768 inst, "LSHL $dst, $src0, $src1",
769 [(set R600_Reg32:$dst, (shl R600_Reg32:$src0, R600_Reg32:$src1))]
770 >;
771
772 class LSHR_Common <bits<11> inst> : R600_2OP <
773 inst, "LSHR $dst, $src0, $src1",
774 [(set R600_Reg32:$dst, (srl R600_Reg32:$src0, R600_Reg32:$src1))]
775 >;
776
777 class ASHR_Common <bits<11> inst> : R600_2OP <
778 inst, "ASHR $dst, $src0, $src1",
779 [(set R600_Reg32:$dst, (sra R600_Reg32:$src0, R600_Reg32:$src1))]
780 >;
781
782 class MULHI_INT_Common <bits<11> inst> : R600_2OP <
783 inst, "MULHI_INT $dst, $src0, $src1",
784 [(set R600_Reg32:$dst, (mulhs R600_Reg32:$src0, R600_Reg32:$src1))]
785 >;
786
787 class MULHI_UINT_Common <bits<11> inst> : R600_2OP <
788 inst, "MULHI $dst, $src0, $src1",
789 [(set R600_Reg32:$dst, (mulhu R600_Reg32:$src0, R600_Reg32:$src1))]
790 >;
791
792 class MULLO_INT_Common <bits<11> inst> : R600_2OP <
793 inst, "MULLO_INT $dst, $src0, $src1",
794 [(set R600_Reg32:$dst, (mul R600_Reg32:$src0, R600_Reg32:$src1))]
795 >;
796
797 class MULLO_UINT_Common <bits<11> inst> : R600_2OP <
798 inst, "MULLO_UINT $dst, $src0, $src1",
799 []
800 >;
801
802 class RECIP_CLAMPED_Common <bits<11> inst> : R600_1OP <
803 inst, "RECIP_CLAMPED",
804 []
805 >;
806
807 class RECIP_IEEE_Common <bits<11> inst> : R600_1OP <
808 inst, "RECIP_IEEE",
809 [(set R600_Reg32:$dst, (int_AMDGPU_rcp R600_Reg32:$src))]
810 >;
811
812 class RECIP_UINT_Common <bits<11> inst> : R600_1OP <
813 inst, "RECIP_INT $dst, $src",
814 [(set R600_Reg32:$dst, (AMDGPUurecip R600_Reg32:$src))]
815 >;
816
817 class RECIPSQRT_CLAMPED_Common <bits<11> inst> : R600_1OP <
818 inst, "RECIPSQRT_CLAMPED",
819 [(set R600_Reg32:$dst, (int_AMDGPU_rsq R600_Reg32:$src))]
820 >;
821
822 class RECIPSQRT_IEEE_Common <bits<11> inst> : R600_1OP <
823 inst, "RECIPSQRT_IEEE",
824 []
825 >;
826
827 class SIN_Common <bits<11> inst> : R600_1OP <
828 inst, "SIN", []>{
829 let Trig = 1;
830 }
831
832 class COS_Common <bits<11> inst> : R600_1OP <
833 inst, "COS", []> {
834 let Trig = 1;
835 }
836
837 //===----------------------------------------------------------------------===//
838 // Helper patterns for complex intrinsics
839 //===----------------------------------------------------------------------===//
840
841 multiclass DIV_Common <InstR600 recip_ieee> {
842 def : Pat<
843 (int_AMDGPU_div R600_Reg32:$src0, R600_Reg32:$src1),
844 (MUL R600_Reg32:$src0, (recip_ieee R600_Reg32:$src1))
845 >;
846
847 def : Pat<
848 (fdiv R600_Reg32:$src0, R600_Reg32:$src1),
849 (MUL R600_Reg32:$src0, (recip_ieee R600_Reg32:$src1))
850 >;
851 }
852
853 class SSG_Common <InstR600 cndgt, InstR600 cndge> : Pat <
854 (int_AMDGPU_ssg R600_Reg32:$src),
855 (cndgt R600_Reg32:$src, (f32 ONE), (cndge R600_Reg32:$src, (f32 ZERO), (f32 NEG_ONE)))
856 >;
857
858 class TGSI_LIT_Z_Common <InstR600 mul_lit, InstR600 log_clamped, InstR600 exp_ieee> : Pat <
859 (int_TGSI_lit_z R600_Reg32:$src_x, R600_Reg32:$src_y, R600_Reg32:$src_w),
860 (exp_ieee (mul_lit (log_clamped (MAX R600_Reg32:$src_y, (f32 ZERO))), R600_Reg32:$src_w, R600_Reg32:$src_x))
861 >;
862
863 //===----------------------------------------------------------------------===//
864 // R600 / R700 Instructions
865 //===----------------------------------------------------------------------===//
866
867 let Predicates = [isR600] in {
868
869 def MUL_LIT_r600 : MUL_LIT_Common<0x0C>;
870 def MULADD_r600 : MULADD_Common<0x10>;
871 def CNDE_r600 : CNDE_Common<0x18>;
872 def CNDGT_r600 : CNDGT_Common<0x19>;
873 def CNDGE_r600 : CNDGE_Common<0x1A>;
874 def DOT4_r600 : DOT4_Common<0x50>;
875 def : DOT4_Pat <DOT4_r600>;
876 defm CUBE_r600 : CUBE_Common<0x52>;
877 def EXP_IEEE_r600 : EXP_IEEE_Common<0x61>;
878 def LOG_CLAMPED_r600 : LOG_CLAMPED_Common<0x62>;
879 def LOG_IEEE_r600 : LOG_IEEE_Common<0x63>;
880 def RECIP_CLAMPED_r600 : RECIP_CLAMPED_Common<0x64>;
881 def RECIP_IEEE_r600 : RECIP_IEEE_Common<0x66>;
882 def RECIPSQRT_CLAMPED_r600 : RECIPSQRT_CLAMPED_Common<0x67>;
883 def RECIPSQRT_IEEE_r600 : RECIPSQRT_IEEE_Common<0x69>;
884 def FLT_TO_INT_r600 : FLT_TO_INT_Common<0x6b>;
885 def INT_TO_FLT_r600 : INT_TO_FLT_Common<0x6c>;
886 def FLT_TO_UINT_r600 : FLT_TO_UINT_Common<0x79>;
887 def UINT_TO_FLT_r600 : UINT_TO_FLT_Common<0x6d>;
888 def SIN_r600 : SIN_Common<0x6E>;
889 def COS_r600 : COS_Common<0x6F>;
890 def ASHR_r600 : ASHR_Common<0x70>;
891 def LSHR_r600 : LSHR_Common<0x71>;
892 def LSHL_r600 : LSHL_Common<0x72>;
893 def MULLO_INT_r600 : MULLO_INT_Common<0x73>;
894 def MULHI_INT_r600 : MULHI_INT_Common<0x74>;
895 def MULLO_UINT_r600 : MULLO_UINT_Common<0x75>;
896 def MULHI_UINT_r600 : MULHI_UINT_Common<0x76>;
897 def RECIP_UINT_r600 : RECIP_UINT_Common <0x78>;
898
899 defm DIV_r600 : DIV_Common<RECIP_IEEE_r600>;
900 def POW_r600 : POW_Common<LOG_IEEE_r600, EXP_IEEE_r600, MUL, GPRF32>;
901 def SSG_r600 : SSG_Common<CNDGT_r600, CNDGE_r600>;
902 def TGSI_LIT_Z_r600 : TGSI_LIT_Z_Common<MUL_LIT_r600, LOG_CLAMPED_r600, EXP_IEEE_r600>;
903
904 }
905
906 // Helper pattern for normalizing inputs to triginomic instructions for R700+
907 // cards.
908 class COS_PAT <InstR600 trig> : Pat<
909 (fcos R600_Reg32:$src),
910 (trig (MUL (MOV_IMM_I32 (i32 ALU_LITERAL_X), CONST.TWO_PI_INV), R600_Reg32:$src))
911 >;
912
913 class SIN_PAT <InstR600 trig> : Pat<
914 (fsin R600_Reg32:$src),
915 (trig (MUL (MOV_IMM_I32 (i32 ALU_LITERAL_X), CONST.TWO_PI_INV), R600_Reg32:$src))
916 >;
917
918 //===----------------------------------------------------------------------===//
919 // R700 Only instructions
920 //===----------------------------------------------------------------------===//
921
922 let Predicates = [isR700] in {
923 def SIN_r700 : SIN_Common<0x6E>;
924 def COS_r700 : COS_Common<0x6F>;
925
926 // R700 normalizes inputs to SIN/COS the same as EG
927 def : SIN_PAT <SIN_r700>;
928 def : COS_PAT <COS_r700>;
929 }
930
931 //===----------------------------------------------------------------------===//
932 // Evergreen Only instructions
933 //===----------------------------------------------------------------------===//
934
935 let Predicates = [isEG] in {
936
937 def RECIP_IEEE_eg : RECIP_IEEE_Common<0x86>;
938
939 def MULLO_INT_eg : MULLO_INT_Common<0x8F>;
940 def MULHI_INT_eg : MULHI_INT_Common<0x90>;
941 def MULLO_UINT_eg : MULLO_UINT_Common<0x91>;
942 def MULHI_UINT_eg : MULHI_UINT_Common<0x92>;
943 def RECIP_UINT_eg : RECIP_UINT_Common<0x94>;
944
945 } // End Predicates = [isEG]
946
947 //===----------------------------------------------------------------------===//
948 // Evergreen / Cayman Instructions
949 //===----------------------------------------------------------------------===//
950
951 let Predicates = [isEGorCayman] in {
952
953 // BFE_UINT - bit_extract, an optimization for mask and shift
954 // Src0 = Input
955 // Src1 = Offset
956 // Src2 = Width
957 //
958 // bit_extract = (Input << (32 - Offset - Width)) >> (32 - Width)
959 //
960 // Example Usage:
961 // (Offset, Width)
962 //
963 // (0, 8) = (Input << 24) >> 24 = (Input & 0xff) >> 0
964 // (8, 8) = (Input << 16) >> 24 = (Input & 0xffff) >> 8
965 // (16,8) = (Input << 8) >> 24 = (Input & 0xffffff) >> 16
966 // (24,8) = (Input << 0) >> 24 = (Input & 0xffffffff) >> 24
967 def BFE_UINT_eg : R600_3OP <0x4, "BFE_UINT",
968 [(set R600_Reg32:$dst, (int_AMDIL_bit_extract_u32 R600_Reg32:$src0,
969 R600_Reg32:$src1,
970 R600_Reg32:$src2))],
971 VecALU
972 >;
973
974 def BIT_ALIGN_INT_eg : R600_3OP <0xC, "BIT_ALIGN_INT",
975 [(set R600_Reg32:$dst, (AMDGPUbitalign R600_Reg32:$src0, R600_Reg32:$src1,
976 R600_Reg32:$src2))],
977 VecALU
978 >;
979
980 def MULADD_eg : MULADD_Common<0x14>;
981 def ASHR_eg : ASHR_Common<0x15>;
982 def LSHR_eg : LSHR_Common<0x16>;
983 def LSHL_eg : LSHL_Common<0x17>;
984 def CNDE_eg : CNDE_Common<0x19>;
985 def CNDGT_eg : CNDGT_Common<0x1A>;
986 def CNDGE_eg : CNDGE_Common<0x1B>;
987 def MUL_LIT_eg : MUL_LIT_Common<0x1F>;
988 def EXP_IEEE_eg : EXP_IEEE_Common<0x81>;
989 def LOG_CLAMPED_eg : LOG_CLAMPED_Common<0x82>;
990 def LOG_IEEE_eg : LOG_IEEE_Common<0x83>;
991 def RECIP_CLAMPED_eg : RECIP_CLAMPED_Common<0x84>;
992 def RECIPSQRT_CLAMPED_eg : RECIPSQRT_CLAMPED_Common<0x87>;
993 def RECIPSQRT_IEEE_eg : RECIPSQRT_IEEE_Common<0x89>;
994 def SIN_eg : SIN_Common<0x8D>;
995 def COS_eg : COS_Common<0x8E>;
996 def DOT4_eg : DOT4_Common<0xBE>;
997 def : DOT4_Pat <DOT4_eg>;
998 defm CUBE_eg : CUBE_Common<0xC0>;
999
1000 defm DIV_eg : DIV_Common<RECIP_IEEE_eg>;
1001 def POW_eg : POW_Common<LOG_IEEE_eg, EXP_IEEE_eg, MUL, GPRF32>;
1002 def SSG_eg : SSG_Common<CNDGT_eg, CNDGE_eg>;
1003 def TGSI_LIT_Z_eg : TGSI_LIT_Z_Common<MUL_LIT_eg, LOG_CLAMPED_eg, EXP_IEEE_eg>;
1004
1005 def : SIN_PAT <SIN_eg>;
1006 def : COS_PAT <COS_eg>;
1007
1008 def FLT_TO_INT_eg : FLT_TO_INT_Common<0x50> {
1009 let Pattern = [];
1010 }
1011
1012 def INT_TO_FLT_eg : INT_TO_FLT_Common<0x9B>;
1013
1014 def FLT_TO_UINT_eg : FLT_TO_UINT_Common<0x9A> {
1015 let Pattern = [];
1016 }
1017
1018 def UINT_TO_FLT_eg : UINT_TO_FLT_Common<0x9C>;
1019
1020 def : Pat<(fp_to_sint R600_Reg32:$src),
1021 (FLT_TO_INT_eg (TRUNC R600_Reg32:$src))>;
1022
1023 def : Pat<(fp_to_uint R600_Reg32:$src),
1024 (FLT_TO_UINT_eg (TRUNC R600_Reg32:$src))>;
1025
1026 def : Pat<(fsqrt R600_Reg32:$src),
1027 (MUL R600_Reg32:$src, (RECIPSQRT_CLAMPED_eg R600_Reg32:$src))>;
1028
1029 //===----------------------------------------------------------------------===//
1030 // Memory read/write instructions
1031 //===----------------------------------------------------------------------===//
1032
1033 let usesCustomInserter = 1 in {
1034
1035 class RAT_WRITE_CACHELESS_eg <dag ins, bits<4> comp_mask, string name> : EG_CF_RAT <
1036 0x57, 0x2, 0, (outs), ins, !strconcat(name, " $rw_gpr, $index_gpr, $eop"), []>
1037 {
1038 let RIM = 0;
1039 // XXX: Have a separate instruction for non-indexed writes.
1040 let TYPE = 1;
1041 let RW_REL = 0;
1042 let ELEM_SIZE = 0;
1043
1044 let ARRAY_SIZE = 0;
1045 let COMP_MASK = comp_mask;
1046 let BURST_COUNT = 0;
1047 let VPM = 0;
1048 let MARK = 0;
1049 let BARRIER = 1;
1050 }
1051
1052 } // End usesCustomInserter = 1
1053
1054 // 32-bit store
1055 def RAT_WRITE_CACHELESS_32_eg : RAT_WRITE_CACHELESS_eg <
1056 (ins R600_TReg32_X:$rw_gpr, R600_TReg32_X:$index_gpr, i32imm:$eop),
1057 0x1, "RAT_WRITE_CACHELESS_32_eg"
1058 >;
1059
1060 // i32 global_store
1061 def : Pat <
1062 (global_store (i32 R600_TReg32_X:$val), R600_TReg32_X:$ptr),
1063 (RAT_WRITE_CACHELESS_32_eg R600_TReg32_X:$val, R600_TReg32_X:$ptr, 0)
1064 >;
1065
1066 // Floating point global_store
1067 def : Pat <
1068 (global_store (f32 R600_TReg32_X:$val), R600_TReg32_X:$ptr),
1069 (RAT_WRITE_CACHELESS_32_eg R600_TReg32_X:$val, R600_TReg32_X:$ptr, 0)
1070 >;
1071
1072 //128-bit store
1073 def RAT_WRITE_CACHELESS_128_eg : RAT_WRITE_CACHELESS_eg <
1074 (ins R600_Reg128:$rw_gpr, R600_TReg32_X:$index_gpr, i32imm:$eop),
1075 0xf, "RAT_WRITE_CACHELESS_128"
1076 >;
1077
1078 // v4f32 global store
1079 def : Pat <
1080 (global_store (v4f32 R600_Reg128:$val), R600_TReg32_X:$ptr),
1081 (RAT_WRITE_CACHELESS_128_eg R600_Reg128:$val, R600_TReg32_X:$ptr, 0)
1082 >;
1083
1084 class VTX_READ_eg <bits<8> buffer_id, dag outs, list<dag> pattern>
1085 : InstR600ISA <outs, (ins MEMxi:$ptr), "VTX_READ_eg $dst, $ptr", pattern> {
1086
1087 // Operands
1088 bits<7> DST_GPR;
1089 bits<7> SRC_GPR;
1090
1091 // Static fields
1092 bits<5> VC_INST = 0;
1093 bits<2> FETCH_TYPE = 2;
1094 bits<1> FETCH_WHOLE_QUAD = 0;
1095 bits<8> BUFFER_ID = buffer_id;
1096 bits<1> SRC_REL = 0;
1097 // XXX: We can infer this field based on the SRC_GPR. This would allow us
1098 // to store vertex addresses in any channel, not just X.
1099 bits<2> SRC_SEL_X = 0;
1100 bits<6> MEGA_FETCH_COUNT;
1101 bits<1> DST_REL = 0;
1102 bits<3> DST_SEL_X;
1103 bits<3> DST_SEL_Y;
1104 bits<3> DST_SEL_Z;
1105 bits<3> DST_SEL_W;
1106 // The docs say that if this bit is set, then DATA_FORMAT, NUM_FORMAT_ALL,
1107 // FORMAT_COMP_ALL, SRF_MODE_ALL, and ENDIAN_SWAP fields will be ignored,
1108 // however, based on my testing if USE_CONST_FIELDS is set, then all
1109 // these fields need to be set to 0.
1110 bits<1> USE_CONST_FIELDS = 0;
1111 bits<6> DATA_FORMAT;
1112 bits<2> NUM_FORMAT_ALL = 1;
1113 bits<1> FORMAT_COMP_ALL = 0;
1114 bits<1> SRF_MODE_ALL = 0;
1115
1116 // LLVM can only encode 64-bit instructions, so these fields are manually
1117 // encoded in R600CodeEmitter
1118 //
1119 // bits<16> OFFSET;
1120 // bits<2> ENDIAN_SWAP = 0;
1121 // bits<1> CONST_BUF_NO_STRIDE = 0;
1122 // bits<1> MEGA_FETCH = 0;
1123 // bits<1> ALT_CONST = 0;
1124 // bits<2> BUFFER_INDEX_MODE = 0;
1125
1126 // VTX_WORD0
1127 let Inst{4-0} = VC_INST;
1128 let Inst{6-5} = FETCH_TYPE;
1129 let Inst{7} = FETCH_WHOLE_QUAD;
1130 let Inst{15-8} = BUFFER_ID;
1131 let Inst{22-16} = SRC_GPR;
1132 let Inst{23} = SRC_REL;
1133 let Inst{25-24} = SRC_SEL_X;
1134 let Inst{31-26} = MEGA_FETCH_COUNT;
1135
1136 // VTX_WORD1_GPR
1137 let Inst{38-32} = DST_GPR;
1138 let Inst{39} = DST_REL;
1139 let Inst{40} = 0; // Reserved
1140 let Inst{43-41} = DST_SEL_X;
1141 let Inst{46-44} = DST_SEL_Y;
1142 let Inst{49-47} = DST_SEL_Z;
1143 let Inst{52-50} = DST_SEL_W;
1144 let Inst{53} = USE_CONST_FIELDS;
1145 let Inst{59-54} = DATA_FORMAT;
1146 let Inst{61-60} = NUM_FORMAT_ALL;
1147 let Inst{62} = FORMAT_COMP_ALL;
1148 let Inst{63} = SRF_MODE_ALL;
1149
1150 // VTX_WORD2 (LLVM can only encode 64-bit instructions, so WORD2 encoding
1151 // is done in R600CodeEmitter
1152 //
1153 // Inst{79-64} = OFFSET;
1154 // Inst{81-80} = ENDIAN_SWAP;
1155 // Inst{82} = CONST_BUF_NO_STRIDE;
1156 // Inst{83} = MEGA_FETCH;
1157 // Inst{84} = ALT_CONST;
1158 // Inst{86-85} = BUFFER_INDEX_MODE;
1159 // Inst{95-86} = 0; Reserved
1160
1161 // VTX_WORD3 (Padding)
1162 //
1163 // Inst{127-96} = 0;
1164 }
1165
1166 class VTX_READ_8_eg <bits<8> buffer_id, list<dag> pattern>
1167 : VTX_READ_eg <buffer_id, (outs R600_TReg32_X:$dst), pattern> {
1168
1169 let MEGA_FETCH_COUNT = 1;
1170 let DST_SEL_X = 0;
1171 let DST_SEL_Y = 7; // Masked
1172 let DST_SEL_Z = 7; // Masked
1173 let DST_SEL_W = 7; // Masked
1174 let DATA_FORMAT = 1; // FMT_8
1175 }
1176
1177 class VTX_READ_32_eg <bits<8> buffer_id, list<dag> pattern>
1178 : VTX_READ_eg <buffer_id, (outs R600_TReg32_X:$dst), pattern> {
1179
1180 let MEGA_FETCH_COUNT = 4;
1181 let DST_SEL_X = 0;
1182 let DST_SEL_Y = 7; // Masked
1183 let DST_SEL_Z = 7; // Masked
1184 let DST_SEL_W = 7; // Masked
1185 let DATA_FORMAT = 0xD; // COLOR_32
1186
1187 // This is not really necessary, but there were some GPU hangs that appeared
1188 // to be caused by ALU instructions in the next instruction group that wrote
1189 // to the $ptr registers of the VTX_READ.
1190 // e.g.
1191 // %T3_X<def> = VTX_READ_PARAM_i32_eg %T2_X<kill>, 24
1192 // %T2_X<def> = MOV %ZERO
1193 //Adding this constraint prevents this from happening.
1194 let Constraints = "$ptr.ptr = $dst";
1195 }
1196
1197 class VTX_READ_128_eg <bits<8> buffer_id, list<dag> pattern>
1198 : VTX_READ_eg <buffer_id, (outs R600_Reg128:$dst), pattern> {
1199
1200 let MEGA_FETCH_COUNT = 16;
1201 let DST_SEL_X = 0;
1202 let DST_SEL_Y = 1;
1203 let DST_SEL_Z = 2;
1204 let DST_SEL_W = 3;
1205 let DATA_FORMAT = 0x22; // COLOR_32_32_32_32
1206
1207 // XXX: Need to force VTX_READ_128 instructions to write to the same register
1208 // that holds its buffer address to avoid potential hangs. We can't use
1209 // the same constraint as VTX_READ_32_eg, because the $ptr.ptr and $dst
1210 // registers are different sizes.
1211 }
1212
1213 //===----------------------------------------------------------------------===//
1214 // VTX Read from parameter memory space
1215 //===----------------------------------------------------------------------===//
1216
1217 class VTX_READ_PARAM_32_eg <ValueType vt> : VTX_READ_32_eg <0,
1218 [(set (vt R600_TReg32_X:$dst), (load_param ADDRVTX_READ:$ptr))]
1219 >;
1220
1221 def VTX_READ_PARAM_i32_eg : VTX_READ_PARAM_32_eg<i32>;
1222 def VTX_READ_PARAM_f32_eg : VTX_READ_PARAM_32_eg<f32>;
1223
1224
1225 //===----------------------------------------------------------------------===//
1226 // VTX Read from global memory space
1227 //===----------------------------------------------------------------------===//
1228
1229 // 8-bit reads
1230 def VTX_READ_GLOBAL_i8_eg : VTX_READ_8_eg <1,
1231 [(set (i32 R600_TReg32_X:$dst), (zextloadi8_global ADDRVTX_READ:$ptr))]
1232 >;
1233
1234 // 32-bit reads
1235
1236 class VTX_READ_GLOBAL_eg <ValueType vt> : VTX_READ_32_eg <1,
1237 [(set (vt R600_TReg32_X:$dst), (global_load ADDRVTX_READ:$ptr))]
1238 >;
1239
1240 def VTX_READ_GLOBAL_i32_eg : VTX_READ_GLOBAL_eg<i32>;
1241 def VTX_READ_GLOBAL_f32_eg : VTX_READ_GLOBAL_eg<f32>;
1242
1243 // 128-bit reads
1244
1245 class VTX_READ_GLOBAL_128_eg <ValueType vt> : VTX_READ_128_eg <1,
1246 [(set (vt R600_Reg128:$dst), (global_load ADDRVTX_READ:$ptr))]
1247 >;
1248
1249 def VTX_READ_GLOBAL_v4i32_eg : VTX_READ_GLOBAL_128_eg<v4i32>;
1250 def VTX_READ_GLOBAL_v4f32_eg : VTX_READ_GLOBAL_128_eg<v4f32>;
1251
1252 //===----------------------------------------------------------------------===//
1253 // Constant Loads
1254 // XXX: We are currently storing all constants in the global address space.
1255 //===----------------------------------------------------------------------===//
1256
1257 def CONSTANT_LOAD_eg : VTX_READ_32_eg <1,
1258 [(set (f32 R600_TReg32_X:$dst), (constant_load ADDRVTX_READ:$ptr))]
1259 >;
1260
1261 }
1262
1263 let Predicates = [isCayman] in {
1264
1265 let isVector = 1 in {
1266
1267 def RECIP_IEEE_cm : RECIP_IEEE_Common<0x86>;
1268
1269 def MULLO_INT_cm : MULLO_INT_Common<0x8F>;
1270 def MULHI_INT_cm : MULHI_INT_Common<0x90>;
1271 def MULLO_UINT_cm : MULLO_UINT_Common<0x91>;
1272 def MULHI_UINT_cm : MULHI_UINT_Common<0x92>;
1273
1274 } // End isVector = 1
1275
1276 // RECIP_UINT emulation for Cayman
1277 def : Pat <
1278 (AMDGPUurecip R600_Reg32:$src0),
1279 (FLT_TO_UINT_eg (MUL_IEEE (RECIP_IEEE_cm (UINT_TO_FLT_eg R600_Reg32:$src0)),
1280 (MOV_IMM_I32 (i32 ALU_LITERAL_X), 0x4f800000)))
1281 >;
1282
1283 } // End isCayman
1284
1285 let isCodeGenOnly = 1 in {
1286
1287 def MULLIT : AMDGPUShaderInst <
1288 (outs R600_Reg128:$dst),
1289 (ins R600_Reg32:$src0, R600_Reg32:$src1, R600_Reg32:$src2),
1290 "MULLIT $dst, $src0, $src1",
1291 [(set R600_Reg128:$dst, (int_AMDGPU_mullit R600_Reg32:$src0, R600_Reg32:$src1, R600_Reg32:$src2))]
1292 >;
1293
1294 let usesCustomInserter = 1, isPseudo = 1 in {
1295
1296 class R600PreloadInst <string asm, Intrinsic intr> : AMDGPUInst <
1297 (outs R600_TReg32:$dst),
1298 (ins),
1299 asm,
1300 [(set R600_TReg32:$dst, (intr))]
1301 >;
1302
1303 def R600_LOAD_CONST : AMDGPUShaderInst <
1304 (outs R600_Reg32:$dst),
1305 (ins i32imm:$src0),
1306 "R600_LOAD_CONST $dst, $src0",
1307 [(set R600_Reg32:$dst, (int_AMDGPU_load_const imm:$src0))]
1308 >;
1309
1310 def RESERVE_REG : AMDGPUShaderInst <
1311 (outs),
1312 (ins i32imm:$src),
1313 "RESERVE_REG $src",
1314 [(int_AMDGPU_reserve_reg imm:$src)]
1315 >;
1316
1317 def TXD: AMDGPUShaderInst <
1318 (outs R600_Reg128:$dst),
1319 (ins R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2, i32imm:$src3, i32imm:$src4),
1320 "TXD $dst, $src0, $src1, $src2, $src3, $src4",
1321 [(set R600_Reg128:$dst, (int_AMDGPU_txd R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2, imm:$src3, imm:$src4))]
1322 >;
1323
1324 def TXD_SHADOW: AMDGPUShaderInst <
1325 (outs R600_Reg128:$dst),
1326 (ins R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2, i32imm:$src3, i32imm:$src4),
1327 "TXD_SHADOW $dst, $src0, $src1, $src2, $src3, $src4",
1328 [(set R600_Reg128:$dst, (int_AMDGPU_txd R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2, imm:$src3, TEX_SHADOW:$src4))]
1329 >;
1330
1331 } // End usesCustomInserter = 1, isPseudo = 1
1332
1333 } // End isCodeGenOnly = 1
1334
1335 def CLAMP_R600 : CLAMP <R600_Reg32>;
1336 def FABS_R600 : FABS<R600_Reg32>;
1337 def FNEG_R600 : FNEG<R600_Reg32>;
1338
1339 let usesCustomInserter = 1 in {
1340
1341 def MASK_WRITE : AMDGPUShaderInst <
1342 (outs),
1343 (ins R600_Reg32:$src),
1344 "MASK_WRITE $src",
1345 []
1346 >;
1347
1348 } // End usesCustomInserter = 1
1349
1350 //===---------------------------------------------------------------------===//
1351 // Return instruction
1352 //===---------------------------------------------------------------------===//
1353 let isTerminator = 1, isReturn = 1, isBarrier = 1, hasCtrlDep = 1 in {
1354 def RETURN : ILFormat<(outs), (ins variable_ops),
1355 "RETURN", [(IL_retflag)]>;
1356 }
1357
1358 //===----------------------------------------------------------------------===//
1359 // ISel Patterns
1360 //===----------------------------------------------------------------------===//
1361
1362 // KIL Patterns
1363 def KILP : Pat <
1364 (int_AMDGPU_kilp),
1365 (MASK_WRITE (KILLGT (f32 ONE), (f32 ZERO), 0))
1366 >;
1367
1368 def KIL : Pat <
1369 (int_AMDGPU_kill R600_Reg32:$src0),
1370 (MASK_WRITE (KILLGT (f32 ZERO), (f32 R600_Reg32:$src0), 0))
1371 >;
1372
1373 // SGT Reverse args
1374 def : Pat <
1375 (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO, COND_LT),
1376 (SGT R600_Reg32:$src1, R600_Reg32:$src0)
1377 >;
1378
1379 // SGE Reverse args
1380 def : Pat <
1381 (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO, COND_LE),
1382 (SGE R600_Reg32:$src1, R600_Reg32:$src0)
1383 >;
1384
1385 // SETGT_INT reverse args
1386 def : Pat <
1387 (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETLT),
1388 (SETGT_INT R600_Reg32:$src1, R600_Reg32:$src0)
1389 >;
1390
1391 // SETGE_INT reverse args
1392 def : Pat <
1393 (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETLE),
1394 (SETGE_INT R600_Reg32:$src1, R600_Reg32:$src0)
1395 >;
1396
1397 // SETGT_UINT reverse args
1398 def : Pat <
1399 (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETULT),
1400 (SETGT_UINT R600_Reg32:$src1, R600_Reg32:$src0)
1401 >;
1402
1403 // SETGE_UINT reverse args
1404 def : Pat <
1405 (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETULE),
1406 (SETGE_UINT R600_Reg32:$src0, R600_Reg32:$src1)
1407 >;
1408
1409 // The next two patterns are special cases for handling 'true if ordered' and
1410 // 'true if unordered' conditionals. The assumption here is that the behavior of
1411 // SETE and SNE conforms to the Direct3D 10 rules for floating point values
1412 // described here:
1413 // http://msdn.microsoft.com/en-us/library/windows/desktop/cc308050.aspx#alpha_32_bit
1414 // We assume that SETE returns false when one of the operands is NAN and
1415 // SNE returns true when on of the operands is NAN
1416
1417 //SETE - 'true if ordered'
1418 def : Pat <
1419 (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO, SETO),
1420 (SETE R600_Reg32:$src0, R600_Reg32:$src1)
1421 >;
1422
1423 //SNE - 'true if unordered'
1424 def : Pat <
1425 (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO, SETUO),
1426 (SNE R600_Reg32:$src0, R600_Reg32:$src1)
1427 >;
1428
1429 def : Extract_Element <f32, v4f32, R600_Reg128, 0, sel_x>;
1430 def : Extract_Element <f32, v4f32, R600_Reg128, 1, sel_y>;
1431 def : Extract_Element <f32, v4f32, R600_Reg128, 2, sel_z>;
1432 def : Extract_Element <f32, v4f32, R600_Reg128, 3, sel_w>;
1433
1434 def : Insert_Element <f32, v4f32, R600_Reg32, R600_Reg128, 0, sel_x>;
1435 def : Insert_Element <f32, v4f32, R600_Reg32, R600_Reg128, 1, sel_y>;
1436 def : Insert_Element <f32, v4f32, R600_Reg32, R600_Reg128, 2, sel_z>;
1437 def : Insert_Element <f32, v4f32, R600_Reg32, R600_Reg128, 3, sel_w>;
1438
1439 def : Extract_Element <i32, v4i32, R600_Reg128, 0, sel_x>;
1440 def : Extract_Element <i32, v4i32, R600_Reg128, 1, sel_y>;
1441 def : Extract_Element <i32, v4i32, R600_Reg128, 2, sel_z>;
1442 def : Extract_Element <i32, v4i32, R600_Reg128, 3, sel_w>;
1443
1444 def : Insert_Element <i32, v4i32, R600_Reg32, R600_Reg128, 0, sel_x>;
1445 def : Insert_Element <i32, v4i32, R600_Reg32, R600_Reg128, 1, sel_y>;
1446 def : Insert_Element <i32, v4i32, R600_Reg32, R600_Reg128, 2, sel_z>;
1447 def : Insert_Element <i32, v4i32, R600_Reg32, R600_Reg128, 3, sel_w>;
1448
1449 def : Vector_Build <v4f32, R600_Reg128, f32, R600_Reg32>;
1450 def : Vector_Build <v4i32, R600_Reg128, i32, R600_Reg32>;
1451
1452 // bitconvert patterns
1453
1454 def : BitConvert <i32, f32, R600_Reg32>;
1455 def : BitConvert <f32, i32, R600_Reg32>;
1456 def : BitConvert <v4f32, v4i32, R600_Reg128>;
1457
1458 } // End isR600toCayman Predicate