radeon/llvm: Lower implicit parameters before ISel
[mesa.git] / src / gallium / drivers / radeon / R600Instructions.td
1 //===-- R600Instructions.td - R600 Instruction defs -------*- tablegen -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // R600 Tablegen instruction definitions
11 //
12 //===----------------------------------------------------------------------===//
13
14 include "R600Intrinsics.td"
15
16 class InstR600 <bits<32> inst, dag outs, dag ins, string asm, list<dag> pattern,
17 InstrItinClass itin>
18 : AMDGPUInst <outs, ins, asm, pattern> {
19
20 field bits<32> Inst;
21 bit Trig = 0;
22 bit Op3 = 0;
23 bit isVector = 0;
24
25 let Inst = inst;
26 let Namespace = "AMDGPU";
27 let OutOperandList = outs;
28 let InOperandList = ins;
29 let AsmString = asm;
30 let Pattern = pattern;
31 let Itinerary = itin;
32
33 let TSFlags{4} = Trig;
34 let TSFlags{5} = Op3;
35
36 // Vector instructions are instructions that must fill all slots in an
37 // instruction group
38 let TSFlags{6} = isVector;
39 }
40
41 class InstR600ISA <dag outs, dag ins, string asm, list<dag> pattern> :
42 AMDGPUInst <outs, ins, asm, pattern>
43 {
44 field bits<64> Inst;
45
46 let Namespace = "AMDGPU";
47 }
48
49 def MEMxi : Operand<iPTR> {
50 let MIOperandInfo = (ops R600_TReg32_X:$ptr, i32imm:$index);
51 }
52
53 def MEMrr : Operand<iPTR> {
54 let MIOperandInfo = (ops R600_Reg32:$ptr, R600_Reg32:$index);
55 }
56
57 def ADDRParam : ComplexPattern<i32, 2, "SelectADDRParam", [], []>;
58 def ADDRDWord : ComplexPattern<i32, 1, "SelectADDRDWord", [], []>;
59 def ADDRVTX_READ : ComplexPattern<i32, 2, "SelectADDRVTX_READ", [], []>;
60
61 class R600_ALU {
62
63 bits<7> DST_GPR = 0;
64 bits<9> SRC0_SEL = 0;
65 bits<1> SRC0_NEG = 0;
66 bits<9> SRC1_SEL = 0;
67 bits<1> SRC1_NEG = 0;
68 bits<1> CLAMP = 0;
69
70 }
71
72 def R600_Pred : PredicateOperand<i32, (ops R600_Predicate),
73 (ops PRED_SEL_OFF)>;
74
75
76 class R600_1OP <bits<32> inst, string opName, list<dag> pattern,
77 InstrItinClass itin = AnyALU> :
78 InstR600 <inst,
79 (outs R600_Reg32:$dst),
80 (ins R600_Reg32:$src, R600_Pred:$p, variable_ops),
81 !strconcat(opName, " $dst, $src ($p)"),
82 pattern,
83 itin
84 >;
85
86 class R600_2OP <bits<32> inst, string opName, list<dag> pattern,
87 InstrItinClass itin = AnyALU> :
88 InstR600 <inst,
89 (outs R600_Reg32:$dst),
90 (ins R600_Reg32:$src0, R600_Reg32:$src1,R600_Pred:$p, variable_ops),
91 !strconcat(opName, " $dst, $src0, $src1"),
92 pattern,
93 itin
94 >;
95
96 class R600_3OP <bits<32> inst, string opName, list<dag> pattern,
97 InstrItinClass itin = AnyALU> :
98 InstR600 <inst,
99 (outs R600_Reg32:$dst),
100 (ins R600_Reg32:$src0, R600_Reg32:$src1, R600_Reg32:$src2,R600_Pred:$p, variable_ops),
101 !strconcat(opName, " $dst, $src0, $src1, $src2"),
102 pattern,
103 itin>{
104
105 let Op3 = 1;
106 }
107
108
109
110 def PRED_X : AMDGPUInst <(outs R600_Predicate_Bit:$dst),
111 (ins R600_Reg32:$src0, i32imm:$src1),
112 "PRED $dst, $src0, $src1",
113 []>
114 {
115 let DisableEncoding = "$src0";
116 field bits<32> Inst;
117 bits<32> src1;
118
119 let Inst = src1;
120 }
121
122
123
124 let isTerminator = 1, isBranch = 1 in {
125 def JUMP : InstR600 <0x10,
126 (outs),
127 (ins brtarget:$target, R600_Pred:$p),
128 "JUMP $target ($p)",
129 [], AnyALU
130 >;
131 }
132
133 class R600_REDUCTION <bits<32> inst, dag ins, string asm, list<dag> pattern,
134 InstrItinClass itin = VecALU> :
135 InstR600 <inst,
136 (outs R600_Reg32:$dst),
137 ins,
138 asm,
139 pattern,
140 itin
141
142 >;
143
144 class R600_TEX <bits<32> inst, string opName, list<dag> pattern,
145 InstrItinClass itin = AnyALU> :
146 InstR600 <inst,
147 (outs R600_Reg128:$dst),
148 (ins R600_Reg128:$src0, i32imm:$src1, i32imm:$src2),
149 !strconcat(opName, "$dst, $src0, $src1, $src2"),
150 pattern,
151 itin
152 >;
153
154 def TEX_SHADOW : PatLeaf<
155 (imm),
156 [{uint32_t TType = (uint32_t)N->getZExtValue();
157 return (TType >= 6 && TType <= 8) || TType == 11 || TType == 12;
158 }]
159 >;
160
161 class EG_CF_RAT <bits <8> cf_inst, bits <6> rat_inst, bits<4> rat_id, dag outs,
162 dag ins, string asm, list<dag> pattern> :
163 InstR600ISA <outs, ins, asm, pattern>
164 {
165 bits<7> RW_GPR;
166 bits<7> INDEX_GPR;
167
168 bits<2> RIM;
169 bits<2> TYPE;
170 bits<1> RW_REL;
171 bits<2> ELEM_SIZE;
172
173 bits<12> ARRAY_SIZE;
174 bits<4> COMP_MASK;
175 bits<4> BURST_COUNT;
176 bits<1> VPM;
177 bits<1> EOP;
178 bits<1> MARK;
179 bits<1> BARRIER;
180
181 /* CF_ALLOC_EXPORT_WORD0_RAT */
182 let Inst{3-0} = rat_id;
183 let Inst{9-4} = rat_inst;
184 let Inst{10} = 0; /* Reserved */
185 let Inst{12-11} = RIM;
186 let Inst{14-13} = TYPE;
187 let Inst{21-15} = RW_GPR;
188 let Inst{22} = RW_REL;
189 let Inst{29-23} = INDEX_GPR;
190 let Inst{31-30} = ELEM_SIZE;
191
192 /* CF_ALLOC_EXPORT_WORD1_BUF */
193 let Inst{43-32} = ARRAY_SIZE;
194 let Inst{47-44} = COMP_MASK;
195 let Inst{51-48} = BURST_COUNT;
196 let Inst{52} = VPM;
197 let Inst{53} = EOP;
198 let Inst{61-54} = cf_inst;
199 let Inst{62} = MARK;
200 let Inst{63} = BARRIER;
201 }
202
203 /*
204 def store_global : PatFrag<(ops node:$value, node:$ptr),
205 (store node:$value, node:$ptr),
206 [{
207 const Value *Src;
208 const PointerType *Type;
209 if ((src = cast<StoreSDNode>(N)->getSrcValue() &&
210 PT = dyn_cast<PointerType>(Src->getType()))) {
211 return PT->getAddressSpace() == 1;
212 }
213 return false;
214 }]>;
215
216 */
217
218 def load_param : PatFrag<(ops node:$ptr),
219 (load node:$ptr),
220 [{
221 const Value *Src = cast<LoadSDNode>(N)->getSrcValue();
222 if (Src) {
223 PointerType * PT = dyn_cast<PointerType>(Src->getType());
224 return PT && PT->getAddressSpace() == AMDGPUAS::PARAM_I_ADDRESS;
225 }
226 return false;
227 }]>;
228
229 //class EG_CF <bits<32> inst, string asm> :
230 // InstR600 <inst, (outs), (ins), asm, []>;
231
232 /* XXX: We will use this when we emit the real ISA.
233 bits<24> ADDR = 0;
234 bits<3> JTS = 0;
235
236 bits<3> PC = 0;
237 bits<5> CF_CONS = 0;
238 bits<2> COND = 0;
239 bits<6> COUNT = 0;
240 bits<1> VPM = 0;
241 bits<1> EOP = 0;
242 bits<8> CF_INST = 0;
243 bits<1> WQM = 0;
244 bits<1> B = 0;
245
246 let Inst{23-0} = ADDR;
247 let Inst{26-24} = JTS;
248 let Inst{34-32} = PC;
249 let Inst{39-35} = CF_CONST;
250 let Inst{41-40} = COND;
251 let Inst{47-42} = COUNT;
252 let Inst{52} = VPM;
253 let Inst{53} = EOP;
254 let Inst{61-54} = CF_INST;
255 let Inst{62} = WQM;
256 let Inst{63} = B;
257 //}
258 */
259 def isR600 : Predicate<"Subtarget.device()"
260 "->getGeneration() == AMDGPUDeviceInfo::HD4XXX">;
261 def isR700 : Predicate<"Subtarget.device()"
262 "->getGeneration() == AMDGPUDeviceInfo::HD4XXX &&"
263 "Subtarget.device()->getDeviceFlag()"
264 ">= OCL_DEVICE_RV710">;
265 def isEG : Predicate<"Subtarget.device()"
266 "->getGeneration() >= AMDGPUDeviceInfo::HD5XXX && "
267 "Subtarget.device()->getDeviceFlag() != OCL_DEVICE_CAYMAN">;
268 def isCayman : Predicate<"Subtarget.device()"
269 "->getDeviceFlag() == OCL_DEVICE_CAYMAN">;
270 def isEGorCayman : Predicate<"Subtarget.device()"
271 "->getGeneration() == AMDGPUDeviceInfo::HD5XXX"
272 "|| Subtarget.device()->getGeneration() =="
273 "AMDGPUDeviceInfo::HD6XXX">;
274
275 def isR600toCayman : Predicate<
276 "Subtarget.device()->getGeneration() <= AMDGPUDeviceInfo::HD6XXX">;
277
278
279 let Predicates = [isR600toCayman] in {
280
281 /* ------------------------------------------- */
282 /* Common Instructions R600, R700, Evergreen, Cayman */
283 /* ------------------------------------------- */
284 def ADD : R600_2OP <
285 0x0, "ADD",
286 [(set R600_Reg32:$dst, (fadd R600_Reg32:$src0, R600_Reg32:$src1))]
287 >;
288
289 // Non-IEEE MUL: 0 * anything = 0
290 def MUL : R600_2OP <
291 0x1, "MUL NON-IEEE",
292 [(set R600_Reg32:$dst, (int_AMDGPU_mul R600_Reg32:$src0, R600_Reg32:$src1))]
293 >;
294
295 def MUL_IEEE : R600_2OP <
296 0x2, "MUL_IEEE",
297 [(set R600_Reg32:$dst, (fmul R600_Reg32:$src0, R600_Reg32:$src1))]
298 >;
299
300 def MAX : R600_2OP <
301 0x3, "MAX",
302 [(set R600_Reg32:$dst, (AMDGPUfmax R600_Reg32:$src0, R600_Reg32:$src1))]
303 >;
304
305 def MIN : R600_2OP <
306 0x4, "MIN",
307 [(set R600_Reg32:$dst, (AMDGPUfmin R600_Reg32:$src0, R600_Reg32:$src1))]
308 >;
309
310 /* For the SET* instructions there is a naming conflict in TargetSelectionDAG.td,
311 * so some of the instruction names don't match the asm string.
312 * XXX: Use the defs in TargetSelectionDAG.td instead of intrinsics.
313 */
314
315 def SETE : R600_2OP <
316 0x08, "SETE",
317 [(set R600_Reg32:$dst,
318 (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO,
319 COND_EQ))]
320 >;
321
322 def SGT : R600_2OP <
323 0x09, "SETGT",
324 [(set R600_Reg32:$dst,
325 (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO,
326 COND_GT))]
327 >;
328
329 def SGE : R600_2OP <
330 0xA, "SETGE",
331 [(set R600_Reg32:$dst,
332 (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO,
333 COND_GE))]
334 >;
335
336 def SNE : R600_2OP <
337 0xB, "SETNE",
338 [(set R600_Reg32:$dst,
339 (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO,
340 COND_NE))]
341 >;
342
343 def FRACT : R600_1OP <
344 0x10, "FRACT",
345 [(set R600_Reg32:$dst, (AMDGPUfract R600_Reg32:$src))]
346 >;
347
348 def TRUNC : R600_1OP <
349 0x11, "TRUNC",
350 [(set R600_Reg32:$dst, (int_AMDGPU_trunc R600_Reg32:$src))]
351 >;
352
353 def CEIL : R600_1OP <
354 0x12, "CEIL",
355 [(set R600_Reg32:$dst, (fceil R600_Reg32:$src))]
356 >;
357
358 def RNDNE : R600_1OP <
359 0x13, "RNDNE",
360 [(set R600_Reg32:$dst, (frint R600_Reg32:$src))]
361 >;
362
363 def FLOOR : R600_1OP <
364 0x14, "FLOOR",
365 [(set R600_Reg32:$dst, (int_AMDGPU_floor R600_Reg32:$src))]
366 >;
367
368 def MOV : R600_1OP <0x19, "MOV", []>;
369
370 class MOV_IMM <ValueType vt, Operand immType> : InstR600 <0x19,
371 (outs R600_Reg32:$dst),
372 (ins R600_Reg32:$alu_literal, R600_Pred:$p, immType:$imm),
373 "MOV_IMM $dst, $imm",
374 [], AnyALU
375 >;
376
377 def MOV_IMM_I32 : MOV_IMM<i32, i32imm>;
378 def : Pat <
379 (imm:$val),
380 (MOV_IMM_I32 (i32 ALU_LITERAL_X), imm:$val)
381 >;
382
383 def MOV_IMM_F32 : MOV_IMM<f32, f32imm>;
384 def : Pat <
385 (fpimm:$val),
386 (MOV_IMM_F32 (i32 ALU_LITERAL_X), fpimm:$val)
387 >;
388
389 def KILLGT : R600_2OP <
390 0x2D, "KILLGT",
391 []
392 >;
393
394 def AND_INT : R600_2OP <
395 0x30, "AND_INT",
396 [(set R600_Reg32:$dst, (and R600_Reg32:$src0, R600_Reg32:$src1))]
397 >;
398
399 def OR_INT : R600_2OP <
400 0x31, "OR_INT",
401 [(set R600_Reg32:$dst, (or R600_Reg32:$src0, R600_Reg32:$src1))]
402 >;
403
404 def XOR_INT : R600_2OP <
405 0x32, "XOR_INT",
406 [(set R600_Reg32:$dst, (xor R600_Reg32:$src0, R600_Reg32:$src1))]
407 >;
408
409 def NOT_INT : R600_1OP <
410 0x33, "NOT_INT",
411 [(set R600_Reg32:$dst, (not R600_Reg32:$src))]
412 >;
413
414 def ADD_INT : R600_2OP <
415 0x34, "ADD_INT",
416 [(set R600_Reg32:$dst, (add R600_Reg32:$src0, R600_Reg32:$src1))]
417 >;
418
419 def SUB_INT : R600_2OP <
420 0x35, "SUB_INT",
421 [(set R600_Reg32:$dst, (sub R600_Reg32:$src0, R600_Reg32:$src1))]
422 >;
423
424 def MAX_INT : R600_2OP <
425 0x36, "MAX_INT",
426 [(set R600_Reg32:$dst, (AMDGPUsmax R600_Reg32:$src0, R600_Reg32:$src1))]>;
427
428 def MIN_INT : R600_2OP <
429 0x37, "MIN_INT",
430 [(set R600_Reg32:$dst, (AMDGPUsmin R600_Reg32:$src0, R600_Reg32:$src1))]>;
431
432 def MAX_UINT : R600_2OP <
433 0x38, "MAX_UINT",
434 [(set R600_Reg32:$dst, (AMDGPUsmax R600_Reg32:$src0, R600_Reg32:$src1))]
435 >;
436
437 def MIN_UINT : R600_2OP <
438 0x39, "MIN_UINT",
439 [(set R600_Reg32:$dst, (AMDGPUumin R600_Reg32:$src0, R600_Reg32:$src1))]
440 >;
441
442 def SETE_INT : R600_2OP <
443 0x3A, "SETE_INT",
444 [(set (i32 R600_Reg32:$dst),
445 (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETEQ))]
446 >;
447
448 def SETGT_INT : R600_2OP <
449 0x3B, "SGT_INT",
450 [(set (i32 R600_Reg32:$dst),
451 (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETGT))]
452 >;
453
454 def SETGE_INT : R600_2OP <
455 0x3C, "SETGE_INT",
456 [(set (i32 R600_Reg32:$dst),
457 (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETGE))]
458 >;
459
460 def SETNE_INT : R600_2OP <
461 0x3D, "SETNE_INT",
462 [(set (i32 R600_Reg32:$dst),
463 (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETNE))]
464 >;
465
466 def SETGT_UINT : R600_2OP <
467 0x3E, "SETGT_UINT",
468 [(set (i32 R600_Reg32:$dst),
469 (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETUGT))]
470 >;
471
472 def SETGE_UINT : R600_2OP <
473 0x3F, "SETGE_UINT",
474 [(set (i32 R600_Reg32:$dst),
475 (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETUGE))]
476 >;
477
478 def CNDE_INT : R600_3OP <
479 0x1C, "CNDE_INT",
480 [(set (i32 R600_Reg32:$dst),
481 (select R600_Reg32:$src0, R600_Reg32:$src2, R600_Reg32:$src1))]
482 >;
483
484 /* Texture instructions */
485
486
487 def TEX_LD : R600_TEX <
488 0x03, "TEX_LD",
489 [(set R600_Reg128:$dst, (int_AMDGPU_txf R600_Reg128:$src0, imm:$src1, imm:$src2, imm:$src3, imm:$src4, imm:$src5))]
490 > {
491 let AsmString = "TEX_LD $dst, $src0, $src1, $src2, $src3, $src4, $src5";
492 let InOperandList = (ins R600_Reg128:$src0, i32imm:$src1, i32imm:$src2, i32imm:$src3, i32imm:$src4, i32imm:$src5);
493 }
494
495 def TEX_GET_TEXTURE_RESINFO : R600_TEX <
496 0x04, "TEX_GET_TEXTURE_RESINFO",
497 [(set R600_Reg128:$dst, (int_AMDGPU_txq R600_Reg128:$src0, imm:$src1, imm:$src2))]
498 >;
499
500 def TEX_GET_GRADIENTS_H : R600_TEX <
501 0x07, "TEX_GET_GRADIENTS_H",
502 [(set R600_Reg128:$dst, (int_AMDGPU_ddx R600_Reg128:$src0, imm:$src1, imm:$src2))]
503 >;
504
505 def TEX_GET_GRADIENTS_V : R600_TEX <
506 0x08, "TEX_GET_GRADIENTS_V",
507 [(set R600_Reg128:$dst, (int_AMDGPU_ddy R600_Reg128:$src0, imm:$src1, imm:$src2))]
508 >;
509
510 def TEX_SET_GRADIENTS_H : R600_TEX <
511 0x0B, "TEX_SET_GRADIENTS_H",
512 []
513 >;
514
515 def TEX_SET_GRADIENTS_V : R600_TEX <
516 0x0C, "TEX_SET_GRADIENTS_V",
517 []
518 >;
519
520 def TEX_SAMPLE : R600_TEX <
521 0x10, "TEX_SAMPLE",
522 [(set R600_Reg128:$dst, (int_AMDGPU_tex R600_Reg128:$src0, imm:$src1, imm:$src2))]
523 >;
524
525 def TEX_SAMPLE_C : R600_TEX <
526 0x18, "TEX_SAMPLE_C",
527 [(set R600_Reg128:$dst, (int_AMDGPU_tex R600_Reg128:$src0, imm:$src1, TEX_SHADOW:$src2))]
528 >;
529
530 def TEX_SAMPLE_L : R600_TEX <
531 0x11, "TEX_SAMPLE_L",
532 [(set R600_Reg128:$dst, (int_AMDGPU_txl R600_Reg128:$src0, imm:$src1, imm:$src2))]
533 >;
534
535 def TEX_SAMPLE_C_L : R600_TEX <
536 0x19, "TEX_SAMPLE_C_L",
537 [(set R600_Reg128:$dst, (int_AMDGPU_txl R600_Reg128:$src0, imm:$src1, TEX_SHADOW:$src2))]
538 >;
539
540 def TEX_SAMPLE_LB : R600_TEX <
541 0x12, "TEX_SAMPLE_LB",
542 [(set R600_Reg128:$dst, (int_AMDGPU_txb R600_Reg128:$src0, imm:$src1, imm:$src2))]
543 >;
544
545 def TEX_SAMPLE_C_LB : R600_TEX <
546 0x1A, "TEX_SAMPLE_C_LB",
547 [(set R600_Reg128:$dst, (int_AMDGPU_txb R600_Reg128:$src0, imm:$src1, TEX_SHADOW:$src2))]
548 >;
549
550 def TEX_SAMPLE_G : R600_TEX <
551 0x14, "TEX_SAMPLE_G",
552 []
553 >;
554
555 def TEX_SAMPLE_C_G : R600_TEX <
556 0x1C, "TEX_SAMPLE_C_G",
557 []
558 >;
559
560 /* Helper classes for common instructions */
561
562 class MUL_LIT_Common <bits<32> inst> : R600_3OP <
563 inst, "MUL_LIT",
564 []
565 >;
566
567 class MULADD_Common <bits<32> inst> : R600_3OP <
568 inst, "MULADD",
569 [(set (f32 R600_Reg32:$dst),
570 (IL_mad R600_Reg32:$src0, R600_Reg32:$src1, R600_Reg32:$src2))]
571 >;
572
573 class CNDE_Common <bits<32> inst> : R600_3OP <
574 inst, "CNDE",
575 [(set (f32 R600_Reg32:$dst),
576 (select (i32 (fp_to_sint (fneg R600_Reg32:$src0))), (f32 R600_Reg32:$src2), (f32 R600_Reg32:$src1)))]
577 >;
578
579 class CNDGT_Common <bits<32> inst> : R600_3OP <
580 inst, "CNDGT",
581 []
582 >;
583
584 class CNDGE_Common <bits<32> inst> : R600_3OP <
585 inst, "CNDGE",
586 [(set R600_Reg32:$dst, (int_AMDGPU_cndlt R600_Reg32:$src0, R600_Reg32:$src2, R600_Reg32:$src1))]
587 >;
588
589 class DOT4_Common <bits<32> inst> : R600_REDUCTION <
590 inst,
591 (ins R600_Reg128:$src0, R600_Reg128:$src1),
592 "DOT4 $dst $src0, $src1",
593 [(set R600_Reg32:$dst, (int_AMDGPU_dp4 R600_Reg128:$src0, R600_Reg128:$src1))]
594 >;
595
596 class CUBE_Common <bits<32> inst> : InstR600 <
597 inst,
598 (outs R600_Reg128:$dst),
599 (ins R600_Reg128:$src),
600 "CUBE $dst $src",
601 [(set R600_Reg128:$dst, (int_AMDGPU_cube R600_Reg128:$src))],
602 VecALU
603 >;
604
605 class EXP_IEEE_Common <bits<32> inst> : R600_1OP <
606 inst, "EXP_IEEE",
607 [(set R600_Reg32:$dst, (fexp2 R600_Reg32:$src))]
608 >;
609
610 class FLT_TO_INT_Common <bits<32> inst> : R600_1OP <
611 inst, "FLT_TO_INT",
612 [(set R600_Reg32:$dst, (fp_to_sint R600_Reg32:$src))]
613 >;
614
615 class INT_TO_FLT_Common <bits<32> inst> : R600_1OP <
616 inst, "INT_TO_FLT",
617 [(set R600_Reg32:$dst, (sint_to_fp R600_Reg32:$src))]
618 >;
619
620 class FLT_TO_UINT_Common <bits<32> inst> : R600_1OP <
621 inst, "FLT_TO_UINT",
622 [(set R600_Reg32:$dst, (fp_to_uint R600_Reg32:$src))]
623 >;
624
625 class UINT_TO_FLT_Common <bits<32> inst> : R600_1OP <
626 inst, "UINT_TO_FLT",
627 [(set R600_Reg32:$dst, (uint_to_fp R600_Reg32:$src))]
628 >;
629
630 class LOG_CLAMPED_Common <bits<32> inst> : R600_1OP <
631 inst, "LOG_CLAMPED",
632 []
633 >;
634
635 class LOG_IEEE_Common <bits<32> inst> : R600_1OP <
636 inst, "LOG_IEEE",
637 [(set R600_Reg32:$dst, (int_AMDIL_log R600_Reg32:$src))]
638 >;
639
640 class LSHL_Common <bits<32> inst> : R600_2OP <
641 inst, "LSHL $dst, $src0, $src1",
642 [(set R600_Reg32:$dst, (shl R600_Reg32:$src0, R600_Reg32:$src1))]
643 >;
644
645 class LSHR_Common <bits<32> inst> : R600_2OP <
646 inst, "LSHR $dst, $src0, $src1",
647 [(set R600_Reg32:$dst, (srl R600_Reg32:$src0, R600_Reg32:$src1))]
648 >;
649
650 class ASHR_Common <bits<32> inst> : R600_2OP <
651 inst, "ASHR $dst, $src0, $src1",
652 [(set R600_Reg32:$dst, (sra R600_Reg32:$src0, R600_Reg32:$src1))]
653 >;
654
655 class MULHI_INT_Common <bits<32> inst> : R600_2OP <
656 inst, "MULHI_INT $dst, $src0, $src1",
657 [(set R600_Reg32:$dst, (mulhs R600_Reg32:$src0, R600_Reg32:$src1))]
658 >;
659
660 class MULHI_UINT_Common <bits<32> inst> : R600_2OP <
661 inst, "MULHI $dst, $src0, $src1",
662 [(set R600_Reg32:$dst, (mulhu R600_Reg32:$src0, R600_Reg32:$src1))]
663 >;
664
665 class MULLO_INT_Common <bits<32> inst> : R600_2OP <
666 inst, "MULLO_INT $dst, $src0, $src1",
667 [(set R600_Reg32:$dst, (mul R600_Reg32:$src0, R600_Reg32:$src1))]
668 >;
669
670 class MULLO_UINT_Common <bits<32> inst> : R600_2OP <
671 inst, "MULLO_UINT $dst, $src0, $src1",
672 []
673 >;
674
675 class RECIP_CLAMPED_Common <bits<32> inst> : R600_1OP <
676 inst, "RECIP_CLAMPED",
677 []
678 >;
679
680 class RECIP_IEEE_Common <bits<32> inst> : R600_1OP <
681 inst, "RECIP_IEEE",
682 [(set R600_Reg32:$dst, (int_AMDGPU_rcp R600_Reg32:$src))]
683 >;
684
685 class RECIP_UINT_Common <bits<32> inst> : R600_1OP <
686 inst, "RECIP_INT $dst, $src",
687 [(set R600_Reg32:$dst, (AMDGPUurecip R600_Reg32:$src))]
688 >;
689
690 class RECIPSQRT_CLAMPED_Common <bits<32> inst> : R600_1OP <
691 inst, "RECIPSQRT_CLAMPED",
692 [(set R600_Reg32:$dst, (int_AMDGPU_rsq R600_Reg32:$src))]
693 >;
694
695 class RECIPSQRT_IEEE_Common <bits<32> inst> : R600_1OP <
696 inst, "RECIPSQRT_IEEE",
697 []
698 >;
699
700 class SIN_Common <bits<32> inst> : R600_1OP <
701 inst, "SIN", []>{
702 let Trig = 1;
703 }
704
705 class COS_Common <bits<32> inst> : R600_1OP <
706 inst, "COS", []> {
707 let Trig = 1;
708 }
709
710 /* Helper patterns for complex intrinsics */
711 /* -------------------------------------- */
712
713 class DIV_Common <InstR600 recip_ieee> : Pat<
714 (int_AMDGPU_div R600_Reg32:$src0, R600_Reg32:$src1),
715 (MUL R600_Reg32:$src0, (recip_ieee R600_Reg32:$src1))
716 >;
717
718 class SSG_Common <InstR600 cndgt, InstR600 cndge> : Pat <
719 (int_AMDGPU_ssg R600_Reg32:$src),
720 (cndgt R600_Reg32:$src, (f32 ONE), (cndge R600_Reg32:$src, (f32 ZERO), (f32 NEG_ONE)))
721 >;
722
723 class TGSI_LIT_Z_Common <InstR600 mul_lit, InstR600 log_clamped, InstR600 exp_ieee> : Pat <
724 (int_TGSI_lit_z R600_Reg32:$src_x, R600_Reg32:$src_y, R600_Reg32:$src_w),
725 (exp_ieee (mul_lit (log_clamped (MAX R600_Reg32:$src_y, (f32 ZERO))), R600_Reg32:$src_w, R600_Reg32:$src_x))
726 >;
727
728 /* ---------------------- */
729 /* R600 / R700 Only Instructions */
730 /* ---------------------- */
731
732 let Predicates = [isR600] in {
733
734 def MUL_LIT_r600 : MUL_LIT_Common<0x0C>;
735 def MULADD_r600 : MULADD_Common<0x10>;
736 def CNDE_r600 : CNDE_Common<0x18>;
737 def CNDGT_r600 : CNDGT_Common<0x19>;
738 def CNDGE_r600 : CNDGE_Common<0x1A>;
739 def DOT4_r600 : DOT4_Common<0x50>;
740 def CUBE_r600 : CUBE_Common<0x52>;
741 def EXP_IEEE_r600 : EXP_IEEE_Common<0x61>;
742 def LOG_CLAMPED_r600 : LOG_CLAMPED_Common<0x62>;
743 def LOG_IEEE_r600 : LOG_IEEE_Common<0x63>;
744 def RECIP_CLAMPED_r600 : RECIP_CLAMPED_Common<0x64>;
745 def RECIP_IEEE_r600 : RECIP_IEEE_Common<0x66>;
746 def RECIPSQRT_CLAMPED_r600 : RECIPSQRT_CLAMPED_Common<0x67>;
747 def RECIPSQRT_IEEE_r600 : RECIPSQRT_IEEE_Common<0x69>;
748 def FLT_TO_INT_r600 : FLT_TO_INT_Common<0x6b>;
749 def INT_TO_FLT_r600 : INT_TO_FLT_Common<0x6c>;
750 def FLT_TO_UINT_r600 : FLT_TO_UINT_Common<0x79>;
751 def UINT_TO_FLT_r600 : UINT_TO_FLT_Common<0x6d>;
752 def SIN_r600 : SIN_Common<0x6E>;
753 def COS_r600 : COS_Common<0x6F>;
754 def ASHR_r600 : ASHR_Common<0x70>;
755 def LSHR_r600 : LSHR_Common<0x71>;
756 def LSHL_r600 : LSHL_Common<0x72>;
757 def MULLO_INT_r600 : MULLO_INT_Common<0x73>;
758 def MULHI_INT_r600 : MULHI_INT_Common<0x74>;
759 def MULLO_UINT_r600 : MULLO_UINT_Common<0x75>;
760 def MULHI_UINT_r600 : MULHI_UINT_Common<0x76>;
761 def RECIP_UINT_r600 : RECIP_UINT_Common <0x78>;
762
763 def DIV_r600 : DIV_Common<RECIP_IEEE_r600>;
764 def POW_r600 : POW_Common<LOG_IEEE_r600, EXP_IEEE_r600, MUL, GPRF32>;
765 def SSG_r600 : SSG_Common<CNDGT_r600, CNDGE_r600>;
766 def TGSI_LIT_Z_r600 : TGSI_LIT_Z_Common<MUL_LIT_r600, LOG_CLAMPED_r600, EXP_IEEE_r600>;
767
768 }
769
770 // Helper pattern for normalizing inputs to triginomic instructions for R700+
771 // cards.
772 class TRIG_eg <InstR600 trig, Intrinsic intr> : Pat<
773 (intr R600_Reg32:$src),
774 (trig (MUL (MOV_IMM_I32 (i32 ALU_LITERAL_X), CONST.TWO_PI_INV), R600_Reg32:$src))
775 >;
776
777 //===----------------------------------------------------------------------===//
778 // R700 Only instructions
779 //===----------------------------------------------------------------------===//
780
781 let Predicates = [isR700] in {
782 def SIN_r700 : SIN_Common<0x6E>;
783 def COS_r700 : COS_Common<0x6F>;
784
785 // R700 normalizes inputs to SIN/COS the same as EG
786 def : TRIG_eg <SIN_r700, int_AMDGPU_sin>;
787 def : TRIG_eg <COS_r700, int_AMDGPU_cos>;
788 }
789
790 //===----------------------------------------------------------------------===//
791 // Evergreen Only instructions
792 //===----------------------------------------------------------------------===//
793
794 let Predicates = [isEG] in {
795
796 def RECIP_IEEE_eg : RECIP_IEEE_Common<0x86>;
797
798 def MULLO_INT_eg : MULLO_INT_Common<0x8F>;
799 def MULHI_INT_eg : MULHI_INT_Common<0x90>;
800 def MULLO_UINT_eg : MULLO_UINT_Common<0x91>;
801 def MULHI_UINT_eg : MULHI_UINT_Common<0x92>;
802 def RECIP_UINT_eg : RECIP_UINT_Common<0x94>;
803
804 } // End Predicates = [isEG]
805
806 /* ------------------------------- */
807 /* Evergreen / Cayman Instructions */
808 /* ------------------------------- */
809
810 let Predicates = [isEGorCayman] in {
811
812 // BFE_UINT - bit_extract, an optimization for mask and shift
813 // Src0 = Input
814 // Src1 = Offset
815 // Src2 = Width
816 //
817 // bit_extract = (Input << (32 - Offset - Width)) >> (32 - Width)
818 //
819 // Example Usage:
820 // (Offset, Width)
821 //
822 // (0, 8) = (Input << 24) >> 24 = (Input & 0xff) >> 0
823 // (8, 8) = (Input << 16) >> 24 = (Input & 0xffff) >> 8
824 // (16,8) = (Input << 8) >> 24 = (Input & 0xffffff) >> 16
825 // (24,8) = (Input << 0) >> 24 = (Input & 0xffffffff) >> 24
826 def BFE_UINT_eg : R600_3OP <0x4, "BFE_UINT",
827 [(set R600_Reg32:$dst, (int_AMDIL_bit_extract_u32 R600_Reg32:$src0,
828 R600_Reg32:$src1,
829 R600_Reg32:$src2))],
830 VecALU
831 >;
832
833 def BIT_ALIGN_INT_eg : R600_3OP <0xC, "BIT_ALIGN_INT",
834 [(set R600_Reg32:$dst, (AMDGPUbitalign R600_Reg32:$src0, R600_Reg32:$src1,
835 R600_Reg32:$src2))],
836 VecALU
837 >;
838
839 def MULADD_eg : MULADD_Common<0x14>;
840 def ASHR_eg : ASHR_Common<0x15>;
841 def LSHR_eg : LSHR_Common<0x16>;
842 def LSHL_eg : LSHL_Common<0x17>;
843 def CNDE_eg : CNDE_Common<0x19>;
844 def CNDGT_eg : CNDGT_Common<0x1A>;
845 def CNDGE_eg : CNDGE_Common<0x1B>;
846 def MUL_LIT_eg : MUL_LIT_Common<0x1F>;
847 def EXP_IEEE_eg : EXP_IEEE_Common<0x81>;
848 def LOG_CLAMPED_eg : LOG_CLAMPED_Common<0x82>;
849 def LOG_IEEE_eg : LOG_IEEE_Common<0x83>;
850 def RECIP_CLAMPED_eg : RECIP_CLAMPED_Common<0x84>;
851 def RECIPSQRT_CLAMPED_eg : RECIPSQRT_CLAMPED_Common<0x87>;
852 def RECIPSQRT_IEEE_eg : RECIPSQRT_IEEE_Common<0x89>;
853 def SIN_eg : SIN_Common<0x8D>;
854 def COS_eg : COS_Common<0x8E>;
855 def DOT4_eg : DOT4_Common<0xBE>;
856 def CUBE_eg : CUBE_Common<0xC0>;
857
858 def DIV_eg : DIV_Common<RECIP_IEEE_eg>;
859 def POW_eg : POW_Common<LOG_IEEE_eg, EXP_IEEE_eg, MUL, GPRF32>;
860 def SSG_eg : SSG_Common<CNDGT_eg, CNDGE_eg>;
861 def TGSI_LIT_Z_eg : TGSI_LIT_Z_Common<MUL_LIT_eg, LOG_CLAMPED_eg, EXP_IEEE_eg>;
862
863 def : TRIG_eg <SIN_eg, int_AMDGPU_sin>;
864 def : TRIG_eg <COS_eg, int_AMDGPU_cos>;
865
866 def FLT_TO_INT_eg : FLT_TO_INT_Common<0x50> {
867 let Pattern = [];
868 }
869
870 def INT_TO_FLT_eg : INT_TO_FLT_Common<0x9B>;
871
872 def FLT_TO_UINT_eg : FLT_TO_UINT_Common<0x9A> {
873 let Pattern = [];
874 }
875
876 def UINT_TO_FLT_eg : UINT_TO_FLT_Common<0x9C>;
877
878 def : Pat<(fp_to_sint R600_Reg32:$src),
879 (FLT_TO_INT_eg (TRUNC R600_Reg32:$src))>;
880
881 def : Pat<(fp_to_uint R600_Reg32:$src),
882 (FLT_TO_UINT_eg (TRUNC R600_Reg32:$src))>;
883
884 //===----------------------------------------------------------------------===//
885 // Memory read/write instructions
886 //===----------------------------------------------------------------------===//
887
888 let usesCustomInserter = 1 in {
889
890 def RAT_WRITE_CACHELESS_eg : EG_CF_RAT <0x57, 0x2, 0, (outs),
891 (ins R600_TReg32_X:$rw_gpr, R600_TReg32_X:$index_gpr),
892 "RAT_WRITE_CACHELESS_eg $rw_gpr, $index_gpr",
893 [(global_store (i32 R600_TReg32_X:$rw_gpr), R600_TReg32_X:$index_gpr)]>
894 {
895 let RIM = 0;
896 /* XXX: Have a separate instruction for non-indexed writes. */
897 let TYPE = 1;
898 let RW_REL = 0;
899 let ELEM_SIZE = 0;
900
901 let ARRAY_SIZE = 0;
902 let COMP_MASK = 1;
903 let BURST_COUNT = 0;
904 let VPM = 0;
905 let EOP = 0;
906 let MARK = 0;
907 let BARRIER = 1;
908 }
909
910 } // End usesCustomInserter = 1
911
912 // Floating point global_store
913 def : Pat <
914 (global_store (f32 R600_TReg32_X:$val), R600_TReg32_X:$ptr),
915 (RAT_WRITE_CACHELESS_eg R600_TReg32_X:$val, R600_TReg32_X:$ptr)
916 >;
917
918 class VTX_READ_eg <bits<8> buffer_id, dag outs, list<dag> pattern>
919 : InstR600ISA <outs, (ins MEMxi:$ptr), "VTX_READ_eg $dst, $ptr", pattern> {
920
921 // Operands
922 bits<7> DST_GPR;
923 bits<7> SRC_GPR;
924
925 // Static fields
926 bits<5> VC_INST = 0;
927 bits<2> FETCH_TYPE = 2;
928 bits<1> FETCH_WHOLE_QUAD = 0;
929 bits<8> BUFFER_ID = buffer_id;
930 bits<1> SRC_REL = 0;
931 // XXX: We can infer this field based on the SRC_GPR. This would allow us
932 // to store vertex addresses in any channel, not just X.
933 bits<2> SRC_SEL_X = 0;
934 bits<6> MEGA_FETCH_COUNT;
935 bits<1> DST_REL = 0;
936 bits<3> DST_SEL_X;
937 bits<3> DST_SEL_Y;
938 bits<3> DST_SEL_Z;
939 bits<3> DST_SEL_W;
940 // The docs say that if this bit is set, then DATA_FORMAT, NUM_FORMAT_ALL,
941 // FORMAT_COMP_ALL, SRF_MODE_ALL, and ENDIAN_SWAP fields will be ignored,
942 // however, based on my testing if USE_CONST_FIELDS is set, then all
943 // these fields need to be set to 0.
944 bits<1> USE_CONST_FIELDS = 0;
945 bits<6> DATA_FORMAT;
946 bits<2> NUM_FORMAT_ALL = 1;
947 bits<1> FORMAT_COMP_ALL = 0;
948 bits<1> SRF_MODE_ALL = 0;
949
950 // LLVM can only encode 64-bit instructions, so these fields are manually
951 // encoded in R600CodeEmitter
952 //
953 // bits<16> OFFSET;
954 // bits<2> ENDIAN_SWAP = 0;
955 // bits<1> CONST_BUF_NO_STRIDE = 0;
956 // bits<1> MEGA_FETCH = 0;
957 // bits<1> ALT_CONST = 0;
958 // bits<2> BUFFER_INDEX_MODE = 0;
959
960 // VTX_WORD0
961 let Inst{4-0} = VC_INST;
962 let Inst{6-5} = FETCH_TYPE;
963 let Inst{7} = FETCH_WHOLE_QUAD;
964 let Inst{15-8} = BUFFER_ID;
965 let Inst{22-16} = SRC_GPR;
966 let Inst{23} = SRC_REL;
967 let Inst{25-24} = SRC_SEL_X;
968 let Inst{31-26} = MEGA_FETCH_COUNT;
969
970 // VTX_WORD1_GPR
971 let Inst{38-32} = DST_GPR;
972 let Inst{39} = DST_REL;
973 let Inst{40} = 0; // Reserved
974 let Inst{43-41} = DST_SEL_X;
975 let Inst{46-44} = DST_SEL_Y;
976 let Inst{49-47} = DST_SEL_Z;
977 let Inst{52-50} = DST_SEL_W;
978 let Inst{53} = USE_CONST_FIELDS;
979 let Inst{59-54} = DATA_FORMAT;
980 let Inst{61-60} = NUM_FORMAT_ALL;
981 let Inst{62} = FORMAT_COMP_ALL;
982 let Inst{63} = SRF_MODE_ALL;
983
984 // VTX_WORD2 (LLVM can only encode 64-bit instructions, so WORD2 encoding
985 // is done in R600CodeEmitter
986 //
987 // Inst{79-64} = OFFSET;
988 // Inst{81-80} = ENDIAN_SWAP;
989 // Inst{82} = CONST_BUF_NO_STRIDE;
990 // Inst{83} = MEGA_FETCH;
991 // Inst{84} = ALT_CONST;
992 // Inst{86-85} = BUFFER_INDEX_MODE;
993 // Inst{95-86} = 0; Reserved
994
995 // VTX_WORD3 (Padding)
996 //
997 // Inst{127-96} = 0;
998 }
999
1000 class VTX_READ_32_eg <bits<8> buffer_id, list<dag> pattern>
1001 : VTX_READ_eg <buffer_id, (outs R600_TReg32_X:$dst), pattern> {
1002
1003 let MEGA_FETCH_COUNT = 4;
1004 let DST_SEL_X = 0;
1005 let DST_SEL_Y = 7; // Masked
1006 let DST_SEL_Z = 7; // Masked
1007 let DST_SEL_W = 7; // Masked
1008 let DATA_FORMAT = 0xD; // COLOR_32
1009
1010 // This is not really necessary, but there were some GPU hangs that appeared
1011 // to be caused by ALU instructions in the next instruction group that wrote
1012 // to the $ptr registers of the VTX_READ.
1013 // e.g.
1014 // %T3_X<def> = VTX_READ_PARAM_i32_eg %T2_X<kill>, 24
1015 // %T2_X<def> = MOV %ZERO
1016 //Adding this constraint prevents this from happening.
1017 let Constraints = "$ptr.ptr = $dst";
1018 }
1019
1020 class VTX_READ_128_eg <bits<8> buffer_id, list<dag> pattern>
1021 : VTX_READ_eg <buffer_id, (outs R600_Reg128:$dst), pattern> {
1022
1023 let MEGA_FETCH_COUNT = 16;
1024 let DST_SEL_X = 0;
1025 let DST_SEL_Y = 1;
1026 let DST_SEL_Z = 2;
1027 let DST_SEL_W = 3;
1028 let DATA_FORMAT = 0x22; // COLOR_32_32_32_32
1029
1030 // XXX: Need to force VTX_READ_128 instructions to write to the same register
1031 // that holds its buffer address to avoid potential hangs. We can't use
1032 // the same constraint as VTX_READ_32_eg, because the $ptr.ptr and $dst
1033 // registers are different sizes.
1034 }
1035
1036 //===----------------------------------------------------------------------===//
1037 // VTX Read from parameter memory space
1038 //===----------------------------------------------------------------------===//
1039
1040 class VTX_READ_PARAM_32_eg <ValueType vt> : VTX_READ_32_eg <0,
1041 [(set (vt R600_TReg32_X:$dst), (load_param ADDRVTX_READ:$ptr))]
1042 >;
1043
1044 def VTX_READ_PARAM_i32_eg : VTX_READ_PARAM_32_eg<i32>;
1045 def VTX_READ_PARAM_f32_eg : VTX_READ_PARAM_32_eg<f32>;
1046
1047
1048 //===----------------------------------------------------------------------===//
1049 // VTX Read from global memory space
1050 //===----------------------------------------------------------------------===//
1051
1052 // 32-bit reads
1053
1054 class VTX_READ_GLOBAL_eg <ValueType vt> : VTX_READ_32_eg <1,
1055 [(set (vt R600_TReg32_X:$dst), (global_load ADDRVTX_READ:$ptr))]
1056 >;
1057
1058 def VTX_READ_GLOBAL_i32_eg : VTX_READ_GLOBAL_eg<i32>;
1059 def VTX_READ_GLOBAL_f32_eg : VTX_READ_GLOBAL_eg<f32>;
1060
1061 // 128-bit reads
1062
1063 class VTX_READ_GLOBAL_128_eg <ValueType vt> : VTX_READ_128_eg <1,
1064 [(set (vt R600_Reg128:$dst), (global_load ADDRVTX_READ:$ptr))]
1065 >;
1066
1067 def VTX_READ_GLOBAL_v4i32_eg : VTX_READ_GLOBAL_128_eg<v4i32>;
1068 def VTX_READ_GLOBAL_v4f32_eg : VTX_READ_GLOBAL_128_eg<v4f32>;
1069
1070 }
1071
1072 let Predicates = [isCayman] in {
1073
1074 let isVector = 1 in {
1075
1076 def RECIP_IEEE_cm : RECIP_IEEE_Common<0x86>;
1077
1078 def MULLO_INT_cm : MULLO_INT_Common<0x8F>;
1079 def MULHI_INT_cm : MULHI_INT_Common<0x90>;
1080 def MULLO_UINT_cm : MULLO_UINT_Common<0x91>;
1081 def MULHI_UINT_cm : MULHI_UINT_Common<0x92>;
1082
1083 } // End isVector = 1
1084
1085 // RECIP_UINT emulation for Cayman
1086 def : Pat <
1087 (AMDGPUurecip R600_Reg32:$src0),
1088 (FLT_TO_UINT_eg (MUL_IEEE (RECIP_IEEE_cm (UINT_TO_FLT_eg R600_Reg32:$src0)),
1089 (MOV_IMM_I32 (i32 ALU_LITERAL_X), 0x4f800000)))
1090 >;
1091
1092 } // End isCayman
1093
1094 /* Other Instructions */
1095
1096 let isCodeGenOnly = 1 in {
1097 /*
1098 def SWIZZLE : AMDGPUShaderInst <
1099 (outs GPRV4F32:$dst),
1100 (ins GPRV4F32:$src0, i32imm:$src1),
1101 "SWIZZLE $dst, $src0, $src1",
1102 [(set GPRV4F32:$dst, (int_AMDGPU_swizzle GPRV4F32:$src0, imm:$src1))]
1103 >;
1104 */
1105
1106 def LAST : AMDGPUShaderInst <
1107 (outs),
1108 (ins),
1109 "LAST",
1110 []
1111 >;
1112
1113 def GET_CHAN : AMDGPUShaderInst <
1114 (outs R600_Reg32:$dst),
1115 (ins R600_Reg128:$src0, i32imm:$src1),
1116 "GET_CHAN $dst, $src0, $src1",
1117 []
1118 >;
1119
1120 def MULLIT : AMDGPUShaderInst <
1121 (outs R600_Reg128:$dst),
1122 (ins R600_Reg32:$src0, R600_Reg32:$src1, R600_Reg32:$src2),
1123 "MULLIT $dst, $src0, $src1",
1124 [(set R600_Reg128:$dst, (int_AMDGPU_mullit R600_Reg32:$src0, R600_Reg32:$src1, R600_Reg32:$src2))]
1125 >;
1126
1127 let usesCustomInserter = 1, isPseudo = 1 in {
1128
1129 class R600PreloadInst <string asm, Intrinsic intr> : AMDGPUInst <
1130 (outs R600_TReg32:$dst),
1131 (ins),
1132 asm,
1133 [(set R600_TReg32:$dst, (intr))]
1134 >;
1135
1136 def R600_LOAD_CONST : AMDGPUShaderInst <
1137 (outs R600_Reg32:$dst),
1138 (ins i32imm:$src0),
1139 "R600_LOAD_CONST $dst, $src0",
1140 [(set R600_Reg32:$dst, (int_AMDGPU_load_const imm:$src0))]
1141 >;
1142
1143 def RESERVE_REG : AMDGPUShaderInst <
1144 (outs),
1145 (ins i32imm:$src),
1146 "RESERVE_REG $src",
1147 [(int_AMDGPU_reserve_reg imm:$src)]
1148 >;
1149
1150 def TXD: AMDGPUShaderInst <
1151 (outs R600_Reg128:$dst),
1152 (ins R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2, i32imm:$src3, i32imm:$src4),
1153 "TXD $dst, $src0, $src1, $src2, $src3, $src4",
1154 [(set R600_Reg128:$dst, (int_AMDGPU_txd R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2, imm:$src3, imm:$src4))]
1155 >;
1156
1157 def TXD_SHADOW: AMDGPUShaderInst <
1158 (outs R600_Reg128:$dst),
1159 (ins R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2, i32imm:$src3, i32imm:$src4),
1160 "TXD_SHADOW $dst, $src0, $src1, $src2, $src3, $src4",
1161 [(set R600_Reg128:$dst, (int_AMDGPU_txd R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2, imm:$src3, TEX_SHADOW:$src4))]
1162 >;
1163
1164 } // End usesCustomInserter = 1, isPseudo = 1
1165
1166 } // End isCodeGenOnly = 1
1167
1168 def CLAMP_R600 : CLAMP <R600_Reg32>;
1169 def FABS_R600 : FABS<R600_Reg32>;
1170 def FNEG_R600 : FNEG<R600_Reg32>;
1171
1172 let usesCustomInserter = 1 in {
1173
1174 def MASK_WRITE : AMDGPUShaderInst <
1175 (outs),
1176 (ins R600_Reg32:$src),
1177 "MASK_WRITE $src",
1178 []
1179 >;
1180
1181 } // End usesCustomInserter = 1
1182
1183 //===----------------------------------------------------------------------===//
1184 // ISel Patterns
1185 //===----------------------------------------------------------------------===//
1186
1187 // KIL Patterns
1188 def KILP : Pat <
1189 (int_AMDGPU_kilp),
1190 (MASK_WRITE (KILLGT (f32 ONE), (f32 ZERO)))
1191 >;
1192
1193 def KIL : Pat <
1194 (int_AMDGPU_kill R600_Reg32:$src0),
1195 (MASK_WRITE (KILLGT (f32 ZERO), (f32 R600_Reg32:$src0)))
1196 >;
1197
1198 // SGT Reverse args
1199 def : Pat <
1200 (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO, COND_LT),
1201 (SGT R600_Reg32:$src1, R600_Reg32:$src0)
1202 >;
1203
1204 // SGE Reverse args
1205 def : Pat <
1206 (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO, COND_LE),
1207 (SGE R600_Reg32:$src1, R600_Reg32:$src0)
1208 >;
1209
1210 // SETGT_INT reverse args
1211 def : Pat <
1212 (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETLT),
1213 (SETGT_INT R600_Reg32:$src1, R600_Reg32:$src0)
1214 >;
1215
1216 // SETGE_INT reverse args
1217 def : Pat <
1218 (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETLE),
1219 (SETGE_INT R600_Reg32:$src1, R600_Reg32:$src0)
1220 >;
1221
1222 // SETGT_UINT reverse args
1223 def : Pat <
1224 (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETULT),
1225 (SETGT_UINT R600_Reg32:$src1, R600_Reg32:$src0)
1226 >;
1227
1228 // SETGE_UINT reverse args
1229 def : Pat <
1230 (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETULE),
1231 (SETGE_UINT R600_Reg32:$src0, R600_Reg32:$src1)
1232 >;
1233
1234 // The next two patterns are special cases for handling 'true if ordered' and
1235 // 'true if unordered' conditionals. The assumption here is that the behavior of
1236 // SETE and SNE conforms to the Direct3D 10 rules for floating point values
1237 // described here:
1238 // http://msdn.microsoft.com/en-us/library/windows/desktop/cc308050.aspx#alpha_32_bit
1239 // We assume that SETE returns false when one of the operands is NAN and
1240 // SNE returns true when on of the operands is NAN
1241
1242 //SETE - 'true if ordered'
1243 def : Pat <
1244 (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO, SETO),
1245 (SETE R600_Reg32:$src0, R600_Reg32:$src1)
1246 >;
1247
1248 //SNE - 'true if unordered'
1249 def : Pat <
1250 (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO, SETUO),
1251 (SNE R600_Reg32:$src0, R600_Reg32:$src1)
1252 >;
1253
1254 def : Extract_Element <f32, v4f32, R600_Reg128, 0, sel_x>;
1255 def : Extract_Element <f32, v4f32, R600_Reg128, 1, sel_y>;
1256 def : Extract_Element <f32, v4f32, R600_Reg128, 2, sel_z>;
1257 def : Extract_Element <f32, v4f32, R600_Reg128, 3, sel_w>;
1258
1259 def : Insert_Element <f32, v4f32, R600_Reg32, R600_Reg128, 4, sel_x>;
1260 def : Insert_Element <f32, v4f32, R600_Reg32, R600_Reg128, 5, sel_y>;
1261 def : Insert_Element <f32, v4f32, R600_Reg32, R600_Reg128, 6, sel_z>;
1262 def : Insert_Element <f32, v4f32, R600_Reg32, R600_Reg128, 7, sel_w>;
1263
1264 def : Extract_Element <i32, v4i32, R600_Reg128, 0, sel_x>;
1265 def : Extract_Element <i32, v4i32, R600_Reg128, 1, sel_y>;
1266 def : Extract_Element <i32, v4i32, R600_Reg128, 2, sel_z>;
1267 def : Extract_Element <i32, v4i32, R600_Reg128, 3, sel_w>;
1268
1269 def : Insert_Element <i32, v4i32, R600_Reg32, R600_Reg128, 4, sel_x>;
1270 def : Insert_Element <i32, v4i32, R600_Reg32, R600_Reg128, 5, sel_y>;
1271 def : Insert_Element <i32, v4i32, R600_Reg32, R600_Reg128, 6, sel_z>;
1272 def : Insert_Element <i32, v4i32, R600_Reg32, R600_Reg128, 7, sel_w>;
1273
1274 def : Vector_Build <v4f32, R600_Reg32>;
1275 def : Vector_Build <v4i32, R600_Reg32>;
1276
1277 // bitconvert patterns
1278
1279 def : BitConvert <i32, f32, R600_Reg32>;
1280 def : BitConvert <f32, i32, R600_Reg32>;
1281 def : BitConvert <v4f32, v4i32, R600_Reg128>;
1282
1283 } // End isR600toCayman Predicate